
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

New Solutions for Energy Absorbing Materials

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

The objective of this project was to understand, design, and evaluate composite materials containing engineered 

microstructures that display negative stiffness (NS) and negative Poisson’s ratio (auxetic) behavior. The ultimate 

aim for understanding such microstructural elements is to enable the creation of composite materials that are 

significantly more dissipative than currently available materials to enhance existing mechanical absorption and 

isolation capabilities without degrading stiffness performance. Progress has been made in the design and analysis of 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

01-11-2012

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

energy absorption, composite materials, metamaterials, auxetic materials, negative stiffness

Michael R. Haberman, Carolyn C. Seepersad, Preston S. Wilson, Kim 

Alderson, Andrew Alderson, Fabrizio Scarpa

The University of Texas at Austin

The Univ. of Texas at Austin, DBA Applied Res. Lab

10000 Burnet Road

Austin, TX 78758 -4423

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-11-1-0032

611102

Form Approved OMB NO. 0704-0188

58520-EG.4

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Michael Haberman

512-835-3149

3. DATES COVERED (From - To)

15-Nov-2010

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

- 14-Aug-2012



New Solutions for Energy Absorbing Materials

Report Title

ABSTRACT

The objective of this project was to understand, design, and evaluate composite materials containing engineered microstructures that display 

negative stiffness (NS) and negative Poisson’s ratio (auxetic) behavior. The ultimate aim for understanding such microstructural elements is 

to enable the creation of composite materials that are significantly more dissipative than currently available materials to enhance existing 

mechanical absorption and isolation capabilities without degrading stiffness performance. Progress has been made in the design and analysis 

of NS microstructures that exploit buckled element geometry to produce NS behavior. The nonlinear effective material properties of the 

microstructure have been obtained using finite element analysis and the overall behavior of a composite material containing NS inclusions 

has been determined using combined FEA and analytical effective medium theory. Auxetic materials work has produced particulate 

composite materials containing auxetic ?-crystobalite inclusions. The resulting composite materials have been characterized using 

quasistatic, modal vibration, and ultrasonic methods together with extensive microscopy. The knowledge gained during the work of this 

project can be used in future research to provide a basis for the design of microstructures that can aid in absorbing vibroacoustic energy to 

improve overall composite material performance through variations of engineered microstructure.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of 

the project to the date of this printing.  List the papers, including journal references, in the 

following categories:

Received Paper

TOTAL:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Number of Papers published in peer-reviewed journals:

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations



1. M.R. Haberman, D.T. Hook, T.D. Klatt, A. Alderson, K.L. Alderson, T.A.M. Hewage, F.L. Scarpa, “Ultrasonic Characterization of 

Polymeric Composites Containing Auxetic Inclusions,” Presented at The 164th Meeting of the Acoustical Society of America, Kansas City, 

MO, (22-26 October 2012).

2. T. Klatt, M.R. Haberman, D.W. Shahan, C.C. Seepersad, “Hierarchical Modeling and Design of Composite Materials with Negative 

Stiffness Inclusions,” Presented at the 49th Annual Technical Meeting of the Society of Engineering Science, Atlanta, GA, (10-12 October 

2012).

3. T.A.M. Hewage, K. Alderson and A. Alderson, "Microscopy of Auxetic particulate filled polymers," Auxetics 2011, 8th International 

Workshop on Auxetics and Related Systems, Szczcein, Poland, (2011).

4. T. A. M. Hewage , A. Alderson, K.L. Alderson, M.R. Haberman, T Klatt, F.L. Scarpa, "Design and Development of a Multifunctional 

System Displaying Negative Poisson’s ratio and Negative Stiffness Behaviour," Materials KTN Annual Meeting: Materials Energising 

Manufacturing in the UK. London: Institute of Materials, Minerals and Mining, (2012).

5. T.A.M. Hewage, A. Alderson, K.L. Alderson, M.R. Haberman, T. Klatt,  F.L. Scarpa, "A system incorporating two negative properties: 

negative Poisson's ratio and and negative stiffness". Research and Innovation conference, University of Bolton. Bolton, UK, (2012).

6. A. Alderson, K.L. Alderson, D. Di Maio, M.R. Haberman,  T. A. M. Hewage,  T. Klatt and F.L. Scarpa, “New Solutions for Improved 

Energy Absorbing materials: Auxetic composites,” Presented at Dynacomp, 1st International Conference on Composites Dynamics, 

Arcachon, France, (22 – 24 May 2012).

7. M.R. Haberman, T.D. Klatt, P.S. Wilson, C.C. Seepersad, “Negative Stiffness Metamaterials and Periodic Composites,” Presented at 

Acoustics 2012, Joint 163rd Meeting of the Acoustical Society of America, the 8th meeting of the Acoustical Society of China, the 11th 

Western Pacific Acoustics Conference, and the Hong Kong Institute of Acoustics, Hong Kong, China, (13 – 18 May 2012).

8. T. Klatt, D. Shahan, M.R. Haberman, C.C. Seepersad, P.S. Wilson, “Investigation on the use of thermal expansion mismatch to produce 

engineered negative stiffness metamaterial inclusions,” Presented at the Joint Conference on Advanced Materials, Szczecin, Poland, (6-9 

September, 2011).

9. D. Shahan, B. Fulcher, C.C. Seepersad, M.R. Haberman, P.S. Wilson, “Robust Design of Constrained Bistable Structures for Selective 

Laser Sintering,” Presented at the Twenty Second Annual International Solid Freeform Fabrication Symposium – An Additive 

Manufacturing Conference, Austin, TX, (8-10 September 2011).

Number of Presentations:  9.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

08/31/2011  2.00 Klatt, T., Shahan, D., Haberman, M.R., Seepersad, C.C., Wilson, P.S.. Investigation on the use of thermal 

expansion mismatch to produce engineered negative stiffness metamaterial inclusions,

8th Workshop on Auxetics and Related Systems. 2011/09/06 01:00:00, . : ,

08/31/2011  3.00 Alderson, A., Alderson, K., Hewage, T.A.M.. Microscopy of auxetic particulate filled polymers,

8th Workshop on Auxetics and Related Systems. 2011/09/06 01:00:00, . : ,

TOTAL:  2

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts): 



Received Paper

TOTAL:

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 

Received Paper

TOTAL:

Books

Number of Manuscripts:

Received Paper

TOTAL:

Patents Submitted

Patents Awarded

Awards

Graduate Students



DisciplinePERCENT_SUPPORTEDNAME

Timothy Klatt  1.00

Mawanane Hewage Trishan Akila  1.00

 2.00FTE Equivalent:

 2Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Michael R. Haberman  0.20

Carolyn C. Seepersad  0.05

Preston S. Wilson  0.05

Andrew Alderson  0.05

Kim Alderson  0.10

Fabrizio Scarpa  0.05

 0.50FTE Equivalent:

 6Total Number:

Names of Under Graduate students supported

DisciplinePERCENT_SUPPORTEDNAME

Ryan Connell  0.10 Physics

 0.10FTE Equivalent:

 1Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in 

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to 

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 1.00

 1.00

 1.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:  1.00......

Names of Personnel receiving masters degrees

NAME

Timothy Klatt

 1Total Number:



Names of personnel receiving PHDs

NAME

Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

THE UNIVERSITY OF BOLTON DEANE RD

BOLTON BL3 5AB

Fabrication, analysis, and characterization of auxetic inclusion composite materials

11/15/2010  12:00:00AM

4/1/2012  12:00:00AM

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 a. 1 b.

THE UNIVERSITY OF BOLTON DEANE RD

BOLTON BL3 5AB

Fabrication, analysis, and characterization of auxetic inclusion composite materials

11/15/2010  12:00:00AM

4/1/2012  12:00:00AM

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 a. 1 b.

Sub Contractors (DD882)

Inventions (DD882)



Scientific Progress

See attachment

Technology Transfer



Final Report  New Solutions for Energy Absorbing Materials  Page 1 of 68 

Final Report: September 2010 – July 2012 

 

New Solutions for Improved Energy Absorbing Materials 

  Project Duration: 15 November 2010 – 31 July 2012 

  Reporting Period: 15 November 2010 – 31 July 2012 
 

1 Abstract 

 The objective of this project was to understand, design, and evaluate composite materials 

containing engineered microstructures that display negative stiffness (NS) and negative Poisson’s ratio 

(auxetic) behavior. The ultimate aim for understanding such microstructural elements is to enable the 

creation of composite materials that are significantly more dissipative than currently available materials 

(see Figure 1) to enhance existing mechanical absorption and isolation capabilities without degrading 

stiffness performance. Progress has been made in the design and analysis of NS microstructures that 

exploit buckled element geometry to produce NS behavior. The nonlinear effective material properties 

of the microstructure have been obtained using finite element analysis and the overall behavior of a 

composite material containing NS inclusions has been determined using combined FEA and analytical 

effective medium theory. Auxetic materials work has produced particulate composite materials 

containing auxetic α-crystobalite inclusions. The resulting composite materials have been characterized 

using quasistatic, modal vibration, and ultrasonic methods together with extensive microscopy. The 

knowledge gained during the work of this project can be used in future research to provide a basis for 

the design of microstructures that can aid in absorbing vibroacoustic energy to improve overall 

composite material performance through variations of engineered microstructure. 

 

   
Figure 1: Plot (log-log scale) of stiffness and mechanical absorption normalized to mass density of existing materials and 

composites containing negative stiffness and auxetic inclusions. The proposed materials lie in the white space of currently 

un-attainable properties. Estimates were found using Mori-Tanaka model with 2%vol of negative inclusion. 
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3 International Collaboration 

 Research supported by this project was carried out as an international collaboration between the 

University of Texas at Austin in the United States and the Universities of Bolton and Bristol in the United 

Kingdom. This project represents the first effort to establish and foster an international collaboration 

between these centers of excellence in the areas of negative stiffness and negative Poisson’s ratio 

materials. The principle investigator and US team is located at the University of Texas at Austin and has 

led recent investigations into the design and testing of negative stiffness mechanisms for vibration 

isolation [1a,1b]. The members of the US team, Drs. Michael Haberman, Carolyn Seepersad, and Preston 

Wilson, have expertise in the areas of material modeling, materials design, wave propagation, and 

dynamic material testing and characterization. The UK team has been assembled with researchers at the 

Universities of Bolton and Bristol, consisting of Drs. Andrew and Kim Alderson at Bolton and Dr. Fabrizio 

Scarpa at Bristol. These researchers have extensively studied the static and dynamic behavior and 

fabrication of auxetic materials. Their combined areas of expertise include modeling, fabrication, and 

characterization of composite and honeycomb materials for both static and dynamic applications. 

4 Scientific Progress and Accomplishments 

 As mentioned in the abstract, the project work consists of research in two coupled areas: 

composites containing (i) negative stiffness (NS) and (ii) negative Poisson’s ratio (auxetic) inclusions. 

Initial efforts that incorporates NS elements into an auxetic network has also been investigated during 

this project. Progress on NS portions of the research is presented and discussed in Section 4.1 while 

auxetic material research is discussed in Section 4.2. Based on the information presented in those 

sections, insight for associated future research is provided in Section 5. 

4.1 Negative Stiffness Materials 

 The negative stiffness research effort of this project was guided by the materials design approach 

schematized in Figure 2. The results presented in this final report focus primarily on steps (i) and (ii) in 

the schematized multiscale material model shown in the blue box of Figure 2. The two steps are 

microstructural modeling and mesoscale homogenization of candidate microstructures, respectively, 

which are discussed in Sections 4.1.2 – 4.1.6. Progress made in these areas has provided the research 

team with a comprehensive understanding and robust modeling capability that captures the behavior of 

candidate microstructures exhibiting negative stiffness at the mesoscale. Initial progress on the 

exploration of the multi-dimensional nonlinear design space using surrogate models is reported in 

Sections 4.1.9–4.1.11. This tools and understanding provided by the coupled multiscale model and 

surrogate modeling approach can be leveraged in future materials design work to tailor microstructure 

to produce NS for improved stiffness and loss performance at the macroscale. Limited work has also 

been done on step (iii) of the multiscale material model and is discussed in Section 4.1.7. 
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Figure 2: Schematic of the multi-scale materials design approach devised to design negative stiffness inclusions for improved 

macroscopic material performance. 

 

 Before discussing the results, it is important to define what is meant by the terms micro-, meso-, 

and macroscale in this work and to introduce the multiscale modeling scheme at the core of the 

materials design effort. In general, the material system is assumed to be well described on three distinct 

length scales: the micro-, meso-, and macroscales, in ascending order and indicated by boxes (i), (ii), and 

(iii) in Figure 2, respectively. Further, the materials design approach assumes that the overall behavior of 

the composite material, whose ultimate purpose is to absorb vibro-acoustic energy, can be predicted 

using a multiscale model that takes structure and properties at all length scales into account. Because 

the microscale behavior required to produce NS phenomena is inherently nonlinear, the 

homogenization scheme must also admit nonlinear microscale behavior and the design methodology 

must be of sufficient sophistication to enable efficient, yet complete, design space exploration of 

nonlinear systems. To achieve these goals, two distinct scale transition models were developed and a 

robust design space exploration scheme was adopted. The first scale transition model is the micro- to 

mesoscale transition model and the second is the meso- to macroscale transition model, indicated in the 

white boxes labeled (ii) and (iii) of Figure 2, respectively. Note that the output of the first scale transition 

model is part of the input to the second. These scale transition models are described in general in the 

following paragraphs and in detail in Sections 4.1.5–4.1.7. The design space exploration is introduced 

and discussed in Sections 4.1.9–4.1.11. 

 The materials modeled in this portion of the project are assumed to consist of a continuous matrix 

material containing a known volume fraction of structured inclusions. The macroscale is denoted with 

the length scale,
M
L , which satisfies the condition 

m M
1L L � . Here 

m
L  is the descriptive length of 

the structured inclusions and is the descriptive dimension of the mesoscale. At the macroscale the the 
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particulate composite material is assumed to behave as an effective homogeneous medium. The 

properties of the effective medium can be estimated using well-established effective medium theories 

(EMT) if the elastic properties of the mesoscale structures as well as their volume fraction and spatial 

orientation distribution are known. This aspect of the multiscale material model, known as the meso- to 

macroscale transition model, is addressed in Section 4.1.7. In practice one notes that a scale discrepancy 

of ( )m M
~ 1 10L L O is sufficient to enable reliable estimates of the macroscopic material properties 

using classical EMT methods [1c].  

 In the present work, as in most multiscale modeling literature [1c], the mesoscale is simply an 

intermediary scale between the inclusion structure feature size and macroscopic length scale. One key 

focus of the research reported here is the development of a nonlinear homogenization model to allow 

for the accurate approximation of the effective nonlinear elastic response of an arbitrarily shaped 

structured inclusion using finite element analysis (FEA). This homogenization step is known as the micro- 

to mesoscopic scale transition model. It is this scale transition model, a very unique contribution of the 

work associated with this project, which that enables the use of classical EMT to predict the macroscopic 

properties and their dependence on microscale structure and the associated NS. The final length scale of 

interest, the microscale, is defined as the descriptive lengths of the structure of within the inclusions 

and is denoted as L
µ

. It is the microstructure that leads to mesoscopic NS behavior and significant 

increases in absorptive capacity on the macroscopic scale. A detailed understanding of the impact of 

microscale structure to produce NS is therefore the principal importance for this project. 

4.1.1 Negative stiffness 

 Negative stiffness systems are rare in nature and therefore not as well understood or utilized as 

positive stiffness systems. Positive stiffness systems are simply defined by the ability of the system to 

offer increasing resistance to deformation due to externally applied forces. On the contrary, a negative 

stiffness system will offer decreasing resistance to an applied load and can even assist the applied force 

in deforming the system [1], [2]. This behavior leads to significantly larger system deformation than 

would be observed for the same force applied to a positive stiffness system. Recall that the stiffness of 

any object, k , is the force required to deform the object by a certain distance, or = ∆F k x . One very 

simple example of a system displaying negative stiffness properties is a transversely loaded buckled 

beam. A buckled beam is a simple example of a bistable system. Negative stiffness can be observed for 

such a bistable system in one of two scenarios, the first of which is depicted by Figure 3. In this case, the 

beam starts in one of the two stable configurations and driven to the other bistable configuration. In this 

scenario, the buckled beam initially resists deformation, but once a certain force threshold is reached, 

the beam “snaps through” to a new configuration and remains in that configuration even after the force 

is removed. In this case, the negative stiffness behavior occurs during the snap through, is transient, and 

leads to large, and permanent, deformations. The second scenario where negative stiffness can be 

observed is the case where a buckled beam is constrained at its center point by another element, such 

as a spring. In this case, the beam remains in position (2) of Figure 3 but will move when perturbed by an 

outside force. The constraining element will then force the beam to return to position (2) when the 

outside force is removed. This scenario represents the case of constrained negative stiffness (CNS), 
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which is very useful for vibroacoustic damping where loads are low enough in amplitude to not force the 

beam to oscillate between bistable positions. 

 

   
Figure 3: Schematic of the behavior of a beam of orignial length L0 with buckled length L0 – δL. The beam is loaded in 

displacement control from one bistable position, (configuration 1), to the other, (configuration 3). 

 

The behavior of both of these scenarios and how it relates to negative stiffness can be related to the 

positions and forces shown in Figure 3. Notably, the buckled beam force versus displacement response 

is in stark contrast to that of an unbuckled beam where an applied transverse force will cause the beam 

to deflect in proportion to the applied external force only to return to its original position when all 

forces are removed.  

 To better understand how this behavior is indicative of negative stiffness and what the roots of this 

behavior are in terms of mechanical metrics, it is useful to consider force and internal strain energy 

versus displacement behavior. Both of these metrics are depicted in curves shown in Figure 4 and 

compared with the behavior of an unbuckled beam for reference. The left panel of this figure shows the 

normalized force versus displacement of the beam center point. The normalized force is given as 

cr2 /F P  where F is the transversely applied load and Pcr is the axial load that induces buckling as 

predicted by Euler-Bernouilli beam theory. The normalized displacement is /x L∆  where x∆  is the 

displacement from the 0x =  position and L  is the free beam length. There are several points 

illustrated in these curves that are worth highlighting. First of all, note that positions (1), (2), and (3) all 

represent configurations where zero force is required to maintain that shape. In other words, theory 

predicts that the c-shape of configuration (points 1 and 3) and the s-shape configuration (point 2) are 

points of ‘stability.’ These stability conditions can be qualified through inspection of the internal energy, 

U(x), versus displacement curve shown in the right panel. Namely, these stability positions correspond 

to points of zero slope on the strain energy curve, i.e. 0U x∂ ∂ = . This is not surprising since 

mechanics relates internal energy, force, F(x), and stiffness, k(x), through the relations [3] 

 

  ( ) ( )U x
F x

x

∂
=
∂

, (1) 

and 
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  ( ) ( ) ( )2

2

F x U x
k x

x x

∂ ∂
= =
∂ ∂

. (2) 

 

 
(a) 

 
(b) 

Figure 4: (a) Force versus displacement and (b) internal (strain) energy for a transversely loaded buckled beam such as the 

one shown in Figure 3. 

 

Though these three configurations can be qualified as points of stability, physical intuition suggests that 

if one were to place the beam in position (2) it would not remain there when constraining forces are 

removed. This is a result of the fact that the position is not unconditionally stable, specifically, it is in a 

position of unstable equilibrium. For stable equilibrium, the change in the internal energy resulting from 

perturbations about the equilibrium position must be positive. Mathematically this means that the 

curvature, and therefore the stiffness, of the internal energy curve must be positive, 
2 2 0U x∂ ∂ > . 

This requirement implies that any deformation from the position leads to an increase in internal energy, 

which is another way of stating that a stable equilibrium position is one where the strain energy is at a 

local minimum, also known as an energy well [4]. Using this criteria, unconditional stability occurs at 

positions (1) and (3) where the slope of the internal energy curve is zero, ( ) 0U x F x∂ ∂ = = , and 

where its curvature is positive, ( )2 2 0U x k x∂ ∂ = > . The unstable equilibrium position, configuration 

(2), is characterized as a point of zero force where the curvature of the internal energy curve is negative, 

i.e. a local maximum in the strain energy of the beam. Any unconstrained beam in this configuration will 

immediately be driven to one of the two unconditionally stable positions by any minor perturbation. 

Another very interesting point shown by Figure 4 is that the force-displacement curve for the buckled 

beam is non-monotonic. This implies that the slope, and therefore the stiffness, of the transverse force 

versus displacement of the buckled beam will display negative stiffness. In other words, the existence of 

a bistability alone implies that negative stiffness behavior exists and may potentially be advantageously 

used. 

 The force and internal energy versus displacement curves very clearly illustrate why the two 

scenarios discussed above will display negative stiffness. In the first case, when the beam is driven from 

one bistability to the other, the stiffness offered by the beam is negative between inflection points of 
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the internal energy curve. This region is highlighted in the left panel of Figure 4. In the second scenario, 

the beam is constrained to position (2), which is a local maximum in strain energy. As was pointed out 

above, a local maximum in internal energy corresponds to a region of negative curvature in the energy 

curve. Because the stiffness of the element is equal to the curvature of the internal energy curve, the 

beam will categorically display negative stiffness in the region for all perturbations about its constrained 

position. The constrained behavior of the system, referred to above as CNS, is not limited to large 

displacements and is therefore of high interest for vibroacoustic damping applications. 

 It is the focus of this portion of the project to exploit the unique non-monotonic force-displacement 

nature of bistable systems to produce highly absorptive composite materials. This can be achieved by 

designing and then embedding negative stiffness inclusions in a continuous viscoelastic matrix to 

effectively enhance the damping properties of the matrix material. As such, the objectives of this 

portion of the research were to (i) discover microstructure(s) that displays negative stiffness and (ii) 

validate a design approach using finite element analysis (FEA) that has the ability to quantify various 

microstructures that yield negative stiffness and approximate their behavior as an effective stiffness 

tensor. 

4.1.2 Mesoscale inclusion characterization 

 Though modeling conceptually begins at the microscale, it is practically useful to begin with a 

discussion of the mesoscale inclusion properties. Namely, it is of interest to detail how to reliably 

approximate a mesoscopic effective stiffness tensor, 
m

ijkl
C , of an inclusion with arbitrary internal 

geometry based on its stress-strain (force-displacement) behavior when subjected to various loading 

conditions. With a reliable method to approximate mesoscopic stiffness in place, it is then possible to 

focus on direct analysis and design of the inclusion microstructure. The work carried out during this 

project employed two approaches to calculate the effective mesoscopic stiffness. The first is referred to 

as the direct energy method which is reliable for linear elastic materials and structures. The second is 

called the energy derivative method which is well suited for materials and structures that display 

nonlinear constitutive stress-strain relationships. 

  The method referred to as the direct energy method is one that was employed by Odegard to 

calculate the effective behavior of a representative volume element of multiphase continuous 

piezoelectric materials using FEA [5]. The methodology is straightforward and involves computing the 

change in internal energy within a material volume, known as the representative volume element (RVE), 

which is assumed to represent the overall response of the material of interest when the volume is 

subjected to a prescribed set of boundary displacements. The mathematical details are summarized by 

Eqs. (3)-(7) and Table 1. Using the Einstein’s summation convention for indicial notation, the linear 

elastic constitutive equation relating stress, 
ij
σ , and strain, 

kl
E , in stiffness form is 

 

  
ij ijkl kl

C Eσ = , (3) 
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where 
ijkl

C  is the stiffness tensor of the material (tacitly assumed to be linear in this formulation) and 

the (Green’s) strain at a material point defined as the symmetric part of the gradient of the 

displacement field, ( ), ,
2

kl k l l k
E u u= + . The change in specific internal energy at a material point, 

E

spU , due to an imposed strain is given by 

 

  ( )E

1 1

2 2
sp

ij ij ij ijkl kl ij
U E E C E Eσ= ≈ . (4) 

 

Note that the middle equality in Eq. (4) is valid for materials with arbitrary elastic stress-strain relations 

while the approximate equality on the far right-hand side (RHS) is true for linear elastic materials for all 

imposed strains or nonlinear elastic materials in the limit where the imposed displacements at the 

boundaries are small. For orthotropic materials, Eq. (3) can be represented as follows with Voigt 

notation 

 

  

11 11 12 13 11

22 12 22 23 22

33 13 23 33 33

23 44 23

13 55 13

12 66 12

0 0 0

0 0 0

0 0 0
 
0 0 0 0 0

0 0 0 0 0
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C C C

C C C

C C C

C

C

C

σ ε

σ ε

σ ε

σ γ

σ γ

σ γ

     
     
     
     
     
     =     
     
     
     
     
          

, (5) 

 

where 
ij ij
E ε→  indicating small strains and 2

ij ij
γ ε≡  to preserve symmetry. 

 Using COMSOL Multiphysics finite element modeling software, homogeneous strains are applied at 

boundaries of a cube of material. At boundary, B , the displacements, ( )i
u B , can be related to the 

imposed strain, 
0

ij
ε , and the dimension of the RVE cube, 

m
L , in a general way by 

 

  ( ) 0

m
n

i ij j
u B Lε= , (6) 

 

where n is the unit normal vector of the RVE face where the displacement is imposed. Note that this 

formulation has made the assumption that the strain in the RVE is well represented as being 

homogeneous within the RVE.  The resulting total elastic strain energy is then defined by the following 

relation: 

 

  

1

E

0 0

E 2

n

m

ijkl ij kl

m

V
U U C ε ε

=

= =∑ , (7) 
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where 
E

mU  is the elastic strain energy of element m, n is the total number of finite elements and V is the 

volume of the cube. The total energy is then summed over the entire volume. In order to determine the 

elements of the stiffness tensor it suffices to work out the mathematical relations of specific applied 

boundary conditions and the resulting strain energies by dividing the strain energy by the imposed strain 

and a constant. Table 1 summarizes the boundary conditions and related strain energy relations for the 

nine independent constants of an orthotropic material. 

 

Table 1: Summary of the displacements and expressions to determine the independent constants of an orthotropic medium 

using the direct energy approach. 

Property Applied strain Displacements Elastic energy 
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Property Applied strain Displacements Elastic energy 
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 Research during this project has illustrated that the direct energy method is ill-suited to determine 

the stiffness of structures displaying negative stiffness. There are two primary reasons for this 

shortcoming.  First, the direct energy approach is formulated such that minor errors in the calculated 

strain energy can result in very large errors in the stiffness coefficient estimate because of the 

requirement of small imposed strains and the presence of the strain in the denominator of the stiffness 

calculation. Second, if the material or microstructure exhibits nonlinear stress-strain behavior, this 

approach has the potential to produce non-physical stiffness results. Given that the focus of the current 

research is the determination of inclusion structures that display negative stiffness, and that negative 

stiffness requires the presence of bistability, which is inherently nonlinear, the direct energy approach is 

likely to provide erroneous estimates of the stiffness of the structures of interest.  

 Fortunately, a method that uses much the same approach, what developed by the PI and has been 

named the energy derivative method. This approach can be implemented to estimate the effective 

nonlinear behavior of a structure that undergoes finite deformation and does not have the weaknesses 

of the direct approach. Much like the direct approach described above, the energy derivative method 

also applies prescribed strains on the surface of the RVE and calculates the resulting strain energy. The 

primary difference is that the energy derivative method requires the calculation of the strain energy for 

a large range of imposed deformations. Once the resulting strain energies are calculated, the stiffness of 

the element at a specified strain can be calculated from the determination of the local curvature of the 

strain energy versus strain plot. This approach does not require the stress-strain relation to be linear 

thereby implying that only the very general center equality of Eq. (4) hold. Research conducted during 

this project has shown that the energy derivative method is a robust approach for determining local 

stiffness and eliminates the error amplification inherent in the direct approach.  Equations (8)-(10) 

describe the relationships between the strain energy curves created by applying a range of deformations 

at the boundaries of the RVE similar to those given in Table 1 and the nonlinear stiffness curves for the 

mesoscopic structure. Specifically, the total strain energy is related to the assumed homogeneous stress 

and strain fields as 

 

  

( )
1

E E 2

n

m

ij ij ij

m

V
U U E Eσ

=

= =∑ . (8) 
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This implies that the stress at any strain level can be computed from the derivative of the strain energy – 

strain curve:  

  ( ) ( )E2 ij

ij ij

ij

U

V

ε
σ ε

ε

∂
=

∂
. (9) 

 

Finally, the local stiffness is then simply found as the curvature of the strain energy versus strain curve, 

 

  ( ) ( ) ( )2

E

2

2ij ij ij

ijkl ij

kl ij

E U E
C E

V E

σ

ε

∂ ∂
≡ =

∂ ∂
. (10) 

 

Equation (10) implies that the prescribed displacements in Table 1 can be applied to an arbitrary RVE for 

varying magnitudes of displacement and the resulting total elastic strain energy in the RVE can be 

computed due to these imposed strains. Calculations of the local curvature at any given displacement 

(or strain) can then be related to the corresponding inclusion stiffness through Eq. (10). This approach is 

first benchmarked in Section 4.1.3 and then employed to calculate the effective mesoscopic stiffness of 

a candidate microstructure in Section 4.1.4. 

4.1.3 Benchmarking the energy derivative approach 

 To benchmark the energy derivative approach, FEA was carried out on a solid block of isotropic 

steel (E = 200 GPa, ν = 0.33). The following figures contain the respective strain energy-displacement, 

force-displacement and stiffness-displacement values for 
11

C , 
12

C  and 
66

C . Neglecting numerical 

round-off from derivative calculations, the values converge to 296 GPa, 146 GPa and 75.2 GPa, 

respectively, for the full range of imposed displacement. These values are equivalent to the known 

properties of isotropic steel, providing a good initial benchmark of the energy derivative approach. 
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Figure 5: Calculated strain energy, force, and stiffness as a function of displacement imposed on the RVE for a steel cube 

using the energy derivative approach. For steel C11 = λ + 2µ = 296 GPa, C12 = λ = 146 GPa and C66 = µ = 75.2 GPa. 

 

 To provide a more robust benchmark of the energy derivative approach, it is of interest to model 

the behavior of a heterogeneous system and compare the FEA results to results from well-established 

EMT. This was accomplished by modeling a RVE consisting of a cube of steel containing a spherical void 

of varying volume fraction. The same process for obtaining stiffness values was performed on this RVE 

as for the homogeneous cube and the results are displayed in Figure 6. This figure contains three plots, 

one of each constant of interest (
11

C , 
12

C  and 
66

C ) for the heterogeneous RVE as the void fraction is 

varied from 0 to 20% by volume.  The values are normalized by the element of the stiffness tensor of 

steel. The curves clearly show very strong agreement with the analytical models which provides a very 

reliable benchmark of the energy derivative approach for approximating the overall properties of a 

heterogeneous RVE.  With a method for approximating the effective properties of a structured inclusion 

in place, attention is now turned to modeling microstructural elements that display negative stiffness. 
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Figure 6: Effective properties of a RVE of steel containing varying amounts of spherical void (see inset in top panel). Stiffness 

values were calculated in FEA using the derivative approach and are compared with analytical estimates using the Self-

Consistent (SC), Differential Effective Medium (DEM), and Mori-Tanaka (MT) models along with the Hashin-Shtrikman Upper 

(HS
+
) and lower (HS

-
) bounds. 

4.1.4 Microstructure modeling 

 As mentioned at the outset of this section, the physics underlying negative stiffness behavior that is 

of interest to this work is found and easily illustrated through an investigation of a buckled beam. For 

this reason, it is of interest to investigate a buckled beam through both analytical and FE methods. This 

serves the dual purpose of providing a clear example of the desired system behavior and a benchmark of 

FE modeling of post-buckled beam behavior. Consider the system shown in Figure 7 consisting of a beam 

with fixed ends subjected to both axial and transverse forces labeled as N and P, respectively. 

 

   
Figure 7: Geometry and variables for analysis of the behavior of pre- and post-buckled beam. 

 

Through bending analysis, it can be shown that the transverse beam stiffness at the center of the beam, 

b
k , is equal to: 
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( )4 4
b

Pk

tan kL
k

kL
=

−
, (11) 

 

where k N EI= , E is the Young’s modulus of the beam materials, and I is the bending moment of 

inertia of the beam. One can also readily plot transverse stiffness versus axial compression, shown in 

Figure 8, by relating the axial compression force, N, to the resulting compressive displacement along the 

beam axis, u, with u NL AE= . 

 Equation (11) and the relations above can be used to validate FEA results for a 2D plane-strain 

beam. A simple beam model was created for an alumina (E = 386 GPa, ν = 0.22) beam of length .0017m 

and height of 50 μm. A point displacement of 1 μm was applied at the center-top of the beam at the 

same time as the beam ends were subjected to varying axial compressive displacements. The reaction 

force in the y-direction was monitored at the point of imposed displacement and the transverse stiffness 

of the system at the center was then calculated by noting that 
meas imposed

y y

FEA

b
k F u≈ . Transverse 

stiffness values obtained using FEA and Eq. (11) are plotted in Figure 8 for varying amounts of axial 

compression. The results indicate a very good agreement between the analytical and FEA models. The 

slight deviations are attributed to discrepancies between the analytical equation which assumes a 1D 

beam and the 2D plane-strain approximation used in FEA. For the purposes of this research, these 

results validate this FEA approach for modeling pre- and post-buckled beam behavior. It is noteworthy 

that the stiffness curve crosses the point of zero stiffness for an axial compression of 480 nm. This value 

is equivalent to the critical compression load, 
critical

N , i.e. the loading at which buckling occurs, and is 

relevant to the discussion of the results that are presented below. 

 



Final Report  New Solutions for Energy Absorbing Materials  Page 16 of 68 

 
Figure 8: Transverse stiffness of a beam with a prescribed axial compression. 

 

 To further explore the FEA model, several studies were performed in order to validate the ability of 

the FE model to capture negative stiffness behavior. Specifically, the beam was subjected to 3 levels of 

compression: 0u = , 
critical

u u= ,
critical

u u>  and the results are shown in Figure 9. In the first case, 

the beam acts as a conventional positive stiffness system. That is, the transverse force versus 

displacement curve is monotonically increasing and the strain energy has a minimum value at 0x∆ = . 

This is reflected in the 
0

L L=  case shown in Figure 9. As the amount of compression increases to the 

point of criticality, the stiffness approaches zero for 0x∆ = . This is shown in Figure 9 as the slope of 

the force-displacement curve for the 
critical

N N=  case is shown to be nearly zero for a range of 

displacement values around 0x∆ =  and the strain energy has a broad range of displacements around 

0x∆ = for which it is nearly constant. A buckled beam behaves quite different than both of the 

previous configurations. Starting at the first zero crossing on negative displacement part of the curve of 

Figure 9, the beam initially resists a transverse displacement by requiring increasing force to impose a 

displacement. As the displacement increases to a critical value, the beam will show decreasing 

incremental changes in force for an increase in displacement until it reaches the second zero crossing in 

the positive range of the imposed displacement. This behavior is indicated by the double-well nature of 

the strain energy curve for the ‘Buckled’ case in Figure 9. The results for these three different axial 

loading conditions are in very good agreement with the discussion about negative stiffness systems in 

Section 4.1.1 and the FEA approach is therefore validated for finite deformation systems that display 

negative stiffness. 
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Figure 9: FEA results of the Force (top) and strain energy per beam width (bottom) versus displacement curves for a beam 

with varying axial load. 

   

 As mentioned in Section 4.1.1, the fact that negative stiffness implies the presence of a local 

increase in strain energy, they can only exist if constrained within an overall positive stiffness system 

which allows energy to be ‘stored’ locally in the negative stiffness system.  When perturbed from this 

constrained position, NS systems can release more energy into their constraining systems than the 

energy input by external sources. This is the key point of the use of NS elements to absorb energy: 

negative stiffness systems can be used to perform work on their external constraining system. If the 

surrounding medium is lossy, then the presence of a NS domain will provide more energy to work that 

surrounding medium and thereby increase the absorptive capacity of the overall system. This is the basis 

of hypotheses of extreme damping using negative stiffness systems [6]. 

4.1.5 Mesoscale inclusion modeling and design 

 The current inclusion design mimics a buckled beam system on four of the six faces of a cube to 

induce negative stiffness in two orthogonal directions. The structure shown in Figure 10 was designed to 

take advantage of a fabrication process known as micro co-extrusion which could be leveraged to 

fabricate and employ a coefficient of thermal expansion mismatch between Al2O3 (alumina) and Y2O3 

Partially Stabilized Zirconia (YTZP), two ceramics that can be polymerized for co-extrusion, to produce 

buckled elements. Given a sufficient change in temperature, ample axial compression can be generated 

to buckle the alumina ‘web’ elements depicted in Figure 10. Attached to the web is a YTZP interface to 

the matrix material which will surround the mesoscale inclusions. The YTZP interface acts as a 
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distributed to point force translator to ensure that as much external loading is applied directly to the 

center of the web as possible. Without this concentration of force at the center of the web, FEA has 

shown that the web can contort into secondary modes, limiting or even eliminating its NS response. 

  

 
Figure 10: Mesoscale inclusion with microscale structure that leads to negative stiffness in two dimensions. The inclusion is 

assumed to be fabricated from YTZP and alumina materials that employ thermal expansion mismatches to induce buckling. 

 

 The objective for the design of the microstructure is ultimately to tailor design parameters for an 

existing application while considering existing manufacturing processes for future implementation. This 

means that the trade-space will be constrained not only with regard to material selection (for instance, 

materials similar to the ceramics indicated above), but geometry as well. Because 50 μm is considered 

the smallest dimension that can be readily manufactured using micro co-extrusion, the initial design has 

restricted the smallest feature size to be a maximum of 50 μm. As of the termination of this project, no 

further manufacturing processes have been considered. However, it is worth noting that a robust 

multiscale model coupled with the design space exploration methods described in Section 4.1.11 permit 

optimization of negative stiffness behavior through the alteration of inclusion structure rather than 

focusing on a specific manufacturing technique. This opens the door to evaluating what can be achieve 

within the limits of a specific manufacturing process rather than searching for a design process that can 

achieve the performance predicted by a specific geometric configuration. 

4.1.6 FEA of candiate negative stiffness mesoscale inclusion  

 Characterization of the temperature depending effective elastic constants of structured inclusions 

like the one shown in Figure 10 requires the implementation of a multi-step FEA study that considers 

both the thermal and mechanical deformation. The process devised requires two discrete steps.  The 

first step is to solve the free thermal deformation for any given temperature change. The resulting 

deformed state of the current inclusion structure is shown in the top left image of Figure 11. The 

resulting displacements are monitored at the external boundaries of the inclusion. These displacements 

signify the new thermal equilibrium positions of the inclusion boundaries. The second step then 

simultaneously solves for the thermal deformation and the prescribed strain as outlined in Table 1 in 

order to determine each independent elastic constant of the mesoscale inclusion. The symmetries 

contained in the geometry lead to the observation that 
11 22

C C= , 
13 23

C C= , and 
44 55

C C=  leaving 
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the only independent constants to determine as 
11

C , 
33

C , 
12

C , 
23

C , 
44

C , and 
66

C . Figure 12 – Figure 

18 show the results of this analysis for all independent constants of the inclusion while Figure 10 shows 

the deformed fields for a few representative loading conditions to aid in understanding the process. 

 

   
Figure 11: Representative deformed microstructures showing the results of the thermal contraction-induced buckling and 

imposed displacements to determine strain energy curves for effective mesoscopic constant calculation. The deformed 

geometric is greatly exagerated for easy visualization.  

 

 The first set of results, shown in Figure 12, depicts the normalized strain energy and effective 

sitffness resulting from a plane-strain area change (equal displacements along orthogonal directions) for 

differing imposed temperature changes.  The stiffness value resulting from this set of boundary 

conditions is the 2D bulk modulus, 
2D

K . The strain energy curves for large temperature change show 

two energy wells, clearly incidcating bistable behavior.  Consequently, the lower panel shows that for a 

range of imposed displacements the effective 2D bulk modulus will be negative. It is worth noting that 

the strain energy curve is not symmetric about the local maximum.  This is due to the fact that the 

inclusion geometry is such that the ‘buckled-out’ configuration (shown in Figure 11) has lower energy 

levels than does the ‘buckled-in’ configuration.  This does not change the fact that NS will be observed 

as is evidenced by the lower panel in Figure 12. 
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Figure 12: Effective 2D plane strain bulk modulus of the candiate microstructure for various imposed displacements for 

various changes in temperature. Top panel shows the strain energy curves (normalized by their maximum value) and the 

bottom panel shows the bulk modulus. 

 

 The results shown in Figure 12 suggest that the current inclusion design will indeed show negative 

stiffness given a certain level of temperature change to induce buckling in the ‘web’ elements.  This is 

verified with the plots of the remaining effective stiffnesses in Figure 13 – Figure 18.  Specifically, the 

constants 
11 22

C C=  and 
12

C  display negative stiffness behavior for a relatively large range of imposed 

displacements. 
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Figure 13: Effective plane wave modulus of the candidate microstructure along the x1 (and x2) direction at various imposed 

displacements and changes in temperature. Top panel shows the strain energy curves (normalized by their maximum value) 

and the bottom panel shows the modulus. 
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Figure 14: Effective plane wave modulus of the candidate microstructure along the x2 direction at various imposed 

displacements and changes in temperature. Top panel shows the strain energy curves (normalized by their maximum value) 

and the bottom panel shows the modulus. 
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Figure 15: Effective dilatation modulus of the candidate microstructure in x1 - x2 plane, C12, at various imposed displacements 

and changes in temperature. As is shown in Table 1, this modulus is determined from the results of other moduli, so the 

strain energy curve is not shown. 
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Figure 16: Effective dilatation modulus of the candidate microstructure in x1 – x3 plane, C13, at various imposed displacements 

and changes in temperature. As is shown in Table 1, this modulus is determined from the results of other moduli, so the 

strain energy curve is not shown. 
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Figure 17: Effective shear modulus of the candidate microstructure in x2 – x3 plane, , C44, at various imposed displacements 

and changes in temperature. Top panel shows the strain energy curves (normalized by their maximum value) and the bottom 

panel shows the modulus. 
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Figure 18: Effective shear modulus of the candidate microstructure in x1 – x2 plane, , C66, at various imposed displacements 

and changes in temperature. Top panel shows the strain energy curves (normalized by their maximum value) and the bottom 

panel shows the modulus. 
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introduced in the Sections 4.1.5 and 4.1.6. The micromechanical model employed is a three-phase 

coated inclusion self-consistent (SC) EMT developed in previous work [7].  The model employs 

localization and homogenization of the effects of viscoelastic contrast due to the presence of microscale 

coated inclusions, as indicated by the schematic in Figure 19.  The model can consider inclusions of 

arbitrary anisotropic viscoelastic behavior, geometry, and orientation distribution to get a good 

approximation of the overall viscoelastic response of the medium and has been shown to have strong 

agreement with experimental data in static and quasistatic (inclusion size is much larger than 

propagating wavelengths) domains [7], [8]. The effective (complex valued) stiffness tensor of a 

composite containing coated inclusions are computed using Eqs. (12) – (16). 

 

   
Figure 19: Conceptual schematic of the homogenization approach of the Self-Consistent micromechanical model for a coated 

inclusion. 

 

 In general, the SC model can be well understood as an intelligently weighted rule of mixtures 

approximation as shown in Eq. (12), 

 

  
eff M I I M I C C M C

ijkl ijkl ijmn ijmn mnkl ijmn ijmn mnkl
C C f C C A f C C A   = + − + −       . (12) 

 

In this expression the stiffness tensors, 
X
C , of each material are denoted with an M, I, or C superscript 

to represent the matrix, inclusion or coating, respectively, and the tensors 
I
A  and 

C
A  represent 

quantities known as strain localization tensors for the inclusion and coating phases, respectively.  The 

strain localization tensors relate the macroscopic strain, 
g

ij
ε , to the average inclusion (or coating) strain, 

I

ij
ε , through the relation 

 

  
I I g

ij ijkl kl
Aε ε= . (13) 

 

For the current problem, the volume fraction of coating material is set equal to zero, 0Cf = , leaving 

only the inclusion fraction of inclusion, 
If , to influence the overall properties.  The strain localization 

tensors represent the intelligent weighting parameters and have significant influence on the effective 

properties calculated.  They take into account not only the material anisotropy of each constituent 
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phase, but also the inclusion form.  For the special case of no coating, the inclusion strain localization 

tensor reduces to, 

 

  ( )( )
1

I I eff I eff

ijkl ijkl ijmn ijkl mnkl mnkl
A I T C C C

− = + −  
, (14) 

 

where 
4ijkl

I ≡ I  is the fourth order identity tensor and ( )I eff
T C  is the volume average of the volume 

integral of the what is known as the modified Green’s tensor, ( )'eff

ij
G −r r ,  

 

  ( ) ( ) ( ), ,

1 1
' '

2
I I

I eff eff eff

ijkl ijkl ik jl jk ilI

V V

T C G G
V

 = − − + −  ∫ ∫ r r r r . (15) 

 

Here 
IV represents the volume of the inclusion and the Green’s tensor calculates the displacement in 

the i-direction at the point r due to a unit force in the j-direction at resulting from an inhomogeneity 

located at point r’. ( )'eff

ij
G −r r  is defined as the tensor that satisfies the differential equation 

 

  ( ) ( ),
' ' 0eff eff

ijkl km lj im
C G δ δ− + − =r r r r . (16) 

 

Full evaluation of Eq. (15) is a non-trivial task and details of the Fourier transform technique for to find 

an approximate solution can be found in reference [9].  Further, inspection of Eq. (14) shows that the SC 

model is implicit and numerical methods are required for its implementation. However, it is known to 

provide very accurate solutions for a wide range of problems [7], so its use has been adopted for this 

project. 

 Using the results of the FEA presented in the previous sections to find the effective stiffness of the 

mesoscopic inclusion, Figure 20 shows the effective properties calculated for a composite containing 2% 

by volume of identically oriented microstructured NS inclusions. The matrix material was assumed to be 

isotropic and the real part of the plane wave modulus in the x1-direction (
M

11
C ) was calculated for 

various properties of the matrix, 
11 11
/I MC C 
  � , were calculated based on the results above where 

maximum negative plane-strain bulk modulus values were observed. The matrix was assumed to have a 

small loss factor, 
M 0.05η =  and its Poisson’s ratio was set at 

M 0.30ν = . The results present the 

overall properties normalized by the properties of the matrix for a wide range of possible inclusion to 

matrix stiffnesses.  The objective in making these plots is to determine what ratio of negative inclusion 

stiffness to matrix stiffness provides the desired overall performance. Inspection of the resulting 

effective anisotropic properties clearly show that drastic changes in overall stiffness and loss factor 

occur for stiffness ratios of 
11 11
/ 0.25 0.125I MC C    ∈ − −     �

 
(approximately).  Note that the scale of 

the normalized loss factor is logarithmic in order to clearly display the large range of increase due to the 
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inclusion of negative stiffness particles in the lossy matrix.  The largest predicted increase occurs for the 

12

effC  and 
11 22

eff effC C= , which show maximum loss factor ratios of 
M40η≈  and 

M10η≈ , respectively. 

It s worth noting that these plots indicate that it is possible to simultaneously increase both the stiffness 

and loss of a composite compared to the matrix material by using just a very small amount of 

constrained NS inclusions. These encouraging results suggest that viscoelastic materials containing even 

very low volume fractions of inclusions structured as shown in Figure 10 will display drastic increases in 

energy absorption while the change in overall stiffness can be tuned bases on the ratio of the inclusion 

to matrix stiffness. 

   
Figure 20: Effective stiffness and loss properties predicted by the Self-Consistent model for a composite containing identically 

oriented 2% by volume of the mesoscale inclusions modeled in Sections 4.1.5 and 4.1.6. The matrix is assumed to have ν = 

0.30 and η = 0.05. 

 

4.1.8 Validation of the Mesoscale Effective Stiffness Approximation 

The multi-scale modeling approach developed by this research is a two-step nonlinear homogenization 

method. It employs finite element models to simulate the force-displacement behavior of the structured 

inclusion for a series of boundary conditions. The FE model considers the nonlinear elastic response 

resulting from the geometric nonlinearity on the inclusion structure. The methodology then assumes 

that the nonlinear stress and strain behavior resulting from the inclusion structure can be well-

represented as a continuous elastic solid inclusion with nonlinear mesoscopic effective elastic 

properties, ( )eff

meso mesoC E , where C is the effective nonlinear mesoscopic stiffness tensor and E is the 

Green’s strain tensor evaluated at the mesoscale . This is the micro- to meso scale transition model. The 

mesoscopic stiffness tensor is then used as a strain-dependent input to the meso-to-macro scale 
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transition model which is based on standard self-consistent micromechanical effective medium theory 

[7,8]. Using this approach, one is thus capable of direct evaluation of the influence of nonlinear 

microscale structural response on the macroscopic effective behavior of a composite containing a 

specified volume fraction of structured inclusions. To validate and benchmark this unique multiscale 

modeling approach, the following three different models were developed for determining the effective 

macroscopic properties, eff

macro
C , of a composite consisting of a matrix containing with a known volume 

fraction of structured inclusions:  

 

1. Micromechanical effective medium models of a matrix containing homogeneous linear elastic 

particulate inclusions  

a. The three micromechanical models used were the Differential Effective Medium (DEM), 

the Self-Consistent (SC), and the Mori-Tanaka (MT) models. 

2. FEA of representative volume element (RVE) consisting of a matrix containing a homogeneous 

cubic inclusion with known elastic properties 

3. FEA of a RVE consisting of a matrix containing a structured inclusion 

 

The figure below depicts the geometric representation of these 3 model sets. 

 

 
(a) 

 
 (b) 

 
 (c) 

 
 (d) 

Figure 21: Three multiscale modeling validations of increasing complexity. (b) Depicts the composition and geometry used 

associated with analytical modeling called for in bullet 1, (c) shows the geometry and properties used in FEA effective 

medium models associated with bullet 2, and (d) depicts the geometry and properties employed doing a single-step 

multiscale FEA approximation model as discussed in bullet 2. 
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Micro- to mesoscale transition homogenization benchmarking was first done for linear inclusion 

behavior and was validated for the case of nonlinear inclusion behavior by extension. In order to 

determine ( )eff eff

meso meso meso→C E C of the inclusion for input into model sets 1 and 2, a linear direct 

energy method was carried out on the structured inclusion to determine the small strain (linearized) 

stiffness tensor of the structured inclusion. The effective mesoscale stiffness results for the suite of 

applied displacements at the boundaries of the inclusion per the description provided in Table 1 are 

given in Table 2. 

 

Table 2: Strain energy and stiffness in a candidate structured inclusion using the direct FEA micro- to mesoscale transition 

model. 

 C11 C12 C13 C33 C44 C66 

Strain Energy Function (J) 3.28E-10 6.68E-10 3.96E-06 3.96E-06 2.54E-07 3.49E-08 

Stiffness (Pa) 1.87E+07 3.44E+05 4.28E+06 2.26E+11 3.62E+09 4.98E+08 

 

The meso- to macroscale effective medium scale transition modeling was run for the case where the 

matrix material was considered to be isotropic constraining with Young’s modulus, E = 1 GPa and 

Poisson’s ratio, ν = 0.3. Several compositions were considered with volume fractions, φ, of structured 

inclusions taking values of: 0.1 1,  2,  3,   10 %φ  ∈   … . The results from each of the models are 

shown in Figure 22–Figure 24. 

 

   
Figure 22. Effective axial stiffnesses versus inclusion volume fraction. Black = differential effective medium; green = 

generalized self-consistent model; dark blue = Mori-Tananka; red = FEA with 
eff

meso

I =C C ; and light blue = FEA with 

structured inclusion with 
I

C . 



Final Report  New Solutions for Energy Absorbing Materials  Page 32 of 68 

   
Figure 23. Effective off-diagonal stiffnesses versus inclusion volume fraction. Black = differential effective medium; green = 

generalized self-consistent model; dark blue = Mori-Tananka; red = FEA with 
eff

meso

I =C C ; and light blue = FEA with 

structured inclusion with 
I

C . 

   
Figure 24. Effective shear stiffnesses versus inclusion volume fraction. Black = differential effective medium; green = 

generalized self-consistent model; dark blue = Mori-Tananka; red = FEA with 
eff

meso

I =C C ; and light blue = FEA with 

structured inclusion with 
I

C . 

 

These results show that there is good agreement between the various modeling approaches for 

determining effective macroscopic stiffness properties. It is worth noting that the three analytical EMT 

models produce essentially the same values for all inclusion volume fractions and that both sets of FE 

model results closely follow these trends. At the extreme volume fraction of 10%, the FEA-structured 
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inclusion case differs from the EMT results by no more than 20%. For the purposes of this research, 

where volume fractions of interest are limited approximately 2%, the results of the EMT and FEA 

approaches are much more similar. We can therefore be certain that the micro- to mesoscale transition 

approach employed in this research captures the physics dominating the influence of microscale 

structure on the effective properties at the macroscale. Given the good agreement between stiffness 

values and general trending among all models, the assumption that the stress/strain state of a 

structured inclusion can be well-represented by a solid inclusion of bulk properties is thus considered 

validated and of utility for multiscale design purposes, while it is acknowledged that there exists levels of 

discrepancy that are higher than desired, specifically with respect to the effective shear moduli of the 

composite. 

4.1.9 Microstructural Design: Geometry Parameterization 

 In light of the ultimate aim of designing a microscale inclusion tuned for desired macroscale 

stiffness and loss characteristics, the inclusion geometry was parameterized to allow for a 

comprehensive study of the attainable stiffness values given the material and thermal loading 

constraints. The figure below illustrates the 2D inclusion geometry along with the geometric parameters 

of interest. The external boundaries of the inclusion, and the mesoscale, is defined by the parameter L . 

The parameter 2H  defines the height of T-shaped interface. The parameter T  defines the width of the 

connection between the interface and the buckled element. The parameter 1L  is defined by the overall 

length 1 2 2L L H= − and locates the midpoint of the inclusion. The parameter B defines the height of 

the buckled element and the voided region below it. Finally, 2L  defines the buckled element length.  

 
Figure 25. Cross-section view of parameterized inclusion geometry with all critical parameters labeled. 

 

Having thus established the various geometric parameters, a wide range of inclusion geometries can be 

constructed by means of implementing a select number of parametric ratios. The ratios of interest are 

 

  1 2

2

1
L L

L
R

L
= ,   

2

1 2
B

B
R

L L−
= ,   and   2

2
L T

T
R

L
= . (17) 
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In the following section, these ratios are varied over a wide range of possible values to generate a highly 

populated design space consisting of a large set of possible geometries that may produce NS behavior. 

4.1.10 Microstructural Design: Geometry Dependent Stiffness 

 In order to provide a full inspection of the design space for this particular inclusion shape, a range 

of values for each geometric ratio was established and particular geometries were constructed using a 

Halton sequence. A Halton sequence is a deterministic sequencing approach based on a prime number 

base. The Halton sequence offers a means to produce quasi-random sampling of a wide design space, 

and allows one to easily add permutations to the dataset, provided that the ranges of parameters to be 

inspected remain constant. For this study, the number of geometric trials was set at 1000 within the 

specified ranges of values that the parameters can take. The ranges for each ratio specified for design 

space exploration are contained in Table 2. These ranges were chosen to provide a broad sampling 

range resulting in both negative and positive values of effective mesoscopic stiffness. 

 

Table 3: Range of possible values taken by the ratios defined in Eq. (17) for NS inclusion design space exploration. 

Ratio Min Max 

1 2L L
R  0.6 0.99 

B
R  0.1 0.98 

2L T
R  0.05 0.2 

 

Below is a plot of each parameter value for any given trial. The data points illustrate the quasi-random 

nature of the Halton sequence and illustrate the degree of coverage of the design space for inspection. 

 
Figure 26. Parameter value versus trial number for the ratios used to generate inclusion geometries. 
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Using Comsol Livelink for MATLAB, two different Finite Element Analysis (FEA) studies were 

implemented. Each study contained an automated inclusion geometry construction and meshing 

routine. The first study analyzed the nonlinear 2D plane strain temperature dependent elasticity 

constants C11, C12, and C66 over a range of imposed displacements. The second study analyzed the 3D 

elasticity constants, C11, C12, C13, C33, C44, and C66. Below are nine example geometric configurations with 

associated FEA meshes which illustrate the wide range of geometries simulated during this exhaustive 

design space inspection. 

 

 
Figure 27. Example geometries generated using a Halton sequence from the 1000 trials run for design space exploration. 

 

Below is a plot of the nonlinear plane strain stiffness values (C11, C12, and C66) versus applied 

displacement for all 1000 geometric simulations.  
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Figure 28. Stiffness versus displacement values for C11, C12, and C66 for all 1000 trials. 

 

A zoomed section of the displacement dependent mesoscopic C11 verifies that negative values for the 

C11 stiffness were obtained for a percentage of the designs generated during the design space 

exploration. 

 
Figure 29. Zoomed view of C11 stiffness versus displacement values for each of the 1000 trials run during this research. 

 

This data, along with values of the 3D elastic constants, which altogether amounted to over 500,000 

data points, was used to build a surrogate model of the stiffness data as a function of the structured 

inclusion parameters. A surrogate model is an analytical function that is fitted to arbitrary data points, in 

this case points generated using computationally expensive FEA models, in order to save time and 
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computational expense. There are many approaches to generating surrogate models and the approach 

used in this project is known as “Kriging” [9a]. 

4.1.11 Microstructural Design: Kriging Surrogate Modeling 

 Kriging surrogate modeling is a data fitting technique that was initially developed in the field of 

topology to interpolate the value of a random field at an unobserved location using observations of its 

value at nearby locations. It can be simply described as a known global function with additional 

departures from the base model, as described in Eq. (18) 

 

  ( ) ( ) ( )
1

k

j

i i
y x x Zf xβ

=

= +∑ . (18) 

 

In this expression, 
i

β  are unknown coefficients of the base fitting function, ( )if x  are pre-defined 

functions, and ( )Z x  provides the departures from the base function in order to interpolate the training 

points [9b]. ( )Z x is the realization of a stochastic process with a mean of zero, variance of 
2σ , and 

nonzero covariance of the form: 

 

  ( ) ( ) ( )2
ov , ,c

ji i j
Z x Z xxRx σ  =  , (19) 

 

where R  is a user-specified correlation function. Similar to the approach employed by Backlund et al. 

[9b], this study employs a constant term for ( )f x  and a Gaussian curve in the form shown in (20) is 

employed as the correlation function: 

 

  ( ) ( )
2

ex, p
i j i i j

x x xR x θ= − − 
  

. (20) 

 

In Eq. (20) 
i

θ  are unknown correlation parameters that are automatically determined during the model 

fitting process. 

 While Kriging has been shown to be slow in terms of build and prediction time compared with 

other surrogate modeling techniques [9c], Kim et al. demonstrate the ability of Kriging to successfully 

model nonlinear and multimodal problems [9d]. For this reason, a Kriging approach was selected for 

generating a surrogate model of the nonlinear effective mesoscopic inclusion stiffness as a function of 

the geometric parameters of interest to this project. 

 In general terms, surrogate models were developed for this project using a Kriging approach in 

order to determine the effective nonlinear mesoscopic stiffness as a function of inclusion geometry, 

constituent material properties, and thermo-mechanical loading. This can be stated in a pseudo-

mathematical representation as illustrated below: 
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  ( )eff

meso , ,,f geometry mate T displrial ns aceme t∆=C . 

 

The advantage of this functional approach is that the effective mesoscopic stiffness can be calculated 

using an analytical function rather than a computationally expensive FE model. Clearly, this is a powerful 

tool. It permits the estimation of the mesoscale inclusion stiffness for any arbitrary geometry (within the 

provided bounds) in a matter of seconds as opposed to the hours required to generate results using 

computationally-intensive FEA methods. It is important to note, however that one must generate a large 

dataset using FEA results in order to produce the surrogate model. Further, the models are established 

in order to generate the training data points for subsequent surrogate models should inclusion materials 

or temperatures change. Thus, a very general approach to obtaining accurate estimates of inclusion 

stiffness based on arbitrary geometries has been established and leveraged in this work to generate 

significant computational capabilities for a highly nonlinear constitutive microscale geometry that can 

be exploited to produce negative stiffness behavior. This will greatly enhance the future design of 

multiscale materials that employ microscale structure to generate negative stiffness behavior. 

4.2 Negative Poisson Ratio Materials 

 In recent years there has been an increased general interest in a group of materials, the properties 

of which have been described as auxetic [10]. An auxetic material is one in which the Poisson’s ratio, ν, is 

negative, i.e. an applied tensile strain in the longitudinal direction results in a positive strain in the 

transverse direction. It has been found that a number of naturally occurring materials are auxetic in 

behavior, for example, a range of crystalline structures including iron pyrites [11], [12] and some forms 

of skin [13] and cancellous bone structures [14], though it should be noted that Poisson’s ratios for bone 

are usually reported as positive [15]. However, it is also possible to engineer auxetic behavior and this 

has been shown to be possible for a number of synthetic materials.  These have included polyurethane 

and metallic foams [16-21], composite laminates [22] and a range of microporous polymers namely 

polytetraflouroethylene (PTFE) [23], ultrahigh molecular weight polyethylene (UHMWPE) [24], nylon 

[25], polypropylene (PP) [26], and polyester [27]. 
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Figure 30: Auxetic materials and structures across the length scales. 

 

 Considering polymers, it was found that, for larger cross section cylinders, the auxetic effect is due 

to their complex microstructure [23-26].  This is essentially a network structure, which has been 

described as a system of nodules interconnected by fibrils and the mechanism for this effect is well 

defined [28], [29].  In essence, the re-entrant structure of auxetic foams had been reproduced by the 

nodule-fibril structure [26], the schematic structure for which is shown in Figure 31 and a similar 

deformation mechanism was noted. In this case, it is the fibrils which are hinging, though, rather than 

the cell ribs as is seen in the foams. This hinging of the fibrils in turn causes the nodes to translate, 

producing the auxetic effect. It was also noted that there was a variation in the number and size of the 

fibrils formed during the production of the cylinders for the various polymers, in particular, the degree 

of fibrillation for PP was much lower than that for PTFE or UHMWPE [26]. 
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Figure 31: Two dimensional schematic diagram of nodule-fibril model for auxetic behavior in polymeric cylinders 

 

4.2.1 Processing routes to produce auxetic extruded fibers and films 

 In 2001, a novel processing route was developed to produce auxetic polypropylene fibers based on 

the powder processing route used to produce auxetic PP cylinders [30],[31]. The same powder and 

processing temperature were employed, i.e. Coathylene PB0580 and at a temperature of 159°C. The 

powder processing technique was adapted to take place within an Emerson and Renwick Ltd Labline 

melt extruder. The extruder has 5 temperature zones, each with individual thermostatic control, a 3:1 

compression ratio, a 25.4mm (1 inch) diameter screw and a length/diameter ratio of 24:1. A schematic 

of the extruder is shown in Figure 32. Powder is fed into the hopper and is transported through the 

extruder by the screw. In conventional melt extrusion, the polymer is fully molten. In this case, however, 

processing occurs at a much lower temperature with the aim being to partially melt the powder only. To 

produce fibers, the extruder is fitted with a spinneret plate. The first fibers were produced using a 40 

hole spinneret plate with hole diameters of approximately 0.55mm [30],[31]. The fibers produced were 

characterized by measuring their Poisson’s ratio using Biax 200C micro-tensile testing equipment, which 

was fitted with a 10 Newton load cell and specialized Messphysik videoextensometry software, shown 

schematically in Figure 33. 

 

nodule 

fibril 
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Figure 32: Schematic of extruder used to produce auxetic fibers. 

 

 

 
Figure 33: Schematic of the videoextensometry measurement system used to characterize auxetic fibers. 

   

 The Messphysik software simultaneously measures length and width data from changes in contrast 

between attached markers (along the length) and the edges (across the width) of the fibers. This 

allowed the optimum conditions to be defined as a processing temperature of 159°C, screw speed of 

1.047rads
-1

 (equivalent to 10 RPM and resulting in a throughput of 6g/mm) and a take-off speed of 

2m/min. No drawing other than that caused by gravity as the fiber exited the spinneret was employed. 

Melt Extruder Barrel Draw Rollers 

Wind-up Unit 

Haul-off Rollers and 

Heated Pre-draw Rollers 
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Using these conditions, 40% of the fibers tested displayed auxetic character. These fibers were found to 

be inhomogeneous along their length with, on average, 20 – 30% of their lengths consisting of auxetic 

material i.e. their auxeticity is 20 – 30%. The Poisson’s ratio of the auxetic region was found to be, on 

average, ν = -1.62 and the overall Poisson’s ratio of the entire fiber length was also negative, being ν = -

0.7 [32]. The auxetic fibers produced are undrawn, and, as such, as well as being inhomogeneous, they 

have low mechanical properties, with a modulus of 1.3 GPa, strain to yield of 7.5% and tensile strength 

of 25MPa 

 For the fibers, auxetic behavior is based on a closely packed particulate or granular microstructure 

with a low void content, which is a close approximation to the actual microstructure, see Figure 34. 

 

   
Figure 34: Microstructure of an auxetic polypropylene fiber. 

 

The nodule-fibril model used to study auxetic behavior in cylinders is clearly not appropriate here. In this 

case, mechanisms for auxetic behavior are based on a rough particle model described by interlocking 

rigid hexagons as shown in Figure 35 [33], [34]. The interlocked structure is formed by rectangular radial 

‘keys’ and geometrically matched ‘keyways’ and is derived from the geometry employed in the Tokai 

nuclear reactor designed in the 1950’s [35], [36]. These structures consist of free-standing columns of 

graphite bricks laterally connected by loose side and/or corner keys in keyways. The key-keyway 

combinations produce, effectively, a rough macroparticle assembly in which interactions are 

characterized by having tangential stiffness exceeding normal contact stiffness. The keyed-brick 

structures expand in all radial directions when subjected to a tensile load in the horizontal plane by 

translation of the bricks through sliding of the bricks and radial keys along the keyways [34]. To study 

the auxetic fibers, the interlocking hexagon geometry has been selected for simplicity. 

 



Final Report  New Solutions for Energy Absorbing Materials  Page 43 of 68 

 
Figure 35: Schematic of the interlocking hexagon model. In (a), the material is fully densified; in (b), the material is partially 

expanded. 

 

 Looking at Figure 35, the hexagons have edge lengths 
1
l  and

2
l . The edges of 

1
l  are aligned parallel 

to the x-axis and the edges of 
2
l  are at an angle α to the x-axis. Thus, the unit cell lengths are given by  

 

  ( )1 2
2 cosX l l aα= + + ,  (21) 

and 

  ( )2
2 sin cotY l aα α= + ,  (22) 

 

where a is the parameter defined in Figure 35 as the gap between adjacent hexagon particles.  

 For deformation of the structure by the mechanism of particle translation, a is the variable 

parameter. So, the changes in unit cell lengths are thus 

 

  2
dX

da
=  and 2cot

dY

da
α= , (23) 

 

and the Poisson’s ratio in the x-direction is given by 
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Combining Eqs. (21)-(24) one finds 
xy
ν  to be 

 

  
( )1 2

2

2

cos cos
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xy
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α α
ν

α α
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+
, (25) 

 

and similarly 
yx
ν  is  

 

  
( )

2

2

1 2

sin cos

cos cos
yx

l a

l l a

α α
ν

α α

+
= −

+ +
. (26) 

 

 The expressions for Young’s moduli of this network were derived by using the conservation of 

energy approach [34]. In the x-direction, Ex is given by 

 

  

2
1 2

2

2

cos2 cos 1

sin sin cosx h

l l a
E k

l a

αα

α α α

   + ++  =     +  
, (27) 

 

where kh is the stiffness of a spring assumed to connect each male-female interlock combination. 

Similarly, the Young’s modulus in the y-direction is 

 

  

22
2

2

1 2

sin cos2 cos 1

cossin cosy h

l a
E k

l l a

α αα

αα α

   ++  =     + +  
. (28) 

 

Predictions show that interlocking hexagons having 0<α<90° lead to auxetic behavior for the assembly. 

The models show good agreement with experimental values at low strains [33], [34]. 

 A further experimental variation on the extrusion process was introduced by changing the 

spinneret plate employed to produce fibers to a slit orifice of dimensions 63.5 x 14.2 x 0.38mm. Using 

this, films were produced from polypropylene, initially based on the process window that was used 

successfully to produce PP fibers [27], [33]. The PP films produced at 159°C with screw speed 1.05 rads
-1

 

and 0.0225 ms
-1

 take off speed were found to have 
xy
ν  = -1.12 and 

yx
ν  = -0.77 at low strain, typically 

up to 1%. The Young’s moduli in this case were Ex = 0.34 GPa and Ey = 0.20 GPa. Beyond 1%, the film 

undergoes an auxetic-to-nonauxetic transition [27]. A detailed processing parameter study was 

undertaken to assess the effect of the change in cross-section of the die-head from circular for the fibers 

to rectangular for the films [37].  There were several interesting findings. For the first time, a 100% 
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auxetic extruded product was produced for several processing parameter sets. For example, 100% 

auxeticity was measured for films extruded at 159
0
C, screw speed 1.05 rads

-1
 and take up speed 0.0225 

ms
-1

 and for those extruded at 159
0
C, screw speed 1.05 rads

-1
 and take up speed 0.15 ms

-1
. 

4.2.2 Information on NPR materials selected and why they are of interest 

 The inclusions selected for this project are α-cristobalite and samples produced from auxetic 

extruded products comprising polypropylene (PP) fibers or films. The α-cristobalite was selected as it 

has a high modulus, E = 65.4 GPa, combined with a small negative Poisson’s ratio of ν = -0.16. 

Conversely, the modulus of the auxetic fibers and films is much lower at E = 1.3 GPa for the fibers and E 

= 0.34 GPa for the films, but the Poisson’s ratio in both cases is higher. On average for both systems the 

Poisson’s ratio, which is strain dependent, is ν = -0.6. The fibers can have a Poisson’s ratio as low as ν = -

1.6 with auxeticity of 20 – 30%. The films, while of a lower modulus, can be produced to have ν = -0.95 

and be 100% auxetic. Thus, the inclusions selected for this project are available or can be readily 

manufactured, and comprise a high modulus, low negative Poisson’s ratio inclusion or a low modulus, 

high negative Poisson’s ratio inclusion.  

4.2.3 Fabrication of α-cristobalite samples 

 Samples have been manufactured to the specification of 0, 5, 10, 15, 20 and 25wt% α-cristobalite, 

which is a naturally occurring high modulus auxetic mineral. The resin used was a room temperature 

curing epoxy system (Epon E828/D400) together with a viscosity modifier (silicone polycarbonate 

urethane, CarbiSil®) in trace amounts. The inclusions were added to the resin, vigorous mixing was 

undertaken for 1 hour and then the homogeneous slurry was cast in aluminum moulds and cured at 

room temperature.  

4.2.4 Microscopy 

 Optical microscopy was not successful in revealing the microstructure of the samples due to their 

opacity, as can be seen in Figure 36 and Figure 37 which optical micrographs of the 0wt% and 25wt% 

samples, respectively. 
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Figure 36: Optical micrograph of a 0% α-cristobalite sample. 

 

  
Figure 37: Optical micrograph of a 25% α-cristobalite sample. 
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It was therefore decided that scanning electron microscopy be carried out in place of optical microscopy 

and that this should be in conjunction with elemental mapping to begin a study of the distribution and 

interfacial bonding of the α-cristobalite particles. The findings of the elemental mapping are given in 

Table 4 and 

Table 5. 

 

Table 4: Weight % of carbon, oxygen and silicon in the α-cristobalite inclusion samples 

% αααα-cristobalite Weight % of 

 C O Si 

0 75.18 23.69 - 

5 74.21 24.35 1.05 

10 71.85 26.55 1.61 

15 70.405 26.605 3.09 

20 70.69 25.54 3.77 

25 68.21 26.62 5.03 

 

Table 5: Atomic % of carbon, oxygen and silicon in the α-cristobalite inclusion samples. 

% αααα-cristobalite Atomic % of 

 C O Si 

0 80.74 19.10 - 

5 79.60 19.93 0.48 

10 77.71 21.55 0.74 

15 76.84 21.72 1.45 

20 77.28 20.97 1.76 

25 75.46 22.11 2.38 

 

Table 6 and Table 7 show that while the distribution is not homogeneous throughout, the particles do 

not float to the top of the samples or sink to the bottom, creating intensely rich α-cristobalite inclusion 

regions. The data presented in these tables indicate that SEM micrographs allow for a clearer picture of 

the internal structure of the samples. 

 

Table 6: Weight % of carbon, oxygen and silicon in the top, bottom and middle of the 25% α-cristobalite inclusion samples 

Surface examined Weight % of 

 C O Si 

Top 71.72 26.93 1.27 

Middle 68.21 26.62 5.03 

Bottom 71.31 26.89 1.80 
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Table 7: Atomic % of carbon, oxygen and silicon in the top, bottom and middle of the 25% α-cristobalite inclusion samples 

Surface examined Atomic % of 

 C O Si 

Top 77.52 21.89 0.59 

Middle 75.46 22.11 2.38 

Bottom 77.29 21.88 0.84 

 

To illustrate the structures seen during SEM imaging of the samples constructed for this project, two 

micrographs are presented below. The first, Figure 38, shows the side view of a resin only sample. 

 

   
Figure 38: SEM image of a pure resin sample for reference with composite consisting of resin and α-cristobalite inclusions 

shown in Figure 39. 

  

The second image shows the side view of a 25wt% composite. The red circles indicate the locations of α-

cristobalite inclusions, confirmed by the elemental mapping. The resulting changes in material 

properties for various samples are discussed in Section 4.2.5. 
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Figure 39: SEM image of a composite consisting of resin and 25wt% α-cristobalite inclusions.  Red circles indicate inclusions. 

  

4.2.5 Quasistatic Mechanical Testing of α-cristobalite Inclusion Composites 

 An average of 6 samples were tested for each of the composites manufactured with 0, 5, 10, 15, 20 

and 25wt% α-cristobalite, each specimen being 150mm long by 15mm wide by 5mm thick. Tensile tests 

were carried out to measure the mechanical properties of the composites using an Instron 3369, in 

conjunction with videoextensometry using a Messphysik ME 46 videoextensometer. A crosshead speed 

of 0.3mm/min was used with a gauge length of 100mm and a load cell of 100N. The Poisson’s ratio 

measurement was obtained using a rectangular box of 30 by 10mm marked on the samples for the 

videoextensometer to track. The strain-strain plots for the control sample (i.e. with no α-cristobalite) 

and for the 25% α-cristobalite sample are shown below in Figure 40. In both cases, the Poisson’s ratio is 

positive but it can be seen that the addition of the 25wt% α-cristobalite reduces the Poisson’s ratio 

value. In the cases shown, this reduction is from ν = +0.33 to ν = +0.20 for the α-cristobalite inclusion 

sample. A complete set of the results from these tests is given in Table 8.  

 The observed reduction in Poisson’s ratio is in agreement with the trend shown by theoretical 

predictions carried out using the self-consistent (SC) analytical model and FEA, both of which are shown 

in Figure 41 together with the experimental data. The system used here has Ef/Em = 24. The effect of 

using Ef/Em = 40 is also shown in the same graph given that it is of interest since it should cause the 

Poisson’s ratio to be further reduced. Agreement is very good at low volume fraction of α-cristobalite. 

 Similar plots were obtained for the Young’s modulus, and these can be seen in Figure 42. Here, the 

experimental data are compared to FE analysis and analytical values calculated using the SC and Hashin-

Shtrikman (HS) upper and lower bounds. For ease of comparison, the modulus value plotted is that of 

the composite relative to the matrix. The addition of α-cristobalite leads to a rise in the Young’s modulus 

of the composite, with the HS lower bound predictions agreeing very well with the experimental values. 

 

 
 

50µµµµm 
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(a) 

 
(b) 

Figure 40: True strain-strain plot for the (a) control and (b) 25wt% composites. 

 

Table 8: Experimental Poisson’s ratio values for the α-cristobalite composites. 

Sample Specimen number 

Average 

Poisson’s 

ratio 

 1 2 3 4 5 6  

Resin 0.44 0.33 0.24 0.30 0.20 0.32 0.32±0.09 

Resin + 

5% 

0.33 0.16 0.18 0.18 0.33 0.26 0.24±0.08 

Resin + 

10% 

0.22 0.18 0.19 0.24 0.28 0.28 0.23±0.04 

Resin + 

15% 

0.20 0.17 0.17 0.23 0.25 0.30 0.22±0.05 

Resin + 

20% 

0.11 0.24 0.26 0.18 0.21 0.21 0.20±0.05 

Resin + 

25% 

0.10 0.18 0.17 0.19 0.28 0.27 0.20±0.07 
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Figure 41: Plot of Poisson’s ratio against volume fraction of α-cristobalite inclusions for Ef/Em = 24 and 40. 

  

  

   
Figure 42: Plot of relative Young’s modulus against volume fraction of α-cristobalite inclusions 

 

 A number of reasons for the disagreement between the modeling and experimental results have 

been considered. The first of these is that the models are idealized. The second is that we think that 

despite the use of the viscosity modifier, the particle distribution of the cristobalite is not perfect, 

leading to some particle to particle contact, especially as the % volume of the cristobalite increases. The 

models are based on complete distribution with no particle to particle contact, which would tend to 

reduce the properties. The interface on inspection in the SEM appears to be a further possible source of 

difference between the model and experimental values. The project was stopped prior to detailed 
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examination of these hypothetical problems, but results clearly suggest that the samples are imperfect, 

which is not unexpected. An idealized bond between particle and matrix is an assumption of the models 

used for comparison, so the interface should be a focus of future work on these types of composite 

materials in order to gain maximum properties. A final reason for the observed difference could be that 

the samples have reduced volume fractions than those reported. The samples were made externally to 

our recipe but the initial elemental analysis appears to indicate that there may be less Si present than 

was desired. Eliminating the sources of all of these minor discrepancies should be the focus of future 

work in the area of auxetic composite materials. 

4.2.6  Energy absorptive capacity of the composites 

 There are many references which support the increased energy absorptive capacity of auxetic 

materials in, for example, foams [38],[39] and carbon fiber laminates [22]. More specifically for this 

project, investigations into the properties of auxetic UHMWPE cylinders were carried out and they 

revealed benefits in deploying auxetic polymeric materials. An interesting study was performed to 

measure the dynamic modulus of the auxetic UHMWPE using ultrasound [40] which resulted in 

measurement of the attenuation coefficient, α, for auxetic, conventional compression molded plaques 

and compacted and single sintered UHMWPE. The microporous polymers, whether auxetic or sintered 

(which resulted in a positive Poisson’s ratio), showed very large enhancements in the attenuation 

coefficient, α. The authors report purely on experimental values, however, that the auxetic form was so 

good at absorbing the ultrasonic signal that in the highly fibrillar form, it was not possible to obtain a 

single measurement of α as the signal was completely absorbed after 1 single back reflection.  

 The second of the directly related properties which has been studied in detail was the indentation 

resistance, H. This is related to the Poisson’s ratio as 

 

  ( ) x
21H ν
−

∝ − , (29) 

 

with x dependent on the method of analysis considered. For example, x = 2/3 for Hertzian indentation. 

Ball indentation tests were carried out on auxetic UHMWPE using conventional compression molded 

plaques and compacted, single sintered UHMWPE as comparison material. It was found that indentation 

resistance was enhanced by up to a factor of 3 at low loads, where the strain dependent negative 

Poisson’s ratio has its highest values. The mechanisms at play in the indentation response were then 

examined [41]. Alderson, Fitzgerald and Evans propose that the fibrils pull the nodules under the 

indenter, leading to local and elastic densification under the indenter. This is underlined by the 

observation that the indents in the auxetic UHMWPE recover whereas the other conventional forms 

show permanent plastic deformation. The recovery is suggested to be due to the fibrils unwrapping on 

removal of the indenter, allowing the nodules to return to, or close to, their original position. Though 

these previous studies showed increases in energy absorption when auxetic materials were tested, it is 

unclear whether particulate composite materials consisting of a conventional matrix material containing 

auxetic inclusions will also display increases in energy absorption capacity. The materials that introduced 

in Section 4.2.3 and tested quasistatically in Section 4.2.5 were further characterized using dynamic 
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mechanical analysis, modal damping, and ultrasonic methods. The results of those measurements are 

given in the following section. 

4.2.7 Characterization of Particulate Composites Containing α-critobalite 

 The auxetic inclusion composites fabricated by the University of Bolton were characterized across a 

broad range of frequencies to capture their dynamic stiffness and loss performance. This was 

accomplished though Dynamic Mechanical Analysis (DMA), model damping, and ultrasonic 

characterization techniques. These tests were run by researchers at all three of the associated 

universities. The University of Bolton characterized the samples using DMA, the University of Bristol 

measured the dynamic response using forced vibration techniques, and the University of Texas at Austin 

measured the response using contact ultrasonic techniques. The results of these measurements are 

provided in the following subsections. 

 

3.2.7.1 Dynamic mechanical analysis 

 

 Mechanical properties of materials can be expressed via dynamics modulus represented with the a 

storage and loss modulus of the material [42]. One conventional means for measuring these quantities is 

through Dynamic mechanical analysis technique. Dynamic Mechanical Analysis is a well-established, 

robust technique, which is frequently used to characterize the viscoelastic behavior of the polymers and 

polymeric composite materials [43]. When a material is tested using the DMA technique, an oscillatory 

(sinusoidal) strain (or stress) is applied to the material and the resulting stress (or strain) developed in 

the material along with its relative phase to the imposed loading is measured to yield a complex 

modulus. The complex modulus is thus the frequency-dependent material resistance to the 

deformation. It has two components, the storage modulus, which is a parameter describing the elastic 

energy stored during a single cycle of loading, and the loss modulus, which is a parameter of the energy 

dissipated through conversion to heat in a single loading cycle. The Dynamic Mechanical Analyzer 

produces very important information on all changes in the state of molecular motion as temperature or 

frequency is scanned and can be used to characterize material over a very broad range of temperatures 

and frequencies. 

 DMA test was performed at the University of Bolton using dual cantilever clamp on Isothermal 

frequency sweep mode for the series of α-cristobalite samples. Because the stiffness of the samples is 

moderate, dual cantilever clamp was used for the experiment. The sample sizes, were 60mm x 15mmx 

5mm, were determined based on the defined standards to insure accurate measurements. The 

isothermal frequency sweep test was performed at 35°C under 15µm amplitude which limited 

deformation to the linear regime. The storage modulus and tan δ (ratio of the loss to storage modulus) 

was recorded in the frequency range of 1 -100Hz. These tests were repeated to check the reproducibility 

of the results. The average values were taken for both the runs and recorded against the frequency and 

are presented in Figure 43 and Figure 44. 
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Figure 43: Storage modulus of auxetic inclusion composites tested using dual cantilever DMA. 

 

  
Figure 44: Tan δ of auxetic inclusion samples acquired using dual cantilever DMA measurements. 

 

These results shown in Figure 43 and Figure 44 shows a generally increasing stiffness with increase α-

cristobalite content but they do not provide a clear picture of the influence of increasing weight fraction 

on the loss behavior. Specifically, Figure 44 shows that the largest tan δ values were observed for a 5% 

wt composite, while the lowest values were observed for the 10% wt composite. As with the quasi-static 
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tests, it is suspected poor bonding, non-uniform distribution of inclusions, or both may have contributed 

to this observed behavior. Due to the limited time of this project, however, a conclusive physical basis 

for the observed inconsistent loss behavior was not able to be identified. 

 

3.2.6.2 Modal damping analysis 

 

 After DMA testing, modal analysis tests were performed at the University of Bristol using a custom-

made rig employing electrodynamic excitation and scanning laser vibrometry (SLV). The tests were 

carried out of aluminium beams with a deposition of an epoxy/α-cristobalite composite material 

patches attached to the beam center, as shown in Figure 45a.  Typical sample dimensions are illustrated 

in Figure 45a and the test setup is indicated in Figure 45b and c. 

 

 

 

(a) (b) 

 

(c) 

Figure 45: Details of the force vibration measurements of modal damping. (a) shows the dimensions of the samples (both the 

aluminum and composite patch), (b) shows the a schematic of the test setup, and (c) provides a photo of the experimental 

setup. 

 

The beams were initially subjected to random white noise to identify the spacing of the natural 

frequencies, with subsequent pseudo-random sweep between 950 Hz and 1050 Hz, (corresponding to 

the 3
rd

 flexural mode of the beam). The pseudo-random sweep was driven at a maximum amplitude of 1 

V for sweep times of 2 seconds. The input force was measured with a PCB force transducer (calibration 

factor 42.24N/V, with range of 200 mV). Simultaneously, a SLV (Polytec PSV-400 F, velocity factor 
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25mm/s/V with channel range of 10V) was used both as single and multi-point velocity acquisition 

device. The frequency response functions (FRFs) were acquired through complex averaging, with a 

central frequency of 1.02 kHz and 0.1 kHz of bandwidth and 201 spectral lines. 

 The modal damping ratio was estimated using a half-power bandwidth technique implemented in 

Modent 2008 software. To maximize the signal-to-noise ratio, the technique was applied to the 

maximum amplitude point of the FRF. For each wt% of the epoxy/amorphous silica coatings, five 

samples were tested to acquire a sufficient statistical reproducibility of the results. Two input voltages (1 

V and 5 V) were considered to identify any nonlinearity in the response. The mode chosen as reference 

was the third flexural mode because it resulted in the highest nodal strain for the free-free configuration 

considered. 

 An initial test carried out on a reference uncoated aluminium beam has provided the following 

values for the undamped natural flexural frequencies: 150 Hz, 500 Hz, 1000 Hz. Figure 46 shows the 

operational mode shapes as detected by the SLV. 

 

 
First Flexural Mode 

 
Second Flexural Mode 

 
Third Flexural Mode 

Figure 46: SLV Images of the first, second, and third flexural modes of the aluminum beams with auxextic inclusion patches. 
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The resulting impact on the patch on the stiffness of the beam-patch composite is summarized in Figure 

47 which shows the variation of the third natural frequency normalized against the analogous one 

belonging to the uncoated beam sample. 

   
Figure 47: Variation in the resonant frequency of third mode of vibration for two different driving amplitudes as a function of 

the weight fraction of auxetic inclusion patches. 

 

These experimental results show that there is no apparent dependence of the natural frequency 

behavior against the value of the input force. The results suggest that the assumptions of linearity of the 

system (at least in terms of natural frequencies) are satisfied. However, it is worth noticing the large 

standard deviations existing for the 5 wt%, 20 wt% and 25 wt% samples. It is apparent that a more than 

a 15% increase in natural frequency occurs for the 15 wt% samples. The assumption of linearity is 

weaker, however, for the identification of the modal damping ratio, as it can be observed in Figure 7. An 

average 20 % increase of the modal damping ratio is observed passing Frms = 65 mN to Frms = 923 mN. 

Due to the amplitude of the standard deviations associated to the measurements, it is difficult to 

identify a clear trend existing between modal damping ratios and amount of amorphous silica 

reinforcement. However, it does appear that a clear increase in loss factor exists for the samples with 

the highest wt% considered and the highest amplitude of the root mean square force. 
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Figure 48: Variation in the modal loss factor (in percent) of third mode of vibration for two different driving amplitudes as a 

function of the weight fraction of auxetic inclusion patches. 

 

3.2.7.3 Ultrasonic characterization 

 

 The final set of characterization testing done to understand the behavior of the auxetic composite 

materials was ultrasonic measurement of the effective stiffness and loss in a frequency band around 1 

MHz. The test was accomplished using a contact ultrasonic method first described by Trieber and co-

workers [44]. The test consists of six separate measurements which combine reflected wave and 

transmitted wave acquisition to simultaneously measure the phase speed and attenuation. These 

separate measurements permit direct measurement of the reflection coefficient between the 

transducer and the material sample which, unmeasured, would negatively influence the accurate 

estimate of the attenuation coefficient in the material. The parameters directly measured during the 

tests are the phase speed, cph, and attenuation coefficient, α. For plane wave propagation, these 

parameters are related to the wave disturbance as shown in Eq. (30), 

 

  ( ) ( ) ( )'
0 0

,
j t k zj t kz zu z t u e u e e
ωω α −− −= = . (30)  

 

In this formulation, the wavenumber is complex and defined with real and imaginary parts given by 

'k k jα= − . The attenuation coefficient is a metric of the rate at which a forward progressing plane 

wave amplitude decreases in space due to inherent losses in the medium. The real part of the wave 

number, k’, is related to the phase speed, cph, through the relationship 
'

ph
k cω≡ . Using the 

waveforms captured during the six measurements shown in Figure 49 it is possible to get estimates of 

the stiffness and loss properties of each sample, examples of which are shown in Figure 52 and Figure 
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53. During ultrasonic testing, six samples of each weight fraction (0, 5, 10, 15, 20, and 25%) were 

measured to get statistical information on the properties of the composites. 

 

   
Figure 49: The six separate measurements associated with the ultrasonic characterization method used to characterize the 

auxetic inclusion samples. Measurements M1, M2, M5, and M6 are use reflected signals, while measurements M3 and M4 

use through transmission signals. Combinations of those signals permit direct calculation of the complex valued frequency 

dependent reflection coefficients at each interface. 

 

The tests schematized in Figure 49 were realized by creating a test fixture like the one schematized in 

Figure 50. This fixture permits simple and repeatable attachment of the contact transducers while 

minimally influencing the position of the sample under test.  

 

   
Figure 50: Schematic of the fixture created and used to complete ultrasonic attenuation measurements. The ‘fluid layer’ is 

the ultrasonic complant used to improve the coupling between the transducer and auxetic composite. 

 

The ultrasonic tests were accomplished using traditional ultrasonic measurement components. A 

Panametrics square wave Pulse-Receiver supplied the source voltage and signal conditioning for the 

receive transducer (whether it be in pulse-echo or transmit-receive configurations). The transducers 

used were two Panametrics V603 Videoscan 1 MHz center frequency longitudinal reciprocal 

transducers, the signal was acquired using a Tektronix MSO5000 series digital oscilloscope. A 

representative signal acquired for M1 (pulse-echo with a free surface) is shown in Figure 51. As was the 

case in all measurements, a post-processing algorithm extracted the first and second arrivals through 



Final Report  New Solutions for Energy Absorbing Materials  Page 60 of 68 

peak detection and time windowing. The resulting spectrum for the full, first and second arrivals are 

shown in the right column of the same figure. The frequency dependent difference in magnitude 

between the first and second arrival is indicative of the signal attenuation (though this is not corrected 

for reflection losses at the transducer-material interface) while the difference in phase in combination 

with the sample thickness can be used to deduce the phase velocity of the sample.  

 
Figure 51: Representative waveform and associated spectrum from a single measurement on an auxetic inclusion sample. 

 

As an example, estimates of the frequency dependent attenuation coefficient and phase speed for 

various samples are shown in Figure 52 and Figure 53. These results suggest that the materials show a 

slight anomalous dispersion (phase speed decreasing with increased frequency) and increasing 

attenuation with increasing frequency. The anomalous dispersion may likely results from processing 

artifacts, especially well away from the center frequency of the transducer, 1MHz. The increase in 

attenuation coefficient with increasing frequency is typical of most materials an due to a combination of 

material losses and scattering at the microscale. 
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Figure 52: Measured frequency dependent sound speed for representative material samples with varying weight fraction of 

α-cristobalite. 
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Figure 53: Attenuation coefficient measured using contact ultrasonic methods of representative samples for varying weight 

fractions of α-cristobalite inclusions. 

 

Using data like that shown in Figure 52 and Figure 53, one can directly the measured effective stiffness 

and loss of the auxetic composite materials using Eqs. (31) and (32): 

 

  ( )
( )

' 2
'

2 1

1

f
k k

α
η

α

=
−

, (31) 

  ( ) ( )
2

' 2 2 2

ph ph2

1 1 3
2 1

42 1
M f c c

η
λ µ ρ ρ η

η

 + +  = + = ≈ − +  
. (32)  

 

The results of these calculations for all samples are shown in Figure 54 which plots the effective plane 

wave modulus and loss factor of the material at 1 MHz. Note that the raw and windowed data set 

shown in Figure 51 is just one of six time-series that was taken for a single sample of a single weight 

fraction of inclusion. All told, the entire data set used to generate estimates of the stiffness and loss of 

the auxetic composite, shown in Figure 54, consisted of 36 measurements per sample, or 216 individual 

measurements to measure the effective frequency-dependent properties of these composite materials. 
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Figure 54: Plane wave modulus and loss factor as a function of volume fraction a-critobalite. Increases in both stiffness 

(~30%) and loss (~54%) are observed for the auxetic composite 10% by volume composite over the pure matrix material. 

 

Results from the ultrasonic test seem to more clearly indicate increases in stiffness and loss as a function 

of increasing volume fraction of auxetic inclusions. Notably, the stiffness is shown to increase nearly 30% 

while the loss factor increases almost 50% with the use of only 10% by volume of auxetic inclusion. The 

augmentation of stiffness for this amount of cristobalite is in line with the measurements shown in 

Figure 42, while the enhancement in effective loss factor is greater than and more monotonic than what 

was measured using either DMA or vibration techniques. Overall, the ultrasonic measurement displays 

much less ambiguous trends than the results of the DMA and vibration measurements. However, due to 

the statistical nature of these results and the clear statistical significance of these trends, we are certain 

that the ultrasonic measurements indicate increases in lossy behavior of auxetic composites at 

ultrasonic frequencies. 

5 Insights and Future Work 

 The results presented in this report were achieved through modeling (analytical and finite element) 

of specific structures designed to exhibit NS and experimental characterization of NPR inclusion 

composites. The work associated with this project has shown that structures that display NS behavior 

can indeed be designed using buckled elements. Further, a very general finite element energy based 

approach has been derived, implemented, and benchmarked to determine the nonlinear effective 

stiffness of a structured element. This approach is unique in the literature and very powerful for the 

future design of engineered microstructure, regardless of ultimate application. This model provides a 

powerful tool in the design of microstructured composite materials. This project also integrated this 

nonlinear homogenization model with more traditional multiscale micromechanical models to produce a 

multiscale model that predicts macroscopic stiffness and loss parameters as a function of microstructure 

and mesoscopic parameters like inclusion fraction and orientation distribution. This multiscale model 

was then employed to do an exhaustive design space exploration of a family of structured inclusion 

geometries. That exploration provided seed data to generate a Kriging-based surrogate model of the 

influence of microscale structure on mesoscale anisotropic stiffness. This combination of models 

provides a very powerful representation of this nonlinear multiscale system that will enable rapid design 
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of these materials for structure damping treatments [45]. In future work, NS research of this nature 

should focus on the implementation of the models validated during this project to perform an iterative 

exploration of the micro- and mesoscale design space to improve the elastic and absorptive properties 

of viscoelastic composites. Multiscale design model should be wrapped by a nonlinear optimization 

scheme, such as kernel-based Bayesian network mappings to identify optimal microscale designs that 

lead to amplified stiffness and loss performance through the use of NS [46]. 

 Auxetic composite material work associated with this research focused on the fabrication of NPR 

composite materials and their stiffness and loss performance. It provided a broadband characterization 

of the viscoelastic response of composites containing auxetic inclusions, ranging from static to ultrasonic 

frequencies. This was achieved through tensile tests, dynamic mechanical analysis, modal damping 

analysis with damping patches, and ultrasonic measurements. The experimental data showed mixed 

results on the overall stiffness and loss of the composite. Low frequency measurements (DMA and 

modal analysis) suggest that no clear correlation between increases in the inherent stiffness and loss 

properties of the composite with increases in volume fraction of auxetic inclusions. However, ultrasonic 

measurements unambiguously indicated that both stiffness and loss increase with increases in auxetic 

fractions. The physical root causes of these observations were not clearly determined. The latter results 

suggest that auxetic inclusion composites may indeed present a unique means to engineer high loss 

composite materials without degrading the overall stiffness of the material, but more work must be 

done to validate this hypothesis. Future work should focus, through both theoretical and experimental 

methods, on the physical phenomena associated with energy absorption using auxetic inclusions. 
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