

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAY 2013
2. REPORT TYPE

CONFERENCE PAPER (Post Print)
3. DATES COVERED (From - To)

JUN 2010 – MAY 2013
4. TITLE AND SUBTITLE

INTEGRATION, DEVELOPMENT AND PERFORMANCE OF THE 500
TFLOPS HETEROGENEOUS CLUSTER (CONDOR)

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Mark Barnell, Qing Wu, Richard Linderman

5d. PROJECT NUMBER
HPCC

5e. TASK NUMBER
IN

5f. WORK UNIT NUMBER
HO

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rome Research Site/RITB
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

 AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2013-024

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA Case Number: 88ABW-2012-2709
DATE CLEARED: 8 May 2012
13. SUPPLEMENTARY NOTES
Proceedings ASME 2012 International Design Engineering Technical Conferences (IDETC) and Computers and
Information in Engineering Conference (CIE) Aug 12-15, 2012, Chicago, Illinois, USA. This is a work of the United
States Government and is not subject to copyright protection in the United States.

14. ABSTRACT
The Air Force Research Laboratory Information Directorate Advanced Computing Division (AFRL/RIT) High
Performance Computing Affiliated Resource Center (HPC-ARC) is the host to a very large scale interactive computing
cluster consisting of about 1800 nodes. Condor, the largest interactive Cell cluster in the world, consists of integrated
heterogeneous processors of IBM Cell Broadband Engine (Cell BE) multicore CPUs, NVIDIA General Purpose Graphic
Processing Units (GPGPUs) and Intel x86 server nodes in a 10Gb Ethernet Star Hub network and 20Gb/s Infiniband
Mesh, with a combined capability of 500 trillion floating operations per second (TFLOPS). Applications developed and
running on CONDOR include large-scale computational intelligence models, video synthetic aperture radar (SAR) back-
projection, Space Situational Awareness (SSA), video target tracking, linear algebra and others. This presentation will
discuss the design and integration of the system. It will also show progress on performance optimization efforts and
lessons learned on algorithm scalability on a heterogeneous architecture.
15. SUBJECT TERMS
cluster computing, heterogeneous computing, GPGPU

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF RESPONSIBLE PERSON
Courtney Usmail

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 1
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

 ASME 2012 International Design Engineering Technical Conferences (IDETC) and Computers
and Information in Engineering Conference (CIE)

August 12-15, 2012, Chicago, Illinois, USA

DETC2012-70083

Integration, Development and Performance of the 500
TFLOPS Heterogeneous Cluster (Condor)

Mark Barnell, Qing Wu and Richard Linderman

Air Force Research Laboratory
Information Directorate
Rome, New York, USA

ABSTRACT
The Air Force Research Laboratory Information Directorate

Advanced Computing Division (AFRL/RIT) High Performance
Computing Affiliated Resource Center (HPC-ARC) is the host
to a very large scale interactive computing cluster consisting of
about 1800 nodes. Condor, the largest interactive Cell cluster in
the world, consists of integrated heterogeneous processors of
IBM Cell Broadband Engine (Cell BE) multicore CPUs,
NVIDIA General Purpose Graphic Processing Units (GPGPUs)
and Intel x86 server nodes in a 10Gb Ethernet Star Hub
network and 20Gb/s Infiniband Mesh, with a combined
capability of 500 trillion floating operations per second
(TFLOPS). Applications developed and running on CONDOR
include large-scale computational intelligence models, video
synthetic aperture radar (SAR) back-projection, Space
Situational Awareness (SSA), video target tracking, linear
algebra and others. This presentation will discuss the design
and integration of the system. It will also show progress on
performance optimization efforts and lessons learned on
algorithm scalability on a heterogeneous architecture.

INTRODUCTION
The Affiliated Resource Centers (ARCs) are Department of

Defense (DoD) Laboratories and Test Centers that acquire and
manage High Performance Computing (HPC) resources as a
part of their local infrastructure, but share their HPC resources
with the broader DoD HPC user community via the High
Performance Computing Modernization Program (HPCMP)
which coordinates allocation of their HPC resources. In order
to provide tomorrow’s Air Force with massively parallel and
scalable HPC applications, the software must be developed on
large clusters. Unlike typical HPC clusters, all AFRL/RI
clusters allow for interactive development and testing. In 2010,
the AFRL Information Directorate won a two-million-dollar
project, sponsored by the HPCMP, and built the Condor

Cluster, which is DoD’s largest interactive super computer as of
November 2011. The Condor cluster consists of 84 Servers (2U
Dual six-core Intel Westmere 5660, 24 or 48 GB RAM) each
with 2 GPGPUs (NVIDIA C1060, C2050 or C2070s) [2]. The
heterogeneous cluster has 22 Play Station 3s (PS3s) connected
to each of the 78 server nodes (1716 PS3s in total).

Figure 1. Condor Cluster: DoD’s largest interactive HPC.

The long-term goal of AFRL/RI’s high performance

computing research is to provide the warfighters with Secure
Embedded HPC (SEHPC) of the highest computing
performance, under the Size-Weight-and-Power (SWaP)
constraints. At the time when it was built, Condor was the
largest, fastest and most energy-efficient interactive HPC in the
Department of Defense.

 2
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

The Condor HPC integrates the vast majority of the state-
of-the-art HPC processing and networking architectures into
one coherent functional system. This provides great R&D
potentials and opportunities for the users so that they can
explore and experiment with not only any single parallel
computing architecture, but also any combinations of
architectures, and evaluate their computing/communication
performance and SWaP efficiencies under different
programming and application scenarios. For processing
architectures, the Intel Xeon server represents the multi-
processor, super-scalar architecture; the NVIDIA Tesla GPGPU
combines architectures of many-core, single-instruction-
multiple-thread (SIMT, similar to SIMD), and streaming
processing; the PlayStation 3 uses the IBM Cell BE processor,
which adopts the multi-processor, single-instruction-multiple-
data (SIMD, or vector processing) architecture. These three
processors represent most of the modern high-performance
processor architectures and cover a wide range of trade-offs
among performance, power, size and weight.

DESIGN IMPLEMENTATION AND CONSTRAINTS
The Condor application development focuses on two related

ongoing programs, one applied research effort and one basic
research effort. The applied research focuses on voluminous
generation of synthetic aperture radar (SAR) images providing
persistent surveillance of city-sized areas with 1Hz update rate
yielding a previously unachievable “video SAR capability”
previously unachievable. The basic research effort investigates
massively parallel neuromorphic architectures that can exploit
the video SAR outputs, or alternative high resolution video
cameras, to deliver robust perception, anticipation, and focus of
attention.

The scalability and parallelism required to achieve sustained
high computational throughputs demand low latency high
bandwidth networking architectures. The Condor server nodes
(custom built 2U X86 servers) were designed with both 20 Gb/s
Infiniband and dual 10GbE network interface cards. This
required the motherboard to support 48 PCI-E Gen2 (two Intel
5200 chipsets, 2x IOH-36D), allowing for four 16x Gen 2 slots.
This supports maximum data throughput to all four PCI-E
devices: two NVIDIA GPGPUs and the two network cards.

In a star-hub topology, 39 IBM BLADE RackSwitch G8000
Gigabit Ethernet spoke switches are connected to the PS3
compute nodes and aggregated to 12 RackSwitch G8100 10
Gigabit Ethernet switches. Dual 10 Gigabit Ethernet links are
bonded for high-bandwidth switch-to-switch communications.
The IBM BLADE RackSwitch G8100s are connected to the
Condor server nodes. The IBM BLADE RackSwitch G8100’s
CX4 transceivers ensure low transmission latency with an
average of 60 to 70 microseconds even when going through
three switches.

The condor server nodes can also communicate between
each of the 78 nodes through an Infiniband mesh. This allows
for very low latency and high bandwidth when applications
only require the x86 processors and GPGPUs. While running

bench mark tests and network OpenMPI applications, we
routinely achieved a sustained 25-28 Gb/s performance across
the entire network.

Figure 2. Condor server node.

Figure 3. Bonded 10Gb Ethernet Blade switches.

Figure 4. Infiniband mesh non-blocking 20Gb/s.

 3
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

The design of the Condor HPC system had physical
constraints and limitations. As shown in Figure 5, the actual
footprint of the system, layout, power and cable trays were

chosen carefully to allow for maximum cooling and minimum
cable lengths.

Figure 5. Condor physical layout.

PRIMARY APPICATIONS
IMAGE PROCESSING: This applied research work

focuses on voluminous generation of synthetic aperture radar
(SAR) images providing persistent surveillance of city-sized
areas with a 1 Hz update rate. The signal and image processing
application that produces the best quality formed image is the
Backprojection algorithm. This algorithm in its purest form
requires N3 computations and, when processing billions of
pixels, requires a sustained performance of hundreds of
teraflops.

Implementation of Backprojection on the Playstations: The
original Backprojection algorithm processes each range vector
completely before moving on to the next. Since each range
vector contributes energy to every pixel in the scene, this
method requires the reading and writing of all pixel memory
locations for each range vector processed. To optimize this
process, the algorithm was improved to calculate each pixel
value over a number of range vectors, reducing the total
number of memory accesses.

Because of the limited amount of memory available on the
PS3, the number of pixels and the amount of RADAR data had
to be reduced in order to fit. An additional procedure was
designed to divide the pixel matrix into smaller rectangular
sections that can be assigned to the available processors.
Because the range data required for calculating the pixel values
for each of these sections exists as a contiguous segment of
each range vector, code has been written to extract only the
necessary data needed by each processor. The combination of
reducing the pixel area and the required data allows the
algorithm to be scaled to fit within the available memory.

The original code was written to store variables and perform
all calculations using double precision data. Since the PS3

performs single precision operations about 10X faster than
double precision [3,5], most of the calculations are performed
in single precision to maximize performance. Single precision
operations also reduce the memory size requirements.

The pulse compression portion of the process is performed
on the Xeon processors. The resulting data was then transmitted
to the PS3s for image formation. The data storage format
difference was also taken care of, with the Xeon in little endian
format and the PS3 in big endian format. The Xeon processors
perform the byte rearrangement to accommodate the PS3s.

Figure 6. 1-km image illustrating processing distribution.

 4
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

The image in Figure 6 was formed by a PS3 by dividing the
area into 12,408 32x32 pixel blocks that were distributed to the
SPE processors. By doing this, the number of range bins
required to be in SPE’s memory was about 80 of the overall
32k range bins that make up an entire vector. The memory
required to contain the image is also reduced since each SPE
only has to hold the 32x32 block that it’s working on. Figure 6
also shows the formed image being reassembled with the grid
lines to show the processing regions.

Performance & Optimizations: Performance was measured
in compute time and FLoating Point Operations executed per
second (FLOPs). A reduction in execution time along with an
increase in FLOPs executed per second demonstrates improved
performance.

There are 96 floating point operations for each pixel, for
each pulse in the inner most loop. This loop is iterated over
each pixel and each pulse. Removing only 1 FLOP removes
1600 FLOPs per pulse per (40 by 40) pixel chunk. Square
Roots, divisions, sines and cosines are indeterminate and
expensive calculations. Each platform has its own method of
calculating these values. Some platforms have hardware
instructions, while others rely on software libraries. In the case
of the PS3, approximately 16 clock cycles are required to
perform one double precision square root. To make an “apples
to apples” comparison, the following FLOP assignments were
made for each platform:

• Double precision square root 19 Flops
• Single Precision sin 25 Flops
• Single Precision cos 25 Flops

One of the computations in the inner loop is a distance
calculation requiring a double precision square root. It is used
to determine the difference, RANGEDIFF, between R (sensor
to pixel) and R0 (sensor to spot center. R0 was given, but R
needed to be calculated.

The following optimizations were aimed at reducing the
requirement for the square root through approximation
methods.

The first optimization attempt was to calculate the
RANGEDIFF for the first and last pulse (512) in the buffer,
then to perform one” Newton-Raphson” iteration for each pixel,
for each pulse in between. Newton-Raphson is an iterative
algorithm that converges on the final square root value. By
using the close approximation described above as the starting
point, it was hoped that one iteration would be required to
return an accurate value. It turned out not to be accurate
enough, even performing a complete square root every 32
pulses. The wavelength of about 3 cm requires accuracy to 3
decimal places; the algorithm was only accurate to 2 decimal
places within in one row of 32 pixels.

While analyzing the data during the implementation of the
previous optimization, it was noted that R appeared to change
linearly. Five thousand pulses were placed in a spread sheet,
and R was calculated and plotted. R for a given pixel does
change linearly. This may not always be the case, but with a

high PRF it may be likely. The PRF for this data was 7500 Hz;
the change in sensor position over 512 pulses should be
relatively small.

The second optimization approach leveraged the linearity of
R. For each buffer of 512 pulses, and for each pixel in a chunk
of pixels, R was calculated for the first pulse and the last pulse.
The average difference was taken as an “increment” to the first
R. This reduced the number of floating point operations in the
inner loop from 96 to 71, while adding some overhead before
entering the loop. Accuracy was maintained out to 4 decimal
places.

Table 1 shows the FLOPs comparison before and after
optimization for one chunk of pixels processed against 512
pulses. The optimized version executes about 257 fewer
GFLOPs than the un-optimized version.

Table 1. FLOPs executed per pixel. 10 m by 10 m chunks.

Table 2 summarizes the performance results on a per chunk
basis and compares the PS3 with the Xeon processor based on
cost and energy usage per GFLOP.

Table 2. Performance metrics: 10 m by 10 m chunks.

It can be seen from Table 2 that for this application the PS3

has the advantage over the Xeon for power and cost, while the
Xeon has the advantage of speed. The PS3 relative to the Xeon
is:

• ~ 1/5th the cost per GFLOP
• ~ 1/3rd the power per GFLOP
• ~ 1/8th the initial cost
• ~ 1 1/2 times slower

Gflops Executed Not Optimized Optimized Flops
Compute Loop 78,669,504 58,163,200

 + Loop Overhead 0 86,484
 Flops per Chunk per

512 Pulses 78,669,504 58,249,684
 x Num chunks 210 210

16,520,595,840 12,232,433,640
 x Num SPEs 6 6

99,123,575,040 73,394,601,840
 x Num Pulse buffers 10 10

Flops Executed 991,235,750,400 733,946,018,400
Total Gflops Executed 991.24 733.95

Per Node PS3
Optimized

PS3 X86
Optimized

X86
Gflops Executed 991.24 733.95 991.24 733.95

Compute Secs 32.10 20.79 16.17 13.08
Gflops/sec 31 35 61 56.10

Cost $ per Node $380 $380 $3,000 $3,000
Cost $ per Gflop $12.30 $10.76 $48.93 $53.48
Watts per Node 111 111 513 513

Watts/Gflops 3.59 3.14 8.37 9.14
Gflops/Watt 0.28 0.32 0.12 0.11

 5
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

In order to process the entire 5 km image, 1664 PS3’s
would be required and each requires 32 MBs of data every
20.79 seconds.

NEUROMORPHIC COMPUTING: Brain-inspired signal
processing algorithms and flow possess great potentials to be
applied to many cognitive applications such as image
processing, intrusion detection, etc. To investigate the software
and hardware requirements of this new information processing
approach, a proof-of-concept prototype of context-aware
Intelligence Text Recognition Software (ITRS) was developed
on the Condor HPC [1]. The software architecture of ITRS
incorporates the Condor HPC technologies with advances in
neuromorphic computing models.

The overview of the implementation of the ITRS is shown
in Figure 7. It explores the parallelism in hardware and
software to achieve a high throughput for the system. We
partition the entire workload into pages. All sub-clusters run
simultaneously and mostly independently to process different
pages. In this way the cluster level parallelism is achieved.
There is a performance monitor that periodically checks the
utilization of the processor cores in the cluster for performance
characterization. Because each sub-cluster loads pages on-
demand, at the cluster level, the system behaves
asynchronously.

Figure 7. Overview of the ITRS implementation.

Upon receiving the page image, the head node first slices
the image into small blocks, each of which contains one
character. The blocks are dispatched to the PS3s, on which the
BSB recalls are run for character recognition. The results are
sent back to the head node for word level and sentence level
confabulation. With a double buffering technique, the

confabulation and BSB processes can be made parallel.
Furthermore, all 132 SPEs in 22 PS3s are running
simultaneously to process different characters. In this way we
achieve processor level parallelism. At this level, the system is
loosely synchronous because each SPE receives the same
amount of image blocks and they perform the same amount of
computation. Because of the limited buffer space, a periodic
synchronization between the BSB and the confabulation is
necessary. All inter-processor communication is implemented
via the Message Passing Interface (MPI).

Based on the results from the BSB recalls, the host will fork
multiple threads; each thread is a word level confabulation
procedure. After all words in a sentence have been found, a
sentence confabulation process is executed. The word level and
sentence level confabulation threads are dispatched to different
cores on the Intel Xeon processor, and in this way we achieve
core level parallelism. The key reason that we choose thread
level parallelism instead of process level parallelism is because
it allows shared memory so that we do not have to duplicate the
word-level knowledge base, which is more than 200 MB in
size. In order to avoid frequent context switching, which
usually happens when the number of threads is greater than the
number of cores, we adopt a token passing mechanism to
control the number of threads. The program maintains a token
pool. The number of tokens in the pool is less than or equal to
the number of cores in the system. A token will be removed
from pool when a thread is created and be returned when the
thread ends. Because the threads are created on demand and
complete dynamically, at this level, all cores work
asynchronously.

Overall, the implemented ITRS software is able to process
about 16 to 20 scanned pages per second on the Condor HPC
with reasonable efforts in performance optimization.

Figure 8 shows the evolution of the ITRS software
architecture over time. We started with a baseline
implementation as shown in Figure 8 (a), in which all the
software components are connected sequentially except for the
BSB engines that are running on 22 PS3s in parallel. Our first
step is to improve the confabulation speed by multi-threading,
as shown in Figure 8 (b).

To evaluate the performance of the ITRS software, we
carried out experiments on three different input test cases. In
the first input file 20% of character images are scratched by 1-
pixel-wide horizontal bars. Compared to the other two test
cases, it has the highest image quality. The second input file
has 40% of character images scratched by 2-pixel-wide
horizontal bars. Compared to test cases one and three, it has
the medium image quality. The last input file has 60% of
character images scratched by 3-pixel-wide horizontal bars. It
is the lowest quality input file. The number of word
confabulation threads is varied from one to seven and denoted
as t. The total runtime is broken down into BSB time, word
confabulation time, sentence confabulation time and
synchronization time. The sizes of the input/output buffers in
the double buffering system are set to be 100 sentences.

Processor level parallelism

…BSB
Sentence
Confab. BSB BSB

Word
Confab.

Word
Confab.

…

Core level parallelism
Multi-threading, shared memory

Performance
Monitor

C
luster level parallelism

Sub-cluster 1

Sub-cluster 78

Loose synchronous, MPI communication

…

Dispatch Images
Receive Letters

BSB
Sentence
Confab. BSB BSB

Word
Confab.

Word
Confab.

…

Core level parallelism
Multi-threading, shared memory

Page Image
Process

22 PS3s
12 Intel Xeon cores

22 PS3s
12 Intel Xeon cores

Page Image
Process

Dispatch Images
Receive Letters

 6
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

Figure 8. Evolution of the ITRS software architecture.
Figure 9 shows the runtime information for the three test

cases when the number of word confabulation threads increases
from one to seven. It also reports the performance

improvements of the multi-threading implementations
compared to the baseline implementation.

Several observations can be made from the results:
1. No matter how the image quality changes, the BSB time

remains constant.
2. When the quality of the input text image deteriorates, the

word/sentence confabulation time increases. This is
because we rely on the confabulation to resolve the
ambiguities in the input.

3. When the quality of the input text image deteriorates, the
synchronization delay gets longer. This is because the
variations in the word confabulation speed increases as the
level of ambiguity rises, and the in-order/out-of-order
circular buffer will be blocked more frequently.

With the multi-threading technique, we can improve the
runtime by up to 70%.

The results in Figure 9 show that with low quality input, the
synchronization delay becomes the bottleneck that prevents us
achieving linear speedups by using multi-threading techniques.
One way to relieve this bottleneck is to increase the capacity of
the double buffering system. We increase the buffer size from
100 sentences to 200 and 300 sentences and run the experiment
again on the low quality input file. Figure 10 gives the runtime
information for the systems with three different buffer
configurations. The last data series (i.e. “buffer imprv”) gives
the performance improvement due to the increased buffer size.
The results show that with seven word confabulation threads,
increasing the buffer size from 100 to 200 and 300, we reduce
the runtime by 20% and 30%.

Figure 9. Performance improvement by multi-threading confabulation.

Figure 10. Increase of buffer size reduces the synchronization delay.

(a) Base line ITRS (b) Multi-threading ITRS

(c) Parallel ITRS

8-core X
eon

Sentence
Confab.

Word Confab.

…BSB BSB BSB

Dispatch Images
Receive Letters

24 PS3s
8-core X

eon

8-core X
eon

…BSB BSB BSB

Dispatch Images
Receive Letters

8-core X
eon

Dispatch Images
Receive Letters

Sentence
Confab.

Word
Confab.

Word
Confab.

…

24 PS3s

…

Dispatch Images
Receive Letters

BSB
Sentence
Confab. BSB BSB

Word
Confab.

Word
Confab.

…

Core level parallelism
Multi-threading, shared memory

24 PS3s12-core Intel Xeon Processor

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0
20
40
60
80

100
120
140

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence
word bsb
improvement

1 pixel scratch 20%

0
0.1
0.2
0.3
0.4
0.5
0.6

0
50

100
150
200
250
300

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence
word bsb
improvement

2 pixel scratch 40%

0

0.2

0.4

0.6

0.8

0
1000
2000
3000
4000
5000

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence
word bsb
improvement

3 pixel scratch 60%

0
0.2
0.4
0.6
0.8
1

0
1000
2000
3000
4000
5000

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word bsb overall imprv buffer imprv

Buffer = 100 Buffer = 200 Buffer = 300

 7
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

Figure 11. Performance improvement by parallelizing BSB

and confabulation.
We further improve the ITRS software architecture by

parallelizing the BSB and confabulation processes, as shown in
Figure 8 (c). Figure 11 shows the performance of the improved
system on high quality, medium quality and low quality inputs.
The buffer capacity is set to 300 sentences. The data series
labeled “improvement” gives the performance improvement of
the system over the base line implementation, while the data
series labeled “improv2” gives the percentage speed
improvement by comparing the parallel ITRS with multi-
threading ITRS. The number of word confabulation threads
and the buffer size of these two systems are kept the same. The
results show that parallelizing the BSB and confabulation is
most effective for the medium quality test cases, because the
BSB time and confabulation time are approximately equal for
this type of test cases and executing them simultaneously can
reduce the total runtime by 50%.

ENERGY-EFFICIENT INTERACTIVE SYSTEM
Deployment and development of the Condor supercomputer

was configured for two primary objectives: interactive (on-
demand) and energy-efficient (green) computing. Interactive

computing provides the users with direct access to the resources
based on their schedule and scalability needs [4]. When the
applications and software development activities use only a
portion of Condor, the rest can be put in shutdown or put to
sleep mode for significant energy savings. This has major
impacts on the facility’s infrastructure and costs.

The current 100+ Condor users can login into one of six
login severs and begin by reserving server nodes and PS3
clusters. Figure 12 shows the Condor status and reservation
system as web-based user interface.

Figure 12. Condor status and reservation page.

Figure 13. Condor power consumption.
The PS3s are configured with Fedora 9 or Yellow-Dog

Linux (YDL) and included with the bootloader and operating
system is the wake-on-LAN option. This option allows all 1716
PS3s to be put in a power savings mode (sleep). A PS3’s
typical idle power draw is 95 watts and 5 watts in sleep mode.
The PS3s will consume 67 percent of the total 256 KWs when
the entire Condor cluster is operational. The systems
reservation mirrors the power draw is shown in Figure 13. The
typical HPC system will run all of the nodes in idle mode, using
up to 70% of the peak system power. Condor typically runs
around 40% of peak during the work week, and 18% on the
weekends. The estimated power cost saving is $219,964.00/yr
and this achieves a reduction of 792 tons of carbon footprint on
the environment [6].

(a) Results for high quality test case

(b) Results for medium quality test case

(c) Results for low quality test case

0
0.1
0.2
0.3
0.4
0.5

0
10
20
30
40
50
60
70
80

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word
bsb improvement improv2

0

0.2

0.4

0.6

0.8

0

50

100

150

200

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word
bsb improvement improv2

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

5000

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word
bsb improvement improv2

 8
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Approved for public release; distribution unlimited (88ABW-2012-2709)

PREPARING FOR THE FUTURE
Large scale computing systems provide the basis to

investigate and implement solutions for C4ISR challenges.
Fundamental for many of the Data-to-Decision problems is the
ability to perceive, fuse, and exploit information within
voluminous flows from increasingly capable and affordable
sensors monitoring the air, space, and cyber domains. Signal
and image processing, such as creating the video SAR
capability, present significant computational loads near the
sensor which then feed the even more challenging tasks of
recognition, information fusion, tracking, and exploitation
based upon this flood of imagery. HPC systems and the
Condor cluster support basic research into massively parallel
neuromorphic models at scales approaching that of the human
neocortex for robust visual perception and recognition (Figure
14).

Figure 14. C4ISR autonomous sensing framework.

Figure 15. Plan of embedded HPC under SWaP constraints.

We continue to expand our HPC portfolio and relationships

with HPCMP and tailor our capabilities to solve significant Air
Force challenges. Embedded HPC systems will be developed

and integrated close to the sensor, enabling processing of high
volume data with greatly improved information content. We
are developing hybrid scalable computing framework for
imagery information exploitation, real-time and autonomous
sensing and deciding technologies on our Condor cluster. The
scalable computing framework will be robust enough to run on
tomorrows HPC architectures (Figure 15).

CONCLUSION
We have presented an interactive HPC supercomputer,

Condor, which has been developed and designed to be energy-
efficient and interactive with users. Condor provides the Air
Force and the DoD community the ability to prototype, develop
and evaluate large-scale massively parallel HPC applications.

ACKNOWLEDGMENTS
The contractor’s work is supported by the Air Force

Research Laboratory, under contract FA8750-10-C-0216.
Any Opinions, findings, and conclusions or

recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of AFRL or its
contractors.

REFERENCES
[1] Q. Qiu, Q. Wu, D. Burns, M. Moore, M. Bishop, R. Pino, R.

Linderman, “Confabulation Based Sentence Completion for
Machine Reading,” Proc. Of IEEE Symposium Series on
Computational Intelligence, April 2011.

[2] “Board Specfications Tesla C2050 and Tesla C2070 Computing
Processor Board.” NIVIDIA Corporation, July 2010.
http://www.nvidia.com/docs/IO/43395/BD-04983-001_v03.pdf.

[3] Buttari, A., J. Dongarra, and J. Kurzak, “Limitations of the
PlayStation 3 for High Performance Cluster Computing”
LAPACK Working Note 185, 2007.

[4] Feng, W., X. Feng, and R. Ge, “Green Supercomputing Comes of
Age.’ IT Professional, 10, 1, pp. 17-23, 2008.

[5] IBM, “Cell Broadband Engine,” URL: https://www-
01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_E
ngine, last modified May 2009. Accessed April 27, 2012.

[6] “PUE and DCiE Data Center Efficiency Measurement and
Benchmarking,” URL: http://www.42u.com/measurement/pue-
dcie.htm, last modified March 2012. Accessed April 27, 2012.

	[6] “PUE and DCiE Data Center Efficiency Measurement and Benchmarking,” URL: http://www.42u.com/measurement/pue-dcie.htm, last modified March 2012. Accessed April 27, 2012.

