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ABSTRACT 
The Air Force Research Laboratory Information Directorate 

Advanced Computing Division (AFRL/RIT) High Performance 
Computing Affiliated Resource Center (HPC-ARC) is the host 
to a very large scale interactive computing cluster consisting of 
about 1800 nodes. Condor, the largest interactive Cell cluster in 
the world, consists of integrated heterogeneous processors of 
IBM Cell Broadband Engine (Cell BE) multicore CPUs, 
NVIDIA General Purpose Graphic Processing Units (GPGPUs) 
and Intel x86 server nodes in a 10Gb Ethernet Star Hub 
network and 20Gb/s Infiniband Mesh, with a combined 
capability of 500 trillion floating operations per second 
(TFLOPS). Applications developed and running on CONDOR 
include large-scale computational intelligence models, video 
synthetic aperture radar (SAR) back-projection, Space 
Situational Awareness (SSA), video target tracking, linear 
algebra and others. This presentation will discuss the design 
and integration of the system. It will also show progress on 
performance optimization efforts and lessons learned on 
algorithm scalability on a heterogeneous architecture. 

INTRODUCTION 
The Affiliated Resource Centers (ARCs) are Department of 

Defense (DoD) Laboratories and Test Centers that acquire and 
manage High Performance Computing (HPC) resources as a 
part of their local infrastructure, but share their HPC resources 
with the broader DoD HPC user community via the High 
Performance Computing Modernization Program (HPCMP) 
which coordinates allocation of their HPC resources.  In order 
to provide tomorrow’s Air Force with massively parallel and 
scalable HPC applications, the software must be developed on 
large clusters. Unlike typical HPC clusters, all AFRL/RI 
clusters allow for interactive development and testing.  In 2010, 
the AFRL Information Directorate won a two-million-dollar 
project, sponsored by the HPCMP, and built the Condor 

Cluster, which is DoD’s largest interactive super computer as of 
November 2011. The Condor cluster consists of 84 Servers (2U 
Dual six-core Intel Westmere 5660, 24 or 48 GB RAM) each 
with 2 GPGPUs (NVIDIA C1060, C2050 or C2070s) [2].  The 
heterogeneous cluster has 22 Play Station 3s (PS3s) connected 
to each of the 78 server nodes (1716 PS3s in total).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Condor Cluster: DoD’s largest interactive HPC. 

 
The long-term goal of AFRL/RI’s high performance 

computing research is to provide the warfighters with Secure 
Embedded HPC (SEHPC) of the highest computing 
performance, under the Size-Weight-and-Power (SWaP) 
constraints. At the time when it was built, Condor was the 
largest, fastest and most energy-efficient interactive HPC in the 
Department of Defense.  
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The Condor HPC integrates the vast majority of the state-
of-the-art HPC processing and networking architectures into 
one coherent functional system. This provides great R&D 
potentials and opportunities for the users so that they can 
explore and experiment with not only any single parallel 
computing architecture, but also any combinations of 
architectures, and evaluate their computing/communication 
performance and SWaP efficiencies under different 
programming and application scenarios. For processing 
architectures, the Intel Xeon server represents the multi-
processor, super-scalar architecture; the NVIDIA Tesla GPGPU 
combines architectures of many-core, single-instruction-
multiple-thread (SIMT, similar to SIMD), and streaming 
processing; the PlayStation 3 uses the IBM Cell BE processor, 
which adopts the multi-processor, single-instruction-multiple-
data (SIMD, or vector processing) architecture. These three 
processors represent most of the modern high-performance 
processor architectures and cover a wide range of trade-offs 
among performance, power, size and weight. 

DESIGN IMPLEMENTATION AND CONSTRAINTS 
The Condor application development focuses on two related 

ongoing programs, one applied research effort and one basic 
research effort.  The applied research focuses on voluminous 
generation of synthetic aperture radar (SAR) images providing 
persistent surveillance of city-sized areas with 1Hz update rate 
yielding a previously unachievable “video SAR capability” 
previously unachievable.  The basic research effort investigates 
massively parallel neuromorphic architectures that can exploit 
the video SAR outputs, or alternative high resolution video 
cameras, to deliver robust perception, anticipation, and focus of 
attention.   

The scalability and parallelism required to achieve sustained 
high computational throughputs demand low latency high 
bandwidth networking architectures. The Condor server nodes 
(custom built 2U X86 servers) were designed with both 20 Gb/s 
Infiniband and dual 10GbE network interface cards. This 
required the motherboard to support 48 PCI-E Gen2 (two Intel 
5200 chipsets, 2x IOH-36D), allowing for four 16x Gen 2 slots.  
This supports maximum data throughput to all four PCI-E 
devices: two NVIDIA GPGPUs and the two network cards.   

In a star-hub topology, 39 IBM BLADE RackSwitch G8000 
Gigabit Ethernet spoke switches are connected to the PS3 
compute nodes and aggregated to 12 RackSwitch G8100 10 
Gigabit Ethernet switches. Dual 10 Gigabit Ethernet links are 
bonded for high-bandwidth switch-to-switch communications. 
The IBM BLADE RackSwitch G8100s are connected to the 
Condor server nodes. The IBM BLADE RackSwitch G8100’s 
CX4 transceivers ensure low transmission latency with an 
average of 60 to 70 microseconds even when going through 
three switches. 

The condor server nodes can also communicate between 
each of the 78 nodes through an Infiniband mesh. This allows 
for very low latency and high bandwidth when applications 
only require the x86 processors and GPGPUs. While running 

bench mark tests and network OpenMPI applications, we 
routinely achieved a sustained 25-28 Gb/s performance across 
the entire network. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Condor server node. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bonded 10Gb Ethernet Blade switches. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Infiniband mesh non-blocking 20Gb/s. 
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The design of the Condor HPC system had physical 
constraints and limitations.  As shown in Figure 5, the actual 
footprint of the system, layout, power and cable trays were 

chosen carefully to allow for maximum cooling and minimum 
cable lengths.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Condor physical layout. 
 

PRIMARY APPICATIONS 
IMAGE PROCESSING: This applied research work 

focuses on voluminous generation of synthetic aperture radar 
(SAR) images providing persistent surveillance of city-sized 
areas with a 1 Hz update rate. The signal and image processing 
application that produces the best quality formed image is the 
Backprojection algorithm. This algorithm in its purest form 
requires N3 computations and, when processing billions of 
pixels, requires a sustained performance of hundreds of 
teraflops.   

Implementation of Backprojection on the Playstations: The 
original Backprojection algorithm processes each range vector 
completely before moving on to the next. Since each range 
vector contributes energy to every pixel in the scene, this 
method requires the reading and writing of all pixel memory 
locations for each range vector processed. To optimize this 
process, the algorithm was improved to calculate each pixel 
value over a number of range vectors, reducing the total 
number of memory accesses.   

Because of the limited amount of memory available on the 
PS3, the number of pixels and the amount of RADAR data had 
to be reduced in order to fit. An additional procedure was 
designed to divide the pixel matrix into smaller rectangular 
sections that can be assigned to the available processors. 
Because the range data required for calculating the pixel values 
for each of these sections exists as a contiguous segment of 
each range vector, code has been written to extract only the 
necessary data needed by each processor. The combination of 
reducing the pixel area and the required data allows the 
algorithm to be scaled to fit within the available memory. 

The original code was written to store variables and perform 
all calculations using double precision data. Since the PS3 

performs single precision operations about 10X faster than 
double precision [3,5], most of the calculations are performed 
in single precision to maximize performance.  Single precision 
operations also reduce the memory size requirements.    

The pulse compression portion of the process is performed 
on the Xeon processors. The resulting data was then transmitted 
to the PS3s for image formation.   The data storage format 
difference was also taken care of, with the Xeon in little endian 
format and the PS3 in big endian format.  The Xeon processors 
perform the byte rearrangement to accommodate the PS3s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 1-km image illustrating processing distribution. 
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The image in Figure 6 was formed by a PS3 by dividing the 
area into 12,408 32x32 pixel blocks that were distributed to the 
SPE processors.  By doing this, the number of range bins 
required to be in SPE’s memory was about 80 of the overall 
32k range bins that make up an entire vector.  The memory 
required to contain the image is also reduced since each SPE 
only has to hold the 32x32 block that it’s working on. Figure 6 
also shows the formed image being reassembled with the grid 
lines to show the processing regions. 

Performance & Optimizations: Performance was measured 
in compute time and FLoating Point Operations executed per 
second (FLOPs).  A reduction in execution time along with an 
increase in FLOPs executed per second demonstrates improved 
performance. 

There are 96 floating point operations for each pixel, for 
each pulse in the inner most loop. This loop is iterated over  
each pixel and each pulse.  Removing only 1 FLOP removes 
1600 FLOPs per pulse per (40 by 40) pixel chunk.   Square 
Roots, divisions, sines and cosines are indeterminate and 
expensive calculations.  Each platform has its own method of 
calculating these values.  Some platforms have hardware 
instructions, while others rely on software libraries.  In the case 
of the PS3, approximately 16 clock cycles are required to 
perform one double precision square root.  To make an “apples 
to apples” comparison, the following FLOP assignments were 
made for each platform: 

• Double precision square root 19 Flops 
• Single Precision sin  25 Flops 
• Single Precision cos  25 Flops 

One of the computations in the inner loop is a distance 
calculation requiring a double precision square root.  It is used 
to determine the difference, RANGEDIFF, between R (sensor 
to pixel) and R0 (sensor to spot center.  R0 was given, but R 
needed to be calculated. 

The following optimizations were aimed at reducing the 
requirement for the square root through approximation 
methods.   

The first optimization attempt was to calculate the 
RANGEDIFF for the first and last pulse (512) in the buffer, 
then to perform one” Newton-Raphson” iteration for each pixel, 
for each pulse in between.  Newton-Raphson is an iterative 
algorithm that converges on the final square root value.  By 
using the close approximation described above as the starting 
point, it was hoped that one iteration would be required to 
return an accurate value.  It turned out not to be accurate 
enough, even performing a complete square root every 32 
pulses.  The wavelength of about 3 cm requires accuracy to 3 
decimal places; the algorithm was only accurate to 2 decimal 
places within in one row of 32 pixels. 

While analyzing the data during the implementation of the 
previous optimization, it was noted that R appeared to change 
linearly.  Five thousand pulses were placed in a spread sheet, 
and R was calculated and plotted.   R for a given pixel does 
change linearly.  This may not always be the case, but with a 

high PRF it may be likely.  The PRF for this data was 7500 Hz; 
the change in sensor position over 512 pulses should be 
relatively small. 

The second optimization approach leveraged the linearity of 
R.  For each buffer of 512 pulses, and for each pixel in a chunk 
of pixels, R was calculated for the first pulse and the last pulse.  
The average difference was taken as an “increment” to the first 
R.  This reduced the number of floating point operations in the 
inner loop from 96 to 71, while adding some overhead before 
entering the loop.  Accuracy was maintained out to 4 decimal 
places. 

Table 1 shows the FLOPs comparison before and after 
optimization for one chunk of pixels processed against 512 
pulses.  The optimized version executes about 257 fewer 
GFLOPs than the un-optimized version. 

Table 1. FLOPs executed per pixel.  10 m by 10 m chunks. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 summarizes the performance results on a per chunk 
basis and compares the PS3 with the Xeon processor based on 
cost and energy usage per GFLOP. 

Table 2. Performance metrics: 10 m by 10 m chunks. 
 
 
 
 
 
 
 
 
 
It can be seen from Table 2 that for this application the PS3 

has the advantage over the Xeon for power and cost, while the 
Xeon has the advantage of speed.  The PS3 relative to the Xeon 
is: 

• ~ 1/5th the cost per GFLOP 
• ~ 1/3rd the power per GFLOP 
• ~ 1/8th the initial cost 
• ~ 1 1/2 times slower 

Gflops Executed Not Optimized Optimized Flops
Compute Loop 78,669,504 58,163,200

  + Loop Overhead 0 86,484
  Flops per Chunk per 

512 Pulses 78,669,504 58,249,684
  x Num chunks 210 210

16,520,595,840 12,232,433,640
  x Num SPEs 6 6

99,123,575,040 73,394,601,840
 x Num Pulse buffers 10 10

Flops Executed 991,235,750,400 733,946,018,400
Total Gflops Executed 991.24 733.95

Per Node PS3
Optimized 

PS3 X86
Optimized 

X86
Gflops Executed 991.24 733.95 991.24 733.95

Compute Secs 32.10 20.79 16.17 13.08
Gflops/sec 31 35 61 56.10

Cost $ per Node $380 $380 $3,000 $3,000
Cost $ per Gflop $12.30 $10.76 $48.93 $53.48
Watts  per Node 111 111 513 513

Watts/Gflops 3.59 3.14 8.37 9.14
Gflops/Watt 0.28 0.32 0.12 0.11
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In order to process the entire 5 km image, 1664 PS3’s 
would be required and each requires 32 MBs of data every 
20.79 seconds.   

NEUROMORPHIC COMPUTING: Brain-inspired signal 
processing algorithms and flow possess great potentials to be 
applied to many cognitive applications such as image 
processing, intrusion detection, etc. To investigate the software 
and hardware requirements of this new information processing 
approach, a proof-of-concept prototype of context-aware 
Intelligence Text Recognition Software (ITRS) was developed 
on the Condor HPC [1]. The software architecture of ITRS 
incorporates the Condor HPC technologies with advances in 
neuromorphic computing models.  

The overview of the implementation of the ITRS is shown 
in Figure 7. It explores the parallelism in hardware and 
software to achieve a high throughput for the system. We 
partition the entire workload into pages.  All sub-clusters run 
simultaneously and mostly independently to process different 
pages.  In this way the cluster level parallelism is achieved.  
There is a performance monitor that periodically checks the 
utilization of the processor cores in the cluster for performance 
characterization. Because each sub-cluster loads pages on-
demand, at the cluster level, the system behaves 
asynchronously. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Overview of the ITRS implementation. 

Upon receiving the page image, the head node first slices 
the image into small blocks, each of which contains one 
character. The blocks are dispatched to the PS3s, on which the 
BSB recalls are run for character recognition. The results are 
sent back to the head node for word level and sentence level 
confabulation. With a double buffering technique, the 

confabulation and BSB processes can be made parallel.  
Furthermore, all 132 SPEs in 22 PS3s are running 
simultaneously to process different characters. In this way we 
achieve processor level parallelism. At this level, the system is 
loosely synchronous because each SPE receives the same 
amount of image blocks and they perform the same amount of 
computation. Because of the limited buffer space, a periodic 
synchronization between the BSB and the confabulation is 
necessary. All inter-processor communication is implemented 
via the Message Passing Interface (MPI).  

Based on the results from the BSB recalls, the host will fork 
multiple threads; each thread is a word level confabulation 
procedure.  After all words in a sentence have been found, a 
sentence confabulation process is executed.  The word level and 
sentence level confabulation threads are dispatched to different 
cores on the Intel Xeon processor, and in this way we achieve 
core level parallelism. The key reason that we choose thread 
level parallelism instead of process level parallelism is because 
it allows shared memory so that we do not have to duplicate the 
word-level knowledge base, which is more than 200 MB in 
size. In order to avoid frequent context switching, which 
usually happens when the number of threads is greater than the 
number of cores, we adopt a token passing mechanism to 
control the number of threads.  The program maintains a token 
pool.  The number of tokens in the pool is less than or equal to 
the number of cores in the system.  A token will be removed 
from pool when a thread is created and be returned when the 
thread ends.  Because the threads are created on demand and 
complete dynamically, at this level, all cores work 
asynchronously. 

Overall, the implemented ITRS software is able to process 
about 16 to 20 scanned pages per second on the Condor HPC 
with reasonable efforts in performance optimization. 

Figure 8 shows the evolution of the ITRS software 
architecture over time. We started with a baseline 
implementation as shown in Figure 8 (a), in which all the 
software components are connected sequentially except for the 
BSB engines that are running on 22 PS3s in parallel.  Our first 
step is to improve the confabulation speed by multi-threading, 
as shown in Figure 8 (b). 

To evaluate the performance of the ITRS software, we 
carried out experiments on three different input test cases. In 
the first input file 20% of character images are scratched by 1-
pixel-wide horizontal bars. Compared to the other two test 
cases, it has the highest image quality.  The second input file 
has 40% of character images scratched by 2-pixel-wide 
horizontal bars.  Compared to test cases one and three, it has 
the medium image quality.  The last input file has 60% of 
character images scratched by 3-pixel-wide horizontal bars.  It 
is the lowest quality input file.  The number of word 
confabulation threads is varied from one to seven and denoted 
as t.  The total runtime is broken down into BSB time, word 
confabulation time, sentence confabulation time and 
synchronization time.  The sizes of the input/output buffers in 
the double buffering system are set to be 100 sentences. 
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Figure 8. Evolution of the ITRS software architecture. 
Figure 9 shows the runtime information for the three test 

cases when the number of word confabulation threads increases 
from one to seven.  It also reports the performance 

improvements of the multi-threading implementations 
compared to the baseline implementation. 

Several observations can be made from the results:  
1. No matter how the image quality changes, the BSB time 

remains constant. 
2. When the quality of the input text image deteriorates, the 

word/sentence confabulation time increases.  This is 
because we rely on the confabulation to resolve the 
ambiguities in the input.   

3. When the quality of the input text image deteriorates, the 
synchronization delay gets longer.  This is because the 
variations in the word confabulation speed increases as the 
level of ambiguity rises, and the in-order/out-of-order 
circular buffer will be blocked more frequently. 

With the multi-threading technique, we can improve the 
runtime by up to 70%. 

The results in Figure 9 show that with low quality input, the 
synchronization delay becomes the bottleneck that prevents us 
achieving linear speedups by using multi-threading techniques. 
One way to relieve this bottleneck is to increase the capacity of 
the double buffering system. We increase the buffer size from 
100 sentences to 200 and 300 sentences and run the experiment 
again on the low quality input file. Figure 10 gives the runtime 
information for the systems with three different buffer 
configurations. The last data series (i.e. “buffer imprv”) gives 
the performance improvement due to the increased buffer size. 
The results show that with seven word confabulation threads, 
increasing the buffer size from 100 to 200 and 300, we reduce 
the runtime by 20% and 30%. 

 

 
 
 
 
 
 
 
 
 

Figure 9. Performance improvement by multi-threading confabulation. 
 
 
 
 
 
 
 
 

Figure 10. Increase of buffer size reduces the synchronization delay. 
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Figure 11. Performance improvement by parallelizing BSB 

and confabulation. 
We further improve the ITRS software architecture by 

parallelizing the BSB and confabulation processes, as shown in 
Figure 8 (c). Figure 11 shows the performance of the improved 
system on high quality, medium quality and low quality inputs. 
The buffer capacity is set to 300 sentences. The data series 
labeled “improvement” gives the performance improvement of 
the system over the base line implementation, while the data 
series labeled “improv2” gives the percentage speed 
improvement by comparing the parallel ITRS with multi-
threading ITRS.  The number of word confabulation threads 
and the buffer size of these two systems are kept the same.  The 
results show that parallelizing the BSB and confabulation is 
most effective for the medium quality test cases, because the 
BSB time and confabulation time are approximately equal for 
this type of test cases and executing them simultaneously can 
reduce the total runtime by 50%. 

ENERGY-EFFICIENT INTERACTIVE SYSTEM 
Deployment and development of the Condor supercomputer 

was configured for two primary objectives: interactive (on-
demand) and energy-efficient (green) computing. Interactive 

computing provides the users with direct access to the resources 
based on their schedule and scalability needs [4].  When the 
applications and software development activities use only a 
portion of Condor, the rest can be put in shutdown or put to 
sleep mode for significant energy savings. This has major 
impacts on the facility’s infrastructure and costs. 

The current 100+ Condor users can login into one of six 
login severs and begin by reserving server nodes and PS3 
clusters. Figure 12 shows the Condor status and reservation 
system as web-based user interface. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Condor status and reservation page. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Condor power consumption. 
The PS3s are configured with Fedora 9 or Yellow-Dog 

Linux (YDL) and included with the bootloader and operating 
system is the wake-on-LAN option. This option allows all 1716 
PS3s to be put in a power savings mode (sleep).  A PS3’s 
typical idle power draw is 95 watts and 5 watts in sleep mode.   
The PS3s will consume 67 percent of the total 256 KWs when 
the entire Condor cluster is operational. The systems 
reservation mirrors the power draw is shown in Figure 13.  The 
typical HPC system will run all of the nodes in idle mode, using 
up to 70% of the peak system power.  Condor typically runs 
around 40% of peak during the work week, and 18% on the 
weekends.  The estimated power cost saving is $219,964.00/yr 
and this achieves a reduction of 792 tons of carbon footprint on 
the environment [6].   

(a) Results for high quality test case 

(b) Results for medium quality test case 

(c) Results for low quality test case 
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PREPARING FOR THE FUTURE 
Large scale computing systems provide the basis to 

investigate and implement solutions for C4ISR challenges. 
Fundamental for many of the Data-to-Decision problems is the 
ability to perceive, fuse, and exploit information within 
voluminous flows from increasingly capable and affordable 
sensors monitoring the air, space, and cyber domains. Signal 
and image processing, such as creating the video SAR 
capability, present significant computational loads near the 
sensor which then feed the even more challenging tasks of 
recognition, information fusion, tracking, and exploitation 
based upon this flood of imagery.  HPC systems and the 
Condor cluster support basic research into massively parallel 
neuromorphic models at scales approaching that of the human 
neocortex for robust visual perception and recognition (Figure 
14). 

 
 
 
 
 
 
 
 
 
 

Figure 14. C4ISR autonomous sensing framework. 
 

 
 
 
 
 
 
 
 
 

Figure 15. Plan of embedded HPC under SWaP constraints. 
 
We continue to expand our HPC portfolio and relationships 

with HPCMP and tailor our capabilities to solve significant Air 
Force challenges.  Embedded HPC systems will be developed 

and integrated close to the sensor, enabling processing of high 
volume data with greatly improved information content.    We 
are developing hybrid scalable computing framework for 
imagery information exploitation, real-time and autonomous 
sensing and deciding technologies on our Condor cluster.  The 
scalable computing framework will be robust enough to run on 
tomorrows HPC architectures (Figure 15). 

CONCLUSION 
We have presented an interactive HPC supercomputer, 

Condor, which has been developed and designed to be energy-
efficient and interactive with users.  Condor provides the Air 
Force and the DoD community the ability to prototype, develop 
and evaluate large-scale massively parallel HPC applications.   
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