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Abstract—Intelligence can be defined as an emergent 

property in some types of complex systems and may arise as a 
result of an agent’s interactions with the environment or with 
other agents either directly or indirectly through changes in the 
environment. Within this perspective, intelligence takes the form 
of an ‘observer’ phenomenon; externally observed at a level 
higher than that of agents situated in their environment.  Such 
emergent behavior sometimes may be reduced to the 
fundamental components within the system and its interacting 
agents and sometimes it is a completely novel behavior involving 
a new nomenclature. When emergent behavior is reducible to its 
parts it is considered to be a ‘weak’ form of emergence and when 
emergent behavior cannot be reduced to its constituent parts, it is 
considered to be a ‘strong’ form of emergence. A differentiating 
factor between these two forms of emergent phenomena is the 
usage of emergent outcomes by the agents. In weak emergence 
there is no causality, while in strong emergence there is causation 
as a result of actions based on the affordances emergent 
phenomena support. Modeling a complex air combat system 
involves modeling agent behavior in a dynamic environment and 
because humans tend to display strong emergence, the 
observation of emergent phenomena has to exist within the 
knowledge boundaries of the domain of interest so as not to 
warrant any new nomenclature for the computational model at 
the semantic level.  The emergent observed phenomenon has to 
be semantically tagged as ‘intelligent’ and such knowledge 
resides within the bounds of the semantic domain. Therefore, 
observation and recognition of emergent intelligent behavior has 
been undertaken by the development and use of an Environment 
Abstraction (EA) layer that semantically ensures that strong 
emergence can be modeled within an agent-platform-system, 
such as Live, Virtual and Constructive (LVC) training in a 
Distributed Mission Operations (DMO) testbed. In the present 
study, various modeling architectures capable of 
modeling/mimicking human type behavior or eliciting an 
expected response from a human pilot in a training environment 
are brought to bear at the semantic interoperability level using 
the EA layer. This article presents a high level description of the 
agent-platform-system and how formal modeling and simulation 
approaches such as Discrete Event Systems (DEVS) formalism 
can be used for modeling complex dynamical systems capturing 
emergent behavior at various levels of interoperability. The ideas 
presented in this paper successfully achieve integration at the 
syntactic level using the Distributed Interactive Simulation (DIS) 
protocol data units and semantic interoperability with the EA 
layer. 

Keywords— systems integration, semantic interoperability, 
Discrete Event Systems (DEVS) formalism, Complex systems, 
Emergence, Complex Air Combat System, Live Virtual 
Constructive (LVC), Distributed Missions Operations (DMO), 
Environment Abstraction, Intelligent agent behavior, Artificial 
intelligence (AI), Modeling and Simulation 

 

I. INTRODUCTION  
Sternberg’s definition of human intelligence is “(a) mental 

activity directed toward purposive adaptation to, selection and 
shaping of, real-world environments relevant to one’s life” [1], 
which means that intelligence is how well an individual deals 
with environmental changes throughout their lifespan. In some 
types of complex systems, intelligence can be defined as an 
emergent property [2].  According to Brooks [3, 4], intelligent 
behavior can be generated without explicit representations or 
explicit reasoning; of the kind that a symbolic Artificial 
Intelligent (AI) agent possess. An implicit assumption in both 
of these research efforts is that the ‘intelligent’ behavior arises 
as a result of an agent’s interaction both with its environment 
and/or agents. We also propose that Sternberg’s and Brook’s 
perspective are complementary and an intelligent goal directed 
behavior is “in the eye of beholder”; an observer phenomenon 
from a vantage point. To realize both of these definitions in 
artificial systems, the ‘observed’ emergent phenomenon has to 
be semantically tagged ‘intelligent’ and be available for 
exploitation by the interacting agents. Emergent phenomenon 
is a system’s behavior, defined by outcomes that cannot be 
reduced to the behavior of constituent agent-environment 
interactions [5] . Put simply, emergent behavior is detectable 
only at a level above local interacting agents [6, 7, 8] situated 
in their environment. This is the case because objects and 
environments contain perceptual information. Information that 
indicates the potential actions an object or situation aligned 
with an active agent’s goals and capability affords[9, 10, 11]; 
i.e., the capability to capitalize on the emergent affordances 
before them.  

In this article, we will present a methodology to formally 
detect emergent intelligent behavior and capitalize upon the 
emergent properties/affordances of a dynamic complex system 
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such as an Air combat system, through Discrete Event System 
Specification (DEVS) formalism and System Entity Structure 
(SES) theory [12]. Both the DEVS formalism and SES theory 
are based on mathematical foundation of set theory. Detection 
of emergent affordance i.e., properties which allow for 
intelligent observer agent behavior, is facilitated by 
Environment Abstraction. The methodology also highlights 
how the concepts can be applied to both the system design as 
well as system Test and Evaluation (T&E). 

A. Requirements for LVC training in DMO testbed 
In most virtual training environments today, many 

behavior-modeling architectures are pre-defined rule-based, 
inflexible instantiations that are confined, in large part, by the 
type of modeling approach it depends upon.  

Traditional scripts (i.e., rule-based methods) are generally 
static and predictable, leading to an inability to scale and adapt 
to changes in the environment (i.e. die when shot down), or 
deal with novel situations. In addition, many rule-based scripts 
contain weaknesses. Weaknesses often ‘gamed’ by operators 
who learn very quickly how to exploit and defeat rule-based 
models, creating a negative learning situation. These 
problems, which are common even in state-of-the-art game AI 
technologies, hamper the quality of training human operators 
can receive.  

At the Air Force Research Lab (AFRL), the combat 
simulation training testbeds run on a Distributed Interactive 
Simulation (DIS) network. Recently, AFRL initiated a project 
to evaluate the current generation of commercially available 
modeling architectures to determine their viability to execute 
LVC DMO training with accurate, believable, rapidly 
developed models that measure or mimic human behavior. 
Through collaboration with industry participants, viz., Aptima, 
Charles River Analytics, CHI Systems, SoarTech, Alion and 
Stottler-Henke, the following activities are being pursued that 
define the scope of the larger problem set and address the 
integration and interoperability issues required for the use of 
rapid adaptive believable agents in LVC DMO training 
environments. 

1. Identify criteria to evaluate the current generation of 
modeling architectures for designing Computer 
Generated Forces (CGFs). 

2. Define data parameters and thresholds to develop an 
agent model that can be objectively evaluated to 
determine the behavioral fidelity of  such an agent 

3. Determine viability and utility for use of these models 
in adaptive constructive training environments. 

 
While the above defines the overall scope, at the 

fundamental level, each collaborator is trying to: 
1. Specify and develop agent models that mimic human 

behavior, i.e., render an agent model believable  
2. Integrate their modeling architecture with the existing 

infrastructure at AFRL. 
3. Conduct performance evaluation to determine the 

agent’s or modeling architecture’s viability for use in 
training testbeds 

 

This article will describe: 
1. The technical architecture and the approach used to 

achieve semantic interoperability between the 
collaborators and the AFRL infrastructure in a 
complex air combat system.  

2. The conceptual ideas put forth in [8] towards the 
development of a configurable system capable of 
detecting certain emergent properties in an Air 
Combat System by means of an Environment 
Abstraction (EA) component. The EA component is 
geared to achieve complete semantic interoperability 
at the agent-platform-system level.  

 
Ahead, we will describe the technical challenges associated 

with the development and evaluation of such architectures for 
use with the existing AFRL infrastructure. Section 2 provides 
background and an overview on systems theory. It also 
provides an overview on linguistic levels of interoperability. 
Section 3 provides the agent-platform-system architecture 
concept that is required for detecting intelligent behavior 
within the observer paradigm. Section 4 elaborates on the EA 
component and its various design aspects. It also describes the 
methodology using DEVS and SES to engineer an EA 
component. Section 5 concludes the paper. 

II. BACKGROUND AND SCOPE 
We begin this section with an overview of various 

definitions so as not to leave any confusion with respect to 
‘similar’ concepts. 

A. Working definitions  
• System: A System is defined as an area of interest with a 

defined boundary. Logically, this boundary is knowledge-
based and technically, it takes the form of an interface. 
An Interface through which a given system communicates 
with another system or an environment either directly or 
indirectly. In component-based modeling paradigm, a 
component is a representation of a system. 

• Dynamical system: A system has a state-space and how 
it moves from its current state to the next state in a given 
time interval is described formally. Such systems are 
usually modeled with difference equations, differential 
equations, or discrete event formalisms [12] . 

• Complex system: A system that displays emergent 
behavior from a set of interacting systems/sub-
components. In such systems the components are 
hierarchically organized to manage complexity. The 
structure and behavioral function of a complex system is 
closed under composition (i.e., a black-box) and can 
display the complete behavior of its sub-systems taken 
together. 

• Closed System: A system defined within a boundary that 
is impervious to the intake of new knowledge. A complex 
system can be classified as a closed system: closed under 
composition. 

• Open system: A system that has no boundary and its 
behavior cannot be closed under composition. New 
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knowledge can be generated, or synthe
system or externally injected such that th
over time. Such a system may have a self
different levels of hierarchy. 

• Complex Adaptive Systems (CAS): A C
system constituting a persistent environm
persistent agents which adapt/learn/evo
open system. Any complex system with 
loop is a CAS. 

• Complex Air Combat System (CACS)
Combat System is a complex dynami
displays emergent ‘intelligent’ (meanin
behavior in an air combat exercise betwee
a dynamic environment. Taken together i
in this article as ‘agent-platform-system’
be a closed system if there is no huma
Live-Virtual-Constructive (LVC) with 
loop system becomes an open system and

• DEVS formalism: Discrete Event Syste
(DEVS) formalism is mathematical 
formally describes complex dynamical 
be used to engineer complex adaptive sys

B. Linguistic Levels of Interoperability 
To address the system interoperabilit

Modeling & Simulation (M&S), thr
interoperability have been identified and
guidelines to discuss information exchange. T
be configured to work together i.e. they can 
order to interoperate, two systems must 
understanding of data at higher levels of abst
integration facilitates interoperability and is 
to achieve interoperability at various levels (F

Interoperability occurs at three primary 
semantic and pragmatic 
• Syntactic: At this level, the data structure

between two systems without the u
meaning of the data. At this level, syste
realized. 

• Semantic: At this level, the two integrat
a common meaning of the data. The dat
into knowledge (i.e. data with con
abstractions can be introduced. Tech
specified using metamodels and integrati
metamodeling level leading to shared m
for semantic interoperability. 

• Pragmatic: At this level, the integrated 
common context and purpose.  

 

Fig. 1. Interoperability Levels 
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In order to have interoperabilit
modeling and simulation (M&S) c
consists of the following layers [
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• Network Layer contains the ac
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connecting networks (both 
hardware and software) that 
M&S lifecycle. 

• Execution Layer is the softwar
in simulation time and/or real 
Included in this layer are the 
basis for distributed simulatio
standardized in the HLA/DIS). 
are database management sys
support control of simulation
and visualization/animation of t

• Modeling Layer supports the 
formalisms that are independen
layer implementation. HLA/DI
templates for model descript
confederations formed by asso
dispersed models acting togeth
goals. However, beyond this, 
behavior, (whether continuous,
in nature) as well as structure c
this layer. Model constructio
processes of model abstraction 
the lifecycle are also included. 
be defined and added to th
understood as models of the
vantage point for purposes of c
information exchange. 

• Design and Search Layer supp
and/or system of systems, suc
Defense Architecture Framew
design is based on specifying 
models and implementing 
interconnection of system c
Engineering along with formal
the chosen paradigm that tr
systems [14]. It also includ
families of alternative models
spaces set up by parameters or 
means by specifying alternate 
those provided by the System
methodology [14, 15]. In ad
natural intelligence (evolutiona
brought in to help deal with
occasioned by powerful model 

• Decision Layer applies the 
simulate large model sets at
decisions when solving real-wo
course-of-action planning, sele
and other choices where the ou
by concept explorations, “wh
optimizations of the models co

ty at multiple levels, the 
conceptual framework also 
12, 13]. Starting from the 

ctual computers (including 
rmance systems) and the 
LAN and WAN, their 

support all aspects of the 

re that executes the models 
time to generate behavior. 
protocols that provide the 

on (such as those that are 
Also included in this layer 

tems, software systems to 
n executions, visualization 
the generated behaviors. 
development of models in 
nt of any given simulation 
IS provides object-oriented 
tion aimed at supporting 
ociations between globally 
her toward a set of global 
the formalisms for model 

, discrete, or discrete event 
change, are also included in 
n and especially the key 
and model-continuity over 
In addition, ontologies can 

his layer. Ontologies are 
e world from a particular 
onceptualization to support 

ports the design of systems 
ch as in the Department of 
work (DoDAF) where the 

desired behaviors through 
these behaviors through 

components. Model-driven 
l systems M&S practices is 
ransitions models to real 

des investigation of large 
s, whether in the form of 
by way of a more powerful 
model structures, such as 

ms Entity Structure (SES) 
ddition, AI and simulated 
ary programming) may be 

h combinatorial explosions 
synthesizing processes. 
capability to search and 

t a layer below to make 
orld problems. Included are 
ction of design alternatives 
utcomes may be supported 
hat-if“ investigations, and 
onstructed in the modeling 



DISTRIBUTI
Appro
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• Collaboration Layer enables people (hu
intelligent agents with partial knowledge
whether based on discipline, location, tas
or specialization, to bring to bear individ
and contributions, often for purposes o
shared goal. This layer requires the p
various cognitive capacities integrated s
multi-agent system leading to gro
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Fig. 2.  Architecture for Modeling and Simulation mappe

of interoperability 
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Example 
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As illustrated in Figure 2, at the syntactic le

network and execution layers. The semantic l
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Having described the various concepts, let
the agent-platform-system that is capable o
intelligent behavior as a strong emergence ph
next section describes the technical solution
various modeling architectures including the E

III. AGENT-PLATFORM-SYSTEM ARCHIT
ENVIRONMENT ABSTRACTION

The first area of inquiry in this collaborat
create believable behavior in Computer G
(CGFs) is typically being handled by ea
through use of premier, often proprietary 
human behavior modeling/mimicking approa
solutions can be denoted as fairly matur
models, and methods. However, in order
effectively and have the capacity to evaluate 
and the specified agent model, in an adapt
training environment (such as LVC), each col
evaluator must account for integration and in
three levels (i.e. the syntactic, semantic, 
Because the critical path to success and the pr
primarily defined as a technical integration
integrate with DIS and the proprietary AFRL
has been assessed that, currently, almost 
comply or are working to comply 
interoperability by using the DIS Protocol Da
Additionally, almost all of the collaborator
capable of developing proprietary DIS adap
proprietary, uniquely engineered semantic 
Rendering semantic interoperability between 
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exist.  

Therefore, in order to facilitate semantic
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application programming interface (API) was
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Integrated Control Environment (NICE) over 
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world/situation knowledge (omni-data), data 
for an agent’s decision-making, in every sit
instant. However, access to omni-data could 
result in unrealistic behavior by the agen
gain/retain some semblance of realistic behav
has to determine what DIS information is re
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shall have sub-tasks, Actions may have sub-actions 
and contingencies may have sub-contingencies etc. 

3. Structured plan recognition: The observer shall be 
able to determine what plan is being executed. In the 
case of incomplete information, the system must 
converge on a possible set of plans. 

4. Team and team-plans: The observer must be cognizant 
of the team and the allowed team-behavior to better 
manage complexity and context. 

5. Preemptive recognition: The observer shall be able to 
differentiate possible plans at the earliest possible 
moment based on the situation in a prioritized manner. 

6. Behavioral prediction: The observer shall be able to 
display predictive validity of the agent-platform 
system 

7. Information availability: The observer shall constrain 
the information that is available to a particular agent 
based on its field-of-view and airframe capabilities.  

8. Information variability: The observer agent in 
conjunction with the Training Instructor shall be able 
to control, repertoire of declarative knowledge or 
information in use, based on allowable actions and the 
training environment state, to better guide the training 
process. This is the dynamic knowledge-base with 
semantic interoperability that adjusts to a pragmatic 
context. 

9. Interoperability: The observer should have both the 
syntactic and the semantic interoperability with 
various agents communicating through the DIS 
network. 

 
2) Technical Requirements 

1. Real-time performance: The EA component shall be 
able to semantically process the DIS network in real-
time to effectively display strong emergence 
phenomena. Information that can then be subscribed 
by a higher level/other agent for purposes of decision 
making and generating causal actions in the world. 
The lack of such capability will render a system 
capable of only displaying weak emergence. 

2. Formal systems M&S framework: The observer agent 
shall leverage formal systems modeling and 
simulation practices according to complex dynamical 
systems theory as implemented in DEVS formalism to 
capture emergent properties in the CAS as described 
in [8]  

3. Integration: The observer shall be specified in a 
component-based modular structure for integration at 
the syntactic level, to begin with, in a platform 
independent manner. 

4. Interoperability: The observer shall be interoperable at 
the syntactic level using XML and at the semantic 
level using Events [14]. 

5. Netcentricity: The methodology shall be scalable in 
any data-rich system such as a Service-oriented 
netcentric system of system. 

D. EA Development Methodology 
The EA component is a hierarchical component comprised 

of many sub-components. The design and hierarchical 
organization of these sub-components is performed as follows: 

1. Identify entities, messages and events that constitute 
inputs and outputs to various entities. Fundamentally, an 
entity is defined as a strong-typed computational data 
structure that can be physically realized in a real-world 
component. A message is a type of entity used for data-
exchange. An event is realized as a type of message that 
may have a complex data-type. In addition, an event is 
defined as a quantized change in the entity state and is 
marked by either the generation of message or update of 
entity state. The identification of these tokens/primitives 
is guided by the semantic domain knowledge and 
taxonomy developed with the help of SMEs. These 
tokens also constitute the emergent behaviors that are 
detectable. 

2. Develop minimal Input/Output (I/O) pairs that 
characterize ‘state’ of a particular entity. Such pairs 
define various other component ‘primitives’ at a higher 
level of abstraction that can be assembled together using 
DEVS levels of systems specifications [12, 15, 19].  This 
also paves way for a T&E framework [19]. 

3. Develop dynamic behavior of DEVS ‘observer’ agent 
utilizing these primitives at multiple levels of hierarchy. 

4. Develop the domain metamodel of CACS utilizing the 
constructed primitives with SES theory [14, 15].  

5. Instantiate CACS metamodel as a CACS instance with 
respect to the subscribing pilot agent with respect to its 
geo-location and air-vehicle platform specifications. In 
SES parlance, an SES-instance is also called a Pruned 
Entity Structure (PES) [12, 15, 14]. 

6. Push CACS event notifications to the pilot agent model 
making it an EA aware agent. 

 
The above process can be best summarized in Figure 5. The 

detailed implementation and design will be reported in an 
extended article.  

V. CONCLUSIONS AND LESSONS LEARNED 
Intelligent behavior, according to Sternberg is about 

adapting to one’s local environment. According to Brooks, 
intelligent behavior is an emergent phenomenon and arises as 
a result of agent’s interaction with an environment. In both the 
cases, there is an implicit assumption that an agent interacts 
with its environment (that includes other agents) based on its 
goal structure and available affordances. The fundamental 
question is a Catch-22 situation: Does the environment 
provide structural-functional affordance/s for an agent OR is 
the agent looking-for that affordance to begin with? In the 
case of emergent affordance, the second question is irrelevant 
because the agent hits its own knowledge boundary and has no 
knowledge to recognize new affordance/s.  In weak emergence 
these two questions are independent and can co-exist because 
the knowledge resides in the system and the agent is not 
looking for emergent affordances. In strong emergence, the 
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