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ABSTRACT 


The first paper summarizes Naval Surface 


Warfare Center Port Hueneme Division’s 


(NSWC PHD) efforts to investigate the 


NASA/Jet Propulsion Laboratory (JPL) 


ePrognostics tool to support remote 


operations, asset status, and health 


management. The analysis involves the 


adaption of NASA/JPL algorithms to the 


Navy SPY-1 Radar system, and the 


application of Six Sigma tools for both 


product evaluation and enhanced 


prediction protocols. The SPY-1 radar is 


the primary air and surface radar for the 


AEGIS Combat System.  


SPONSOR CLEARANCE 


This paper is UNCLASSIFIED and 


approved for public release, distribution 


unlimited. 


INTRODUCTION 


This motivation behind this 


research is the fact that there is currently 


no capability to accurately predict system 


outages due to component failures.  This 


capability would increase operational 


availability by forecasting, and by way of 


preventative maintenance avoiding, 


system and component failures. This 


technology would provide the operator 


the ability to accurately predict a system 


or component failure prior to the actual 


failure occurring. The more we know 


about when a failure is going to occur, the 


better prepared we can be to handle the 


upcoming problem. Subsequently, with 


the indication of an imminent failure, a 


reduction in logistic and administrative 


delay times are expected, as well as 


affording us the opportunity to locate 


other resources to satisfy mission 


requirements.  We began our research by 


gathering data that had been previously 


collected from the AEGIS SPY-1 radar 


system’s Transmitter Power and Phase 


Test (TPP).  The TPP data was collected 


once per day over a 30-day period for all 


amplifier, array, band, and channel 


combinations. The objective of this 


research is to provide a significant and 


rigorous modeling and simulation effort 


to predict radar output power.  In 







collaboration with NASA/JPL, we 


developed time series forecasting models. 


Using the predictions from these models, 


we performed control chart analyses to 


determine out of control conditions. We 


used Excel, Minitab, and Matlab during 


this modeling and simulation effort.   


ANALYSIS 


 A simple but effective visual 


analysis was done by plotting the data for 


Band 1 Channels 5-8 (Figure 1) and 


inspecting it for quality and for any 


anomalies that may be visible. An 


immediate observation is that the data is 


fairly constant for the first 21 days and 


then starts to decrease on day 22. 


Knowing that the failure occurred on day 


28, we now know that the decrease on 


day 22 was a warning sign that something 


was wrong. Our partners at NASA/JPL fit 


an autoregressive model equation with 


three autoregressive coefficients 


(Equation 1) to forecast the data. This 


model assumes that the value of each 


observation is a function, specifically: a 


linear combination, of the values of the 


previous three observations. Equation 1 


defines the autoregressive forecasting 


model where for any day “n”, the 


observed value for that day on channel a 


and band b is written:    
     


. Hence, as 


measured in observation cycles from day 


n, the observation three days in the future 


    
     


 is considered to be equal  to a linear 


combination of observations: two days 


forward,     
     


; one day forward,     
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and on day n,   
     


; with coefficients 
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. The values of 


these coefficients are determined using a 


least squares technique over an arbitrary 


span length of previously observed data.   


  
     


 is a random variable representing 


channel noise on day n, channel a and 


band b.  


    
     


   
     


    
     


   
     


    
     


 


  
     


  
     


   
     


       (1)  


Using the forecasting features of this 


model, one day and two day ahead 


predictions were calculated for Band 1 


Channel 5. This channel was chosen 


arbitrarily and similar analyses were 


done on the remaining channels. Figure 2 


shows the observation curve as well as 


the one day prediction and two day 


prediction curves.  


Figure 1: Radar waveform power output data 


(kW)


 







Figure 2: Observation curve and NASA/JPL one 


day (red) and two day (black) prediction 


curves 


 


This model assumes that the channel 


noise is negligible with expected value 


zero:     
     


   .  To validate and verify 


this assumption, the errors of the 


prediction curves were calculated and 


plotted. The errors are the differences 


between the observations and the 


predictions for a particular day. Figure 3 


shows the error curves for the 


autoregressive forecasting model.   We 


see that although most errors fluctuate 


around zero, there are a few errors that 


are very large and of concern. This type of 


plot is very useful because it allows us to 


see the accuracy of the predictions.   


Figure 3: NASA/JPL error curves for one day 


(red) and two day (black) predictions 


 


Another useful plot is the histogram of the 


errors for the prediction curves (Figure 


4). This plot allows us to determine 


whether the underlying assumption of a 


negligible channel noise is reasonable. 


This histogram should look 


approximately like a bell curve. We see 


that this assumption is not grossly 


violated and eases our previous concern 


of large errors. 


Figure 4: NASA/JPL error histograms for one 


day (red) and two day (black) predictions 


 


After this model was fit to the data, our 


NSWC PHD team applied established six-


sigma tools to the data. Using the one day 


predictions calculated from the NASA/JPL 


model, the ratio of prediction difference 


to observation with daily rational 


subgrouping was calculated. Using this 


rationalized data, an X-bar R chart was 


created. Figure 5 shows this X-bar R chart. 


In this chart, each point represents the 


channel group (5-8) for that day after 


rational subgrouping. Notice that the X-


bar R chart shows that there are no out of 


control conditions before nor after the 


day of the actual failure, which was on 


day 22. This indicates relative data 


stability with this measure. 







Figure 5: X-bar R Chart of rationalized data 


 


Figure 6: Capability for one day predictor 


 


Even containing a failure scenario we still 


found about 50% of the one day predicted 


values were within ±10% of the 


corresponding observed value. This is 


reasonable given the high levels of noise 


in the data. Despite this heavy noise, 


using control charts and modified 


parameter protocols proved to be 


extremely useful. Figure 7 shows an X-bar 


R chart of our data using the first 19 


observations (days) to establish the 


control chart parameters. This control 


chart also takes into account the channel 


grouping (5-8).  As is evident from the X-


bar chart, there seems to be a clear 


downward trend signaling a shift with 


two specific points of interest: day 14 and 


day 21. These two days have signaled that 


an out of control condition is occurring. 


Interestingly enough, day 21 is one day 


prior to the actual failure (warning) 


which occurred on day 22. The R chart 


shows something similar occurring at day 


20, which is two days prior to the actual 


failure.  This signal is an indication of a 


significant disassociation of values within 


the channel group. Considering both of 


these charts, one can deduce that a failure 


will be happening in the near future after 


day 21.  


Figure 7: X-bar R chart of channels 5-8 


 


Using the predictions from the NASA/JPL 


model, we were able to predict “out of 


control” conditions which seemed to 


signal a imminent failure. Figure 8 shows 


an X-bar R chart of the predictions using 


the first 19 observations (days) to 


establish the control chart parameters. 


Using this combination, an X-bar control 


failure would occur on day 21 which 


coincides with day 21 observed data 


actually registering as an X-bar control 


chart “out of control” condition (Figure 7). 


Consequently, we have just shown that 


we have a valid and verified pre-failure 


“out of control” one day prediction. 


Furthermore, we have also shown that we 


may have a method to predict pre-failure 







“out of control” conditions. A system of 


checks and balances is suggested to verify 


that the “out of control” predictions 


actually come in as “out of control” 


observations. After selecting the most 


suitable control chart and when both the 


prediction and observation for a 


particular day register as “out of control,” 


then we declare failure is imminent. This 


occurrence would signal to the operator 


to take the system offline and proceed 


with preventative maintenance, take 


corrective actions, or find alternate 


resources to cover the mission 


requirements.  


Figure 8: X-bar R chart of the channel group (5-


8) using NASA/JPL predictions 


 


Figure 9: EWMA used for predictions on the 


channel group (5-8) 


 


Using the NASA/JPL predictions, a second 


type of control chart was implemented. 


Exponentially Weighted Moving Average 


(EWMA) control chart parameters were 


derived from the first 19 channel group 


observations (days). Using these 


parameters, Figure 9 shows the plot of 


the predictions and a unique situation 


appears.  The control chart in Figure 9 in 


conjunction with the NASA/JPL 


ePrognostics tool predicts an EWMA out 


of control condition on day 21. Referring 


back to our protocol, we need to verify 


that the observed data on day 21 reports 


as out of control. Figure 10 is an EWMA 


control chart for the observations. Notice 


that the data on day 21 does register as an 


EWMA control chart out of control 


condition. Again, we have a valid and 


verified pre-failure prediction for next 


day predictions. 


Figure 10: EWMA used for observations of the 


channel group (5-8) 


 







Figure 11: NASA/JPL ePrognostics prediction 


for channel 8 with parameters from days 1-19 


 


Figure 12: Channel 8 observations with 


parameters from days 1-19 


 


The parameters for the I-MR (Individuals 


& Moving Range) charts in Figures 11 and 


12 are based on the channel 8 


observations for days 1 through 19. An 


interesting situation is noted. The I-MR 


chart of the channel 8 predictions (Figure 


11) in conjunction with the NASA/JPL 


ePrognostics tool would predict an 


Individual out of control condition is 


going to occur on day 21 (one day prior to 


the actual warning). Note that in Figure 


12, the I-MR chart of channel 8 


observations, the data on day 21 does 


register as an Individual control chart 


“out of control” condition. Once more, we 


have a valid and verified pre-failure 


prediction for next   day predictions. 


However, there is one more important 


difference in the prediction control 


charts. The X-bar R (Figure 8) and I-MR 


(Figure 11) predict a control recovery for 


day 22; which does not happen. Hence, a 


type-II error has occurred here. The 


EWMA chart (Figure 9) did not indicate a 


recovery on day 22.  


In addition to the NASA/JPL prediction 


algorithm, we also considered other 


prediction methods. Furthermore, we 


developed a synthetic quantitative 


coefficient of determination to compare 


the prediction algorithms. One of the 


tested prediction algorithms was another 


autoregressive forecasting model. This 


model assumes that each observation is a 


linear function of the previous two 


observations. Equation 2 defines the 


autoregressive forecasting model where 


for any day “n”, the observed value for 


that day on channel a and band b is 


written:    
     


. Hence, as measured in 


observation cycles from day n, the 


observation two days in the future     
     


 


is considered to be equal  to a linear 


combination of observations: one day 


forward,     
     


; and on day n,   
     


; with 


coefficients   
     


and   
     


again 


determined by a least squares method.  


  
     


 is a random variable representing 


channel noise on day n, channel a and 


band b.  


    
     


   
     


    
     


   
     


  
     


   
      (2) 


Another approach was considered, 


interpreting the problem in a slightly 


different way. This prediction algorithm 


relates the next channel random 


fluctuation as a function of the previous 







channel random fluctuations. This is the K 


model and is defined by the following 


sequence of equations (equations 3-7) 


where for any day “n”, the observed 


difference between day n and day n-1 is 


written:   . Hence, as measured in 


observation cycles from day n, the 


difference two days in the future       is 


considered to be equal  to a linear 


combination of differences: one day 


forward difference,     ; and the 


difference on day n,    ; with coefficients 


  ,   , and   . 


                  (3) 


                           (4) 


where 
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                (7) 


  is an observation weighting/screening 


matrix. 


Another approach, called Linear 


Differencing, was also considered. The 


following equations (equation 8-9) define 


this model where for any day “n”, the 


observed value for that is written:    . 


Hence, as measured in observation cycles 


from day n, the observation two days in 


the future      is considered to be equal  


to a linear combination of observations: 


one day forward,     ; and on day n,   ; 


with coefficients    and   . The 


coefficients in this model as well as 


previous models were calculated using  


                  (8) 


        
       


   (9) 


Least Squares, Iterative Least Squares, 


Yule-Walker, and Hannan-Rissanen 


numerical techniques.  After rigorous 


application and testing on all of the 


preceding models, the NASA/JPL 


autoregressive model performed the best. 


We arrived at this conclusion based on 


detailed error analysis as well as our 


synthetic quantitative coefficient of 


determination. Table 1 shows the 


coefficients of determination for the 


various prediction algorithms that were 


considered. The NASA/JPL autoregressive 


forecasting model outperformed the 


other models considering the widest 


spectrum of operational and simulated 


data. 


Table 1 : Next day prediction coefficients of 


determination 


NASA/JPL 


AR(3) 


NASA/JPL 


AR(2) 


K Model Linear 


Diff. 


0.665 0.700 0.554 0.662 


These results were not typical; they 


represent the best fit obtained from any 


of the operational data sets. 


CONCLUSION 


We were able to show that the NASA/JPL 


ePrognostics tool had the best single 


predictor algorithm using actual data. 


Additionally, we used heavy modeling and 







simulation (Monte Carlo methods) with 


synthetic quantitative measures to 


analyze and assess their performance. 


Control chart methodology and rational 


channel subgrouping with the NASA/JPL 


predictions appeared to be an effective 


and verifiable failure prediction 


technique on this data set. The day 21 


“out of control” prediction precedes the 


day 28 actual system failure by 8 days. 


Day 22 was an operational inspection 


specification warning, which for our 


prediction purposes we took to be a 


“system failure.” However, the 


operational data was in general very 


noisy (low signal to noise ratio) and the 


reasons for this need to be researched. 


Regarding the noise, the team 


brainstormed various potential causes 


and captured this discussion in a Cause 


and Effect (C&E) diagram. 


 


Figure 13: Cause and Effect Diagram for data 


noise 


 


 


 


FUTURE RESEARCH 


The team recommends continuing the 


project into the next phase. With the 


inclusion of enhanced algorithms, formal 


observation screening and weighting, and 


control charts with parameter selection 


and prediction protocols, we believe there 


is sufficient objective evidence which 


substantiates our opinion that a valid and 


useful operational product: “predicting 


immanent failures in advance of them 


happening” might be developed. We need 


(in addition to further research time) 


actual, controlled operational data, 


obtained in a scientific manner with data 


collection notes and detailed failure 


information. Also, the noise evident in the 


data needs to be addressed and somehow 


mitigated; data sampling methods and 


applications, and other (or alternate) data 


capture points identified and explored. 
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