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It is demonstrated that collective spin waves (SWs) propagating in complex periodic arrays of dipolarly
coupled magnetic nanopillars existing in a saturated (single-domain) ground state in a zero bias magnetic field
could be nonreciprocal. To guarantee the SW nonreciprocity two conditions should be fulfilled:(i) existence
of a nonzero out-of-plane component of the pillars’ static magnetization and (ii) a complex periodicity of
array’s ground state with at least two elements per a primitive cell, if the elements are different, and at least
three elements per a primitive cell, if the elements are identical. The obtained results show that coupled
arrays of magnetic nanopillars with out-of-plane shape or/and crystallographic anisotropy could be used for
the development of miniature unbiased microwave isolators and circulators.
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The wave nonreciprocity can be defined as a prop-
erty of waves to change their characteristics (such as
frequency, group velocity, or dissipation) when the di-
rection of the wave propagation is reversed. The wave
nonreciprocity is widely used in signal transmission and
information processing to design microwave isolators and
circulators, which, e.g., prevent the cross-interference be-
tween a receiver and transmitter mounted on the same
platform.

The majority of currently used nonreciprocal mi-
crowave devices, such as resonance valves, Y-circulators,
etc., use the nonreciprocity of electromagnetic waves in
waveguide systems with asymmetrically placed ferro- or
ferrimagnetic materials (usually ferrites), in which the
electromagnetic waves propagating in opposite directions
have different propagation constants. In these devices
the nonreciprocity exists only if the ferromagnetic mate-
rials in them are magnetized to saturation, usually, by
application of an external bias magnetic field created by
rather heavy and bulky permanent magnets1–4. The ne-
cessity to have a permanent magnet to bias the nonre-
ciprocal devices complicates their miniaturization and af-
fects their compatibility with conventional microelectron-
ics. Note, also, that the wavelengths of microwave elec-
tromagnetic waves propagating in waveguides containing
biased ferromagnets are rather large (millimeter to cen-
timeter range), which also limits the minimum size of a
device, even when highly anisotropic magnetic materials,
which are self-biased, are used5.

Both above mentioned problems can be solved by us-
ing collective spin waves (SWs) propagating in nanos-
tructured magnetic materials, e.g. in arrays of mag-
netic nanopillars, the single-domain saturated state of
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which is supported by their shape or/and crystallo-
graphic anisotropy as well as by their size. It is well
known that if the sizes of a magnetic nanopillar are com-
parable to the material’s exchange length, the ground
state of the pillar in a zero external bias field becomes
single-domain (saturated), so that the elementary mag-
netic moments at each point inside a pillar have the same
direction6–8. Note, that the existence of such a preferen-
tial direction of static magnetization (common to all the
elements of an unbiased array) is a necessary condition
for the nonreciprocity of collective SWs propagating in
this array. Also, the collective SWs propagating in arrays
of dipolarly coupled nanopillars have wavelengths that
are substantially smaller than the wavelengths of electro-
magnetic waves of the same microwave frequency1,9,10.

In this Letter we are deriving the necessary conditions
for the existence of nonreciprocal collective spin waves in
a two-dimensional array of dipolarly coupled magnetic
nanopillars. The array is assumed to be in a periodic
ground state. The periodicity of the ground state is de-
scribed by the basis vectors a1, a2, which form the ar-
ray’s lattice L = {n1a1 + n2a2 |n1, n2 ∈ Z}. The array’s
periodicity could be complex, i.e. there could be P > 1
pillars per a primitive cell of the array (see examples in
Figs. 1(a), 3). In such a case each pillar belongs to a cer-
tain sublattice p ∈ [1, P ] of the array, and the position of
the pillar’s center is defined as rjp

= δp + n1a1 + n2a2,
where δp are the shift vectors that determine the mu-
tual positions of the sublattices (for details see Refs.11
and 12). In our calculations presented below we used
the macrospin approach, assuming that the distributions
of both static and dynamic magnetization inside each
nanopillar are uniform. This restriction is, however, not
very severe, since the structure of eigenvalue problems
for the collective SWs in an array under the macrospin
approach and in more general case (nonuniform static
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or/and dynamic magnetization inside a dot) are quite
similar11,12.

The general theory of collective SW excitations in ar-
rays of magnetic nanodots was developed in Refs. 11 and
12. Under the macrospin approximation the magnetic
state of each element is fully described by one magneti-
zation vector Mj , which can be represented as a sum of
static magnetization µj and linear dynamic magnetiza-
tion (or excitation) mj : Mj = Ms (µj + mj), where Ms

is the saturation magnetization of the elements’ magnetic
material. The eigenfrequencies ωk and eigenvectors mk,p

(that describe the structure of the dynamic magnetiza-
tion in each element) of collective SWs in an array are
the solutions of the following eigenvalue problem:

−iωkmk,p = µp ×
∑

q

Ω̂k,pq · mk,q , (1)

where the Hamiltonian tensor Ω̂k,pq is given by

Ω̂k,pq = γBpδp,q Î + ωMĜk(δpq) . (2)

Here γ is the gyromagnetic ratio, Bp is the static internal
field in p-th sublattice, ωM = γµ0Ms, δpq = δp − δq and

Ĝk(δ) =
∑

r∈L

N̂ (r + δ)e−ik·(r+δ) , (3)

where N̂(r) is the mutual demagnetization tensor of
magnetic nano-elements13.

All the properties of the collective SWs in a nanopillar
array are determined by the Hamiltonian matrix Ω̂k and
the general rules of magnetization dynamics, resulting in
the structure of the eigenvalue problem in the form of
Eq. (1). Thus, the conditions for the nonreciprocity of
collective SWs in a nanopillar array can be obtained from
the analysis of the form of Eqs. (1) and (2) even without
actually solving the eigenvalue problem itself.

We note that solution of Eq. (1) yields complex am-
plitudes of the collective SW modes mk,p. The real ex-
pressions for the SW modes are obtained from the sum
mjp

= mk,p exp
[

i(k · rjp
− ωkt)

]

+ c.c., where c.c. de-
notes the complex conjugate terms. The vector m∗

k,p

is a solution of the eigenvalue problem that is complex-
conjugate to Eq. (1). At the same time, it follows
from Eqs. (2)-(3) that the complex vector m∗

k,p is also
an eigenvector of the eigenvalue problem correspond-
ing to the opposite sign of SW wave vector −k, since
Ω̂k = Ω̂

∗
−k

, and the tensor N̂(r) is real11,13. Thus, the
eigenvalue problem Eq. (1) describes SWs propagating
in both “positive” (respective to k) direction (solutions
ωk > 0) and “negative” one (ωk < 0). Therefore, there
are two ways to demonstrate nonreciprocity of the col-
lective SW modes described by the eigenvalue problem
Eq. (1): (i) either to show that positive eigenvalues of
the problem Eq. (1) and of its complex-conjugate are not
equivalent, or (ii) to show that the absolute values of the
positive and negative eigenvalues of the problem Eq. (1)
are different.

A test for the nonreciprocity of collective SW in a dipo-
larly coupled nanopillar array can be started from the
analysis of the general symmetric properties of the char-
acteristic matrix

(

µp × Ω̂k,pq

)

of the eigenvalue problem

Eq. (1). The Hamiltonian matrix Ω̂k,pq consists of the
static-static (describing the influence of the static mag-
netization of the q-th sublattice on the static magnetiza-
tion of the p-th sublattice), static-dynamic and dynamic-
static, and dynamic-dynamic components. Only the
dynamic-dynamic components of the Hamiltonian ma-
trix Ω̂k,pq are directly present in the characteristic matrix
(

µp × Ω̂k,pq

)

, which is effectively 2P × 2P -dimensional.
If all the off-diagonal dynamic-dynamic components of
the tensors Ω̂k,pq vanish, the characteristic matrix con-
tains 2P 2 components that are identically equal to zero:
(

µp×Ω̂k,pq

)

j,j+2n
= 0, n ∈ Z. As it follows from the def-

inition of a matrix determinant14, in this case the char-
acteristic equation of the eigenvalue problem Eq. (1) is
bipolynomial with respect to the SW eigenfrequency ωk,
and the solution of this characteristic equation consists
of P pairs of eigenvalues ωk,ν and (−ωk,ν), which means
that the collective SWs in the array are reciprocal.

Such a case is realized in an array of flat dots (dots
with constant height) with the same for all dots height
if the directions of static magnetization of the dots lie
in the array’s plane. Indeed, the dynamical components
of the matrix Ω̂k,pq are proportional to the dynamical

components of the mutual demagnetization tensor N̂(r)
(see Eqs. (2,3)), and the αz-components of the tensor

N̂(r) vanish in the case when all the dots have the same
height11,13: Nαz(r) = 0, α = x, y , where z-axis is per-
pendicular to the plane of the array’s, as it is shown in
Fig. 1(a). Thus, for an in-plane magnetized dot the cross-
interaction between the dynamical mz component of the
dot magnetization and all the in-plane magnetization
components vanishes identically. This means that in any
array of flat in-plane magnetized dots the off-diagonal
dynamic-dynamic components of the Hamiltonian matrix
Ω̂k,pq also identically vanish, independently of the lattice
structure and the ground state of the array. Therefore,
the collective SWs in an array of in-plane magnetized
flat magnetic dots are always reciprocal, and, if a non-

reciprocity is needed, there should exist a non-zero out-

of-plane component of the dot magnetization µp,z 6= 0.
This can be achieved, for example, by using vertically
elongated magnetic pillars.

Another necessary condition of the SW nonreciprocity
follows from the general symmetry property of the Hamil-
tonian matrix: Ω̂k,pq = Ω̂

∗
−k,pq. If the matrix Ω̂k,pq

is real, the eigenvalue problem Eq. (1) does not change
with the reversal of the SW wave vector k, meaning that
the collective SWs are reciprocal. Whether the Hamil-
tonian matrix Ω̂k,pq is real or complex depends only on
the structure of the array’s lattice (see Eq. (3)). In par-
ticular, if all the dots in an array are identical (in shape
and material parameters) and the dots are arranged in a
simple lattice (having only one dot per a primitive cell),
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the Hamiltonian matrix is real, because there is only one
sublattice with δpp ≡ 0 and, as it follows from Eq. (3),

the tensor Ĝk(0) is real. At the same time, it follows

from Ref. 11 that tensors Ω̂k,pq for p 6= q can be complex

if a primitive cell of an array contains P > 1 elements.
Therefore, collective SWs in a dipolarly coupled array
of elements having out-of-plane magnetization could be
nonreciprocal only if the primitive cell of the array con-

tains several magnetic elements.
The simplest example of an array existing in such a

complex spatially-periodic ground state is an array hav-
ing P = 2 dots in a primitive cell. This case can be easily
analyzed analytically. If an array exists in a ferromag-
netic (FM) ground state, i.e. the static magnetizations of
all the elements are the same µ1 = µ2, one can easily de-
rive an explicit characteristic equation of the eigenvalue
problem Eq. (1):

ω4
k + C2ω

2
k + C1ωk + C0 = 0 . (4)

If the coefficient C1 = 0 vanishes, the characteris-
tic equation of the problem has two pairs of solutions
[ωk,ν , −ωk,ν ], which, as it has been explained above,
means that collective SWs are reciprocal. Thus, the non-
reciprocity appears only when the coefficient C1 6= 0.
The magnitude of this coefficient can be evaluated as:

C1 =
(

Ω
(xx)
11 − Ω

(xx)
22

)(

Ω
∗(xy)
12 Ω

(yy)
12 − c.c.

)

+ . . . , (5)

where the xx-term is shown explicitly and two other
terms can be obtained by a cyclic permutation of the
indices (xx) → (xy) → (yy). The direction of the z axis
is chosen to be parallel to the direction of the elements’
static magnetization, µp = ez.

As it is evident from Eq. (5), the necessary condition
for the SW nonreciprocity in the considered case is the
inequality between the diagonal elements of the Hamilto-
nian matrix Ω̂k,11 6= Ω̂k,22. This can be achieved if the
elements (pillars), which belong to different sublattices,
differ from one another by their geometric or/and mate-
rial parameters, i.e. if there are two groups of different
elements in the array.

To illustrate the case of an array with two sublattices
we calculated SW spectra in an array of circular nanopil-
lars arranged in a rectangular lattice (see Fig. 1(a)), as-
suming that one group of pillars has additional out-of-
plane anisotropy Ban. Qualitatively similar result can
be obtained for an array in the FM state, when the pil-
lars differ by their radius.

As expected, SWs in such an array are nonrecipro-
cal – the waves with opposite wave vectors have differ-
ent eigenfrequencies (Fig. 1(b)). While the difference
in the SW frequencies (nonreciprocal frequency split-
ting) is relatively small, the difference in group veloci-
ties of the oppositely directed SWs is substantially larger
(Fig. 1(c)). This difference can be easily detected exper-
imentally and, possibly, used in applications.

The effect of nonreciprocity exists for all the directions
of the SW wave vector k, except k = kxex (for this par-
ticular geometry). Note, also, that in all the symmetric
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FIG. 1. (Color online) (a) Structure of an array comprised
of 2 different types of pillars arranged in a complex lattice
and existing in a perpendicular FM ground state. Yellow
dots are isotropic, while blue dots have an additional uniaxial
anisotropy Ban = 0.2µ0Ms in the z-direction. Green dashing
shows a primitive cell of the lattice; (b) Spectra of collective
SWs propagating along the ky direction at a zero external
field. Solid blue lines correspond to the “positive” propaga-
tion direction, dashed red lines – to the opposite (“negative”)
propagation direction; (c) Absolute values of the SW group
velocity: blue solid lines - vgr > 0, red dashed lines - vgr < 0.
Parameters, used for calculations: height/radius aspect ratio
of the pillar h/R = 5, lattice constants ax = 10R, ay = 3.3R,
shift between the sublattices δ = 3.3R.

points of the first Brillouin zone (e.g. k = 0, k = πey/ay)
the SW eigenfrequency does not depend on the sign of the
wave vector. This property is general and is related to the
periodicity of the SW dispersion relation11: ωk = ωk+K

in respect to all the characteristic vectors K of the re-
ciprocal lattice (Bravais lattice).

The situation becomes more interesting when the
ground state of an array is not ferromagnetic. Our calcu-
lations show that in this case the condition Ω̂k,11 6= Ω̂k,22

is not necessary anymore for the appearance of the SW
nonreciprocity. This, in particular, means that the non-
reciprocal branches of SWs can appear in an array of
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FIG. 2. (Color online) SW spectra of an array comprising
identical nanopillars in the SAFM ground state. The struc-
ture of the array is shown in Fig. 1(a), where all the pillars
are identical, but the blue and yellow pillars have the oppo-
site directions of the static magnetization (perpendicular to
the array’s plane). Calculation parameters, except for the
additional anisotropy, are the same as in Fig. 1.

identical nanopillars. For example, Fig. 2 shows the SW
spectra of an array of identical pillars existing in a stripe-
like antiferromagnetic (SAFM) ground state.

Comparing Figs. 1(b) and 2 one can see that the nonre-
ciprocal frequency splitting in the SAFM state is signifi-
cantly larger than in the FM state, while the geometrical
parameters and, therefore, the strength of the magneto-
dipolar interaction are the same.

Our calculations performed using a well-known sta-
tionary perturbation theory15 show that nonreciprocal
frequency splitting (ωk −ω−k) is proportional to the dif-
ference in polarization ellipticity of the SW eigenmodes
mp corresponding to two different sublattices. Thus, the
nonreciprocal frequency splitting has a maximum mag-
nitude when the eigenmodes of different sublattices are
orthogonal, e.g. in the case when one of the modes has a
clockwise and the other one – counterclockwise circular
polarizations, which are realized in an antiferromagnetic
out-of-plane ground state. A similar enhancement of the
nonreciprocal frequency splitting can be achieved in the
FM ground state by using two different types of pillars
having in-plane shape or material anisotropy with differ-
ent directions of anisotropy axes.

It should be noted, that the nanopillar arrays shown in
Figs. 1 and 2 have a complex lattice structure, i.e. if one
neglects the difference in geometric and material param-
eters of the pillars and considers only the positions of the
pillar’s centers, the resulting geometric lattice will still
be non-simple – with 2 dots per a primitive cell. The lat-
tice becomes simple only when δ = ax/2. As it is known
from11, in an array having a simple lattice structure, the
tensor Ĝk can be represented as:

Ĝk(δ) =
1

P

∑

p

F̂k+κp
eiκp·δ , (6)
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FIG. 3. (Color online) SW spectra of an array of identical pil-
lars, arranged into a complex lattice with P = 3 pillars per a
primitive cell in a FM ground state (ky direction). Blue solid
and red dashed lines correspond to the “positive” and “nega-
tive” SW propagation directions, respectively. The sketch of
an array is shown in the inset; a primitive cell is dashed. The
static magnetizations of the pillars are perpendicular to the
array’s plane. Calculations’ parameters: h/R = 5, ax = 20R,
ay = 3.3R, δ1 = 3.3R, δ2 = 10R.

where F̂k is a real tensor, and the values of eiκp·δ belong
to a set of P -th order roots of 1. Therefore, the collective
SWs in any two-dimensional array with P = 2 types of
different dots arranged into a simple lattice are always

reciprocal, since the coefficients of the inter-dot interac-
tion in such an array are real. Therefore, the collective
SWs in arrays with a simple lattice structure could be-
come nonreciprocal only in the array comprises of at least
3 distinct sublattices (different in geometry, material pa-
rameters, or static magnetization).

Further analysis of the eigenvalue problem Eq. (1)

shows that the conditions Ω̂k,pp 6= Ω̂k,qq and µp 6= µq

for p 6= q are not necessary of the SW nonreciprocity in
the P ≥ 3 case. Thus, the collective SWs in this case can
be nonreciprocal even in an array consisting of identical

nanopillars in a FM ground state. An example of such
an array and corresponding nonreciprocal SW spectra are
shown in Fig. 3.

In conclusion, we demonstrated that collective SWs in
an array of dipolarly coupled magnetic nanopillars can be
nonreciprocal. The main requirements for the SW nonre-
ciprocity are: (i) the presence of a non-zero out-of-plane
component of the elements’ static magnetization and (ii)
the existence of a non-zero imaginary part of the Hamil-
tonian matrix Ω̂k,pq. The last condition is satisfied in
arrays existing in a complex periodic ground state with
at least P = 2 pillars per a primitive cell, if the pillars be-
longing to different arrays’ sublattices are different, or at
least P = 3 pillars per a primitive cell, if all the pillars in
the array are identical. We believe that arrays of coupled
magnetic nanopillars having a complex lattice structure
could become materials of choice for the development of
miniature unbiased microwave isolators and circulators
requiring the nonreciprocity of the waves propagating in
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