

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

RESEARCH, DEVELOPMENT AND TESTING OF A

FAULT-TOLERANT FPGA-BASED SEQUENCER FOR

CUBESAT LAUNCHING APPLICATIONS

by

Lucas S. Parobek

March 2013

 Thesis Co-Advisors: Herschel H. Loomis, Jr.

 James H. Newman

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE RESEARCH, DEVELOPMENT AND TESTING OF

A FAULT-TOLERANT FPGA-BASED SEQUENCER FOR CUBESAT

LAUNCHING APPLICATIONS

5. FUNDING NUMBERS

6. AUTHOR(S) Lucas S. Parobek

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

This thesis concerns various means of implementing fault tolerance in logic for use in a general payload processor

design. The first specific application of this research is a sequencer developed for deploying CubeSats. The sequencer

shall be capable of the timing and accurate deployment of multiple CubeSats from a host spacecraft and shall have the

capability for quick reconfiguration prior to launch. This research considers a variety of hardware for suitability

toward sequencer construction; field programmable gate arrays (FPGAs) are chosen as the primary device. The design

further evolves to selection of the Actel ProASIC3 series of FPGAs. Initial logic test configurations are implemented

on a development kit with analysis of results provided. Fault-tolerant techniques are compared with a set of

experiments to determine optimum resource utilization and timing schemes. Triple modular redundancy (TMR) is

selected as the technique for fault-tolerant logic implementation in the sequencer. Preliminary test boards are built via

schematic design and printed circuit board layout. The manufacturing, integration and testing of the ‘ProASIC3 Test

Board’ is fully discussed. A follow-on flight prototype board is designed with more extensive hardware allowing for

implementation of fault-tolerant techniques and future growth capability. Recommendations for future work are

discussed.

14. SUBJECT TERMS Single-Event Effect (SEE), Single-Event Upset (SEU), Multiple-Bit Upset

(MBU), Field Programmable Gate Array (FPGA), Fault Tolerance, Triple Modular Redundancy

(TMR), Quadruple Force Decide Redundancy (QFDR), Quadded Logic, CubeSat, Satellite, Altium,

Actel, Microsemi, ProASIC3, Xilinx, Virtex

15. NUMBER OF

PAGES
224

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)

 Prescribed by ANSI Std. 239–18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

RESEARCH, DEVELOPMENT AND TESTING OF A FAULT-TOLERANT

FPGA-BASED SEQUENCER FOR CUBESAT LAUNCHING APPLICATIONS

Lucas S. Parobek

Lieutenant, United States Navy

B.S., The Citadel, 2006

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 2013

Author: Lucas S. Parobek

Approved by: Herschel H. Loomis, Jr.

Thesis Co-Advisor

James H. Newman

Thesis Co-Advisor

Clark Robertson

Chair, Department of Electrical and Computer Engineering

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

This thesis concerns various means of implementing fault tolerance in logic for use in a

general payload processor design. The first specific application of this research is a

sequencer developed for deploying CubeSats. The sequencer shall be capable of the

timing and accurate deployment of multiple CubeSats from a host spacecraft and shall

have the capability for quick reconfiguration prior to launch. This research considers a

variety of hardware for suitability toward sequencer construction; field programmable

gate arrays (FPGAs) are chosen as the primary device. The design further evolves to

selection of the Actel ProASIC3 series of FPGAs. Initial logic test configurations are

implemented on a development kit with analysis of results provided. Fault-tolerant

techniques are compared with a set of experiments to determine optimum resource

utilization and timing schemes. Triple modular redundancy (TMR) is selected as the

technique for fault-tolerant logic implementation in the sequencer. Preliminary test

boards are built via schematic design and printed circuit board layout. The

manufacturing, integration and testing of the ‘ProASIC3 Test Board’ is fully discussed. A

follow-on flight prototype board is designed with more extensive hardware allowing for

implementation of fault-tolerant techniques and future growth capability.

Recommendations for future work are discussed.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE ...1
B. NAVAL POSTGRADUATE SCHOOL CUBESAT LAUNCHER

(NPSCUL) BACKGROUND...3

1. NPSCuL Objective and History ...3
2. NPSCuL Physical Design Characteristics ...3
3. History of Sequencer Requirement ..5
4. Concept of Sequencer Development ...6
5. Sequencer Requirements and Specifications7

C. RELATED WORK AND DOCUMENTATION ..9

D. CONCEPT OF DEVELOPMENT STRATEGY ..10

E. THESIS ORGANIZATION ..11

II. SEQUENCERS, RADIATION HARDENING, AND FAULT-TOLERANCE ...13

A. SEQUENCER DESIGN METHODOLOGY ..13
1. Timing Concerns Specific to Initiating P-POD Deployment13

2. Chosen Approach ...14
B. RADIATION HARDENING ..15

1. Single-Event Effects (SEEs) ..16

a. Single-Event Upsets (SEUs) ...17
b. Single-Event Transients (SETs) ...18

c. Single-Event Latch-ups (SELs) ..19
2. Total Ionizing Dose (TID) ...19

3. Testing of FPGA Hardware in Radiation Environments20
4. Radiation Protection Approaches ..20

C. FAULT TOLERANCE ..23
1. Scrubbing / Re-programming at Intervals23
2. Triple Modular Redundancy (TMR) ...24

a. Block TMR (BTMR) ...24
b. Local TMR (LTMR) ..25

c. Global TMR (GTMR)..25
d. Distributed TMR (DTMR) ..26

3. Quadded Logic ...27
4. Triplicated Interwoven Redundancy (TIR)28
5. Quadruple Force Decide Redundancy (QFDR)30

6. Advantages and Disadvantages of Various Fault-Tolerant

Techniques ..31

D. CHAPTER SUMMARY ..32

III. FIELD PROGRAMMABLE GATE ARRAYS AND SELECTION OF

SEQUENCER TECHNOLOGY...33
A. FIELD PROGRAMMABLE GATE ARRAYS...33

1. Physical Construction ..33

viii

a. Internal Fabric ..34

b. Programmability and Reconfiguration36
2. Historical Overview of FPGA Technology37

3. Types of Modern FPGA Technology..39
a. Antifuse-based FPGAs ..39
b. SRAM-based FPGA Implementations40
c. Flash-based FPGAs ..41

4. Design Concerns ...42

B. FINAL SELECTION OF ACTEL PROASIC3 SERIES FPGA43
1. Required FPGA Characteristics ...43
2. Overall Sequencer and Processor Characteristics44
3. Comparisons of Xilinx and Actel FPGAs ..44

C. SELECTION OF DEVELOPMENT BOARDS FOR LOGIC

DESIGN ..47
D. CHAPTER SUMMARY ..48

IV. HARDWARE DEVELOPMENT – PROASIC3 TEST BOARDS AND

PRELIMINARY FLIGHT PROTOTYPE ..49
A. PROASIC3 TEST BOARD ...49

1. Derived Requirements ...50

2. Selection of Board Size and Layer Count ..50
3. Selection of Components ...51

B. SAD VERSION 3 – FLIGHT PROTOTYPE BOARD54
1. Discussion of Specific FPGA ...55
2. Additional Modifications Considered ..58

C. CHAPTER SUMMARY ..58

V. COMPARISON OF FAULT-TOLERANCE METHODS FOR USE IN

SEQUENCER LOGIC DEVELOPMENT ..61
A. TMR VERSUS OTHER FAULT TOLERANT APPROACHES61

1. Maintaining Logic Structures within HDL Languages (Verilog

/ VHDL and Schematically) ..61
a. Baseline Design – Seven-Segment LED Counter Example ..62

b. Triplicated Design – Seven-Segment LED Counter

Example ...63
2. Implementation of Various Redundant Techniques in

Combinational Logic Designs ...65
a. Baseline Design – 16×16-bit Array Multiplier65

b. Triple Modular Redundancy (TMR)68
c. Quadded Logic ..69

d. Triplicated Interwoven Redundancy (TIR)72
e. Stacked Techniques – Quad-TMR & TIR-TMR74

3. Data Results and Analysis ...75
4. Discussion of Results ..77

B. SELECTION OF A FAULT-TOLERANT TECHNIQUE78
1. Xilinx TMRTool and Mentor Graphics Precision Hi-Rel79

ix

2. Manual Insertion of TMR with Schematic and HDL

Techniques ..80
C. APPLICATION OF TMR TO SEQUENTIAL LOGIC DESIGNS80

1. Manual Insertion of Faults ..82
a. Floating-Input Case ..82
b. ’Stuck-at-0’ Logic Fault ...83
c. ’Stuck-at-1’ Logic Fault ...84

2. Modification of FSM Design to TMR Representation....................85

3. Timing and Resource Comparison for Sequential Circuits87
D. PRELIMINARY SEQUENCER LOGIC DESIGN89

1. Conversion of Xilinx HDL to Actel HDL ...89
2. Synplify Pro Representations of FSM Logic90
3. Designation of Timing Constraints within Logic92

a. Parameter Constants in Verilog HDL93
b. Constant Declarations in ProASIC3 FlashROM93

E. CHAPTER SUMMARY ..95

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH ...97
A. CONCLUSIONS ..97

B. FOLLOW-ON RESEARCH AND TESTING ..100

APPENDIX A. FPGA HARDWARE PRODUCTS AND SOFTWARE

DEVELOPMENT TOOL DIFFERENCES ..103
A.1 COMPARISON OF XILINX AND ACTEL PRODUCTS103

1. Software Feature Set..103

a. Xilinx ISE 14.3 ..104

b. Actel Libero SoC 10.1 ...107

c. Results of Software Comparison ..109
2. Hardware Feature Set ...109

a. Xilinx Virtex Series FPGAs ..110
b. Actel ProASIC3 Series FPGAs ...112

3. Associated Hardware Requirements ..115

A.2 APPENDIX SUMMARY...115

APPENDIX B. PROASIC3 TEST BOARD – REFERENCE, SCHEMATICS,

AND PCB LAYOUT DIAGRAMS...117
B.1 PROASIC3 TEST BOARD DEVELOPMENT METHODOLOGY117

1. Detailed Discussion of ProASIC3 Test Board Design Decisions ..117

2. Discussion of Schematic ...119

3. Discussion of PCB Layout and Component Placement121
4. Physical Construction and Testing ...123

B.2 BILL OF MATERIALS ..127

B.3 MECHANICAL DIMENSIONS AND ELECTRICAL

SCHEMATICS ...128
B.4 2-D PCB LAYER DIAGRAMS ..131
B.5 3-D PCB COMPONENT PLACEMENT ..134

x

B.6 APPENDIX SUMMARY...135

APPENDIX C. SAD VERSION 3 – FLIGHT PROTOTYPE BOARD –

REFERENCE, SCHEMATICS, AND PCB LAYOUT DIAGRAMS137

C.1 SAD VERSION 3 – FLIGHT PROTOTYPE BOARD

DEVELOPMENT METHODOLOGY ..137
1. Selection of Board Size and Layer Count137
2. Selection of Components ...141
3. Discussion of Schematic ...144

4. Discussion of PCB Layout and Component Placement146
C.2 BILL OF MATERIALS ..149
C.3 MECHANICAL DIMENSIONS AND ELECTRICAL

SCHEMATICS ...151
C.4 2-D PCB LAYER DIAGRAMS ..157

C.5 3-D PCB COMPONENT PLACEMENT ..163

C.6 APPENDIX SUMMARY...164

APPENDIX D. SEQUENCER HDL PRESENTATION ..165

D.1.1 SEVEN-SEGMENT LED COUNTER (BASYS2USERDEMO.VHD) ...165
D.1.2 SEVEN-SEGMENT LED COUNTER

(SIMPLESSEGLEDDEMO.VHD) ...167

D.1.3 SEVEN-SEGMENT LED COUNTER (VOTER.V)169
D.1.4 SEVEN-SEGMENT LED COUNTER (TMR SCHEMATIC)170

D.2 LAUNCH SEQUENCE GENERATOR

(LAUNCH_SEQUENCER.VHD) ...171

LIST OF REFERENCES ..181

INITIAL DISTRIBUTION LIST ...191

xi

LIST OF FIGURES

Figure 1. Final payload configuration and integration of NPSCuL with eight P-

PODs. ...4
Figure 2. NPSCuL with associated Splitter Auxiliary Device (SAD) and external

wiring visible. ..5
Figure 3. Internal wiring harness structure for SAD depicting power and data line

split to eight output ports. ..5
Figure 4. Neutron radiation strike of silicon atom resulting in ejection of heavy ions

leading to firm error in transistor (From [21]). ..15
Figure 5. Single-event effects classification diagram illustrating difference between

recoverable and non-recoverable errors (From [25]).17

Figure 6. MBU of six bits triggered by proton induced oxygen heavy-ion in 130-nm

CMOS memory cells (From [27])..18
Figure 7. Inner and outer torus-shaped layers of plasma of the Van Allen radiation

belts. Energetic electrons form the outer belt; the inner belt consists of

protons and electrons (From [39]). ..21
Figure 8. Local TMR with all sequential elements tripled and followed by a

majority voter (From [44]). ..25
Figure 9. Global TMR with all sequential elements, combinatorial logic, majority

voters, clocking signals and global buffers triplicated (From [44]).26

Figure 10. Distributed TMR with all sequential elements, combinatorial elements and

majority voters triplicated. Clock signal is shared among resources (From

[44])..27
Figure 11. Quadded logic illustrating error propagation and masking (From [46]).28

Figure 12. Design of TIR half-adder implementation illustrating interwoven

connections (From [47]). ...29

Figure 13. QFDR substituting LUTs and FFs constructs for logic gates (From [48]).30
Figure 14. Typical FPGA internal architecture consisting of configurable logic

blocks, I/O blocks and programmable interconnects (From [54]).34
Figure 15. Typical FPGA logic cells with associated LUTs, gates, adders, memory

devices, and interconnect buffers visible (From [55]).35
Figure 16. Internal flash transistor configuration with charge build-up in floating gate

allowing for reconfiguration and nonvolatile storage (From [71]).41
Figure 17. Altium Designer interface with separate schematic, 2-D PCB layout, and

3-D component placement views visible on separate monitors (From [73]). ..49

Figure 18. Four-layer stack of the ProASIC3 Test Board with internal power planes

and external signal layers. ..51

Figure 19. ProASIC3 nano VQ100 package of VQFP-type (From [74]).52
Figure 20. ProASIC3 Test Board 2-D PCB layout with all component footprints,

signal lines, and vias visible...53
Figure 21. ProASIC3 Test Board 3-D isometric view with component models

indicating approximate sizing and spacing of integrated board.54

xii

Figure 22. FG484 BGA package of the Actel ProASIC3L A3PE600L FPGA (From

[75])..56
Figure 23. Initial 2-D PCB layout of FPGA, three 40-pin I/O headers, prototyping

area, and ribbon-cable connector for relay board attachment.57

Figure 24. Digilent BASYS2 development board counting with proper state logic.62
Figure 25. Default gate layout for baseline seven-segment LED counter.62
Figure 26. Triplicated seven-segment LED counter example with voting logic.64
Figure 27. Triplicated gate layout with voting logic - seven-segment LED counter.64
Figure 28. FPGA layout view illustrating placement of three counter structures.65

Figure 29. 4×4-bit array multiplier internal structure using partial product generators

and full adders. ...66
Figure 30. Full adder gate structure for the 16×16-bit array multiplier, baseline

design. ..67

Figure 31. FPGA physical layout of default 16×16-bit array multiplier logic.67
Figure 32. 16×16-bit array multiplier implemented in TMR with voting logic.68

Figure 33. FPGA physical layout of 16×16-bit array multiplier using TMR logic.69
Figure 34. Baseline NAND implementation of half adder. ...70

Figure 35. Quadded logic version of NAND gate. ..70
Figure 36. Quadded logic version of half adder. ...71
Figure 37. FPGA physical layout of 16×16-bit array multiplier using quadded logic.72

Figure 38. TIR logic version of half adder. ...73
Figure 39. FPGA physical layout of 16×16-bit array multiplier using TIR logic.73

Figure 40. FPGA physical layout of 16×16-bit array multiplier using stacked TIR-

TMR logic. ...74
Figure 41. Timing analysis for worst-case paths in various fault-tolerant

implementations. ..76

Figure 42. FPGA LUT and slice resource utilization in fault-tolerant

implementations. ..76
Figure 43. Moore design, clocked synchronous state machine utilizing positive-edge

triggered D flip-flops (After [76]). ...81
Figure 44. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (fault-free case).82
Figure 45. Floating-input case of AND gate second input disconnected, simulating

break in circuit or disruption in input. ...82
Figure 46. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (floating-input case).83
Figure 47. Second input of AND gate tied to logic ‘0’, simulating constant logic zero

or short in circuit to ground plane. ...83

Figure 48. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (constant logic ‘0’ case).84

Figure 49. Second input of AND gate tied to logic ‘1’, simulating constant logic one

or short in circuit to positive voltage plane. ...84
Figure 50. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (constant logic ‘1’ case).85
Figure 51. TMR representation of the Moore-type FSM with voting logic.86

xiii

Figure 52. Timing diagram for the Moore-type, TMR version of the FSM developed

showing output signal correction regardless of errors (constant logic ‘1’

case). ..86
Figure 53. Timing diagram for the Moore-type, TMR version of the FSM developed

showing output signal correction regardless of errors (floating-input case)....87
Figure 54. Actel ProASIC3 development board showing sequencer LED testing with

TMR logic implemented. ...89
Figure 55. Synplify Pro RTL view of instantiated FSM logic. ...90
Figure 56. Synplify Pro technology view of instantiated FSM logic.91

Figure 57. Synplify Pro generated state diagram for FSM logic.......................................92
Figure 58. FlashROM storage of eight bytes defining sequencing timing; the third

value (0x2) is highlighted containing decimal value ‘15.’95
Figure 59. Interface of Xilinx ISE 14.3 showing schematic layout and design flow.105

Figure 60. ISE ‘Design Summary’ window listing FPGA utilization and design flow. .106
Figure 61. Interface of Libero SoC 10.1 showing Verilog HDL and design flow.108

Figure 62. Each Virtex-5 CLB slice contains four LUTs and four FFs (From [79]).111
Figure 63. Configuration of low-power ProASIC3 device core VersaTile (From [93]). 113

Figure 64. Degradation of propagation delay versus TID for RT ProASIC3 (From

[83])..114
Figure 65. Footprint of Molex Micro-Fit 3.0 6-pin header for power supply to FPGA

core and I/O bank voltages. ...118
Figure 66. Footprint of FlashPro4 JTAG 10-pin header for programmer interface.118

Figure 67. Schematic view of PA3TB ‘Bank 2’ connections to USB connector and

BIT0 through BIT7 LEDs. ...120
Figure 68. Schematic wiring diagram of JTAG interface header to ProASIC3 nano

connection points on PA3TB. ..121

Figure 69. Manufactured four-layer PCB with gold surface pads and through-hole

vias. ..123
Figure 70. External camera view of ProASIC3 nano soldering to PCB board as seen

through the microscope. ...124
Figure 71. All three ProASIC3 Test Boards soldered and integrated – ready for

testing. ..125
Figure 72. Test bench setup of ProASIC3 Test Board wired to power supply;

FlashPro4 interface via USB to desktop computer station and programmer

interface..126
Figure 73. Current 2-D layout and 3-D component placement of SADv3 Relay

daughter-board with size and shape for proper enclosure fit (From [98]).138
Figure 74. Eight-layer stack of the SAD Version 3 – Flight Prototype Board with

internal power planes and external signal layers. ..139
Figure 75. Final fanned-out configuration of the ProASIC3EL FPGA with multiple

signal layers and all vias visible...140
Figure 76. Bottom plane pattern of vias within FPGA footprint on eight-layer PCB

with room for center-channel power decoupling capacitors.141
Figure 77. Logic block diagram of Cypress Semiconductor 4-Mbit (256k words × 16-

bit) SRAM devices illustrating address and data line use (From [99])..........142

xiv

Figure 78. Logic block diagram of Numonyx™ 64-Mbit embedded flash-memory

devices illustrating address, data, and signal line use (From [107]).143
Figure 79. TPS79601 adjustable LDO regulator programming schematic for proper

specification of R1 and R2 values (From [109]). ..145

Figure 80. Schematic wiring of SRAM and flash-memory devices with address,

control, and data lines as specified by design documents.146
Figure 81. 40-pin general digital and LVDS headers as placed on the schematic.146
Figure 82. Location of SRAM and flash-based memory chips relative to BGA FPGA

device; JTAG header visible in lower-right corner.147

Figure 83. Auto-route testing of SRAM and flash-memory connections to

ProASIC3EL FPGA across four-layer signal planes.148
Figure 84. Initial 3-D footprint placement of FPGA and memory devices in isometric

view of PCB top plane. ..148

xv

LIST OF TABLES

Table 1. Overall hardware comparison between Actel ProASIC3 and Xilinx Virtex-

5 series FPGAs illustrating strengths and weaknesses.45
Table 2. Approximate relationship between different vendors FPGA logic blocks

(After [72]). ..46
Table 3. Comparison of FPGA development boards used in logic design and

testing. ..48
Table 4. Characteristics of ProASIC3 nano FPGA (A3PN250) utilized in

development of ProASIC3 Test Board (After [74]).52
Table 5. Characteristics of ProASIC3L BGA (A3PE600L) utilized in development

of SAD Version 3 – Flight Prototype Board (After [75]).56

Table 6. FPGA worst-case path timing for various fault-tolerant designs.....................75

Table 7. FPGA resource utilization for various fault-tolerant design methods.75
Table 8. Synplify Pro generated state table for FSM logic. ...92

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

2-D Two-Dimensional

3-D Three-Dimensional

AES Advanced Encryption Standard

AIAA American Institute of Aeronautics and Astronautics

APIC Auxiliary Payload Integrating Contractor

ASIC Application-Specific Integrated Circuit

BGA Ball Grid Array

BTMR Block TMR

C Celsius

CAD Computer-Aided Drafting

CAM Computer-Aided Manufacturing

CCC Clock Conditioning Circuit

CFTP Configurable Fault-Tolerant Processor

CLB Configurable Logic Block

cm
2
 Square Centimeter(s)

CMOS Complimentary Metal-Oxide Semiconductor

Co Cobalt

COTS Commercial Off-The-Shelf

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CSEWI California Space Education and Workforce Institute

DC Direct Current

DSP Digital Signal Processing

xviii

DTMR Distributed TMR

EDA Electronic Design Automation

EELV Evolved Expendable Launch Vehicle

EEPROM Electrically Erasable PROM

EHP Electron-Hole-Pair

EMI Electromagnetic Interference

ESPA EELV Secondary Payload Adapter

F Fahrenheit

FF Flip-Flop

FPD Field Programmable Device

FPGA Field Programmable Gate Array

FROM Flash ROM

FSM Finite-State Machine

GHz Gigahertz

GND Ground

GTMR Global TMR

HDL Hardware Description Language

I/O Input/Output

IC Integrated Circuit

ID Identification

IEEE Institute of Electrical and Electronics Engineers

in
2
 Square Inches

IP Intellectual Property

ISE Integrated Software Environment

ISim ISE Simulator

xix

ITAR International Traffic in Arms Regulations

JTAG Joint Test Action Group

kbit Kilobit(s)

kbyte Kilobyte(s)

kg Kilogram(s)

km Kilometer(s)

kΩ Kilo-Ohm(s)

krad Kilorad(s)

lb Pound(s)

LDO Low-Dropout

LED Light-Emitting Diode

LFSR Linear Feedback Shift Register

LTMR Local TMR

LUT Lookup Table

LVDS Low-Voltage Differential Signaling

Mbit Megabit(s)

Mbyte Megabyte(s)

MBU Multiple Bit Upset

MeV Mega-Electron Volt

µA Microamp(s)

µF Microfarad(s)

µm Micrometer(s)

mg Milligram(s)

MHz Megahertz

mi Mile(s)

xx

mil Thousandth(s) of an Inch

mm Millimeter(s)

Mrad Megarad(s)

NASA National Aeronautics and Space Administration

NEA Non-Explosive Actuator

NPS Naval Postgraduate School

NPSCuL NPS CubeSat Launcher

NRE Non-Recurring Engineering

NRO National Reconnaissance Office

ns Nanosecond(s)

OTA Over-The-Air

OUTSat Operationally Unique Technologies Satellite

P&R Place and Route

PA3TB ProASIC3 Test Board

PAL Programmable Array Logic

Pb Lead

PCB Printed Circuit Board

PLA Programmable Logic Array

PLD Programmable Logic Device

PLL Phase-Locked Loop

P-POD Poly-Picosatellite Orbital Deployer

PROM Programmable Read-Only Memory

PSRR Power Supply Rejection Ratio

QFDR Quadruple Force Decide Redundancy

Rad-Hard Radiation Hardened

xxi

RAM Random-Access Memory

RFI Radio Frequency Interference

RHBD Radiation Hardening by Design

RNG Random-Number Generator

RTL Register-Transfer Level

RTOS Real-Time Operating System

SAD Splitter Auxiliary Device

SADv3 SAD Version 3 - Flight Prototype Board

SBU Single Bit Upset

SDK Software Development Kit

SDR Software-Defined Radio

SDRAM Synchronous Dynamic Random-Access Memory

SEE Single-Event Effect

SEL Single-Event Latchup

SET Single-Event Transient

SEU Single Even Upset

SMT Surface-Mount Technology

Sn Tin

SoC System on Chip

SOI Silicon on Insulator

SOS Silicon on Sapphire

SRAM Static Random-Access Memory

STEP Standard for the Exchange of Product Data

SWAP Size, Weight, Area, and Power

TID Total Ionizing Dose

xxii

TIR Triplicated Interwoven Redundancy

TMR Triple Modular Redundancy

TSOP Thin Small-Outline Package

TTL Transistor-Transistor Logic

USB Universal Serial Bus

VCC Positive Voltage Source

VDC Volt(s) Direct Current

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuits

VLSI Very-Large-Scale Integration

VQFP Very Thin Quad Flat Package

XPA Xilinx Power Analyzer

XST Xilinx Synthesis Tool

xxiii

EXECUTIVE SUMMARY

The research work contained in this thesis documents a means of implementing fault-

tolerant logic for use in a sequencer application developed for deploying CubeSats. The

sequencer being developed at the Naval Postgraduate School (NPS) in Monterey, CA

shall be capable of the timing and accurate launch of multiple CubeSat platforms from a

host spacecraft and shall have the capability for quick reconfiguration prior to launch.

This sequencer is one particular application of the general payload processor architecture

developed in this work. This payload processor architecture is flexible enough to

accommodate future needs and applications with few design alterations required.

The NPS CubeSat Launcher (NPSCuL) currently utilizes host spacecraft

resources to control the timing and execution of CubeSat deployment through a simple

splitter architecture. Previously manufactured Splitter Auxiliary Device (SAD) versions

incorporate wiring harnesses or printed circuit board (PCB) traces to accomplish power

and signal splitting and recombining. The developed SAD Version 3 – Flight Prototype

Board (SADv3) utilizes a field-programmable gate array (FPGA) device to accomplish

the sequencing with primary and secondary power provided by the host spacecraft.

Although SADv3 expects to get power from the launch vehicle bus, future versions may

be designed with a capability for an internal battery power supply. By utilizing various

fault-tolerant design techniques, the need for a fully radiation hardened (rad-hard) FPGA

can possibly be avoided. This would save a great deal of money and could result in a

product capable of missions beyond low Earth orbit (LEO). While LEO is of primary

interest, there may be opportunities to send the general payload processor hardware to

geosynchronous (GEO) or perhaps even interplanetary orbits.

Several sequencer design methodologies are investigated. Since the sequencer

requires only primary or secondary power, a finite-state machine (FSM) architecture is

the appropriate choice. To limit the amount of logic required in the general payload

processor architecture, a decision to avoid central processing unit (CPU) designs, such as

an ARM processor core, was made. The need for embedded processing lends itself well

to an FPGA-based implementation. Types of FPGAs compared include antifuse, static

xxiv

random-access memory (SRAM), and flash-based designs. The hybrid approach of flash-

based FPGAs allows for several benefits such as reconfiguration and live-at-power-on

capability, with no boot sequence or secondary support components required, along with

increased tolerance to certain radiation effects.

The overall goal of this research is to allow for the operation of a processing

circuit in the radiation environment of space. Many of the various single-event effects

(SEEs) that may affect the operation of the sequencer logic are considered. Of these,

single-event upsets (SEUs), single-event transients (SETs), and single-event latch-ups

(SELs) are investigated in further detail. These SEEs along with the amount of total

ionizing dose (TID) tolerable by the various classes of FPGAs are an important driver to

selection of a particular FPGA. Various forms of radiation fault-tolerant methods are

considered for use within the sequencer logic—including scrubbing at set intervals, triple

modular redundancy (TMR), quadded logic, triplicated interwoven redundancy (TIR),

and quadruple force decide redundancy (QFDR). Since radiation hardening by design

(RHBD) is the primary focus of this thesis, further investigation into these types of fault-

tolerant methods is justified, and the results become the rationale for selection of a

particular fault-tolerant implementation.

A comparison between Xilinx and Actel software and hardware products is made

to determine the best applicable development suite for design of the sequencer logic. Of

the two software products, Xilinx Integrated Software Environment (ISE1) 14.3 is the

more capable product due to its incorporation of a schematic editor. In addition, the

design flow of Xilinx software is more user-friendly and supports rapid re-targeting to

different Xilinx FPGA products. Ultimately, the choice of software will depend upon the

particular vendor of FPGA product chosen; although, there is a work-around for porting

Xilinx schematically designed circuits to Actel instantiations. Since Xilinx devices are

primarily SRAM-based, and Actel FPGAs are either antifuse or flash-based, selection of

the vendor is primarily dependent on choice of FPGA architecture. In addition to the

previously mentioned hybrid advantages of flash-based FPGAs, the Actel ProASIC23

1 ISE® is a registered trademark of Xilinx, Inc.

2 ProASIC® is a registered trademark of Microsemi Corporation.

xxv

series has the added benefit of pin-to-pin and timing compatibility between military-

grade and rad-hard components. Even with the added difficulty of adopting Actel Libero3

System on Chip (SoC) software over Xilinx ISE, the associated hardware attributes

inherent to the ProASIC3 series are beneficial. Therefore, an Actel ProASIC3 is chosen

as the FPGA for the sequencer design. Various development boards used in the

performance of logic testing included designs from the Xilinx Spartan4-3E, Xilinx

Virtex5-5, and Actel ProASIC3 series FPGAs; these were purchased to allow for all

software development platforms to be tested.

Prior to development of the more complex SADv3, a ProASIC3 Test Board

(PA3TB) was designed and implemented. This provided significant experience with the

Altium Designer6 electronic design automation (EDA) development environment. The

Altium product suite allows for front-end schematic development, physical printed circuit

board (PCB) layout, and FPGA hardware design. Testing of the Joint Test Action Group

(JTAG) interface was possible on the PA3TB prior to implementation of an identical

JTAG connector interface on the SADv3. The PA3TB incorporates a ProASIC3 nano

series FPGA using a core voltage of 1.2 VDC. Bank input and output (I/O) voltages are set

at 2.5 or 3.3 VDC levels with CubeSat deployment simulated using light-emitting diode

(LED) indicators. The four-layer PCB utilized in the PA3TB serves as a precursor to the

eight-layer SADv3 design. Additional experience was realized through surface-mount

soldering in the construction of the PA3TB. All power supply circuitry for the PA3TB is

located off-board for ease of troubleshooting the main FPGA and JTAG design. JTAG

programming is accomplished via a Microsemi FlashPro74 USB-to-JTAG external

programmer. A standard USB port is also provided on the PA3TB for interfacing with the

design and possible future data-logging capability.

3 Libero® is a registered trademark of the Microsemi Corporation.

4 Spartan® is a registered trademark of Xilinx, Inc.

5 Virtex® is a registered trademark of Xilinx, Inc.

6 Altium Designer® is a registered trademark of Altium Limited.

7 FlashPro is a trademark of the Microsemi Corporation.

xxvi

The implementation of a ball grid array (BGA) FPGA in the prototype flight-

hardware design is a more involved process than the development of the PA3TB. The

incorporation of a BGA into the design limits manufacture to companies with the

necessary equipment to accomplish the integration of the PCB. To provide for future

expandability and features, SRAM and flash-based memory were added to the design.

This added memory allows for additional processing features and data storage. Military-

grade Actel ProASIC3E/L FPGAs are used in the design of the SADv3; these devices

allow for pin-to-pin replacement with a rad-hard Actel RT ProASIC3 FPGA should a

mission require more robust hardware. The complexity of the PCB design is markedly

increased due to an increased layer count and the requirement to manage the 484 pins of

the BGA FPGA. Due to the increased risk of design error, extensive design review is

necessary to prevent errors propagating to the final product. The PCB shape is tailored

for optimum fit within the SAD enclosure utilized on NPSCuL. The design is a daughter

board configuration for pairing with an associated relay board in the SAD box.

In addition to the memory devices, the increase in SADv3 board area allowed for

the inclusion of all power supply and power conditioning circuitry on the PCB. The

increase in the number of FPGA I/O pins allow for the inclusion of three 40-pin headers

for general-purpose use. A breadboard prototyping area is also provided to allow for

future capability development using the PCB. An external crystal oscillator is provided

for increased timing accuracy and directly connects to the FPGA for utilization in logic

designs. Auto-routing of the design proved difficult as the decisions of the auto-router are

not always in the best interest of the overall PCB layout. The fan-out features of Altium

work well, after a considerable amount of setup time, to properly distribute the signals

lines from the BGA FPGA to the four signal layers and four voltage planes. The majority

of signal lines on the SADv3 are manually routed.

To test various fault-tolerant techniques for inclusion in the sequencer, different

combinational and sequential logic circuits were implemented. These designs were tested

in the Xilinx and Actel software environments. An initial test of redundancy techniques is

accomplished by constructing a seven-segment LED counter upon a Xilinx Spartan-3E

development board. The design is triplicated schematically with code directives to the

xxvii

synthesis tool. These directives prevent undesired logic removal by the automatic

synthesis tool. Proper operation and timing of the design were seen in the default and

triplicated cases of logic. A 16×16-bit array multiplier was constructed to further

compare the various fault-tolerant schemes implemented. Fault-tolerant techniques are

altered by varying the format of the overall design, mechanisms of full adder

instantiation, and the inclusion of voter circuits as necessary for operation. A baseline

scheme, TMR, quadded logic, triplicated interwoven redundancy (TIR), and stacked

Quad-TMR / TIR-TMR fault-tolerant techniques are developed as versions of the array

multiplier. In all cases, the outputs of the array multipliers implemented were identical.

Although TIR uses the least resources of any fault-tolerant scheme, TMR has the best

combination of device utilization and timing delay for logic design. There is future

opportunity for research into different TMR schemes using commercial software such as

Precision8 Hi-Rel.

Manual insertion of fault injection techniques leads to the comparison of floating-

input, ‘stuck-at-0’, and ‘stuck-at-1’ faults. Preliminary research into a method of

automatic and random fault injection is conducted, with several methods identified for

further inspection. While the baseline FSM produces false timing signals or non-valid

signal levels during fault injection runs, the TMR version of the FSM is able to overcome

any errors in each of the three fault cases. Timing and resource utilization differences

between the baseline and TMR versions of the FSM logic are small. In the future, the

additional fault-tolerant techniques that need to be researched are variations in TMR

design methods and clocking generation.

Preliminary sequencer logic design is accomplished by developing code and

schematics within Xilinx ISE that are subsequently ported to Actel Libero SoC. The

initial sequencer logic includes the possibility of setting timing constants either as

Verilog parameters or in the FlashROM area of the Actel ProASIC3 FPGA. The logic to

be triplicated must be appropriately marked to reduce the possibility of trimming in

Libero SoC. The resultant logic design can utilize either case or state switching within

8 Precision® is a registered trademark of Mentor Graphics.

xxviii

Verilog to more fully define the operation of the sequencer logic. Schematic design

within Xilinx ISE may be avoided once Actel Verilog techniques are fully developed.

The switch from the Xilinx to Actel software environment is an important step toward

verification of the design and ease of reconfiguration.

Future mission features of the general purpose payload processor are envisioned

to incorporate desired logic in a TMR representation. Due to the remaining logic

available on the ProASIC3 FPGAs, there are a considerable number of projects which

may be researched for inclusion. These may consist of telemetry and data-logging by the

FPGA, two-way communication and charging of the CubeSats within the launcher, video

feed and recording of CubeSat launches, and potential networking features to the host

spacecraft bus – in addition to the already in-progress sequencer development. A

complete signal path verification of the current eight-layer, BGA SADv3 should be

accomplished prior to manufacture of the board. This will consist of a series of design

reviews by multiple engineers. Future testing within a radiation environment, prior to

launch, is also an important step in verifying the chosen fault-tolerant technique of TMR.

In conclusion, there are a number of applications for which the ProASIC3 general

purpose payload processor is suitable. The sequencer work contained in this thesis is one

application in which a significant gain in the state of current CubeSat deployment

technology may be realized. The ability to deploy CubeSats using TMR logic should be

quite cost effective when compared to custom, rad-hard components, possibly with no

loss of fault tolerance. TMR is useful for protecting both combinational and sequential

circuits, especially given the available fault-tolerant software toolsets. Future designs

using Actel flash-based FPGA technology may have wide applicability due to its

configurability and the flexibility with which the I/O pairs can be assigned. The

compactness of the ProASIC3 circuit design, when compared to the more traditional

Xilinx Virtex series FPGAs, is readily apparent. It is anticipated that this design, or some

evolution of it, will be quickly developed into a flight-ready product.

xxix

ACKNOWLEDGMENTS

The author would like to thank Dr. Hersch Loomis and Dr. Jim Newman for their

time and devotion to this project. Our bi-weekly meetings were instrumental in keeping

this project on track and providing insight and suggestions toward the work. There were

several times that a perceived roadblock was avoided, due to the consistently excellent

mentorship you both provided. Additionally, thank you for the career guidance and

inspiration throughout my time at the Naval Postgraduate School.

Additionally, I would like to thank all the personnel present within the Small

Satellite Laboratory—specifically David Rigmaiden and Ernesto Yzquierdo. The time

you both spent giving helpful tips on learning Altium Designer and methods of soldering

under the microscope were very influential to the success of this project. You are both

instrumental to the success of the laboratory as a whole and NPS is lucky to have people

like you on staff.

Thank you to all the other excellent professors and Space Systems Academic

Group personnel who both instructed and guided my time here in Monterey. Many of the

classes were excellent and led to methods and tactics used throughout the performance of

this research. I honestly feel as if I have an excellent foundation for future success, based

on the knowledge obtained in the Space Systems Engineering curriculum.

I would like to thank my fellow classmates in the program—Matt DeMartino,

Pete Firenze, Nolan Semrau, Al Perez, Allan Phillips, Jessie Hallan, Kerri Ackman,

Marta Savage, Mike Becker, Travis Bateman, Jason Crane, and Maddie Studholme. You

have all become great friends and it was wonderful to feel like a team during our many

shared classes and design project. Also, thanks to my friends Mike Smith and Rich Ray. I

wish you all continued success in the future. Fair winds and following seas!

Most importantly, I would like to thank my family—namely my wife, Jessica, and

son, Michael, for the countless time they donated toward allowing me to finish my work

and the thesis writing process. You two are my foundation and reason for every decision I

make. I love you both, more than you could ever imagine.

xxx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE

The purpose of this research is to determine an effective solution for

implementing radiation fault tolerance utilizing inexpensive hardware coupled with a

robust logic design. The need for fault tolerant processing drives the development of

solutions targeted to the space environment, with particular interest in payload processing

designs. By careful exploration of various logic implementations, the developed product

will be capable of full operation in a radiation environment through redundancy in logic

design.

This research led to the development of a hardware and logic implementation

suitable for a general payload processor package. The first specific application of the

payload processor is a sequencer for CubeSat launching applications. This sequencer is of

primary interest because a low-cost, flight-ready sequencer does not exist. Similar

commercial products cost upwards of hundreds of thousands of dollars for space-related

applications. The primary cost drivers in the selection of these devices tend to be the

amount of non-recurring engineering (NRE) development time and manufacturing that

must accompany the design. The additional cost of fully radiation hardened components

are not even factored in to these designs. The cost of such devices can easily exceed the

budget of all but the largest CubeSat1 projects. Due to the expense of purchasing

radiation hardened (rad-hard), commercial off-the-shelf (COTS) technology, an

alternative lower-cost solution is desired. It is expected that development of a sequencer

will provide a cost-effective solution for government CubeSat launches.

The technology behind fault tolerance in processors as applied to timing and

sequencing devices is presented in this thesis, leading to the development of a sequencer.

This sequencer is expected to have many of the same characteristics of more expensive

radiation hardened products while using less costly commercial and military-grade

1 CubeSats are nanosatellites. The term “nanosatellite” is applied to a satellite with a mass between

1 kg and 10 kg (2.2 and 22 lbs) [1].

2

components. The lack of hardware robustness against upsets is compensated for with

fault-tolerant techniques in the logic design itself. Various fault-tolerant techniques are

explored leading to the selection of the best logic design suitable for the radiation

environment of space. This sequencer must be capable of executing a pre-programmed

deployment sequence when the launch vehicle initiates power and deploy commands.

The CubeSats may be deployed sequentially at specified intervals, or, in some cases,

simultaneously.

The need for the sequencer to be re-programmable prior to launch, to have the

capability for future logic growth and the redundancy necessary to deal with space

radiation upsets, has led to the use of field programmable gate arrays (FPGAs) in the

project. Multiple manufacturers and product lines are considered to determine the

particular design configuration for the sequencer design. The developed logic designs are

synthesized and implemented on commercial development boards to provide testing and

experience with chosen FPGAs and secondary components.

Development of the hardware is carried through the research and schematic

design phases. Full printed circuit board (PCB) layout is accomplished with techniques

and difficulties discussed along the way. Initial test circuitry was assembled to gain

familiarity with chosen components prior to final circuit board manufacture. The final

circuit board design will be easily expandable for future projects or substitution into

designs requiring a general-purpose processing capability in an easily modified form-

factor. In all cases, the design will complement work already completed prior to the

initiation of the FPGA-based sequencer research. Though the chosen FPGA technology

and fault-tolerant techniques apply specifically to deployment sequencer development in

this thesis, the implemented methods have broader applications to space-based processors

in general.

3

B. NAVAL POSTGRADUATE SCHOOL CUBESAT LAUNCHER (NPSCUL)

BACKGROUND

1. NPSCuL Objective and History

The Naval Postgraduate School (NPS) in Monterey, CA, uses small satellites for

focused research projects of national interest. NPS has several established CubeSat

projects along with associated lab support. The Small Satellite Laboratory is equipped

with capabilities such as a ‘Class 10k’ cleanroom, thermal vacuum chambers, vibration

table, radio frequency interference (RFI) / electromagnetic interference (EMI) testing

anechoic chamber, microscope-equipped soldering stations, and a large commercial-scale

three-dimensional (3-D) printer. In particular, NPS has recently been involved in the

development, integration, and launch of the NPS CubeSat Launcher (NPSCuL). NPSCuL

launched on September 13, 2012, as part of the Operationally Unique Technologies

Satellite (OUTSat) mission—carrying eleven CubeSats into orbit on NROL-36 [2].

NPSCuL was developed with support of the California Space Education and Workforce

Institute (CSEWI) and the CubeSat Program Office at the National Reconnaissance

Office (NRO).

2. NPSCuL Physical Design Characteristics

The NPSCuL design uses existing standards such as the Poly-Picosatellite Orbital

Deployer (P-POD) from the California Polytechnic University and the EELV Secondary

Payload Adapter (ESPA) mechanical interface. As illustrated in Figure 1, NPSCuL is

capable of carrying eight P-PODs; each P-POD is capable of deploying up to three 1U

CubeSat spacecraft [3]. An ESPA interface ensures compatibility with multiple launch

vehicles. NPSCuL itself is a five sided box comprised of a base-plate, four walls, four

brackets and the ESPA-compatible, non-separating adapter ring. The non-separating

adapter ring could be replaced by a Planetary Systems Mark II Motorized Lightband2 [4],

allowing NPSCuL to be deployed.

2 MKII Motorized Lightband is a registered trademark of the Planetary Systems Corporation.

4

Figure 1. Final payload configuration and integration of NPSCuL with eight P-PODs.

Deployment signals, either directly from the launch vehicle or via an on-board

sequencer box, are required to activate the non-explosive actuators (NEAs), open the P-

POD doors, and deploy the CubeSats. To support both these scenarios, NPSCuL can be

configured as follows:

 If the launch vehicle has adequate resources (i.e., redundant power and

signal lines) then it may be outfitted with a Splitter Auxiliary Device

(SAD) to accept eight primary and secondary power signals from the

launch vehicle and pass them through to the P-PODs. The SAD also has a

pass through for lines monitoring the status of the doors on each of the P-

PODs [5].

 If the launch vehicle does not have adequate resources (i.e., only a single

primary power, secondary power, and data line are available) then a

sequencer is required. This device can be powered by the launch vehicle

or by an internal battery and must be capable of providing deploy signals

and monitoring the status of the P-POD doors switches [5].

The development of the sequencer is the primary concern of this thesis in order to

satisfy the limited resources scenario. Such a sequencer will first be useful for missions to

low Earth orbit (LEO). Beyond-LEO applications could include deployment of CubeSats

in geostationary Earth orbit (GEO) or for use as a payload processor for interplanetary

missions in a greatly increased radiation environment. In any of these scenarios, a fault-

tolerant design must prevent radiation-induced upsets in logic.

5

3. History of Sequencer Requirement

Currently, NPSCuL utilizes the host-launcher resources for the timing and

execution of the deployment of the individual CubeSats from their P-POD. The SAD

takes the eight lines from each of the launcher-provided primary power, secondary

power, and data harnesses and splits them out to eight separate harnesses, each containing

one primary power line and one secondary power line for redundancy in actuating the P-

PODs NEA, and one data line for monitoring the P-POD door microswitches. Each of

eight harnesses is connected to one of the P-PODs, as illustrated in Figure 2. The first

iteration of the SAD consisted of an internally harnessed, splitter configuration, as shown

in Figure 3.

Figure 2. NPSCuL with associated Splitter Auxiliary Device (SAD) and external wiring

visible.

Figure 3. Internal wiring harness structure for SAD depicting power and data line split

to eight output ports.

6

4. Concept of Sequencer Development

The need for a sequencer was realized shortly after the development of NPSCuL

was initiated. The design of the sequencer, though simple in principle, should take into

account the radiation environment in LEO. There were two approaches envisioned – one,

that a radiation and fault-tolerant circuit be designed with the latest in integrated circuit

(IC) and manufacturing processes; two, a robust approach involving individual discrete

components with feature sizes and voltages that are inherently resistant to radiation

induced upsets. This second approach was tailored to industrial parts such as automotive

relays and other lower cost components and is the study of a separate, parallel research

project. For the purposes of this thesis, only the first approach was considered. The

constraints of the fiscal environment precluded the use of the most expensive rad-hard

hardware, although, an upgrade path to that technology was considered. Thus, through

utilizing lower-cost, commercial and military-grade components, drop-in compatibility of

the more expensive rad-hard technology has been maintained. Future processing growth

potential was also considered, with emphasis placed on both logic space available and

incorporation of subsequent electrical connections.

In modern FPGA applications, especially those dealing with space-based

applications, the topic of fault detection and tolerance is often discussed. While there

have been a myriad of approaches to sustain the operability of such devices in the past,

recent advancements in both FPGA size and application have required updated, or in

some cases new, techniques to be developed. Typical methods such as triple modular

redundancy (TMR) have been further subdivided into categories based upon

application [6]. New methods such as quadruple force decide redundancy (QFDR) [7] are

being looked at as a means toward further refinement without the associated overhead of

voter circuits. In all of these cases, the aim is to successfully protect the FPGA device

from the effects of radiation-induced single-event upsets (SEUs) and multiple-bit upsets

(MBUs) which can seriously impact, or even end, a mission.

Various FPGA-specific cost metrics are utilized in comparing the fault-tolerant

techniques evaluated. These include device-resource utilization, path-delay timing, ease

of implementation, proper logic output, and availability of commercial solutions. The

7

metrics are assessed after concluding work on a particular fault-tolerant scheme. Logic

design software allows for calculation of resource utilization and timing delays. Ease of

implementation is more of a subjective realization regarding the time to manually insert

the required fault tolerance means. In all cases, the designs are tested for logic accuracy

in output under normal operating conditions. Fault injection is used to test for proper

logic output in circuit degraded scenarios. Certain fault-tolerant schemes such as TMR

are available in many commercial synthesis products; others, like quadded logic, have no

commercial implementation and require intense amounts of time and effort to implement.

Future testing with commercial, fault-tolerant synthesis software, under a radiation

environment, will yield more data for assessing the effectiveness of a particular fault-

tolerant technique.

5. Sequencer Requirements and Specifications

For the sequencer application of the general purpose payload processor being

developed, there are several requirements that must be considered prior to complete

specification of the design and the logic approaches investigated. Specifically, the

sequencer will be capable of initiating the door opening of the P-PODs either individually

or simultaneously. The application of power, either through primary or secondary power

supplies, serves to start the internal timing of the sequencer application. The inputs to the

sequencer are minimized, in that application of power serves as both the ‘Arm’ and

‘Deploy’ signal necessary to facilitate the deployment of the payload CubeSats. The

removal of power to the sequencer device is sufficient to stop the deployment process.

The timing sequencer and deployment of CubeSats will be reinitiated by again supplying

power to the device.

There are secondary requirements for the CubeSat launch sequencer which are

important in the context of both the environment and application involved. These include

radiation tolerance, reconfigurability, low-cost, and suitability toward differing

applications. Specifically, the functional requirements of this application require that the

general purpose payload processor be capable of operation in the radiation environment

of space. This requires careful study of the various methods involved in targeting a

8

design with fault-tolerant aspects and an understanding of the relevant radiation

environment. Several different logic designs will be investigated to determine the

appropriate technique for fault-tolerance necessary for the sequencer application.

Functionally, the design needs to be capable of operation even in the radiation

environment of space. This operation should be indistinguishable from the operation of

fully radiation-hardened hardware while allowing for an upgrade path to such hardware if

desired. Additionally, the design is targeted to produce the same performance of such

hardware, without the overhead of associated expense.

The reconfiguration aspect of the design leads to the choice of FPGA technology,

with the associated requirement for the sequencer to be adjusted for timing at any point

prior to launch when physical access to the device is still possible. Thus, given the

requirements for operation and design, the following specifications for the sequencer can

be derived:

 The general purpose payload processor (sequencer application) should fit

in the same relative size and form-factor as the previous NPSCuL SAD

enclosure space.

 Operation of the sequencer should be indistinguishable from that

occurring if the launch vehicle had initiated P-POD door openings.

 A significant reduction in the number of incoming signal and power lines

is required occur due to on-board logic taking the place of required

external interfaces and data lines.

 The sequencer shall be capable of opening the doors of any of the P-PODs

individually, or simultaneously, as the application warrants.

 The sequencer shall be capable of timing reconfiguration at any point prior

to launch, when physical access to the device is still possible. This

capability may be refined in future revisions to allow for remote

reconfiguration. (Low Priority)

9

 Application of primary or secondary power is sufficient to start the

deployment sequencer. Likewise, the removal of these power sources is

sufficient to halt the deployment process and power down the sequencer.

 The sequencer shall possess the proper fault-tolerant logic constructs to

allow for continued operation in the presence of a radiation environment,

particularly while in low earth orbit and possibly out to geosynchronous

orbit.

 The sequencer shall utilize commercial or military-grade, off-the-shelf

hardware whenever possible to lead to an overall lower-cost. Hardware

upgrade to radiation hardened versions should be allowed for with

minimal re-design effort.

 The sequencer should have sufficient logic overhead to allow future,

secondary functions to be added with no change to the hardware design.

This will allow for future expansion and/or the application of the hardware

to designs other than the sequencer application.

C. RELATED WORK AND DOCUMENTATION

There have been many theses researching various fault-tolerant techniques, along

with past development of FPGA-based hardware [8]–[15]. These works are related in

their applicability toward the space environment and various developmental approaches

toward the design of FPGA logic and circuitry. In particular, the previous thesis material

on the development of the Configurable Fault-Tolerant Processor (CFTP) project was a

good starting point for the research contained herein. CFTP was a multi-year, multiple-

student research project aimed at the orbital flight of an experimental package designed

to test for radiation tolerance properties and mitigation techniques in earlier-generation

FPGA technology [8]–[15]. The work on CFTP is still on-going with a second flight

scheduled to take place in August 2015, with the launch of NPSAT1 [16]. The CFTP

design uses SRAM-based FPGAs and provides a comprehensive guideline for the use of

TMR within that type of technology. In this thesis, all available FPGA technologies are

compared and evaluated for use in the final sequencer implementation.

10

Differences between this research and earlier CFTP theses include the type of

technology utilized, number of secondary component requirements, transition from

combinational to sequential logic, method of power-on configuration, and the transition

from a test experiment to practical application. CFTP showed that logic redundancy was

an important aspect of design when applied to the LEO radiation environment. It is not a

question of if, but of how many, events would occur in LEO due to the radiation

environment. The experiment was designed to report radiation events and CFTP’s

response to them so as to benefit future fault-tolerant logic designs and hardware designs.

Lessons learned from that research have led to an evolved selection of technology and

logic design for this thesis.

D. CONCEPT OF DEVELOPMENT STRATEGY

Goals of this thesis research include the manufacture and integration of an initial

sequencer test board, hardware schematic design and preliminary PCB layout of the flight

prototype board, and selection of a particular fault tolerance technique for

implementation into the sequencer. Since the sequencer is one specific application of the

general payload processor design, the board will incorporate features to allow for easy

expansion to other mission sets. All devised logic and prototype hardware will require

extensive design review prior to board manufacture. In the future it is hoped to test the

design at a radiation test facility to determine fault tolerance effectiveness prior to

exposure to radiation in the space environment.

To maximize the amount of time available for sequencer design research,

including hardware and logic development, concurrent tasks were undertaken in the

course of this research. From comparison of FPGA technologies and fault-tolerant

schemes, choices are made regarding applicable devices and logic for implementation.

After down-selection to a particular product line, a decision was made to quickly

manufacture a sequencer test board. This resulted in considerable design experience with

the hardware design software prior to implementation of the more complex flight

prototype board. Since the lead time for design of a flight prototype board is vastly

greater than the sequencer test board, work on the logic design occurred simultaneously.

11

This allowed for logic error testing of the chosen fault-tolerant schemes at the same time

final hardware layout occurred.

E. THESIS ORGANIZATION

In Chapter I, the history of the sequencer requirement and a concept of application

have been presented. This research relates to NPSCuL and follow-on missions, with

information provided concerning related projects. The concepts of sequencer design,

radiation hardening, and fault-tolerance techniques are discussed in Chapter II. A survey

of field programmable gate arrays and selection of the particular FPGA and development

boards used are presented in Chapter III. The preliminary hardware design of the

sequencer test board and modification of the hardware design to a final sequencer logic

board are presented in Chapter IV. A comparison of fault-tolerance methods and

implementations, fault injection techniques, and preliminary sequencer logic design, is

presented in Chapter V. Conclusions and recommendations for follow-on research are

presented in Chapter VI. A comparison of vendor products, including existing software

suites, hardware solutions and development kits, are contained in Appendix A. All

schematics, circuit board layouts, and data sheets for the sequencer test board are

contained in Appendix B. All schematics, circuit board layouts, and data sheets for the

final sequencer logic board are contained in Appendix C. Documentation of the HDL

source coding and test bench setups are contained in Appendix D.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

II. SEQUENCERS, RADIATION HARDENING, AND FAULT-

TOLERANCE

A. SEQUENCER DESIGN METHODOLOGY

1. Timing Concerns Specific to Initiating P-POD Deployment

The sequencer design is such that a pre-determined, periodic set of events is

triggered in response to the power supplied by the launch vehicle bus. The clocked

synchronous state machines within the sequencer must be robust enough to withstand the

radiation environment of space, neither permitting premature deployment nor failing to

deploy at all. The sequencer must be capable of energizing and de-energizing multiple

outputs for variable amounts of time. Additionally, the re-programmable aspect of the

sequencer demands that the implementation of the design not be dependent upon the

wiring configuration of the overall circuit board or the associated supporting components

such as resistors or capacitors. Many commonly used timing circuits are based on

technology such as oscillators or 555 timer integrated circuits (ICs) whose timing outputs

are fixed once inserted in a certain configuration [17]. These are insufficient for the

design of a reconfigurable sequencer, as one should be able to re-program the deployment

sequence as long as access to the SAD interface remains available.

There are several options available which would meet the demands of sequencing.

The use of a central processing unit (CPU), such as an ARM processor core, running

some form of real-time operating system (RTOS) would be applicable to the sequencer

development [18]. The resource demands, both in power consumption and protection of

the CPU against radiation upset, are limiting factors in the use of this approach toward

the sequencer development. Many of the rad-hard designed FPGAs preclude the inclusion

of processing units (disabling them in hardware) to prevent these shortcomings in space

applications [19].

The other option involves selection between various field programmable devices

(FPDs). FPGAs are a type of FPD; ‘field programmable’ refers to configuration

capability once installed without disassembly of the circuit. Programmable logic devices

14

(PLDs) are purely combinational devices while FPGAs provide both combinational and

flip-flop logic. PLDs typically consist of two basic types – simple PLDs, which are

usually either programmable logic array (PLA) or programmable array logic (PAL3), or

complex PLDs (CPLDs), which allow more than one logic block as well as configurable

interconnections [20]. The configurable PLA, consisting of logical connections in its and-

plane and or-plane, is a good analogue for the manner in which FPGAs are

configured [20]. Since simple and complex PLDs are purely combinational and lack the

memory devices of FPGAs, they are not suitable for implementing the sequencer finite-

state machine (FSM). The mechanisms of operation and the physical characteristics of

FPGAs are discussed in Chapter III and Appendix A.

2. Chosen Approach

The FSM to be implemented in the sequencer will allow for the power-on signal

to provide an ‘Arm’ situation when the sequencer is first turned on. The sequencer will

initiate the ‘Deploy’ signal from its internal logic to begin the CubeSat deployments.

Once the command to deploy has been given, the machine architecture will be fully

capable of moving from state to state without additional inputs from the host platform.

Should there be a desire to stop the sequence for a contingency, power can simply be cut

to the sequencer device, which will place it back in a fail-safe configuration. This may be

further reinforced with secondary hardware, such as relays for an added layer of

protection against misfire. This approach is in line with the derived requirements

specified in Chapter I.

The risk of logic upsets in a microprocessor in a radiation environment leads to

the decision to utilize FPGA-based technology within the sequencer. FPGAs are a highly

flexible means for implementing the sequencer FSM, where complex sequential timing

outputs are necessary. The FPGA-based approach gives more flexibility than an

embedded microprocessor and is expandable to perform other mission functions besides

sequencing. The various PLDs previously discussed are all of combinational logic design

and would require external memory devices to allow sequential operation. This would

3 PAL is a trademark of Advanced Micro Devices.

15

greatly add to the complexity of the design and introduce points of failure between the

added memory and interfaces. Since FPGA-based technology is capable of many of the

functions of a CPU, without the added requirement of an operating system, FPGAs are

the logical choice for incorporation into the sequencer. Some background knowledge

about FPGAs and their operation is important before down-selection to a particular

product.

B. RADIATION HARDENING

Radiation can ionize atoms and disrupt a semiconductor’s crystal structure. High-

energy neutrons, which are present in the radiation environment of space, arise from the

subatomic particles ejected from the Sun and deep space. A neutron that strikes a silicon

atom in a semiconductor IC results in the ejection of heavy ions, as seen in Figure 4 [21].

These heavy ions can further lead to device effects, SEEs, as the possibility of firm or

soft errors in logic blocks or the routing interconnect may result. Even in today’s low-

alpha compounds in FPGA packaging materials, alpha particle emission due to uranium

and thorium present in molding compounds can present another significant challenge by

making it difficult to protect the devices fully from SEEs [21].

Figure 4. Neutron radiation strike of silicon atom resulting in ejection of heavy ions

leading to firm error in transistor (From [21]).

16

While there has always been a problem of radiation within the space environment,

older technologies had the benefit of largely segregated and independent components.

The large can-size transistors and low-number integrated circuit counts of the 1960s and

1970s served to protect the computers and equipment placed into space based on their

feature sizes alone. As technology-level integration increased, and the number of

transistors on ICs grew, the problem of SEEs was seen to manifest itself in ways which

were wholly unfamiliar to logic designers of a generation before [22]. New methods of

physical shielding and protection from the radiation environment were devised—and

differed greatly from those previously developed to combat the strong blast type effects

from a nuclear attack. Many of these schemes centered on proper logic operation of the

circuit under varying environmental conditions. Such techniques included the use of voter

circuits within TMR to correctly provide for functioning of the circuit with erroneous

conditions present [23]. TMR has been successfully employed on computers for fault-

tolerant behavior since the design of the Saturn V Launch Vehicle Digital Computer in

the early 1960s [24].

1. Single-Event Effects (SEEs)

The general term for the effect caused by the interaction of high-energy particles

with circuit elements in ICs is the single-event effect (SEE). The charged particles

created by the ionization trail along the path of an incoming radiation particle can induce

upsets in the states of transistors [25]. These may take the form of logic state changes,

current and voltage spikes within the circuit elements, or permanent damage to the

transistor itself. In general, SEEs fall into two categories – soft errors and hard errors, as

seen in Figure 5. Soft errors are those events that have no damaging effects and are

cleared by subsequent device operation, while hard errors are those events resulting in

lasting damage [25].

The recoverable soft errors are further categorized into several groups, of which,

SEUs (including single-bit errors and MBUs) and single-event transients (SETs) are of

the most interest. Likewise, hard errors can be classified into several categories; single-

event latch-up (SEL) events are discussed further to provide an example of non-

17

recoverable errors. Both of these categories of events are of primary interest for the

performance of the sequencer.

Figure 5. Single-event effects classification diagram illustrating difference between

recoverable and non-recoverable errors (From [25]).

a. Single-Event Upsets (SEUs)

Single-event upsets are the result of high-energy particles causing a

change in the state of a memory element (SRAM, flash memory, FF, or latch) [25]. These

can be further subdivided into single-bit upsets (SBUs) or MBUs. SBUs are by far the

most common SEE seen in space-related applications [25]. The results of a SEU can lead

to the erroneous output of data, which uncorrected can provide little faith in the

correctness of the logic circuit in operation.

MBUs are becoming more of an issue with later generations of hardware

ICs, including the most recent revisions of FPGAs. As the transistor count has increased

on devices, the associated transistor size has decreased. The probability of a particle

crossing an individual bit might decrease, but the charge threshold usually also falls [26].

In addition, the number of bits on a device increases due to the increased transistor count,

making the device as a whole more sensitive. Thus, a radiation impact upon the devices

lattice structure has more of a potential to create cascading effects in the transistors

surrounding the impact zone. This is illustrated in Figure 6, where five additional bit cells

are upset due to the generation of an oxygen ion by an incident proton in 130-nm

18

complimentary metal-oxide semiconductor (CMOS) memory [27]. This may lead to

MBU issues which are difficult to correct with legacy techniques. Studies have indicated

that in one to five percent of SEU cases, MBUs may also be triggered [28].

Figure 6. MBU of six bits triggered by proton induced oxygen heavy-ion in 130 nm

CMOS memory cells (From [27]).

b. Single-Event Transients (SETs)

SETs result when a high-energy particle impacts a combinatorial path of a

device and can induce a voltage or current spike. Although SETs are temporary in nature,

they can lead to long-term effects if they trigger undesirable actions such as power resets.

If the pulse width of the spike is sufficient and occurs at the right time, it can propagate

throughout the circuit [25]. SETs differ from SEUs in affecting combinational rather than

sequential logic. An SET may be indiscernible from a SEU if the transient propagates to

the input of a FF during the clocking window of the FF. As a result, SETs can become the

primary source of observable errors if hardening is incorporated into an FPGA’s

sequential logic [29].

SETs pose a potentially serious threat to spacecraft as evidenced by

system malfunctions in operational missions. These failures include NASA’s

19

TOPEX/Poseidon satellite, TDRS, Cassini-Huygens and others. In most cases, the SETs

caused the satellites to switch into a failsafe mode, in which all nonessential systems

were temporarily powered down until the cause was identified [30]. For the sequencer,

such an event could be detrimental to the deployment sequence, as a power-down event

could greatly impact the mission. Although the sequencer could be resumed after a

transient event, this would delay the deployment timing, possibly in an unacceptable

manner. For this reason, one must look into not only the SEU mitigation techniques for

FPGAs but also the SET tolerance.

c. Single-Event Latch-ups (SELs)

A single-event latch-up (SEL) is a type of circuit latch-up induced by

radiation [25]. This is one of the most common CMOS IC failures in the space

environment and can degrade IC performance and potentially cause permanent

failures [31]. Many space systems cannot tolerate even one SEL. Recent studies indicate

that SELs may be caused by nuclear recoil interaction of protons with Tungsten plugs

commonly used in high-density ICs [31]. These errors may be cleared by power cycling

but in many cases may result in permanent damage and may be non-recoverable. For the

FPGA-based sequencer, SELs must be avoided at all costs, with priority given to the

technology with the greatest inherent resistance to SELs.

2. Total Ionizing Dose (TID)

Gamma ray photoinduced ionization damage is initiated when electron-hole-pairs

(EHPs) are generated along the track of secondary electrons emitted via photo-material

interactions such as that with silicon. The density of EHPs generated along the tracks of

charged particles is proportional to the energy transferred to the target material. The

stopping power or linear energy transfer (LET) expresses the energy loss per unit length

(dE / dx) of a particle [32]. It is a function of the energy of the gamma ray photon and the

target material’s density. The total amount of energy deposited by a gamma ray photon

that results in EHP production is commonly referred to as total ionizing dose (TID) [32].

The typical unit of TID is the rad, which denotes the energy absorbed per unit mass of a

material. One rad is equivalent to 100 ergs absorbed by one gram of the target material

20

[32]. An excellent background discussion of the physics behind EHP generation leading

to accumulated TID is provided in [32] and [33]. The most common method of protection

from TID effects is physical shielding of the PCB. This is accomplished by design of the

overall enclosure or protective measures around individual components. Other means of

protection from TID effects include the manufacture of specifically targeted radiation-

tolerant FPGAs, such as the Xilinx Virtex QV space-rated series of devices. Methods to

increase the tolerance of these devices include manufacturing on a substrate such as

silicon on insulator (SOI) or silicon on sapphire (SOS) and an increase in feature size to

aid in resistance to radiation induced failures.

3. Testing of FPGA Hardware in Radiation Environments

Common means of producing various types of radiation for both SEE and TID

testing include the use of a nuclear source, commonly cobalt-60 (Co-60), to produce a

collimated gamma-ray beam [34]. Methods to generate broad-spectrum neutrons include

bombarding a thick beryllium target with energetic deuterons from a cyclotron [35]. This

is a highly-efficient process for testing for neutron SEEs and has been employed by light-

ion accelerators for many years.

A common metric for measuring the radiation tolerance of an FPGA device is

failures-in-time (FIT). One FIT represents a single failure in one billion hours of

operation; a system that experiences one failure in 13,158 hours has a failure rate of

1×10
9

 / 13,158 = 76,000 FITs. Acceptable FIT rates for commercial applications are

fewer than 100, while acceptable FIT rates for system-critical applications (including the

sequencer) are fewer than 20 [36]. Acceptable FIT rates for the sequencer could possibly

be as high as one failure in one hundred thousand hours, equivalent to one failure in

about thirteen years of run time. This corresponds to 10
4
 FITs, producing a success rate

of 99.999% or better for the sequencer’s roughly one hour of operation.

4. Radiation Protection Approaches

In looking to safeguard a system against the environment of space, multiple

solutions are available to protect electronic systems from radiation in particular. These

may be used independently or in combination to provide an optimum solution for the

21

radiation environment. Commonly utilized techniques include physical shielding of the

device or radiation avoidance by mission design [37]. Since the CubeSat Ride Share

missions are currently relegated to LEO, the radiation in the outer toroid of the Van Allen

radiation belts are beyond the altitude of the mission. The South Atlantic Anomaly, due

to asymmetry of the inner Van Allen belt, is closest to the Earth’s surface at 200 km (124

mi) in altitude and presents the majority of the radiation received in LEO [38]. These two

radiation belts are illustrated in Figure 7. Thus, radiation avoidance by mission design

will be somewhat limited based on the planned orbit of the host spacecraft prior to

deployment. For future missions extending beyond LEO, the radiation environment of

GEO and deep space can be expected to further challenge the sequencer design.

Figure 7. Inner and outer torus-shaped layers of plasma of the Van Allen radiation belts.

Energetic electrons form the outer belt; the inner belt consists of protons and

electrons (From [39]).

Other radiation protection approaches are beyond the scope of the sequencer

project. These protection approaches include radiation hardening by process which

22

employs specific materials and non-conventional processing techniques and is usually

performed on dedicated rad-hard fabrication lines [37]. The protection approaches which

are under design control include radiation hardening by architecture and radiation

hardening by design. The radiation hardening by architecture technique typically

incorporates redundant configurations and component selection. This can be implemented

at the component, board, subsystem, or spacecraft level [37]. Some of this will be utilized

in the development of the FPGA-based sequencer; the overall architecture of the

developed PCB will incorporate as many duplicative protection features to support the

FPGA as possible.

Certain forms of radiation faults are protected against, depending on the level of

protection required, by selecting the appropriate device line within a vendor’s product

offering. Devices are often classified as radiation-tolerant when they offer limited

resistance to SEL, SEB, and TID effects. Some resistance to these effects is afforded in

the commercial and military-grade lines of FPGAs depending on the vendor and

production processes. In general, commercial grade devices provide almost no radiation-

tolerant properties and are rarely suitable for critical aerospace applications. Certain

military-grade level FPGAs provide limited radiation-tolerant properties and can be used

with varying degrees of success for critical aerospace applications when combined with

other fault-tolerant logic methods. Typically, these military-grade components are used as

prototyping devices before purchase of the more robust radiation-hardened FPGAs.

In contrast, the full radiation-hardened devices typically provide much better

resistance to SEU and SET effects. This resistance is due to the production processes

inherent in the design and manufacture of the FPGAs. The logic cells within the devices

are designed with a larger feature size and replicated in hardware to allow for the greatest

level of resistance to SEEs as a whole. Coupled with the radiation tolerance afforded by

the design of internal fault-tolerant logic, these physical hardware differences combined

with fault-tolerant logic development are called radiation hardening by design (RHBD).

The majority of this thesis research considers the protection approach afforded in

RHBD. A portion of this technique incorporates fault-tolerant logic design techniques

within the FPGA layout to overcome many of the SEU and SET challenges in the space

23

environment, as covered in Section C of this chapter. After introduction to the techniques

in this chapter, the various schemes will be implemented in logic and tested further in

Chapter V. Additionally, error correcting memory, parity bits, and watchdog timers are

often utilized to provide even more protection. In Appendix A, TID tolerances provided

by certain vendors and types of FPGAs are explored with a final selection based upon the

best combination of hard and soft fault tolerances.

C. FAULT TOLERANCE

Fault tolerance is the ability of a system to continue to perform its tasks after the

occurrence of faults [40]. The ultimate goal of fault-tolerant design is to prevent system

failure from occurring. Various requirements satisfied by the introduction of fault

tolerance to a system include: dependability, reliability, availability, safety, performance,

maintainability, and testability [40].

1. Scrubbing / Re-programming at Intervals

Within the FPGA, the internal logic matrix most vulnerable to SEU effects is the

configuration memory. It is this portion of the device that provides the configurable

Boolean constructs and memory for operation of the developed FPGA logic. Depending

upon the area of the configuration memory affected by a SBU or MBU, the device may

have no indications of erroneous output other than transient invalid data being passed. In

the worst cases, the FPGA may be altered in such a manner that consistently wrong

outputs are generated, or the FPGA may cease to function altogether. Further discussion

of FPGA physical configuration memory construction is provided in Chapter III.A.

One of the most common and easiest ways to safeguard an FPGA’s configuration

memory from SEUs involves the use of scrubbing. To ‘scrub’ an FPGA, as it is known,

involves the complete re-flashing or re-programming of the device at a specified interval

to mitigate or prevent the effects of SEUs upon the device [41]. Unfortunately, this

requires either that the rate be such that it will not affect the functionality of the FPGA or

that it be done regionally, in real time, so that the portion of the FPGA with the upset is

reconfigured while other sections continue work. This partial reconfiguration capability is

important in real-time operational scenarios. In the case of digital signal processing

24

(DSP) functions, the complete halt of a processing capability to allow for complete

reconfiguration would be unacceptable. Thus, a capability to partially reconfigure based

upon the partitioning scheme and fault-tolerance method implemented is desired. If errors

are detected in a portion of logic, that section of logic should provide an event trigger to

cause partial reconfiguration of the specific partition. This can be implemented via an

error detection line with a counter technique to determine repeated errors. Both of these

reconfiguration approaches may greatly cut down on the allowable resources of the

device, or the quantity of time in which it is fully utilized – therefore, their use should be

carefully evaluated before implementation.

2. Triple Modular Redundancy (TMR)

In simplest terms, TMR involves triplicating the logic functioning of the device

(in the critical path sections) and including a set or series of voter circuits to determine

majority output for proper operation [42]. In majority voting, the best two of three wins

the vote and is considered the correct output. Unfortunately, if there is an error in the

voter circuits themselves or the output path, then the voting scheme can lead to an overall

logic failure. Triplicating voters guards against this type of failure. As such, the voters

should be designed with sufficient logic to detect errors when compared to the other

voting logic to trigger complete or partial reconfiguration of that portion in the TMR

scheme. To better design for the environment of space, and to reflect the increased

probabilities of SEUs and MBUs in newer FPGA series, new methods of TMR have been

developed [43].

a. Block TMR (BTMR)

The oldest form of TMR is known as Block TMR (BTMR), whereby the

three levels of replicated logic are majority voted in one voter circuit [43]. Signal tracing

between the triplicated logic outputs and the output of the voter circuit is useful in

eliminating the voter as a suspect error source. By limiting the voter circuits to one copy,

there is an overhead circuitry requirement to continuously monitor triplicated logic

outputs in order to provide this troubleshooting method. Additionally, if one of the

triplicated logic circuits should fail completely, then the ability to correct errors in any of

25

the remaining logic is lost. When coupled with the ever-present radiation environment of

space, this leads to a highly increased probability of total failure for a mission.

b. Local TMR (LTMR)

As depicted in Figure 8, an improvement over BTMR is Local TMR

(LTMR). In this case, the redundancy and triplication is done only at the Flip-Flop (FF)

level where the results of the voted logic are transferred back to the FFs in feedback

paths [43]. This has the advantage of masking and correction and greatly increases the

overall reliability of the circuit in question. Unfortunately, the problems of clock skew

and reset lines are not handled, and Single-Event Transients (SETs), which can lead to

SEUs are still a possibility.

Figure 8. Local TMR with all sequential elements tripled and followed by a majority

voter (From [44]).

c. Global TMR (GTMR)

As illustrated in Figure 9, Global TMR (GTMR) has the largest overhead

of FPGA utilization and is also the most complex. In it, all sections of the FPGA are

triplicated – three separate clocks with three separate domains [43]. The upset rate in

26

such a circuit is very low. This would be at first glance the most advantageous; however

it is the most power hungry and wasteful of FPGA resources. It can be difficult to

implement if large object libraries are used and difficult to verify and test such large

designs. Additionally, the problem of clock-skew and mismatch between the three

disparate clocks must be considered in the design methodology [43].

Figure 9. Global TMR with all sequential elements, combinatorial logic, majority

voters, clocking signals and global buffers triplicated (From [44]).

d. Distributed TMR (DTMR)

Lying somewhere in the middle of all these approaches is Distributed

TMR (DTMR) – while similar to GTMR in that all logic and sequential elements are

triplicated – the clock and resets are not [43]. That is to say, there is only one clocking

and reset path. This is illustrated in Figure 10. This is seen to have many of the

advantages of GTMR without the clock skew and mismatch concerns of the former. The

clock line is still susceptible to effects. Often though, clock drivers are sufficiently less

susceptible to SEEs. In all of the TMR techniques, the problem of verification of all

nodes is seen to exist and becomes more challenging as feature sizes shrink and logic

usage increases [43].

27

Figure 10. Distributed TMR with all sequential elements, combinatorial elements and

majority voters triplicated. Clock signal is shared among resources (From [44]).

3. Quadded Logic

In quadded logic, all involved gates are replicated four times. Errors are corrected

soon after they occur, since neighboring good values correct faulty values [45]. Quadded

logic does not use voting schemes to determine error values and positions. Rather, it

masks errors using logic gates with a particular interconnection pattern.

As illustrated in Figure 11, Tryon conceived of a notion where an error may

initially spread through the first series of logic gates but would be corrected further down

the circuit. It is in this way that quadded logic can be thought of as a ‘self-healing’

circuit. The absence of voters occurs due to the fact that the logic values at the outputs

should all have identical values by the time they reach that stage. The only conceivable

failure point would occur should one of the last stage logic gates provide the wrong

output due to error in that stage. For that reason, and the desire to recombine the quadded

logic signals back into a singular value, voters or other recombination techniques are

sometimes reintroduced to provide both of these desired properties. One difficulty with

quadded logic is the lack of an error signal to trigger reconfiguration. Periodic scrubbing

is necessary.

28

The interconnection patterns between gates are chosen such that the same pattern

is not encountered twice consecutively. This is done in the cases when going from an

AND gate to an OR gate or vice versa, as seen in Figure 11. There is an exception to this

rule when connecting like gates. When driving an AND gate by an AND gate or an OR

gate by an OR gate, the connecting patterns to the first and second identical gates must

also be identical. This is not the case, however, when connecting NAND or NOR gates.

In these cases, like NAND or NOR, repeating gates should have differing interconnection

patterns.

Figure 11. Quadded logic illustrating error propagation and masking (From [46]).

4. Triplicated Interwoven Redundancy (TIR)

As the simplest form of random interwoven redundancy, triplicated interwoven

redundancy (TIR) exists as a useful comparison to the techniques of TMR and quadded

29

logic. There are some of the interwoven benefits of quadded logic combined with the

triplicated nature of TMR. Similar to TMR designs, TIR requires a voter at the outputs as

a restoring device. The design of a TIR half-adder, without the associated voting logic, is

represented in Figure 12.

The general procedure for constructing a TIR circuit involves starting with the

non-redundant form of the circuit, triplicating each gate, and then using the

interconnection pattern of the non-redundant circuit – randomly selecting a gate from

each triplet pair to use as an input for a gate that has no other inputs from the same triple.

That is to say, the output of a gate in a pair of triplets is paired with the output of a gate in

another pair of triplets to form the inputs of a gate in the next stage. This last step is

repeated until all of the gates are connected in the TIR circuit. The method would be

identical to TMR if the connection pattern utilized repeating inputs from the same triplet.

Thus, TIR is a generalization of TMR to allow for random interconnections.

Figure 12. Design of TIR half-adder implementation illustrating interwoven connections

(From [47]).

Previous work and simulations have shown that the reliability of TIR circuits with

random interconnections are comparable to their TMR equivalent circuits [47]. For

certain interconnection patterns, the TIR structure would present weaker performance

30

than TMR where a single error’s effect in a circuit is not confined only to one set of

outputs. The interconnection pattern used for experimental testing in the thesis was

selected to alleviate much of these concerns. As with quadded logic, no error detection

signal is provided, so periodic scrubbing is necessary.

5. Quadruple Force Decide Redundancy (QFDR)

Much of past logic research has dealt with the concept of quadded logic as it

applies in the historical context of interest—dealing with AND and OR gates. Quadruple

Force Decide Redundancy (QFDR) takes this idea further by applying it to larger general

Boolean constructs—namely, the LUTs and FFs present on FPGA devices, as illustrated

in Figure 13. The differences between quadded logic and QFDR allow for the FPGA

resources to be allocated manually in a more efficient manner than allowing synthesis to

auto-allocate resources. By specifying both the number and attachment point of the

individual LUTs and FFs, one has greater control of the synthesis effort. This is

accomplished by taking the output of the map phase and manually making edits to the

layout before the place and route phase occurs [48]. This can be a very time intensive

application of fault-tolerance. There are some software tools to aid in this approach;

although, none are fully autonomous.

Figure 13. QFDR substituting LUTs and FFs constructs for logic gates (From [48]).

31

6. Advantages and Disadvantages of Various Fault-Tolerant Techniques

There are many inherent advantages and disadvantages of the above techniques

when implemented in logic. Scrubbing of an FPGA usually guarantees a clean working

state of the device; however, it typically incurs large time penalties. These can be

somewhat mitigated if partial reconfiguration is applicable to a certain device. TMR has

the advantage of a long history of application and testing in the space environment. While

the utilization requirements for the circuit are slightly more than three times the amount

of logic when compared to a non-TMR design, the timing requirements for the design

should only incur a modest penalty due to the addition of the voter circuit. The various

subsets of TMR will be further studied to determine the appropriate instantiation for the

particular type of circuit in development.

Quadded logic and QFDR techniques have the disadvantage of utilizing even

more logic resources than TMR. The elimination of a required voter circuit may be an

advantage since that eliminates a single point of failure from the design, as the

implementations mask any faults by the time the logic values reach the output state.

Another advantage may come from increased MBU resiliency. Overall, both quadded

logic and QFDR appear to be viable techniques; although, the automated methods of

implementation have yet to be developed. TMR insertion using software such as Xilinx

TMRTool4 or Mentor Graphics Precision5 Hi-Rel remains the only automated means for

fault-tolerance insertion into existing logic designs [49], [50]. These logic design

software packages are discussed in Chapter V.

TIR exists as a hybrid approach between TMR and quadded logic, with the TMR

design being a special case of a TIR solution. An inherent disadvantage is the uncertainty

in the proper output unless the proper interwoven pattern is chosen. Timing conclusions

for TIR, as compared to the TMR-case, remain to be seen. The suitability of the various

fault-tolerant techniques compared in this study is assessed fully in Chapter V.

4 TMRTool® is a registered trademark of Xilinx, Inc.

5 Precision® Hi-Rel is a registered trademark of Mentor Graphics Corporation.

32

D. CHAPTER SUMMARY

The concepts of sequencer design, radiation hardening and fault tolerance were

discussed in Chapter II. An FSM logic design was chosen for its suitability in the

sequencer. Considerations unique to the CubeSat launching application are contributing

factors to the FSM approach. Different types of programmable logic devices were

analyzed with the FPGA being chosen as the most applicable hardware type. Trends in

FPGA development were discussed with an emphasis placed on the evolution of the

technology into different subcategories of underlying architecture.

Background information regarding radiation effects in semiconductors was

provided with a full description of recoverable versus non-recoverable errors. SEEs are

subdivided into categories of SEUs, SETs, and SELs with an emphasis placed on those

events which could impact the FPGA-based CubeSat deployer in a LEO radiation

environment. TID resiliency is seen as another common metric for comparison between

FPGA vendors’ products with the means of conducting testing for SEEs and TID

introduced. RHBD is considered the focus of research within this thesis.

Various means of fault-tolerant logic implementation were discussed with a

breakdown of particular approaches. The particular advantages and disadvantages of

scrubbing, TMR, quadded logic, TIR, and QFDR were presented. Initially, TMR is seen

as the preferred choice due to software availability and a long history of use in space

applications.

33

III. FIELD PROGRAMMABLE GATE ARRAYS AND SELECTION

OF SEQUENCER TECHNOLOGY

A. FIELD PROGRAMMABLE GATE ARRAYS

The field programmable gate array is an IC designed to be configured by the end-

user after manufacture of the chip is completed [51]. The configuration process is aided

by the use of various hardware description languages (HDLs) including VHDL, Verilog

and schematic design. These HDLs are translated to actual FPGA layout configuration

via various logic computer-aided drafting (CAD) software suites. These CAD software

tools are usually vendor specific; although, generic toolsets are available. FPGAs have

largely superseded custom application-specific integrated circuits (ASICs) as the method

of choice for rapid prototyping of logic circuits [52]. Though custom ASICs are still often

designed for large-quantity or application critical situations, FPGAs are rapidly becoming

the primary device all the way to manufacture. This is largely due to the low-cost of

FPGAs relative to the development costs inherent in ASIC production [52]. When ASICs

are still required, the FPGA is an important tool in prototyping logic circuits that will

eventually be laid out during very-large-scale integration (VLSI) logic design. There are

even FPGAs onboard the most recent Mars rover, Curiosity [53].

1. Physical Construction

The typical FPGA is internally configured as a matrix of logic blocks, input /

output blocks (I/O), and programmable interconnects [54], as illustrated in Figure 14. In

all cases, the internal configuration is programmable and, in many FPGA hardware types,

re-programmable. This reconfiguration may take place as a wholesale re-programming of

the device or a partial reconfiguration of certain sections of the FPGA. The partial

reconfiguration capabilities of a particular FPGA device are dependent on the vendor and

particular series of device utilized. In all cases, the particular reconfiguration

characteristics of a device should be fully understood to allow for a combination of

partial reconfiguration simultaneously with other fault-tolerant techniques.

34

Figure 14. Typical FPGA internal architecture consisting of configurable logic blocks,

I/O blocks and programmable interconnects (From [54]).

a. Internal Fabric

FPGAs are usually structured in a two-dimensional array with corridors

dividing the rows and the columns used for global interconnects between the logic cells

of the array [20]. Each cell consists of a combination of logic functions and flip-flops that

can be programmed to perform a desired function. Logic functions are often implemented

as lookup tables (LUTs) since they are basically small, programmable random-access

memory (RAM). Newer FPGAs may contain more sophisticated building blocks such as

adders and RAM. RAM blocks can be further used to build register files [20] as shown in

Figure 15. Together these cell clusters of LUTs, gates, adders and RAM blocks can be

termed configurable logic blocks (CLBs) or ‘slices.’ FPGAs that contain 16 and 32-bit

CPU cores can often be found in commercial use; however, the use of FPGAs with built-

in CPU cores are extremely limited in space-based applications. This is due to the

previously mentioned difficulties with radiation and power consumption.

35

Figure 15. Typical FPGA logic cells with associated LUTs, gates, adders, memory

devices, and interconnect buffers visible (From [55]).

In addition to the ability to program individual cells for various functions,

the interconnections between cells are also programmable. This allows FPGAs with

hundreds of blocks and hundreds of thousands of gates to be utilized for complex logic

functions. Interconnect is a major challenge in custom chips—this also holds true in the

case of FPGAs. In many FPGAs, 90% of the area is reserved for the interconnection

matrix and only 10% is dedicated toward logic and memory blocks [20]. The perimeter of

the FPGA is typically surrounded by I/O blocks which are also programmable. On higher

density devices, these I/O blocks can also be found running parallel to the corridors

36

onboard the device, allowing for connection to ball grid array (BGA) device pins [56].

These I/O blocks allow for various data lines to be routed to the appropriate pins of the

device with reconfiguration possible at a later point. I/O blocks provide buffering and the

appropriate voltage and current levels necessary to drive externally interfaced

components at the signal level required. Often, these I/O blocks are grouped into I/O

banks with differing voltage levels possible for various bank clusters.

b. Programmability and Reconfiguration

In general, the method of programming FPGAs involves writing HDL

such as Verilog or VHDL and is known as configuration. Schematic diagrams may also

be developed to do the same function. In most cases, the schematic designed is translated

into an intermediate HDL format through the programming interface. This allows one to

create a schematic representation of a logic circuit and later instantiate it through a code

representation. After synthesis of the HDL code, the developed design is ready for

translation, mapping, and place and route phases of implementation. It is at this point that

a programming file can be generated for construction of the logic upon the desired

device. The actual configuration of FPGAs takes place when the bitstream format of the

programming file is loaded onto the device. All of the logic block, I/O block, and

interconnect logic is configured on the device at this point in the development cycle. This

configuration cycle may be repeated at any point in the future, dependent upon the nature

of the technology with which the FPGA is constructed.

Arguably, the largest benefit stemming from the development and rapid

adoption of FPGA technology is the short time-span in which reconfiguration of devices

is possible. Akin to a software upgrade within a computer, or firmware upgrade within a

flash memory device, the re-programmable aspect of FPGAs allows for quick and easy

maintenance of hardware logic. This ‘field programmable’ capability changes much of

the traditionally held notion that once hardware was deployed, one would have to replace

that hardware in order for capabilities upgrade or bug corrections. Many of the current

approaches to FPGA reconfiguration involve “over-the-air” (OTA) re-programming,

often at a remote location from the actual physical location of the FPGA device [57].

37

Partial reconfiguration allows an FPGA to implement many concurrent

functions and to change those functions while the system is running [58]. This is done by

partitioning the device into several regions which may be re-programmed without

impacting the other sections of the device. This dynamic reconfiguration during runtime

is the real advantage of partial reconfiguration. Each vendor’s FPGAs have significant

differences in the partial reconfiguration technique, advantages and perceived benefits

due to the close coupling of the underlying FPGA fabric with the ability to partially

reconfigure [59]. One of the largest benefits for partial reconfiguration would come in

communications—the field of software-defined radios (SDRs). The partial

reconfiguration of such a device, to allow for more modes or channels in specific

frequency ranges, while the radio continues to operate on other areas of the FPGA, is

extremely attractive.

Applied to the CubeSat deployer, such a reconfiguration technique could

be utilized to reconfigure the sequencer portion of the FPGA while another region of the

device is still operating. This would be useful in future scenarios where expected feature

upgrades to the sequencer will allow for multiple secondary functions. These functions

could include such features as remote CubeSat monitoring via telemetry, video feed of

the launch sequence occurring, and overall monitoring and data collection for NPSCuL.

The ability to execute these mission areas simultaneously while still allowing for remote

OTA re-programming is recommended for future study. For the first iteration of the

sequencer, only the ability to execute the deployment sequence reliably is researched.

This initial design will be reconfigurable through an interface on the SAD, with future

designs possibly incorporating OTA reconfiguration. Another function of partial

reconfiguration is configuration-fault repair, which was presented in more detail in

Chapter II.

2. Historical Overview of FPGA Technology

PLD development was a new industry in the early to mid-1970s, developed by

companies such as Motorola, Texas Instruments, and IBM [60]. The ability of PLDs to

have not only programmable logic but programmable interconnection fabric gave rise to

38

the FPGA industry. Much of the groundwork for programmable logic arrays, gates and

logic blocks are found in the two patents by David W. Page and LuVerne R. Peterson

filed on January 11, 1983 [61], [62]. These patents were the first to incorporate the

aspects of dynamic re-programmable PLAs. This gave way to the notion of devising a

high-density programmable logic device from an SRAM cell in the mid-1980s. Ross

Freeman founded the Xilinx Corporation in 1984 and successfully obtained a patent for a

‘Configurable Electrical Circuit Having Configurable Logic Elements and Configurable

Interconnects’ on September 26, 1989—the first FPGA [63]. Seiko Epson—

Semiconductor Division manufactured the first FPGAs for Xilinx in 1985 with a 1,000

gate ASIC equivalency and clock speed of 18 MHz. This FPGA, the XC20646 had both

programmable gates and programmable interconnects—64 configurable logic blocks

(CLBs) each with two 3-input lookup tables (LUTs) [64].

Recent advancements in IC manufacturing techniques have led to a series of

devices with feature sizes that were unthinkable in years before. These advancements

have extended to FPGA families with some of the more advanced series (Xilinx Virtex7 6

or 7) containing millions of logic devices onboard. In contrast to the XC2604, a Virtex 7

with a clock speed of 1.866 GHz, may contain up to 305,400 CLBs with a total logic cell

count of 1,954,560 and 1,221,600 6-input LUTs [65].

With the reduction in feature size comes the added burden of an increased

probability of SEUs occurring. Indeed, the smaller the feature sizes of the devices, the

larger the problem and associated probability of failure [66]. Additionally, the newer

problem of cascaded SEUs occurring in a section of a device, or an MBU occurring, has

been seen to markedly increase over the past couple of generations of devices. The

specifics of SEEs and MBUs, challenges of radiation-induced failures, and the associated

mitigation techniques were previously discussed in Chapter II.

For every generation of FPGA developed—the time it takes to fully space qualify

an FPGA is seen to increase markedly. The physical differences between commercial and

6 XC2064® is a registered trademark of Xilinx, Inc.

7 Virtex® is a registered trademark of Xilinx, Inc.

39

space-grade devices, and various radiation effect challenges, are presented in Chapters III

and IV. Even though the Xilinx Virtex 7 series has been released for some time, only the

Virtex 5QV series has been developed as a rad-hard variant of its commercial counterpart

[67]. This is a lag time on the range of three to five years from release of their

commercial counterparts. Obviously, a new method of fault tolerance is desired—to

allow commercial or military grade devices to produce similar performance as a fully

rad-hard, flight tested FPGA, in an identical environment. This change could reduce the

need for the product lines of rad-hard devices from various manufacturing companies

(Xilinx, Actel, Altera); however, it would readily open up their more recent and capable

products to the space environment where they are currently not targeted.

3. Types of Modern FPGA Technology

The method of FPGA construction has evolved in recent years to one of three

primary forms of design and implementation. Depending on the method of operation,

these various FPGA technologies all possess their own set of strengths and weaknesses.

In order to properly compare the three technologies: antifuse, SRAM-based, and flash-

based FPGAs—the relevant design features and differences are presented.

a. Antifuse-based FPGAs

Antifuse technology is a type of permanent configuration that allows a

connection to be made or broken once, upon initial programming. The antifuse FPGAs,

while configurable, are not re-configurable types of devices. The permanent connections

involve the creation or destruction between two wires. Antifuse-based FPGAs use a small

piece of dielectric, usually smaller than 1 μm
2
, as an open switch between the two lines.

Layers of amorphous Silicon in the vias provide isolation between metal layers. Where a

connection between the two metal lines is desired, a programming pulse is used to short

out the dielectric. When this configuration voltage is applied, the amorphous silicon

changes to a low impedance state, creating a metal-to-metal interconnect [68].

There are some benefits to this type of technology since it does not need to

be configured each time power is applied to the device. It is this live-at-power-up

capability that makes antifuse FPGAs a true single-chip solution for circuit design,

40

similar to ASICs. In addition, antifuse FPGAs do not suffer from radiation-induced

configuration faults as their SRAM-based counterparts do [69].

b. SRAM-based FPGA Implementations

Reconfigurable FPGAs store their configuration in some form of memory.

This memory is often static random-access memory (SRAM) in its implementation. In

SRAM-based FPGAs, the configuration is downloaded at power-on with the contents

controlling the setting of various switches. These switches in turn determine which metal

lines are connected within the FPGA interconnects and logic blocks [20]. There are three

primary disadvantages of SRAM-based FPGAs—one, that the configuration is volatile

and must be re-loaded at each subsequent power-on; two, the use of active transistors for

switches slightly increases the resistance of such connections; and three, SRAM

technology is more susceptible to SEUs due to its inherent structure and design [20].

Vendors of SRAM-based FPGAs typically offer higher logic densities when compared to

antifuse based solutions with nearly the same performance and speed levels [69]. This

makes them an attractive option for space-based implementations.

The design decisions related to the use of SRAM-based FPGAs include

the selection of secondary components to support boot configuration and the manner in

which to configure within the time allocated for system startup. When a SRAM-based

FPGA experiences a brownout or power-glitch, dedicated circuitry such as voltage

supervisors and CPLDs must be in place to capture these events and force a reset and

reconfiguration of the FPGA [69]. All of these design factors lead to a greater system

cost, higher associated mass, increased circuit complexity, and higher power

consumption. Since the sequencer is a resource intended for the space environment,

weight and power consumption are important issues for consideration.

Previous thesis work done at NPS regarding CFTP utilized Xilinx Virtex I

and II FPGAs for the experimental componentry. These types of devices are SRAM-

based technology and required additional components for support such as synchronous

dynamic random-access memory (SDRAM), programmable read-only memory (PROM),

and electrically erasable PROM (EEPROM), as well as the discrete devices to support

41

those, including resistors, capacitors, voltage regulators, and an oscillator [9]. The

EEPROM and PROM provide the configuration storage for the two FPGAs.

c. Flash-based FPGAs

Existing as a hybrid of antifuse and SRAM-based FPGA technologies,

flash-based FPGAs offer many of the benefits of the two previously discussed types.

These FPGAs utilize flash cells to store configuration information. Positive or negative

charge stored on floating-gate transistors is used to hold pass transistors in either “on” or

“off” states. This either opens or closes connections between routing tracks and logic

resources [70]. This is similar to the method utilized for storage in typical flash-based

memory, as illustrated in Figure 16. The flash cells are nonvolatile due to the storage of

charge within the floating-gates, even when power is removed from the circuit.

Figure 16. Internal flash transistor configuration with charge build-up in floating gate

allowing for reconfiguration and nonvolatile storage (From [71]).

The flash-based technology allows the logic blocks, I/O block, and

reconnect matrix to emulate reconfiguration capabilities of SRAM-based FPGAs while

retaining the nonvolatile aspects of antifuse FPGAs. This allows the flash-based FPGA to

have an operating mode almost instantaneously at power-up with no boot sequence or

secondary components necessary to support. The inherent reduced SEU vulnerability of

flash memory also makes them more desirable than SRAM for configuration memory.

42

4. Design Concerns

There are some concerns that arise due to the differences in FPGA manufacturing.

The primary concern for the sequencer is the FPGA’s radiation tolerance. Though not

necessarily required for the sequencer application, a secondary interest is the ability of

the general payload processor application to be re-programmable any time prior to

launch. Reprogrammability demands that one of the two types of FPGAs incorporating

re-writable characteristics in their logic blocks and interconnect matrix be utilized.

Reconfiguration capability prior to launch for the general purpose payload processor

design rules out using antifuse technology as the design would be permanent after the

first configuration event.

In comparing the SRAM to flash-based FPGAs, the difference must be carefully

considered. Since the majority of FPGA use at the Naval Postgraduate School has been

with SRAM-based products, there is a strong desire to remain within those product lines

to benefit from the experience of past designs. The use of SRAM technology, however,

makes the overall design more complex in schematic layout, microcontroller interfaces,

and power provisioning. This is related to the requirement to restore the configuration of

the SRAM-based FPGA at initial power-on from an external memory device. This

increases the time from power-on until operation and the need to protect secondary

components from the effects of the space environment. Radiation is a challenge no matter

how many components are utilized, however, increasing the secondary required devices

and interfaces only add to these difficulties. Inherently, SRAM-based FPGAs are more

vulnerable to SEUs than flash-based products.

On the basis of simplicity, with an eye toward speed and reliability, the initial

viewpoint of the author is to take the flash-based FPGA route. This will yield a simple,

reconfigurable circuit while providing the added speed benefit of operation at power-on.

For the sequencer, this should eliminate any added “wait” time that would be necessary

to account for before the deployment sequence proceeds. Due to the harsh environment

and desire for very precise timing constraints, a sequencer that is ready to start

deployments immediately upon receiving ‘Arm’ and ‘Deploy’ signals is of most interest.

The final decision as to the type of FPGA technology to utilize is presented in the next

43

section of this chapter. The differences between the Actel and Xilinx FPGA technologies

are more fully discussed in Appendix A.

B. FINAL SELECTION OF ACTEL PROASIC3 SERIES FPGA

1. Required FPGA Characteristics

There are several important characteristics that an FPGA must possess for

applications related to the space environment. When choosing the appropriate device,

several factors must be taken into consideration: non-recoverable hard errors such as

SELs and SEBs, TID tolerance, choice of technology utilized, computing power

concerns, and the cost of the device. Within these, the tolerance of the FPGA chosen to

SEL and SEB effects, along with its accumulated TID tolerance, are among the most

important factors for consideration in the choice of a device. Since non-recoverable hard

errors may lead to a complete electronic failure of the FPGA, these must be protected

against at all cost. The gain in survivability with regards to these effects is often worth

the higher cost rad-hard technology when utilized for mission critical applications.

Following this, the computing power necessary for the proper operation of the

logic necessary for a specific FPGA application is of immediate concern. If the FPGA is

sufficiently protected from non-recoverable errors but unable to perform its desired

function due to speed concerns, it will be of little use once on-orbit. Closely related to the

speed of the device is the reconfigurable technology selected for the application. SRAM-

based FPGAs tend to have inherent speed advantages over their flash-based counterparts;

however, many of the speed increases come at the added cost of reduced reliability for

radiation tolerance. Additionally, the added circuitry and support components required

for the SRAM-based designs greatly impact the overall cost of the platform as a whole. In

many cases, cost may become a large driver on the selection of the technology as certain

payload requirements call for multiple FPGAs to be utilized, along with any space-grade

support circuitry. This may greatly limit the options available to the designer on smaller

scale programs such as this sequencer project.

44

2. Overall Sequencer and Processor Characteristics

When focusing on the specific sequencer application of this research toward a

general-purpose payload processor, there are considerations that factor into selection of a

particular FPGA. These include the resistance of the FPGA to recoverable, soft errors

such as SEUs and SETs and the selection of a device with the lowest SWAP (size,

weight, area, and power) requirements; the choice of a particular vendor and product line

must take all these factors into account.

In general, flash-based FPGAs are more resilient to SEU and SET effects than

SRAM-based devices. Also, due to the lack of a requirement for secondary support

circuitry, flash-bashed FPGAs again save SWAP when taken in comparison to SRAM-

based devices. The flash-based FPGAs are live-at-power-on, take almost no power during

idle periods due to lack of a need to refresh the devices, and typically are smaller in

SWAP requirements. This has the added effect of producing less of a thermal load, with

less heat being produced by flash-based FPGAs. All of these factors typically lead to an

overall smaller cost for flash-based FPGAs than SRAM-based FPGAs. The advantages of

flash-based FPGAs over the SRAM-based products greatly sway the decision for these

reasons.

3. Comparisons of Xilinx and Actel FPGAs

While the Virtex-5 series may provide more overall logic area for expansion,

slightly increased TID radiation performance, and additional DSP functions not present in

the ProASIC3 devices—for a sequencer designed to deploy CubeSats reliably, overall

device utilization should not be the predominate factor. Even given the added logic

overhead of TMR or quadded logic implementation, the ProASIC3 FPGA should be fully

capable of configuration with the targeted design. A brief comparison of both the Virtex

and ProASIC3 series FPGAs is provided in Table 1. More information concerning

specifics of each device type is found in Appendix A.

With the Xilinx FPGAs utilizing SRAM-based technology versus the Actel flash-

based FPGAs, the prominent difference between these two implementations exists at the

hardware level. This equates to the need for secondary memory components required to

45

support the FPGA both during power-on configuration and subsequent operations. While

the number of user I/Os is considerably less for the Actel ProASIC3 series, the provided

270 maximum is more than enough for the sequencer application within the general-

purpose payload processor design.

Table 1. Overall hardware comparison between Actel ProASIC3 and Xilinx Virtex-5

series FPGAs illustrating strengths and weaknesses.

Actel RT ProASIC3 Xilinx Virtex-5QV

Device Type Flash-based SRAM-based

Quantity of Logic Cells 13,824 VersaTiles 20,480 Slices

Number of User I/Os 270 836

Number of Clocks 6 18

Clock Speed Frequency (MHz)
350 @ 1.5 VDC /

250 @ 1.2 VDC
450

SEL Immune (MeV-cm2/mg) 68 > 100

TID Immune 55 Krad 1 Mrad

External Memory Required No Yes

Number of Package Pins 484 1,738

Price (US Dollars) $63.87 $4,352.40

FPGA Device Series

If the goal of the general purpose payload processor were limited to DSP

functions, or faster operation, the Xilinx Virtex-5 series would be a better solution. Since

only comparing the number of logic gates is not meaningful when comparing different

vendors, it is more useful to compare the baseline logic cell architectures. The

equivalency for Xilinx logic slices to Actel VersaTiles is listed in Table 2 [72]. From this

data, one may conclude that one Virtex-5 slice is equivalent to approximately eight Actel

VersaTiles. Though the Virtex-5 slices have more logic capability than the Actel

VersaTiles, there should be sufficient overhead in the Actel FPGAs for design of fault-

tolerant logic for a sequencer design. Testing of different fault-tolerant schemes for

FPGA logic utilization factors is conducted in Chapter V.

46

Table 2. Approximate relationship between different vendors FPGA logic blocks

(After [72]).

Logic Block Virtex-4 Slice Equiv.

Xilinx Virtex-4 Slice (Ref.) 1

Xilinx Virtex-5 Slice 2

Actel VersaTile 0.25

The volatile nature of SRAM-based FPGAs and the overall requirements for

secondary componentry result in the choice of Actel flash-based technology over the

Xilinx product. Even considering the reduced schematic capabilities of adopting Actel

SoC over Xilinx ISE8, the associated hardware benefits inherent to the ProASIC3 series

are worth the effort. The difficulty in learning a new software package for logic design is

more than compensated by the strengths of the single-chip Actel solution. This Actel

ProASIC3 series is the clear choice for simplicity, due to the reduced number of

secondary components, and the potential for reduced cost.

Given the need for a low-power, low-cost general purpose fault-tolerant processor

design, the Actel ProASIC3 FPGA is the suitable choice for the development of hardware

in this thesis. This differs from earlier work done on CFTP by limiting the amount of

secondary component design necessary for completion of a PCB. The overall technology

behind the FPGA has changed from SRAM to flash-based in this implementation. As

previously discussed in Section A.3 of this chapter, this flash-based technology also has

the added benefit of increased SEU resistance in the configuration memory. Since one of

the goals of this sequencer design is simplicity, the ability for the sequencer to function

immediately upon power application of the ProASIC3 fits better with the desired

sequencer operation. This should allow for an ‘Arm’ signal to be passed to the sequencer

by the power initiation, with the ‘Deploy’ signal coming from the internal sequencer

logic. Further detailed comparisons between the Xilinx and Actel products which result

in the selection of the Actel ProASIC3 FPGA may be found in Appendix A.

8 ISE® is a registered trademark of Xilinx, Inc.

47

Initial work will be done to develop a ‘ProASIC3 Test Board’ using the Actel

ProASIC3 nano series of FPGAs in Chapter IV. This will allow for design software

familiarity prior to development of the flight prototype board. Altium Designer will be

used for the schematic and PCB design of the ProASIC3 Test Board and SAD Version 3

– Prototype Flight Board. All prototype flight hardware schematic and PCB design work

will be accomplished using the Actel ProASIC3 military-grade component (A3PE600L-

FG484M) in Chapter IV. Drop-in compatibility with the lower-cost, commercial-grade

FPGA (A3PE600-FG484) should allow for several prototypes to be manufactured. By

staggering the design, one is able to quickly develop and manufacture a test board to

become familiar with the Microsemi product lines, datasheet representations, and skill-set

necessary to develop the more complete design.

C. SELECTION OF DEVELOPMENT BOARDS FOR LOGIC DESIGN

In addition to developing an in-house test board, various vendor manufactured

development boards were purchased in tandem with this research. This allowed for a

known working configuration to proceed with logic development parallel to hardware

design and manufacture. Since past familiarity was with Xilinx FPGAs and software, a

decision was made to purchase a Virtex-5 development board in addition to a ProASIC3

variant. If unexpected results with logic area utilization were to occur, the Virtex-5 series

would provide a backup choice for work to continue. For quick logic development and

testing, a Spartan-3E series development board was utilized. This development board was

USB powered, allowing for portability and rapid testing. Finally, a ProASIC3

development board was purchased, with the same series of FPGA as the final BGA

design—to allow for complete logic design testing. The comparison between the various

boards is provided in Table 3.

48

Table 3. Comparison of FPGA development boards used in logic design and testing.

Board #1 Board #2 Board #3

FPGA Device Spartan-3E 100 Virtex-5 LX50T ProASIC3L 1000

FPGA Part No. XC3S100E XC5VLX50T M1A3P1000L

System Gates 100,000 Not Specified 1,000,000

Logic Cells 2,160 50,000 24,576

Total CLBs 240 3,600 N/A

Total Slices 960 7,200 N/A

VersaTiles N/A N/A 24,576

Distrib. RAM bits 15,360 491,520 147,456

Block RAM bits 73,728 2,211,840 147,456

Number of Clocks 2 6 6

User I/Os 66 480 300

Differential I/O Pairs 30 240 74

Max. Clock Speed 100 MHz 550 MHz 350 MHz

FPGA Size 16 x 16 mm 35 x 35 mm 23 x 23 mm

Number of Pins 100 1136 484

D. CHAPTER SUMMARY

In Chapter III, the Actel ProASIC3 FPGAs were seen as the best solution to the

sequencer application. This is a result of the increased resilience to soft-error effects,

reduced secondary hardware required for operation, ease of design, live at power-up

operation, and pin-for-pin compatibility between versions. Antifuse FPGAs were

discarded as a design choice due to the non-availability of reconfiguration. SRAM and

flash-based FPGAs were contrasted with the differences in design considerations

realized. Conclusively, flash-based FPGAs seem the most promising choice due to their

configuration memory’s reduced SEU vulnerability, reduced system complexity, and

live-at-power-on capability. The ProASIC3 Test Board will be developed in Chapter IV;

follow-on development of the SAD Version 3 – Flight Prototype Board will also occur in

Chapter IV.

49

IV. HARDWARE DEVELOPMENT – PROASIC3 TEST BOARDS

AND PRELIMINARY FLIGHT PROTOTYPE

A. PROASIC3 TEST BOARD

Due to the need to obtain test hardware as rapidly as possible, a decision was

made to build a set of ProASIC3 test boards prior to the development of a more

challenging flight hardware prototype. This would serve two purposes—one, that a

ProASIC3 Test Board (PA3TB) would quickly allow for rapid prototyping of logic

designs; two, that familiarity would be gained with the hardware development package,

Altium Designer 10. The ProASIC3 nano FPGA selected allowed for familiarity with the

Actel Libero9 SoC software environment while retaining the ability to manufacture the

test board in the Small Satellite Laboratory. The goal of the PA3TB design was to

minimize the secondary components required and to realize the most basic design that

could accomplish the requirements of the sequencer application.

Altium Designer provides a unified product development environment including:

front-end design and capture, physical PCB design, FPGA hardware design, FPGA

system implementation and debugging, embedded software development, mixed-signal

circuit simulation, signal integrity analysis, and PCB layout [73]. The standard

development environment can be seen in Figure 17, where schematic, two-dimensional

(2-D) PCB layout, and 3-D board placement views are visible on the separate monitors.

Figure 17. Altium Designer interface with separate schematic, 2-D PCB layout, and 3-D

component placement views visible on separate monitors (From [73]).

9 Libero® is a registered trademark of the Microsemi Corporation.

50

An added benefit to obtaining the preliminary hardware was experience gained in

the manufacture and testing of the design. This allowed for in-house soldering skill to be

gained with the smaller surface-mount components as well as the baseline FPGA device.

A complete testing of the JTAG interface to be utilized on the flight prototype board was

also possible to ensure all design difficulties were worked out prior to scaling up the

design.

1. Derived Requirements

There were several derived requirements determined for the ProASIC3 Test

Board. The particular requirements utilized for design are as follows:

1. Use of ProASIC3 FPGA with flash-based architecture;

2. Core voltage of 1.2 VDC to reduce power consumption;

3. Specification of I/O bank voltages at core voltage or higher rating;

4. External JTAG (IEEE 1532) interface, compatible with standard hardware

programmers;

5. Simulation of CubeSat P-POD deployment via indicators;

6. Expandability, in terms of additional I/O availability and extra interfaces

such as USB;

7. Implementing the design in the smallest form-factor available, which

implies utilizing surface-mount components.

2. Selection of Board Size and Layer Count

Since the actual ProASIC3 nano FPGA has a relatively small footprint, the PCB

size was chosen to minimize the size of the board—allowing associated secondary

components the minimum amount of room for layout. This decision allowed for effective

resource usage when placing desired components. The overall dimensions of the board

chosen are 1.87 inches × 1.87 inches (3.497 in
2
). This allows for center placement of the

FPGA upon the PCB with secondary components surrounding.

51

Since the SAD Version 3 Flight Prototype Board (SADv3) will use a BGA with

hundreds of pins, the routing difficulties inherent to that technology mandate the use of a

multi-layer PCB. To prepare for the evolution to that hardware, it was decided to

manufacture the PA3TB using a four-layer design. Although the number of signal and

power lines was such that a two-layer board could have been used, the experience gained

from the four-layer PCB design will be valuable in the layout of the six to eight-layer

SADv3. As is standard, the internal layers consisted of the ground (GND) and positive

voltage (VCC) place. By placing VCC and GND copper polygon-filled areas internal to the

PCB, the signal lines for data were visible on the top and bottom planes of the PCB. This

allows for more flexibility in the case where signal lines are misrouted due to design-

error or manufacturing defects. Additionally, there are capacitive and signal-noise issues

that are resolved when designed in this fashion. The overall layer structure of the PA3TB

is illustrated in Figure 18. Through-hole vias were used throughout the design for

coupling between layers.

Figure 18. Four-layer stack of the ProASIC3 Test Board with internal power planes and

external signal layers.

3. Selection of Components

In Chapter III it was decided that the ProASIC3 architecture was the best

approach; the decision was made to utilize a comparable FPGA technology without the

overhead of BGA manufacturing for test board development. Actel’s ProASIC3 nano has

the advantages of being a low-cost, single-chip solution utilizing flash-based technology

52

coupled with a 100-pin Very Thin Quad Flat Package (VQFP). The VQ100 package of

the chosen A3PN250 FPGA, which allows for manufacture utilizing a microscope

soldering station in the Small Satellite Laboratory, is illustrated in Figure 19. The

particular characteristics of the chosen ProASIC3 FPGA are specified in Table 4.

Specific schematic decisions, PCB layout and component placement choices, and the

physical construction and testing of the PA3TB are fully described in Appendix B.

Figure 19. ProASIC3 nano VQ100 package of VQFP-type (From [74]).

Table 4. Characteristics of ProASIC3 nano FPGA (A3PN250) utilized in

development of ProASIC3 Test Board (After [74]).

PA3 Test Board

FPGA Device ProASIC3 nano

FPGA Part No. A3PN250

System Gates 250,000

Logic Cells 2,048

VersaTiles 6,144

Distrib. RAM bits 36,864

Block RAM bits 36,864

Number of Clocks 8

User I/Os 68

Differential I/O Pairs N/A

Max. Clock Speed 350 MHz

FPGA Size 14 x 14 mm

Number of Pins 100

53

The full 2-D PCB layout can be seen in Figure 20. Individual electrical and

mechanical layouts for the various layers are presented individually in Appendix B.

Figure 20. ProASIC3 Test Board 2-D PCB layout with all component footprints, signal

lines, and vias visible.

After the 2-D layout was concluded, the various 3-D Standard for the Exchange of

Product Data (STEP) models were imported into the design the check for fit. These

components were viewed in a 3-D representation of the integrated PCB design, allowing

for any fit issues to be quickly resolved, as illustrated in Figure 21. There were a few

cases where vias or traces were moved to better accommodate the physical representation

of the PCB. This is an important prototyping tool and saves a great deal of work prior to

receiving the initial run of PCBs. The entire layout process took place over the course of

approximately six weeks.

54

Figure 21. ProASIC3 Test Board 3-D isometric view with component models indicating

approximate sizing and spacing of integrated board.

Further 3-D views of the top and bottom face of the PCB are available in

Appendix B.

B. SAD VERSION 3 – FLIGHT PROTOTYPE BOARD

While work was proceeding with the fault-tolerant logic design, described in

Chapter V, modification of the FPGA-based sequencer hardware design occurred in

parallel. Concurrent design of the SAD Version 3 – Flight Prototype Board was

undertaken to allow sufficient time for logic development and testing, with the

anticipated long lead-time in PCB layout for a BGA FPGA. The means of implementing

the more extensive BGA form-factor FPGA into a prototype, flight-hardware design is

presented in Appendix C. The design of this board is not meant to be all-inclusive of the

final general purpose processor design, as some necessary hardware revisions will

understandably occur; the overall context of the schematic design along with supporting

circuitry is expected to remain relatively constant. There is a desire for a design which

can be easily expanded to incorporate future feature requests as necessary for future

55

missions. Though the sequencer is the first practical application of the general purpose

payload processor, future iterations of the design may require extended logic and memory

usage. As such, the developed BGA design incorporates several features such as

additional SRAM and flash memory, along with general purpose and differentially paired

I/Os to support future requests. The board developed is termed SADv3 for the purposes

of the sequencer, however, it may be renamed in the future to indicate its general purpose

feature set.

As in the previous section, all work done on the design of the SADv3 was

accomplished with Altium Designer. A great deal more schematic development was

required in the implementation of this more extensive design. Additionally, the added

work in PCB layout, when transitioning from a six to eight-layer PCB, was seen to

increase almost exponentially. As such, the final design presented in the course of this

research will require multi-person design panel review before manufacture—there are

simply too many connections and possible failure points to risk production without

extensive oversight on the development of the board. To initiate production prior to

complete design review would invite an expensive redesign should an error be present.

1. Discussion of Specific FPGA

In the transition to a larger FPGA fabric to incorporate additional logic and I/Os,

the need for switching from a VQFP to BGA became readily apparent. In the

development of the PA3TB, the largest resource-area FPGA was chosen in the design of

that board. Although the quantity of gates in that design are more than suitable for the

instantiation of the sequencer logic, any additional features would quickly expand past

the resources of the device, especially once TMR is implemented. As discussed in

Chapter III, all prototype flight hardware schematic and PCB design work will be

accomplished using the Actel ProASIC3EL military-grade component (A3PE600L-

FG484M). Drop-in compatibility with the lower-cost, commercial-grade FPGA

(A3PE600-FG484) should allow for several prototypes to be manufactured. The FG484

package of the chosen A3PE600L FPGA is illustrated in Figure 22. The particular

characteristics of the chosen ProASIC3EL FPGA are specified in Table 5. Again, should

56

there be a need for the fully rad-hard FPGA in future missions, the RT ProASIC3

(RT3PE600L-CG484B) is compatible with the defense-grade ProASIC3EL (A3PE600L-

FG484M).

Figure 22. FG484 BGA package of the Actel ProASIC3L A3PE600L FPGA (From [75]).

Table 5. Characteristics of ProASIC3L BGA (A3PE600L) utilized in development

of SAD Version 3 – Flight Prototype Board (After [75]).

Flight Prototype

FPGA Device ProASIC3EL

FPGA Part No. A3PE600L

System Gates 600,000

Logic Cells 4,608

VersaTiles 13,824

Distrib. RAM bits 110,592

Block RAM bits 110,592

Number of Clocks 8

User I/Os 270

Differential I/O Pairs 135

Max. Clock Speed 350 MHz

FPGA Size 23 x 23 mm

Number of Pins 484

57

In using the BGA FG484 form-factor, the complexity of the design is increased

markedly with a corresponding increase in requirements for PCB design. Due to the BGA

package, soldering of the PCB is impossible utilizing equipment in the lab; manufacture

of the board and placement of surface-mount components for reflow soldering will take

place with an outside PCB production company. The design of the PCB necessarily takes

into account the required sizing and layer count to properly locate and support the BGA

FPGA and all supporting components.

The initial layout of the board shape with FPGA, headers, and prototyping area

visible is illustrated in Figure 23. The ribbon-cable connector for attachment to the relay

board can be seen toward the top edge of the PCB. As specified previously, the sequencer

board is approximately half the width of the relay board (taking up area from the bottom

to middle bolt-holes). This design allows for additional area in future revisions if the

footprint is modified to be identical to the relay board.

Work continues on the appropriate component placement and wiring of traces.

Placement of the power de-coupling capacitors is somewhat problematic with relation to

the FPGA footprint; careful selection of appropriate capacitors to place closest to the

footprint is imperative for ease of trace laydown. After wiring, extensive design reviews

must be accomplished to verify not only the schematic but also the layout of the PCB in

2-D signal trace layers and 3-D component placement and sizing.

Figure 23. Initial 2-D PCB layout of FPGA, three 40-pin I/O headers, prototyping area,

and ribbon-cable connector for relay board attachment.

58

Recent representations of individual electrical and mechanical layouts for the

various layers are presented individually in Appendix C. Further 3-D views of the top and

bottom face of the PCB are also available in Appendix C.

2. Additional Modifications Considered

Since the board developed is the first initial prototype of the eventual flight

sequencer, there are some features included for bench testing which can be removed in

the final representation of the design. For this design a +5 VDC connector was utilized to

provide VIN to the LDO voltage regulators for conversion to the appropriate voltages.

Since the relay board will be receiving a +28 VDC supply from the host spacecraft bus,

there will be a way to incorporate this conversion on the relay or sequencer board itself.

As such, the +5 VDC connector can be removed from the final flight design with the +5V

net replacing the VIN net. The SRAM and flash-memory can be left off the footprint since

they are not required in the sequencer design and can be installed as necessary for future

missions.

Additional modifications to the design include possible future incorporation of

two-way telemetry concerning board and CubeSat status back to the host spacecraft, a

video camera feed of CubeSat deployments with data saved in memory, smart charging

and maintenance of CubeSats within NPSCuL prior to launch, and experimental payloads

for testing of logic in a general payload processor design. One of the desired short-term

features is the inclusion of an Ethernet port and standard for testing in radiation

environments. Data provided over this port could be used in data logging the radiation

upsets and recoveries during testing events.

C. CHAPTER SUMMARY

The reasons for the development of the ProASIC3 Test Board prior to design of

the SAD Version 3 – Flight Prototype Board were discussed in this chapter. Development

of the PA3TB was accomplished using Altium Designer 10 for the schematic and layout

portions of board design. The design was implemented with a set of derived requirements

to enable the rapid production of a hardware product; the PA3TB serves as a model for

evolution to a more complex PCB. Minimization of PCB area and secondary components

59

were important in troubleshooting the device when problems were discovered. Other

design decisions are presented concerning the manner in which they drove PCB

component selection.

In addition, the design modifications for the SAD Version 3 – Flight Prototype

Board were also discussed in this chapter. Again, development of the SADv3 was

accomplished using Altium Designer for the schematic and layout portions of board

design. The work in this chapter on the SAD Version 3 – Flight Prototype Board

continues with all of the circuitry having been schematically represented. Component

placement and trace layout for the support devices on the board is still on-going. Specific

considerations for future board development and expansion were provided.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

V. COMPARISON OF FAULT-TOLERANCE METHODS FOR

USE IN SEQUENCER LOGIC DEVELOPMENT

A. TMR VERSUS OTHER FAULT TOLERANT APPROACHES

For this portion of the thesis, the Xilinx Spartan-3E development board was used

to simulate logic designs. The specifics of the FPGA utilized are listed in Chapter IV,

Table 2. This device allowed for the utilization of the Xilinx ISE 14.3 WebPACK toolset

so that all logic constructs could be created schematically and in VHDL or Verilog. A

16×16-bit array multiplier was constructed to test for the proper operation of the device

using different redundancy techniques. All designs were carried through the synthesis,

map, and place and route phases to ensure accurate timing information was obtained in

the simulation. Additionally, the Xilinx techniques were manipulated to program

Microsemi ProASIC3 devices. These altered designs will be incorporated into the final

sequencer logic using Microsemi Libero SoC 10.1. In Chapter III, a decision was made to

use the Actel products due to hardware concerns of the SRAM-based Xilinx technology

versus the flash-based FPGA technology.

1. Maintaining Logic Structures within HDL Languages (Verilog /

VHDL and Schematically)

To test for proper operation and characteristics of the Xilinx ISE 14.3 software, it

was first necessary to create a test circuit which could be successfully duplicated and

verified. This was accomplished via a combination of synthesis and simulation with

follow-on hardware testing. The design chosen for the test consisted of a simple seven-

segment LED counter. This design is a state-machine counter with sixteen states (0

through F) with the added functionality of push button and switch status. The counter

design is implemented in VHDL with the overall clocking setup and top-level design

applied in a modular fashion. As illustrated in Figure 24, the design was implemented on

a Digilent, Inc. BASYS2 development board. This board incorporates the Xilinx Spartan-

3E 100. Code for this state-machine counter is in Appendix D.

62

Figure 24. Digilent BASYS2 development board counting with proper state logic.

a. Baseline Design – Seven-Segment LED Counter Example

The resource utilization for the baseline LED counter design was found to

use 19 of 960 available slices (2%) with a corresponding 1% utilization of FFs and 1%

use of LUTs. As depicted in Figure 25, the overall gate layout of the design in a

technology schematic is visible for the unaltered design. This provided a good baseline

for comparison once modification to the design evolved.

Figure 25. Default gate layout for baseline seven-segment LED counter.

63

b. Triplicated Design – Seven-Segment LED Counter Example

Upon initial synthesis, there were some issues with ISE overly trimming

the redundant logic from the design. This manifested itself in the removal of two of the

three triplicated counter circuits and the voter circuit being marked as unnecessary in

some cases. To alleviate these issues, ‘Resource Sharing’ in HDL Options and

‘Equivalent Register Removal’ in Xilinx Specific Options must be disabled in the

Synthesis – XST ‘Process Properties.’ This alone was insufficient to prevent logic

trimming of desired redundant circuits, so the following lines were added to the VHDL

code:

attribute equivalent_register_removal: string;

attribute equivalent_register_removal of signal : signal is “no”;

The preceding lines must be added to the architecture structures within the logic that is

being trimmed after the signal names are defined.

For the operational test, the design was altered such that the top-level

depiction occurs schematically, as seen in Figure 26. This was done by instantiating the

seven-segment LED counter into its own schematic symbol. All signal lines were placed

manually in the same fashion that they occurred in their VHDL depiction. The counter

was triplicated, and a voter circuit was added at the output to test for proper operation and

recombination of the signals.

This produced the proper, anticipated results as illustrated in Figure 27.

The logic of the unaltered design can clearly be seen as triplicated in the technology

schematic view of the gate structure. The resource utilization for the triplicated design

was found to use 61 of 960 available slices (~6%) with a corresponding 4% utilization of

FFs and 5% use of LUTs.

In the FPGA layout view, Figure 28, one of the three counters is

highlighted in red with the triplicated counters occurring in the upper portion of the

graphic. Since this occurs after the place and route phase, one can confidently say that the

logic trimming of the redundant circuits has been prevented. This is an important step

before continuing with the implementation of different fault-tolerant techniques.

64

Figure 26. Triplicated seven-segment LED counter example with voting logic.

Figure 27. Triplicated gate layout with voting logic - seven-segment LED counter.

When testing onboard the physical device, the functionality of the

development board was seen to be identical in the triplicated logic case to the non-fault-

tolerant design. The FPGA continued to count in the proper state sequence with all push

button and switch controls working as before. Finally, the design was altered to enable

improper operation of one of the counters by reordering the states within that counter.

This resulted in the mismatch of the output vectors between that counter and the other

two, properly functioning counters. The voter was seen to work properly, as no

discrepancies were noted in the operation of the development board FPGA.

65

Figure 28. FPGA layout view illustrating placement of three counter structures.

2. Implementation of Various Redundant Techniques in Combinational

Logic Designs

a. Baseline Design – 16×16-bit Array Multiplier

The design chosen for further testing of fault-tolerance is a 16×16-bit

array multiplier which has been implemented in a tree structure consisting of 4×4-bit

array multiplier subsections. The output of the array multiplier is a 32-bit unsigned

integer value which correctly represents the product of the two input vectors. The 4×4-bit

array multipliers are carry-save-adder versions with 7-bit sum and 5-bit carry output

vectors. They are combined in the following fashion to generate proper multiplication:

66

As illustrated in Figure 29, the 4×4-bit array multipliers are internally

wired with a combination of 4-bit partial product generators and full adders configured to

give the proper sum and carry output vectors. These adders were initially configured in

the logic structure seen in Figure 30. Each of these full adder blocks were replaced in

subsequent iterations to yield proper comparison with this baseline design.

Figure 29. 4×4-bit array multiplier internal structure using partial product generators and

full adders.

The 4×4-bit multiplier modules are combined with carry-save adders and

ripple-carry adders to form the 16×16-bit multiplier in the top-level structure of the

design. Specifics of the code and the overall top-level block diagram of the default

16×16-bit array multiplier structure are presented in Appendix D. This design is modified

67

slightly in the specific fault-tolerant schemes tested throughout the remainder of this

chapter.

Figure 30. Full adder gate structure for the 16×16-bit array multiplier, baseline design.

The resource utilization of the FPGA after layout is seen in Figure 31. It is

important to note that the layout of the FPGA can be manually edited at this stage.

Figure 31. FPGA physical layout of default 16×16-bit array multiplier logic.

68

b. Triple Modular Redundancy (TMR)

The next iteration of design involved the implementation of the 16×16-bit

array multiplier in TMR format. As illustrated in Figure 32, the design was modified in a

similar fashion as that accomplished in the previous seven-segment LED counter

example, with all Verilog code instantiated as schematic symbols. These were wired

together with a voter on the output for a majority voting scheme of the output vectors.

Figure 32. 16×16-bit array multiplier implemented in TMR with voting logic.

Again, with Verilog, some modification to the code is necessary to prevent

trimming of logic that is desired for fault-tolerant purposes. In the case of Verilog, the

code addition necessary is:

(* equivalent_register_removal = “NO” *)

This line must be placed immediately before the module declaration line

in the Verilog file of each part of the design one does not want trimmed. In doing so, the

FPGA layout of the device was seen to vary greatly from the unaltered case, as seen in

Figure 33.

The input vectors for this design were left as three separate pairs, which

allowed a differing input product to be injected into one of the array multiplier blocks.

69

This allowed for quick testing of the voting logic and overall multiplication when

analyzed through simulation. In all cases, the proper simulation results were obtained and

those of the mismatched multiplication discarded by the voting scheme. This initial

simulation run was important in later fault-tolerance schemes to determine proper

operation of the overall circuit.

Figure 33. FPGA physical layout of 16×16-bit array multiplier using TMR logic.

c. Quadded Logic

To implement the quadded logic form of the 4×4-bit array multiplier, a

NAND implementation of a half adder was constructed, as seen in Figure 34. This

provided a good baseline for comparison and simulation to the quadded logic

implementation; the half adder circuits were completely tested and simulated prior to

being implemented in full adder combinations. To properly construct the OR gate for

recombination of the carry output lines, a quadded NAND gate was also designed, as

depicted in Figure 35.

Once the NAND configuration of the half adder and quadded format were

determined, modifications to the half adder to generate a quadded logic implementation

were made. This can be seen in Figure 36. Again, this half adder was fully tested and

compared to the non-quadded logic format before insertion into full adder structures.

Once the quadded logic full adder was complete, the structure was substituted in for the

70

full adder blocks in the overall 4×4-bit array multiplier schematic. The follow-on

recombination into the appropriate 16×16-bit array multiplier structure then took place.

Figure 34. Baseline NAND implementation of half adder.

Figure 35. Quadded logic version of NAND gate.

71

Figure 36. Quadded logic version of half adder.

As in the previous test cases, full simulation of the design was

accomplished to account for proper outputs from the multiplier circuit. In all cases, the

output product vectors were seen to match the baseline design. Further testing to alter the

internal structure of the quadded logic half adders took place (i.e., tying certain gates to

high or low logic values) to simulate internal errors. The quadded logic was seen to

overcome these errors in all single and certain multiple upset cases. The outputs from the

overall quadded logic circuit were identical to the non-error case.

72

It was particularly interesting to note the large amount of FPGA resources

utilized in the layout view, as illustrated in Figure 37. This overhead is completely due to

the quadded logic implementation of the full adders and should be approximately four

times the resources as in the baseline 16×16-bit array multiplier.

Figure 37. FPGA physical layout of 16×16-bit array multiplier using quadded logic.

d. Triplicated Interwoven Redundancy (TIR)

In the construction of the triplicated interwoven redundancy (TIR) case,

the half adders within the 4×4-bit array multiplier tree were replaced with the TIR half

adder design, as depicted in Figure 38. These half adders were combined into a full adder

configuration with the signal lines recombined with a voter on the output. This allowed

for a quick insertion into the 4×4-bit array multiplier tree, as previously indicated. The

4×4-bit array multipliers were again recombined into the overall 16×16-bit array

multiplier tree structure to obtain the desired circuit.

Simulation was accomplished to verify the design against the unaltered

multiplier configuration; simulation results were identical in both cases. The resource

utilization of TIR in FPGA physical layout is illustrated in Figure 39.

73

Figure 38. TIR logic version of half adder.

Figure 39. FPGA physical layout of 16×16-bit array multiplier using TIR logic.

74

e. Stacked Techniques – Quad-TMR & TIR-TMR

Since there was additional logic area on the FPGA for synthesis, a

decision was made to attempt stacked fault-tolerant techniques to determine the limits of

logic capacity and speed. This is similar to the manner in which encryption algorithms

are stacked upon one another to increase the security of the encrypted electronic data. By

stacking the fault-tolerant techniques, one should produce a more stable circuit in the

event of multiple bit upsets or cascaded faults.

In the first case, the attempt to place the quadded logic implementation of

the 16×16-bit array multiplier into TMR layout failed due to the physical constraints of

the target FPGA. The overall resource utilization was such that ‘OVERMAPPED’ errors

occurred in the map / place and route phases of the implementation. This was due to the

volume limitations of the selected Spartan 3E FPGA device. The simulation of the device

could still be accomplished and the results matched those of previous runs, indicating that

both the multipliers and voter scheme were functioning properly.

Figure 40. FPGA physical layout of 16×16-bit array multiplier using stacked TIR-TMR

logic.

Finally, the TIR implementation of the multiplier was stacked upon the

TMR layout for the final synthesis and implementation run. The FPGA physical layout

75

for this combinational technique is illustrated in Figure 40. Again, the simulation runs of

the design indicated all circuits were functioning properly and as anticipated.

When utilizing these stacked fault-tolerant methods, it is difficult to

predict the amount of logic resources that will fit in an FPGA’s logic matrix. This is

mostly due to the manner in which the software toolsets attempt to auto-optimize logic by

combining and trimming for either speed or resource area utilization. Should one desire

to target a design with these techniques, care must be taken to account for sufficient logic

resources once the stacked fault-tolerant methods are employed.

3. Data Results and Analysis

The results of all six methods of fault-tolerance implementation were compared to

obtain both FPGA resource utilization and timing information. The post-place and route

(P&R) timing analysis consisted of a worst-case path measurement. The resources looked

at consisted of the 4-input LUTs, number of occupied slices, number of logic LUTs,

number of route-thru LUTs, and the average fan-out of the circuits. The results of both of

these comparisons are presented in Tables 6 and 7, respectively.

Table 6. FPGA worst-case path timing for various fault-tolerant designs.

Worst-Case Path [ns]

Default 38.54

TIR 42.15

TMR 38.71

Quadded 53.37

TIR-TMR 45.52

Quad-TMR Fail to Map / P&R

Table 7. FPGA resource utilization for various fault-tolerant design methods.

4-Input LUTs Occupied Slices # of Logic LUTs # of Route-Thru LUTs Avg. Fanout

Default 762 of 9,312 (8%) 389 of 4,656 (8%) 643 119 2.15

TIR 1,836 of 9,312 (19%) 949 of 4,656 (20%) 1,717 119 2.94

TMR 2,318 of 9,312 (24%) 1,196 of 4,656 (25%) 1,961 357 2.14

Quadded 4,445 of 9,312 (47%) 2,614 of 4,656 (56%) 4,325 120 3.29

TIR-TMR 5,540 of 9,312 (59%) 2,828 of 4,656 (60%) 5,183 357 2.93

Quad-TMR 13,361 of 9,312 (143%) 6,688 of 4,656 (143%) 13,001 360 3.28

76

These results are also presented graphically in Figures 41 and 42. The failed case

for timing in the Quad-TMR scenarios was due to the aforementioned failure to map /

place and route the design into the Spartan-3E FPGA. A retargeting of the design to a

Xilinx Virtex 4/5 series was met with success; however, the resource utilization for this

type of device was still high.

Figure 41. Timing analysis for worst-case paths in various fault-tolerant

implementations.

Figure 42. FPGA LUT and slice resource utilization in fault-tolerant implementations.

77

4. Discussion of Results

In looking closer at the timing analysis, it was interesting to note the variance in

the TIR versus TMR design. Though both are similar (TIR being a version of modified

TMR), the default and worst-case path timings were less in the TMR case. This extra 3.5

to 16.1 ns difference may not impact the design of a simple 16×16-bit array multiplier but

could have greater implications in a more complex circuit or sequential logic. Likewise,

the quadded logic and stacked fault-tolerant techniques were seen to have an even greater

increase in timing delays. Again, these would have to be weighed carefully, dependent

upon timing criticality and SEU tolerance benefit of the various techniques.

Similarly, the results of the FPGA resource utilization indicate that the TIR case,

while having the increased timing requirements, uses less logic than the TMR case. The

TMR case is fairly close to the TIR case—and has the added benefit of timing being

fairly close to the baseline 16×16-bit array multiplier circuit. In the quadded logic case,

the FPGA utilization was actually seen to consume more than the anticipated four times

the amount of resources. This is likely due to the types of gates and LUTs necessary to

synthesize this type of design. This is important to note, in that the extra work of wiring

the quadded logic implementation of gates may not lead to the anticipated logic

utilization. This, in combination with the markedly increased timing path delays, would

preclude any but the simplest logic designs. One suspects that there would be added

difficulties and overhead when incorporating quadded logic into sequential machines.

If the FPGA device family has sufficient resources, a better approach may be to

choose the TIR-TMR stacked fault-tolerant technique. Both the path timing delay and

resource utilization are similar to the quadded logic implementation. Any fault-tolerant

benefits of stacked techniques would have to be compared to existing, baseline

techniques both through fault injection simulations and in the presence of a radiation

environment. Synthesis and implementation of the design through the map / place and

route phases would be necessary before conclusively knowing the required FPGA

resources; however, the construction of this design is greatly simplified when compared

to quadded logic. Since the stacked techniques can be implemented without much

78

difficulty, future testing for possible benefits of stacked fault-tolerant schemes may be

accomplished in a cyclotron.

Due to the path timing and FPGA resource utilization results, the best approach

appears to be the complete TMR implementation of a design. This has almost exactly

three times the required logic use plus the addition of the voting scheme. The timing

being so similar to the non-modified case should yield excellent results in both

combinational and sequential circuits. Future research should look more into the varying

TMR techniques such as distributed versus global approaches. The different methods of

clocking should produce varied results when used with sequentially clocked circuits.

These methods should be combined with partial reconfiguration techniques, if necessary,

to yield an optimal design for a particular scenario.

Additional work needs to be done in the realm of QFDR as it compares to

quadded logic. Past research has shown some benefit to the application of this technique

both with regards to timing and resource utilization. An open-source toolset known as

RapidSmith exists to assist with this implementation. This should be a useful toolset—

however, knowledge of Eclipse Java IDE and the interfaces between it and Xilinx ISE are

necessary.

B. SELECTION OF A FAULT-TOLERANT TECHNIQUE

As a result of this study, the design of the sequencer being developed for NPSCuL

will utilize Actel ProASIC3 flash-based FPGA logic in a TMR configuration. The

sequential finite-state machines to control the timing and execution of deployments

should benefit most from the decrease in path timing results and reduced logic utilization

relative to other fault-tolerant techniques. Future work will analyze probabilities of

failures, both in simulation and physically, in a radiation-exposed environment. Special

attention needs to be given to the overall reliability measurements of the various fault-

tolerant techniques, with particular emphasis placed on TMR versus quadded logic and

the benefits of stacked combinational techniques.

One benefit to selection of the TMR technique in obtaining practical designs is

the amount of commercial software available for implementation of these methods in

79

logic. While testing the TMR instantiations of redundant logic on combinatorial circuits,

all designs were manually wired together in schematic form to achieve the results

mentioned. One would desire to have these methods automatically inserted into a base-

line design for quick implementation and comparison to manually developed methods. As

such, a quick comparison of commercial products to manual TMR development is

appropriate.

1. Xilinx TMRTool and Mentor Graphics Precision Hi-Rel

Two of the commercially available, fault-tolerant synthesis products available for

the design of TMR logic are Xilinx TMRTool and Mentor Graphics Precision10 Hi-Rel.

The purpose of both these products is similar; an increase in designer productivity by

reducing errors and speeding the time for TMR implementation. The main difference

between the two tools is the family of products the software is intended for. TMRTool is

only targeted toward Xilinx FPGAs; although, it works with all entry methods including

schematics and HDLs [49]. Precision Hi-Rel, however, is a multi-vendor, multi-mode

product [50]. While TMRTool is listed as an ITAR-controlled product [49], Precision Hi-

Rel does not appear to have similar restrictions. Since the design of sequencer logic is

taking place upon Actel ProASIC3 hardware, Precision Hi-Rel is the most suited

application for further use.

Precision Hi-Rel offers fault recovery and fault-tolerant FSM encoding through a

variety of features. This FPGA synthesis product was developed under NASA guidance.

Precision Hi-Rel provides an enhanced form of safe FSM that offers full SEU detection

and recovery [50]. The generated FSM, when it detects an invalid transition, must still go

through a recovery process including an operational reset that may consume one or more

clock cycles. Thus, Precision Hi-Rel also includes fault-tolerant FSM implementations

which can absorb an SEU and continue operation without interruption [50]. Precision Hi-

Rel also allows for selection of LTMR, DTMR, and GTMR methods and handles all

embedded resources.

10 Precision® is a registered trademark of Mentor Graphics.

80

The Precision Hi-Rel synthesis tool is not included as part of Microsemi’s Libero

SoC package. Instead, the default synthesis tool provided with Libero SoC is Synplify

Pro. Synplify Pro does not have any of the added TMR capabilities of Precision Hi-Rel.

Application of Precision Hi-Rel to the sequencer project will require a separate software

license, as an academic or trial version is not available for educational institutions. The

author recommends that future design work on the sequencer incorporate the use of this

software package, as it would allow for testing and comparison with the manually

inserted TMR methods. The ability to quickly switch to LTMR, DTMR, and GTMR

modes in logic would be greatly beneficial when testing the final design in a radiation

environment. Additionally, it will allow for ease of migration of more complex logic

designs to TMR instantiations once expanded features are added to the sequencer.

2. Manual Insertion of TMR with Schematic and HDL Techniques

Due to the lack of available commercial software during the performance of this

research, all designs were implemented manually using the LTMR methodology. In this

method, all logic elements were triplicated with error correction performed by one voter

on the output path. Certain features of DTMR were carried forward into the sequential

logic development, such as feedback path voting being triplicated and tied to all

triplicated structures. The clock input to the sequential logic and single voter output can

still be seen as limiting factors in the application of this technique to the final sequencer

logic design. It would be greatly beneficial to obtain the benefits of full DTMR with the

triplicated clock signals of GTMR in the final representation of this sequencer logic.

C. APPLICATION OF TMR TO SEQUENTIAL LOGIC DESIGNS

After deciding upon TMR as the appropriate fault tolerance method, based on the

experimental results in the combinational logic testing earlier in this chapter, the TMR

technique was implemented in sequential logic. Many of the means of constructing TMR

sequential logic were very similar to that utilized previously. All logic elements within

the FSM design were triplicated with a voting scheme on the output. There was one

important difference due to the addition of logic to the feedback paths within the FSMs.

The FSM chosen for triplication was a clocked synchronous state machine of Moore

81

design, similar to that found in [76]. This allows for a predictable state transition with

plenty of points to test circuit output or allow for fault injection in testing. The schematic

representation of the FSM under test is illustrated in Figure 43.

Figure 43. Moore design, clocked synchronous state machine utilizing positive-edge

triggered D flip-flops (After [76]).

The resultant output of the post-place and routed design was run through a

simulation utilizing a testbench file. The code for the testbench can be found in Appendix

D. The resultant timing diagram is illustrated in Figure 44. The top lines of the timing

diagram corresponds to the output of the FSM (MAX), with the clock signal (CLK) and

enable (EN) signal lines following. The next four signal lines of the timing diagram

(highlighted in blue) are the inputs and outputs of each of the two D-FFs – D0, D1, Q0,

and Q1. The output of the circuit is seen to go high whenever Q0 and Q1 are high,

corresponding to D0 and D1 falling on the positive-edge of the clock signal. The fault-

free case of this timing diagram output appears as anticipated with the state transitions

expected.

82

Figure 44. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (fault-free case).

After sequential behavior for the fault-free case of the FSM was obtained through

simulation, a decision was made to implement fault cases for comparison in the non-

TMR circuit.

1. Manual Insertion of Faults

For the initial testing on logic timing results due to error cases, there were three

trials done to determine effects of error: floating-input, ‘stuck-at-0,’ and ‘stuck-at-1.’

These were inserted into the circuit on the second input of the second AND gate tied to

the top OR gate. This would lead to an error in D0, dependent upon the combination of

fault with the other passed logic values.

a. Floating-Input Case

For the floating-input case to the AND gate, the second input line was

disconnected with no attachments, as illustrated in Figure 45. Breaks in the circuit similar

to this case commonly result in non-valid logic values in the output represented by ‘x’

and a red floating line in timing diagrams.

Figure 45. Floating-input case of AND gate second input disconnected, simulating break

in circuit or disruption in input.

83

The resultant timing diagram for the floating-input case is seen in Figure

46. As anticipated, the logic values for both the overall circuit output and the intermediate

D-FF inputs and outputs are inconclusive logic values. This floating break in the circuit

leads to complete break-down of the overall FSM with inconclusive data returned. A

disabling error such as this in the non-TMR case could produce erroneous or no output.

Figure 46. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (floating-input case).

b. ’Stuck-at-0’ Logic Fault

For the constant logic ‘0’ or ‘stuck-at-0’ case to the AND gate, the second

input line was pulled down with a biasing resistor tied to ground, as illustrated in Figure

47. This simulates a constant value of binary zero to the second input of the AND gate,

leading to incorrect output to the OR gate in certain cases.

Figure 47. Second input of AND gate tied to logic ‘0’, simulating constant logic zero or

short in circuit to ground plane.

The resultant timing diagram for the ’stuck-at-0’ case is seen in Figure 48.

There are some noticeable differences in this timing diagram in comparison to the fault-

free case in Figure 44. While the output (MAX) appears to go high in the expected

manner, a closer look at D0 and Q0 reveal the error injection as they do not always go

84

high where anticipated. As such, the output does not remain high over the last 150 ns as

in the fault-free case. An error such as this in the circuit, where a line is shorted to ground

by an SEL, could lead to erroneous output timing for the sequencer. This could lead to

individual CubeSats being deployed at the inappropriate time or missed deployments

altogether.

Figure 48. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (constant logic ‘0’ case).

c. ’Stuck-at-1’ Logic Fault

For the constant logic ‘1’ or stuck-at-1 case to the AND gate, the second

input line was pulled up with a biasing resistor tied to VCC, as illustrated in Figure 49.

This simulates a constant value of binary one to the second input of the AND gate,

leading to incorrect output to the OR gate in certain cases.

Figure 49. Second input of AND gate tied to logic ‘1’, simulating constant logic one or

short in circuit to positive voltage plane.

The resultant timing diagram for the ’stuck-at-1’ case is seen in Figure 50.

Again, there are some noticeable differences in this timing diagram in comparison to the

fault-free case in Figure 44. The output (MAX) appears to go high in many unexpected

85

places as the incorrect value is passed forward by the AND gate through to D0 and Q0.

D0 and Q0 get stuck at a logic high value which creates oscillations in the output state of

the circuit. These outputs eventually affect D1 and Q1, as Q0 is tied to the second OR

gate tree via a feedback path. This will most assuredly lead to individual CubeSats being

deployed at the inappropriate time and a complete loss of sequencer function. An SEL of

a signal line creating this type of condition is a catastrophic event.

Figure 50. Timing diagram for the Moore-type FSM developed with output, clock,

enable and D-FF input/output signals visible (constant logic ‘1’ case).

2. Modification of FSM Design to TMR Representation

Once the methods of fault injection were developed and fully tested for the non-

TMR FSM implementation, work was done to develop the design to a TMR instantiation.

This was done by voting on the output path, similar to the combinational logic methods

utilized earlier. In addition, voters were added to the feedback paths to each FSM in the

triplicated logic. This negated any errors generated in propagating back to the next state.

The triplicated version of the Moore-type FSM is illustrated in Figure 51.

Initial testing of the TMR FSM yielded results identical to the non-TMR version

of the circuit, as seen in the timing diagram of Figure 52. This verified the proper

operation of the modified circuit with exact timing sequences matching the non-TMR

case. To properly test for the fault cases, scenarios were run using each of the three

manual, fault-injection test cases as previously specified. For the constant logic ‘0’ and

constant logic ‘1’ cases, the output was seen to correct itself regardless of the

intermediate states of D0, Q0, D1, and Q1. The more interesting of these cases, constant

logic ‘1’, which yielded so many timing errors in the non-TMR instantiation, is illustrated

in Figure 52.

86

Figure 51. TMR representation of the Moore-type FSM with voting logic.

Figure 52. Timing diagram for the Moore-type, TMR version of the FSM developed

showing output signal correction regardless of errors (constant logic ‘1’ case).

87

Equally as interesting was the manner in which the TMR version of the FSM

corrected for the floating-input case. While the floating input lines may still be seen in the

D0 and Q0 input and output of the first D-FF, the signal is corrected by the time it

reaches the output, MAX. Additionally, the voting logic is working on the D0 and Q0

signals to restore proper operation when possible. The amount of time left in the non-

valid logic states was minimized. This is illustrated in Figure 53.

Figure 53. Timing diagram for the Moore-type, TMR version of the FSM developed

showing output signal correction regardless of errors (floating-input case).

3. Timing and Resource Comparison for Sequential Circuits

Another analysis of the timing and resource utilization between the two designs

was made prior to proceeding to the next phase of logic design. Once verification of the

TMR technique was made for a general Moore-type FSM, one desires to obtain accurate

timing information to further validate the approach. In the case of the non-TMR

representation of the FSM design, an average delay of 4.9 ns across three levels of logic

was measured. This corresponds to a clock frequency of up to 204 MHz. Worst case

delay across four levels of logic was found to be 5.5 ns due to the input and output buffer

delays on the FPGA. After the place and route phase, net skew was measured as 0.0 ns

with a maximum delay of 0.2 ns. Setup time was 1.9 ns and hold time 1.3 ns; thus,

considering the sequencer will be under-clocked to conserve power at a frequency of

approximately 50 MHz, any necessary timing constraints are met.

For the TMR version of the FSM, the same measurements were conducted after

the synthesis and place and route phases of design. An average delay of 6.5 ns across four

levels of logic was measured. This corresponds to a clock frequency of up to 154 MHz.

Worst case delay across four levels of logic was found to be 6.8 ns, again due to input

and output buffer delays. After place and route, net skew was measured at 0.0 ns with a

88

maximum delay of 0.2 ns. Setup time was 3.1 ns and hold time 2.0 ns; again, any timing

constraints necessary for the design are met.

The data above indicated that the added delay of the voter circuits introduced in

the TMR version of the FSM is responsible for the increased timing results and

subsequent reduction in clock frequency. This may be somewhat further affected by the

delays of the output buffers, as they do not appear in the feedback paths of the TMR

version. Most interesting was the increase in setup and hold times between the non-TMR

and TMR versions of the FSM. While the increase of approximately 0.5 to 1 ns should

not affect the operation of the simple sequencer application considered in this research,

more complex functions such as DSP algorithms or more complex processing schemes

may have to take similar timing increases into account. Complete verification of the data

timing sequences would need to be carefully analyzed in either of these two scenarios.

A difference in resource utilization between the two designs was as anticipated.

The non-TMR, baseline version of the FSM design utilized two of 9,312 FFs, three of

9,312 LUTs, and two of 4,656 slices with an average fan-out of 2.00. The TMR version

used six of 9,312 FFs, eleven of 9,312 LUTs, and six of 4,656 slices with an average fan-

out of 2.50. In both these baseline and TMR instantiations, the resource utilization for

FFs and LUTs was well under 1% of the total available quantities. These resource

utilization values should maintain an approximately three factor increase of TMR over

the baseline design, as the complexity of the logic design increases. The three-fold

increase of the TMR design in resource utilization from a baseline version will be readily

apparent in percentages the larger a logic circuit becomes.

The timing and resource utilization comparisons between the non-TMR and TMR

forms of sequential logic revealed that either design may be used for the sequencer

design. The additional setup and hold time, slower clock speed available, and slightly

increased path delay will have little to no effect on the sequencer operation. The

additional fault-tolerant features of TMR make it the best solution for the sequencer

project while requiring a factor of three to four times the resource utilization for the

design.

89

D. PRELIMINARY SEQUENCER LOGIC DESIGN

After testing the validity of the TMR approach in sequential logic, design work

proceeded with specific development of logic for use in the sequencer application.

Transition of design work was carried over from the Xilinx test cases to Actel specific

designs using Libero SoC. The Actel ProASIC3 development board was used for the first

sequencer logic testing, as seen in Figure 54.

1. Conversion of Xilinx HDL to Actel HDL

One of the first challenges in carrying schematically-designed circuits from Xilinx

ISE to Actel SoC is the manner in which logic primitives are specified in the two

products when HDL is generated. This requires manual editing when porting the HDL

specifying a Xilinx schematic design over to the Actel SoC development suite. For

example, in Xilinx ISE the instantiation of a two-input NAND gate is as follows:

 NAND2 XLXI_4 (.I0(XLXN_4),

 .I1(XLXN_3),

 .O(XLXN_5));

Figure 54. Actel ProASIC3 development board showing sequencer LED testing with

TMR logic implemented.

90

To properly port this design over to an Actel equivalent representation of the two-

input NAND gate, the signal inputs and output must be renamed to the appropriate

variable term. In this instance, .I0 becomes .A, .I1 is renamed .B, and .O translates to .Y

for the following representation:

 NAND2 XLXI_4 (.A(XLXN_4),

 .B(XLXN_3),

 .Y(XLXN_5));

While the instance can be renamed from XLXI_4 to something else, leaving this

device name helps with the realization that the code is ported from Xilinx to Actel

representation. Comparing the two source code equivalents aids in troubleshooting the

automatically generated HDL should errors occur. This may not seem like a great deal of

work until one considers the amount of logic typically involved in complex designs.

Since the design of the sequencer is implemented on the ProASIC3 family, knowledge of

Verilog is critical to the success of the project; once the initial work is done

schematically, time must be taken to understand any generated HDL code prior to porting

the design to Actel SoC.

2. Synplify Pro Representations of FSM Logic

Once logic for an FSM is implemented in Actel SoC, there are a variety of

synthesis tools available in Synplify Pro to aid in the realization of circuits. Instantiated

logic can be viewed as a register-transfer level (RTL) or technology schematic. These

views within Synplify Pro are illustrated in Figures 55 and 56 for a simple FSM.

Figure 55. Synplify Pro RTL view of instantiated FSM logic.

91

The program also features an FSM explorer which may be utilized in the

generation of state tables and state diagrams for any generated design. The state table and

diagram for the FSM implemented is seen in Table 8 and Figure 57. All code for this

basic, non-TMR FSM can be found in Appendix D.

The appeal of these tools is immediately apparent as they are beneficial in

troubleshooting and verifying reference design material with generated output. During

design of the TMR version of FSM logic, cross-referencing between the two state

machines is possible in utilizing the features of Synplify Pro. Should the switch to

Precision Hi-Rel occur in future testing, one may be able to check the output of that

synthesis tool (various TMR representations of a base logic design) within Synplify Pro

to verify expected output and state transitions.

Figure 56. Synplify Pro technology view of instantiated FSM logic.

92

Table 8. Synplify Pro generated state table for FSM logic.

Figure 57. Synplify Pro generated state diagram for FSM logic.

3. Designation of Timing Constraints within Logic

In defining the timing variables for use in deployment, there are two possibilities

for storage—saving the timing constants as parameters in Verilog and using the

FlashROM feature of the ProASIC3 FPGA to store constant values.

93

a. Parameter Constants in Verilog HDL

In Verilog, parameters are constant values and do not incorporate any

other data types such as nets or registers. In defining these parameters during the initial

portion of Verilog code, one is able to rapidly change the values and operation of a

module prior to re-synthesis and configuration of a target FPGA device. These parameter

values are not modifiable at runtime and can act as the timing constants necessary to

control the deployment sequence. The following code illustrates the use of parameter

values within a Verilog module:

 // Module – Test Module

module test_Mod (Clk, D, Q);

parameter width = 2,

 delay = 10;

input [width - 1 : 0] D;

input Clk;

output [width : 0] Q;

assign #delay Q = D;

endmodule

In this manner, all eight of the timing constants defining the deployment

sequence for the various P-POD deployments may be specified. Once the ‘Arm’ power

signal activates the sequencer and the ‘Deploy’ command is internally generated, the

sequencer FSM will execute the deployment sequence using the constant variables

defined at the start of the Verilog declarations. To modify the timing sequence, only a

quick re-declaration of parameters must occur prior to re-synthesis and implementation.

The generated bitstream file for FPGA reconfiguration takes only minutes to produce. All

interfacing and reprogramming may be accomplished through the JTAG port at any time

prior to launch, when physical access to the sequencer is available.

b. Constant Declarations in ProASIC3 FlashROM

The ProASIC3/E devices have a dedicated nonvolatile Flash ROM

(FROM) memory of 1,024 bits for storage of constant values or serial number

identification. This FROM can be read, modified, and written using the JTAG interface;

however, it can be read but not modified from the FPGA core. The FROM is logically

organized as eight pages of 16 bytes and physically organized 8×128 bits [77]. Actel

94

ProASIC3/E devices are the only FPGA to support this feature as only flash-based

technology supports reconfigurable, nonvolatile memory.

The advantage of this FlashROM is immediately seen in any application

utilizing the FROM. Since the FPGA can be configured using HDL code with a portion

referring to the constants stored in FROM, any changes via JTAG interface to the

constant values do not require complete reconfiguration of the FPGA. The main portion

of the synthesized and implemented FPGA configuration can be left untouched with only

a simple flash re-programming of the FROM. This reduces the time required to redefine

variables for sequencing from minutes to seconds.

Designation of FlashROM contents from within Actel SoC is a simple

process of adding the appropriate module (‘FlashROM_cmp’) to a project requiring its

use. The IP core is then instantiated as follows to call the FlashROM variables from the

HDL code:

----------- FlashROM ip core instantiation -----------

--FlashROM_cmp_inst: This FlashROM block is configured

--to generate different time intervals between launch

--select signals

FlashROM_cmp_inst: FlashROM_cmp port map

 (

 CLK => from_en_sig,

 ADDR => addr_sig,

 DOUT => dout_sig

) ;

The above example is modeled after an eight chip power sequencer

reference design provided by Actel [78]. The decimal values stored in the first eight bytes

of page zero in the FlashROM are illustrated in Figure 58. The design of this reference

power sequencer is very easily modified to fit the requirements of the CubeSat launching

application. All that remains is the modification to TMR implementation of logic using

manual or commercially available means along with radiation testing. Preliminary code

for the CubeSat sequencing application is provided in Appendix D.

95

Figure 58. FlashROM storage of eight bytes defining sequencing timing; the third value

(0x2) is highlighted containing decimal value ‘15.’

E. CHAPTER SUMMARY

The methods of implementing fault-tolerant techniques within logic leading to

final selection of a particular method were presented in Chapter V. All combinational and

sequential circuits were compared for accuracy in output, FPGA resource utilization,

timing characteristics, and reliability for correcting errors. TMR was seen as the best

solution for both combinational and sequential circuits due to small overhead

requirements and small increases in logic delay. Discussion of manual and automatic

fault injection techniques was provided.

Further research was conducted toward developing the sequencer logic for use in

the developed ProASIC3 design. Work was carried over from Xilinx ISE to Actel SoC

with porting methods discussed. An overview of Actel SoC requirements for logic

development was provided with suggestions for future code design. Differences in

storage methods for sequencer timing values were discussed, including storage of

variables within HDL code or in the internal FlashROM of the FPGA. The use of a power

sequencer reference design for the ProASIC3 family, coupled with TMR logic, is seen as

the way forward for the sequencer application.

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH

A. CONCLUSIONS

During the development of a general payload processor, there were several items

noted which vary from work done in the past. The research conducted to discern the

appropriate type of processor suitable to the sequencer project led to a complete review of

all available FPGA technology on the market. One of the most important differences

between the development of the sequencer and work done previously on CFTP concerns

the type of device utilized. While CFTP focused on SRAM-based FPGAs, with all of the

inherent requirements for supporting secondary componentry, the fault-tolerant FPGA-

based sequencer project utilizes Actel ProASIC3 flash-type FPGAs for embedded

processing. This has several benefits including a large reduction in the number of

secondary components required to operate the device, a low-power operating mode that

reduces power consumption by up to 40%, live-at-power-on processing capability, and

the inherent radiation tolerant properties of flash-type technology [79]. This type of

FPGA has not been previously utilized in space-systems projects at NPS, and future

research should incorporate this design. While the Xilinx Virtex-5 series has certain clock

frequency and quantity of logic resources advantages, the Actel ProASIC3 series is

suitable in all but the most demanding DSP applications. The ability to have one flash-

based FPGA take the place of up to a dozen components on a SRAM-based platform is of

great benefit in the radiation environment of space. When only one device is involved,

protection of the design from radiation induced faults becomes a more manageable

challenge.

In researching the various means of fault tolerance available, one is faced with the

task of choosing between several competing schemes—each of which promises to

accomplish the same end-state of reducing radiation-induced errors in logic. While there

are certain benefits to the quadded logic approach, such as the elimination of the voter

circuitry, the combined effects of greatly increased resource utilization coupled with a

significant timing delay reduce the suitability of this approach. Additionally, the time-

98

intensive manual wiring of logic that accompanies the quadded logic approach is

disproportionate to the returns in error masking. Similarly, TIR offers many of the same

benefits of TMR in a slightly more resource efficient design; however, the lack of

certainty in error correction coupled with delay path differences in the circuit negatively

affects its usefulness. TMR offers the best combination of logic utilization and timing

path delay for any of the circuits investigated.

The development of the PA3TB was instrumental in developing skills necessary

for effective use of Altium Designer. Altium was found to be a highly capable platform

for development of schematic and PCB layout. The ability to easily try out circuit

implementations while linking 2-D footprint and 3-D models to their associated

components is of great interest to any circuit designer. Many errors were avoided by

careful planning of the schematic before layout and placement fitting of components.

There were excellent results obtained in the development of the first PA3TB design; it

served as a familiarization with not only the design software toolset but also the

manufacturing and integration of multi-layer PCBs and SMT components. There was a

general realization of what features would work or be too difficult to manufacture on the

more complex SADv3 design after gaining hands-on experience with the integration of

the PA3TB.

Design work and implementation of the SADv3 is seen as the most time-intensive

portion of work occurring in this research. The complexities involved when moving from

a four to eight-layer PCB design with a 484-pin BGA FPGA are easily the most daunting

task accomplished. Overall design complexities involved with supporting the FPGA

require pre-planning in the number and type of supporting circuitry such as capacitor and

resistor banks. The automatic trace routing choices made by Altium Designer are not

always in the best interest of the PCB layout. The traces and escape patterns provided by

the auto-router may be permissible once extensive work is done to manage the settings

and parameters of the layout options. The addition of the SRAM and flash-based memory

components to the design is done in the best interest of future operations and mission

sets. Although not necessary for the sequencer application, any additional data logging or

data processing application will find these devices useful.

99

In both combinational and sequential circuits, the logic outputs of the TMR

instantiated circuit under test were identical to the non-triplicated version. Additionally,

the timing path differences between the two versions of circuitry were negligible. In all

but the most complex circuits, this should remain the case. The ability to quickly

represent HDL code within a schematic or Verilog representation, triplicate the

instantiation, and combine with voting logic is a simple means of providing logic

redundancy to any design. Sequential circuits take a bit more work, as the feedback paths

providing next-state logic must also be properly protected to prevent error propagation. In

all cases of TMR testing upon sequential logic, the designed circuit was able to correct

any introduced fault prior to affecting the output. This is a clear benefit for the sequencer

application, the greatest advantage of which is guaranteed timing and CubeSat

deployments during the periods specified.

The ability to manually inject faults for testing, while applicable to the work in

this thesis, is a time-intensive proposition. To test all possible fault points within a circuit,

a more automated version of the fault injection technique must be developed.

Additionally, the manner of TMR development and insertion has great implications

concerning time available to pursue other logic research, development, and testing. With

the availability of commercial software products, a great deal of time and effort can be

saved by automatically configuring different forms of TMR for logic implementation

using software packages such as Precision Hi-Rel. Use of this commercial synthesis

software will allow for comparisons between the manual TMR methods developed and

automated TMR generation. This program should be licensed to allow for continued

testing of the various subsets of TMR implementations.

Any transitions from Xilinx to Actel Verilog HDL code require reformatting all

instantiated logic components into the proper syntax for use by the Actel synthesis tools.

This process is lengthy and tedious with regards to the appropriate syntax for transition

from one software toolset to the other. Since Precision Hi-Rel can be targeted toward any

vendor’s devices generically, it should also aid in automating syntax exchange to some

degree. Even if the logic has been designed schematically in Xilinx, the Precision Hi-Rel

package will be able to TMR the design and adapt it for Actel FPGA usage.

100

The development of HDL sequencer logic is an important step toward the

realization of the integrated payload design. Through careful application of various

techniques, including Verilog variable declarations and ProASIC3 FlashROM utilization,

there are a variety of options available for logic implementation on the sequencer. The

ability to quickly realize an FSM design using Verilog case and state assignments saves a

great deal of time and effort. This is in contrast to attempt to reproduce a complex FSM

design schematically with logic gate equivalency.

The design work in developing a general-purpose payload processor has many

real world applications. Specifically, the work contained in this thesis sequencer design is

applicable to a real-world, CubeSat deployment application for potential use on future

missions. In developing a novel approach to processing and timing management

operations, a low-cost solution to a difficult problem is realized. There is still research to

be conducted and testing necessary to validate the design prior to manufacture and

launch. This additional research should allow for several subsequent theses to be

prepared on the topic. The general-purpose payload processor is flexible enough both in

configurability and logic capacity to target new implementations. The TMR techniques

and logic implementations for the sequencer are only a single example of an application.

B. FOLLOW-ON RESEARCH AND TESTING

There are several avenues available for development of the general payload

processor design. One of the first tasks to accomplish is final component placement and

subsequent trace verification of the SADv3 by a design review committee. This team of

engineers must work to ensure that the design of the eight-layer PCB and all associated

components are verified prior to board manufacture. As there are a large number of signal

lines on the design schematic, care must be taken to verify all traces to ensure proper

endpoint termination and routing. The choice of power supply may also be combined

with current means of power conversion to obtain the required +5 VDC voltage for down-

conversion to other voltages. VPT Incorporated manufactures DC-DC converters for

space applications which are rated to 30 krad TID and SEE characterized to 44 MeV-

cm
2
/mg with up to 85 MeV-cm

2
/mg parts available [80]. They also manufacture an

101

associated electromagnetic interference (EMI) filter for use with the DC-DC converters

[81]. These will work well in converting the +28 VDC power supplied by the host

spacecraft into a more manageable +5 VDC for further regulation on the PCB. Their use

has already been space-qualified in several previous mission hardware designs.

Another desired feature for inclusion on the SADv3 design is the incorporation of

Ethernet for data logging during radiation testing. Preliminary research into the

incorporation of Ethernet standards, in combination with ProASIC3 FPGAs, indicates

that there is a Microsemi available 10/100 Ethernet Media Access Control (MAC) core to

connect to local area networks (LANs) [82]. Work will need to be done to interface the

appropriate pins of the FPGA and determine logic area utilization and suitability for

triplication. Actel provided 10/100 MAC core specifications for the ProASIC3 series that

specify an estimated 44% device utilization with a corresponding 49 MHz clock

performance [82]. This utilization factor precludes TMR instantiation of this portion of

the FPGA logic on the ProASIC3 series of devices.

The addition of SRAM and flash-based memory to the SADv3 design opens up

new possibilities in both processing and video feed features. Implementation of the

FPGA into a general payload processor arrangement for other applications can utilize

such features. There are a multitude of cores available for processing available directly

from the vendor [83]. While much of this IP may cost extra to license, there are open-

source cores available which may serve an equally useful purpose [84]. The available

open-source cores include communications controllers, processors, systems controllers,

and video controllers. Research into these IP options should be conducted to find suitable

items for possible inclusion into the SADv3 design. There are display reference designs

available including video and still-shot camera design and programming files [85]. It

should be noted that the large relative device utilization of such proprietary cores may

make it impossible to TMR such features on the FPGA while leaving sufficient logic

resources to TMR the sequencer portion of the design. Additional difficulties are incurred

in trying to TMR proprietary IP with regard to timing constraints and power

requirements. Some testing of this may be possible with the Precision Hi-Rel software

102

packages, although, there is still a logic resource utilization challenge as seen in the

10/100 MAC core specified previously.

The majority of remaining work involves radiation testing of a flight-ready

SADv3 board with various fault-tolerant schemes. This is necessary to determine the best

combination of FPGA hardware and configuration logic. The various forms of radiation

introduction to the PCB need to be investigated, including FPGA dose rates and the

possibility of whole board testing. Radiation levels need to be sufficient to push the

FPGA to specified limits and beyond to determine suitability for the space environment.

For the nuclear source chosen for testing, coordination between NPS and the cyclotron

provider needs to be managed up-front to avoid testing errors in setup.

In conclusion, there are a number of applications for which the ProASIC3 general

purpose payload processor is suitable. The sequencer work contained in this thesis is one

application in which a significant gain in the state of current CubeSat deployment

technology may be realized. The ability to deploy CubeSats using TMR logic should be

quite cost effective when compared to custom, rad-hard components, possibly with no

loss of fault tolerance. TMR is useful for protecting both combinational and sequential

circuits, especially given the available fault-tolerant software toolsets. Future designs

using Actel flash-based FPGA technology may have wide applicability due to its

configurability and the flexibility with which the I/O pairs can be assigned. The

compactness of the ProASIC3 circuit design, when compared to the more traditional

Xilinx Virtex series FPGAs, is readily apparent. It is anticipated that this design, or some

evolution of it, will be quickly developed into a flight-ready product.

103

APPENDIX A. FPGA HARDWARE PRODUCTS AND

SOFTWARE DEVELOPMENT TOOL DIFFERENCES

A.1 COMPARISON OF XILINX AND ACTEL PRODUCTS

The goal of this appendix is to look at all of the considered hardware vendors to

determine the optimal solution to the choice of FPGA for use in the CubeSat deployment

sequencer. A variety of features are compared, including software packages and hardware

feature sets. In past chapters, the choice of the FSM type, FPGA types considered,

radiation challenges faced, and fault-tolerant logic implementations were discussed. The

choice of a SRAM-based or flash-based FPGA using a Moore machine FSM was settled

upon as the desired configuration for the sequencer. This appendix looks to further that

choice to a specific product, having considered the software suites available and the

particular hardware configurations which may fit a chosen fault-tolerant scheme.

In both cases, Xilinx or Actel products, design choices are limited to those

devices with a full upgrade path to rad-hard technology. The devices compared are those

that would have pin-to-pin compatibility between commercial and military-grade

products with their rad-hard counterparts. Both vendors’ software products are compared

in terms of feature sets, usability, and ease of hardware interface. In all cases, attempts

are made to test various logic designs upon the hardware compared using vendor

provided development boards. These experimentation results were discussed previously

in Chapter VII.

1. Software Feature Set

For the purposes of this research, two of the most prominent vendors of SRAM-

based and flash-based FPGAs were compared in hardware and software features. Xilinx

Corporation is known for its Spartan11 and Virtex series of devices - with legacy Virtex I

FPGAs being flown on CFTP during MidSTAR-1 and the upcoming NPSAT1 satellite

missions. Xilinx devices are SRAM-based with all of the previously mentioned design

challenges. Xilinx devices are best programmed with the Xilinx Integrated Software

11 Spartan® is a registered trademark of Xilinx, Inc.

104

Environment (ISE12) development package [86]. Meanwhile, Actel (now a division of

Microsemi) Corporation has long focused on antifuse technology but has recently made

strides in configuring their ProASIC133/L flash-based FPGAs for the space environment.

Similar to ISE, Microsemi provides a software environment known as Libero14 System

on Chip (SoC) targeted to its various FPGA product lines [87].

a. Xilinx ISE 14.3

ISE WebPACK15 design software is the name of the free Xilinx PLD

development suite made for Linux, Windows16 XP, and Windows 7. ISE WebPACK is a

downloadable solution for FPGA and CPLD design offering HDL synthesis and

simulation, implementation, device fitting, and Joint Test Action Group (JTAG)

programming. It consists of the software development kit (SDK), MicroBlaze17 controller

system, project navigator, CORE Generator14, PlanAhead14, ChipScope14 Pro, Xilinx

Power Analyzer (XPA), ISE Simulator (ISim), and Xilinx Synthesis Tool (XST). The

software package is upgradable to more extended editions including the Logic,

Embedded, and DSP versions of the package [86]. The use of Xilinx ISE has a long

history at NPS, an earlier version being the toolset utilized for the development of CFTP.

Xilinx ISE, having used Mentor’s ModelSim18 in the past, now defaults to its proprietary

ISim simulator. The primary interface of Xilinx ISE can be seen in Figure 59.

12 ISE® is a registered trademark of Xilinx, Inc.

13 ProASIC® is a registered trademark of the Microsemi Corporation.

14 Libero® is a registered trademark of the Microsemi Corporation.

15 WebPACK™ is a trademark of Xilinx, Inc.

16 Windows® is a registered trademark of Microsoft Corporation.

17 MicroBlaze™, CORE Generator™, PlanAhead™, and ChipScope™ are trademarks of Xilinx, Inc.

18 ModelSim® is a registered trademark of the Mentor Graphics Corporation.

105

Figure 59. Interface of Xilinx ISE 14.3 showing schematic layout and design flow.

For the initial tasks of developing simple combinational and sequential

circuits, an important difference between Xilinx ISE and Libero SoC was readily

apparent. The Xilinx ISE package was found to have a much more comprehensive and

accessible schematic editor, making construction of logic circuits using baseline gate

instantiations a great deal easier. The Libero SoC package was found to be greatly limited

in this aspect, with an overall system level schematic design being available yet difficult

to use. One must suspect that the limited adoption of Actel FPGA products (in

comparison to the widely utilized Xilinx series) may be due in some part to the

limitations of this feature.

Additionally, the overall design flow of the Xilinx ISE product seemed to

be more flexible and easy to grasp than that of the Actel SoC product. Xilinx ISE is

useful in that it generates an overall 'Design Summary' at every step of the process and is

106

the default view upon starting a project or continuing work, as illustrated in Figure 60.

This lets one view, in a stoplight and metric fashion, the remaining tasks and the overall

logic utilization throughout every step of the process. The output of each process can be

exported in a text logbook fashion for future reference and design history.

Figure 60. ISE ‘Design Summary’ window listing FPGA utilization and design flow.

The options within the toolset allow for easy customization of the

programming options for FPGA synthesis. Logic designs can be tailored for speed, area

optimization (size), or further customized to fit individual needs. The ability to rapidly

reconfigure a target design to other FPGA target devices is as simple as changing a

configuration option and was used extensively in the testing in Chapter VII. This allowed

for selection of Spartan versus Virtex products in the development of stacked methods of

fault tolerance to test sizing constraints.

Furthermore, the transition from schematic diagrams to generate HDL was

seamless, as Xilinx ISE allows for HDL generation to Verilog or VHDL. In all cases, the

107

generated code was easy to follow due to the naming scheme and instantiations matching

the schematic labeling. Actual synthesis of a design was very informative in the case of

errors generated by XST. XST provided enough context help to locate the line of code in

error or the schematic discrepancy. HDL files and schematic files can be checked for

concurrency with standards prior to implementation.

b. Actel Libero SoC 10.1

Libero SoC is a comprehensive design software toolset for use with

Microsemi’s SmartFusion19, IGLOO16, ProASIC3 and Fusion16 FPGA families. This

software suite allows for entire design flow from design entry, synthesis and simulation,

through place-and-route, timing and power analysis, with enhanced integration of the

embedded design flow [87]. Libero SoC consists of the product design flow and

management system including a ‘Core Catalog’ with commonly configurable cores and

the SmartDesign20 creation tool for building high level modular systems and subsystems.

Additional software tools provided include Synplify Pro21 AE, Synphony Model22

Compiler AE, ModelSim AE, physical design layout, SmartTime23, and SmartPower20.

The primary interface of Libero SoC can be seen in Figure 61.

In contrast with Xilinx ISE, the Actel Libero SoC package seems more

tailored to system level design, especially once the baseline HDL is written for the FPGA

logic. While product literature indicates that SmartDesign is tailored to assemble and

connection Microsemi intellectual property (IP), user-generated IP, and custom HDL

modules [88], the development of initial HDL models (especially schematically) is

troublesome within Libero SoC. Since Xilinx ISE is able to create schematic symbols for

synthesized Verilog and VHDL, the product is more easily suited to wiring those

instantiated symbols graphically.

19 SmartFusion®, IGLOO®, and Fusion® are registered trademarks of the Microsemi Corporation.

20 SmartDesign™ is a trademark of Synopsys, Inc.

21 Synplify Pro® is a registered trademark of Synopsys, Inc.

22 Synphony Model™ is a trademark of Synopsys, Inc.

23 SmartTime™ and SmartPower™ are trademarks of the Microsemi Corporation.

108

Figure 61. Interface of Libero SoC 10.1 showing Verilog HDL and design flow.

Both Xilinx and Actel have strong chip planning toolsets when looking at

device pin-outs and logic floor plans. Much of the chosen product depends upon comfort

with simulation software available for the two suites. Actel SoC defaults to Synplify Pro

as its simulator of choice. Any reasonable experience with either of these two simulators

could lead to a tendency to choose one software package over the other. The author has

found, in extensive testing, that the feature sets of both ISim and Synplify are quite

similar with logic timing diagrams generated being almost identical. Users of either

simulation product should not have any difficulty switching from one to the other.

Overall choice of software package comes down to comfort level of HDL versus

schematic design and choice of FPGA. Both are fully capable in their synthesis,

simulation results, and final output of bitstream files for FPGA configuration.

109

c. Results of Software Comparison

Overall, Xilinx ISE appears to be a more robust and feature-filled software

suite. The ease of transition from HDL instantiation, to simulation, to synthesis and

implementation is seamless and requires only a few hours of experimentation to grasp the

basics. In contrast, Libero SoC seems very difficult to grasp, especially considering there

are logic flow difference between versions 9.1 and 10.1 of the package. It appears as if

Actel is trying to utilize a more contextual menu interface for design flow (similar to

Xilinx) in its newer product, however, the graphical flow diagrams of the 9.1 software

suite made a great deal more sense. On the basis of software alone, Xilinx ISE is a clear

winner in feature set, configuration options, and the usability of the software package.

2. Hardware Feature Set

Significant differences in the Xilinx and Actel series of FPGAs are apparent in the

choice of hardware for design. The SRAM-based implementations of Xilinx compared to

the flash-based FPGAs of Actel are significantly different in their utilized technology.

While the initial research in Chapter II led to the conclusion that flash-based FPGAs are

superior in their simplicity, there is much left to be considered including their suitability

in space-applications. For the sequencer developed for CubeSat deployment applications,

one desires a re-programmable, low-power device of the most simplistic nature available.

SRAM-based FPGAs, due to their requirement for external PROM type devices for

configuration and microcontrollers to enable the power-on configuration, are significantly

more challenging in the secondary component requirements.

Experience with Xilinx FPGAs shows that at least 90% of SEEs cause

configuration faults rather than logic faults. Configuration faults can cause persistent

errors in computation. The error-correcting technique used in the logic must detect as

well as correct any errors in the computation. Detection of a repeated error in the

computation then should signal the need for reconfiguration. Until reconfiguration of that

portion containing the configuration error, the error-correction capability maintains

correctness of the result [89].

110

A comparison between the radiation tolerant properties of both devices is

necessary for down-selection to a specific product line. While many of the overall

features, include logic real-estate, configuration methodology, and use in the final circuit

are similar, clearly the differences in radiation tolerant properties and secondary

component requirements have the most impact upon selection. The two product lines

considered for use in the research are the Xilinx Virtex and Actel ProASIC3 series of

FPGA devices. Experiments conducted on logic development in Chapter VII were

targeted to both vendors’ products, allowing for the earlier software feature comparison

and subsequent testing of development boards.

a. Xilinx Virtex Series FPGAs

The Xilinx SRAM-based Virtex series of FPGAs are consistently utilized

devices with long heritage in space applications. Their product familiarity, coupled with

many years of on-orbit lifetime utilization, has led to a product line extending almost a

decade. The space-rated rad-hard versions of the Virtex-I/II gave rise to the Virtex-4QV

that has, in turn, led to the development and fielding of the radiation hardened Virtex-

5QV. One must suspect that their more recent product lines, including the Virtex-7 series

FPGAs, are undergoing modification and certification for use in the space environment.

For the rad-hard Virtex-5QV device, the FPGA consists of 131,072 logic

cells, 87,920 internal fabric FFs, 87,920 real 6-input LUTs utilizing greater than five

million LUT bits, 450 MHz system performance, up to 18 total clock generators, 836 user

I/Os, and 20,480 configuration logic blocks (CLBs). Each CLB slice contains four LUTs

and four FFs (an increase from earlier generation devices). There are also 320 DSP slices

consisting of a 25×18-bit multiplier, an adder, and an accumulator [61]. The internal

structure of a Virtex-5 CLB slice is illustrated in Figure 62.

111

Figure 62. Each Virtex-5 CLB slice contains four LUTs and four FFs (From [79]).

The Virtex-5QV series advertises guaranteed SEL immunity to LET

greater than 100 MeV-cm
2
/mg, 1 Mrad TID, SEU hardened configuration memory cells

and control logic with 3.8×10
-10

 errors/bit/day, and SEU and SET hardened CLB flip

flops and internal data paths [61]. The SRAM cells used for the configuration memory of

the Xilinx FPGAs are larger and more robust than the SRAM cells used for general-

purpose memory, which are optimized for speed and cost [25]. These configuration

memory cells are optimized for SEU resistance by a combination of their feature size and

manufacturing technique.

The Virtex-5QV is listed as compatible with the commercial and defense-

grade Virtex 5 FPGAs, allowing for low-cost, rapid prototyping and easy design

migration to flight hardware. For the purposes of a component comparison, the Virtex-

112

5QV (XQR5VFX130) rad-hard version is compatible with the commercial-grade Virtex-

5 (XC5VFX130T) [90]. The embedded microprocessor of the Virtex-5QV is disabled

when compared to the commercial versions. Also, there are some pin differences, as the

rad-hard version contains 1,752 pins, while the commercial version utilizes 1,738 pins

[61], [90]. There are compatibility guides provided by Xilinx for the correct pin

conversions from one design type to the other. The lowest cost for a commercial-grade

Virtex-5 is $4,352.40 [91].

b. Actel ProASIC3 Series FPGAs

A more recent development in FPGA manufacturing stems from the use of

flash-based FPGA technology to provide operational capability at power initiation and

reprogrammable aspects, as previously discussed. The use of flash technology is a great

enabler for the reduction in secondary components required for operation. Additionally,

one may benefit from the inherent radiation tolerant properties of flash-memory when

compared to SRAM-based FPGA configurations. In this sequencer research, the RTAX24

and RTSX antifuse products from Actel were discounted for lack of reconfiguration

techniques previously discussed. Therefore, only RT ProASIC3 devices, with pin-

compatibility to the ProASIC3L defense-grade of FPGAs, were considered for use in the

project. With lack of a reconfiguration requirement, however, RTSX-SU devices, which

implement TMR in hardware, could be ideal [92].

In the RT ProASIC3 device, the FPGA consists of 600,000 logic gates

including: 13,824 VersaTiles25 (D-FFs), 350 MHz system performance at 1.5 VDC or 250

MHz at 1.2 VDC, six clock-conditioning circuits (CCCs) with integrated phase-locked

loops (PLLs), 270 user I/Os, and 135 differential I/O pairs. Each VersaTile can be

configured as a three-input logic function, a D-flip-flop (with or without enable), or a

latch by programming the appropriate flash-switch interconnections. There is also 108

kbit of RAM and 1 kbit of non-volatile ROM provided [19]. The internal structure of a

ProASIC3 VersaTile is illustrated in Figure 63.

24 RTAX™ is a trademark of the Microsemi Corporation.

25 VersaTile™ is a trademark of the Microsemi Corporation.

113

Figure 63. Configuration of low-power ProASIC3 device core VersaTile (From [93]).

The RT ProASIC3 series advertises SEL immunity to a projected LET

threshold of 68 MeV-cm
2
/mg, D-FFs and internal SRAM SEU limits of 63.5 MeV

protons, and heavy ion transients on the global clock networks and I/O banks greater than

70 MeV-cm
2
/mg [43]. SEE mitigation strategies mentioned include TMR of the clock

network, I/O banks and D-FFs. This may not be the most efficient manner to mitigate

SEEs in the combinatorial logic and embedded SRAM memory; strategies for these logic

types are explained in more detail in Microsemi’s radiation reports [29].

RT ProASIC3 devices have been tested for TID effects under x-ray and

gamma ray environments [94]. There is an observable effect of increase in propagation

delay through pass transistors as TID increases. This is due to floating gates being less

able to hold interconnection pass transistors in their ‘on’ state. With a dose rate of 5

114

krad/min, an increase in propagation delay of 10% has been observed at a gamma ray

TID of 25 to 30 krad. The results of this analysis are indicated in Figure 64. At 1 rad/min,

which is more representative of the space environment of LEO, the 10% propagation

delay occurs at a TID level of approximately 40 krad. A 15% propagation delay was seen

at a TID level up to 55 krad [83]. Microsemi is working to alter Libero SoC to include

propagation delay increase for designers wishing to incorporate these delays into

simulation and static timing analysis prior to deployment [83].

Figure 64. Degradation of propagation delay versus TID for RT ProASIC3 (From [83]).

The RT ProASIC3 is listed as pin-to-pin and timing compatible with the

defense-grade ProASIC3EL FPGAs. For the purposes of a component comparison, the

RT ProASIC3 (RT3PE600L-CG484B) rad-hard version is compatible with the defense-

grade ProASIC3EL (A3PE600L-FG484M). The use of the M version (military

temperature range) ensures that timing can be verified in hardware across the full

temperature range from -55 C to 125 C [83]. The lack of pin differences between the rad-

hard and military-grade components is of great benefit in comparison to the Xilinx

Virtex-5QV. This should allow for one standard design in which schematics can be

developed and not modified if utilizing either the rad-hard or military-grade FPGA. Since

the overall goal of this thesis is to select lower-cost componentry, with the possibility for

115

future upgrade dependent on mission, the Actel series devices are more design friendly in

this regard. The individual cost for both these devices require product quotes; a logic

compatible device in the 484 pin-package can be purchased for as little as $63.87—this

device (A3PE600-FG484) should be sufficient for initial prototype testing [95].

Depending on the results of future radiation testing, this prototype FPGA may be reliable

enough with redundant logic to utilize on final flight hardware.

3. Associated Hardware Requirements

 There are many associated benefits with the ProASIC3 and ProASIC3L FPGAs

related to supporting hardware. These devices can be powered from a single 1.2 VDC or

1.5 VDC supply for core voltage and I/Os. There is no requirement for a 2.5 VDC or 3.3

VDC supply for power-up; although, these are added as necessary to supply I/O bank

voltages. Running the entire system on a single supply saves costs and area associated

with voltage regulators [90].

Since there is no boot PROM or flash microcontroller required to load the FPGA

at system power-up, the ProASIC3 line is a single-chip solution [90]. Since CPLDs are

not required, ProASIC3 FPGAs are live at power-up. Again, this saves on board layout

area and total system cost. Additionally, no power-up monitor chip is required; unlike

SRAM configuration bits, flash configuration switches do not brownout [90]. Clock

management is also simplified by live at power-up CCCs and PLLs, allowing for the

removal of additional clock distribution chips often used to boot SRAM FPGAs or

microcontrollers during system start-up [90].

A.2 APPENDIX SUMMARY

The comparison of Xilinx versus Actel software and hardware products was

discussed in Appendix A. Xilinx ISE 14.3 was compared to Actel SoC 10.1 with ISE

being realized as the more complete design suite due to its’ integrated schematic editor.

Both software suites were seen to have capable synthesis and simulation toolsets.

116

THIS PAGE INTENTIONALLY LEFT BLANK

117

APPENDIX B. PROASIC3 TEST BOARD – REFERENCE,

SCHEMATICS, AND PCB LAYOUT DIAGRAMS

The design files for the ProASIC3 Test Board are divided into four sections: the

bill of materials, schematics for electrical connections, the 2-D PCB layout documents,

and 3-D component placement views. All of the associated documents were constructed

using Altium Designer 10 during the development portion of this research.

B.1 PROASIC3 TEST BOARD DEVELOPMENT METHODOLOGY

1. Detailed Discussion of ProASIC3 Test Board Design Decisions

Since one of the objectives of this test board was to minimize the amount of

secondary components placed upon the PCB, the power regulation circuitry for the

PA3TB was not implemented on the PCB. A wiring harness configuration was

determined to be the proper method for providing power to the board. A bench-top

Agilent E3632A DC power supply was utilized for the power supplied to the FPGA core

with an Agilent E3631A triple output DC power supply used to supply secondary

voltages. By using external power supply and conditioning, any design errors could be

localized to the FPGA design rather than the power circuitry. This greatly aids in trouble

shooting, should the PA3TB not operate as anticipated upon integration.

For the power supply harness, a six wire configuration was chosen as it would

supply the required voltages and ground for proper operation of the FPGA in various

manners. As seen in Figure 65, pin 1 is tied to ground, pin 2 is USB voltage (optional),

pin 3 is VCCPLF (tied to 1.5 VDC or GND dependent upon analog PLL usage) [96], pin 4 is

VCC (1.2 VDC), and pins 4 and 5 provide I/O bank voltages (1.2, 2.5, or 3.3 VDC). This

allows for maximum flexibility in testing of the PCB, as one desires to enable certain

features or drive I/O lines at different voltages depending on connections. A Molex

43045-0614 2×3 Micro-Fit 3.026 connector was chosen as the six wire header [97].

26 Micro-Fit 3.0™ is a trademark of Molex.

118

Figure 65. Footprint of Molex Micro-Fit 3.0 6-pin header for power supply to FPGA core

and I/O bank voltages.

Similarly, the JTAG header was chosen for ease of interface to the Microsemi

hardware programming device, a FlashPro427. The FlashPro4 provides in-system

programming for all series of Actel FPGAs including the ProASIC3 (nano and rad-hard

variants). The FlashPro4 supports IEEE 1149 and IEEE 1532 standards for programming

[98]. This allows for easy programming when coupling the Libero SoC IDE and FlashPro

software. The JTAG interface is a 10-pin header in a 5×2 configuration. The footprint of

this connector as seen on the PCB layout as illustrated in Figure 66. The straight pin

header used on the PCB board for JTAG interface is manufactured by TE Connectivity

(P/N 5103308-1) [99]. This part is the replacement for the discontinued components

specified in the FlashPro4 user’s guide [100].

Figure 66. Footprint of FlashPro4 JTAG 10-pin header for programmer interface.

27 FlashPro is a trademark of the Microsemi Corporation.

119

To allow for future debugging and interfacing with secondary data logging

equipment, a USB connector was added to the PA3TB design. This interface was useful

in adding experience in interfacing secondary standards with the FPGA I/O banks. A

standard USB 1.1 Series-B receptacle was added. A Tyco Electronics receptacle

assembly was chosen as the device for implementation (P/N 292304-1) [101].

The emulation of CubeSat P-POD deployment is simulated by the inclusion of

eight ‘bit’ light-emitting diodes (LEDs) which light to indicate activity on that particular

I/O pin of the FPGA. These were labeled BIT0 through BIT7. The specific LEDs chosen

were green, surface-mount of standard brightness in the 0603 form-factor (P/N

QTLP601C-4) [102]. These were coupled with current-limiting resistors also in the 0603

form-factor. By utilizing these LEDs, we can realize a visual representation of sequencer

timing. Four additional LEDs were added on a different bank for testing and indication

purposes, labeled PWR and TST0 through TST2.

Since the LEDs and resistors chosen were of 0603 type, all power-decoupling

capacitors required for the FPGA power inputs were also selected as 0603 form-factor.

This minimizes board area necessary for wiring while still allowing for soldering under

the microscope. These small LEDs, chip resistors and capacitors can be manipulated with

tweezers while soldering with a fine-tip so long as magnification is available. In addition,

the VQ100 package of the ProASIC3 nano is able to be soldered under the microscope.

The remaining requirement of expandability is met by adding as many copper

pads to the PCB as will fit. This will be discussed during the PCB layout section of this

appendix. The full ‘Bill of Materials’ for the ProASIC3 Test Board is provided in

Appendix A.

2. Discussion of Schematic

For the development of PA3TB, the schematic portion of Altium Designer was

utilized to develop the circuit design. The ProASIC3 nano was laid out first, with the

banks not utilized in construction (‘Bank 1’ and ‘Bank 3’) placed with non-connected

I/Os. These are additional connections that can be implemented in future designs with

this device. Concerning ‘Bank 0’, very few of the available I/O resources were utilized;

120

I/O_00 through I/O_03 were tied to the PWR and TST0 through TST3 indicators. I/O_04

through I/O_19 were seen as points to implement future electrical connections. These

I/Os are tied to copper pad areas on the PCB for expandability. ‘Bank 2’ I/O_38 through

I/O_40 were utilized for the USB connection with resistive values allocated as per the

datasheets [101]. The BIT0 through BIT7 LEDs were also implemented on this bank via

I/O_41 through I/O_48; resistor values of 390 Ω were utilized as per specifications for

LED protection. A close-up schematic view of the USB and LED connections are

illustrated in Figure 67.

Figure 67. Schematic view of PA3TB ‘Bank 2’ connections to USB connector and BIT0

through BIT7 LEDs.

121

All power de-coupling capacitors for the FPGA were tied to the appropriate VCC

inputs for proper operation. Again, this was done in accordance with the ProASIC3

datasheet to reduce noise from the power supply to the FPGA [74]. The 6-pin 2×3 Micro-

Fit 3.0 connector was placed on the schematic and wired to the appropriate power and

ground lines on the FPGA and USB header. In placing the JTAG connector on the

schematic, a 5×2 header was utilized for the electrical connections as seen in Figure 68.

Proper biasing of the VPUMP connection was done in accordance with the datasheet [74].

Figure 68. Schematic wiring diagram of JTAG interface header to ProASIC3 nano

connection points on PA3TB.

The complete ProASIC3 Test Board schematic is presented in Appendix A.

3. Discussion of PCB Layout and Component Placement

After schematic design of the ProASIC3 Test Board was complete, development

moved into the PCB layout and board management phase. The PCB was setup with the

previously specified dimensions and layer configuration and all components from the

schematic phase brought into the layout view for placement. Initial work concentrated on

placing the ProASIC3 nano FPGA toward the center of the board design to obtain area

utilization data. The FPGA was seen to require approximately 12% to 15% of the

available board area on the top face of the PCB (including fan-out pad fingers). Work

was then done to place the de-coupling capacitors as close to the FPGA as possible, in

line with the manufacturer recommendations. Thus, the capacitors were placed within the

footprint of the FPGA on the bottom face of the PCB. They are staggered in a

122

configuration which allows them all to fit and utilize vias for connection from top to

bottom signal layer planes to their associated VCC and GND connections.

Placement of the USB, power header, and JTAG header occurred next as these

were the next largest components on the PCB. The headers and connector were also

placed on the top face of the PCB to allow for the bottom face of the board to rest flat

upon a surface. When associated with their required resistors and capacitors, the

combination of USB, headers, and FPGA utilize approximately 50% of the available PCB

area. This is before any wiring was accomplished to tie electrical connections together.

The USB and power header were placed near the top of the PCB; since the power harness

extends quite a distance from the PCB to the associated bench power supply, this reduces

wiring clutter with the JTAG interface. The JTAG interface was placed at the bottom of

the PCB, allowing for electrical connection to the FlashPro4 programmer via ribbon

cable.

Layout of the PWR, TST0 – TST2, and BIT0 – BIT7 LEDs with their associated

resistors was then undertaken. These components were seen to fill another 25% of the

PCB top layer area. All of the BIT indicators were placed on the left side of the PCB so

that any prototyped sequencer timings could be quickly visualized on LED indication.

The power indicator and TST LEDs were placed at the top-right of the PCB to keep them

separated from the BIT indicators. This also has the benefit of tying these lines to their

‘Bank 0’ electrical connections on the FPGA without any complicated routing

requirements.

The sixteen copper pad areas were placed in the middle and lower-right section of

the PCB. These are used in the connection of the PCB to any external equipment desired;

the first iteration of the sequencer relay board can be tested with these I/Os for

prototyping of the sequencer logic. This allows for a quick breadboard type setup to be

accomplished while work is completed on the SADv3 design.

All of the remaining board area was used for the connection of signal lines

between the FPGA, secondary components, and required resistors and capacitors. The

large diameter vias for power and ground supply were tied to the internal VCC and GND

123

planes, which connected the internal power planes to their associated nets. With this

method, extraneous wiring from component ground points to localized vias is minimized.

Most of the top face traces are associated with the LED indicators or copper pad

fingers. The bottom face traces are associated with the various capacitor and resistor

banks. Wiring was accomplished with 8.0 mil traces. Care was taken to avoid any right

angle routed traces. All PCB footprints and component identifications were placed on top

and bottom silkscreen layers, with board identification information filling the remaining

space.

4. Physical Construction and Testing

After completion of PCB layout, the design was exported in mechanical and

electrical Gerber Computer-Aided Manufacturing (CAM) files for fabrication. These files

were verified by automated design checking tools by Advanced Circuits [103]. This

allowed for any mechanical or electrical deficiencies to be detected prior to

manufacturing; several issues were reported as potential errors and these were corrected

with corrected CAM files re-exported. Since the initial PA3TB run consisted of only

three boards, these were sent to a local PCB manufacturer for production [104]. This was

a lower-cost option for small production runs of non-flight, non-ITAR (International

Traffic in Arms Regulations) hardware restricted PCBs. The turn-around time for the

manufacturing of the PCBs was approximately two weeks. One of the manufactured

PCBs prior to integration appears in Figure 69.

Figure 69. Manufactured four-layer PCB with gold surface pads and through-hole vias.

124

One the PCBs were received, work began on the integration of surface-mount

components onto the PCB. This was accomplished with a PACE PRC 200 Process

Control System station equipped with a microscope and video camera output, as seen in

Figure 70. The soldering iron was equipped with the smallest tip available, a 1/64 in.

conical sharp tip set at an 800 F operating temperature.

Figure 70. External camera view of ProASIC3 nano soldering to PCB board as seen

through the microscope.

All soldering was done under the microscope with the finest diameter solder in

the laboratory, Kester “44” 0.38 mm lead-tin (Sn 63% / Pb 37%) rosin-core. This fine

diameter solder was very well suited to the 0603 surface-mount component size and

VQ100 FPGA package pins. A Luxo 150-watt fiber optic illuminator provided extra

lighting under magnification for ease of assemble. Thorough wetting with a Kester #186

rosin flux, type RMA Flux-Pen28 was necessary to prevent oxidation of surfaces and ease

of solder flow. The assembly of all three PCBs, as seen in Figure 71, took approximately

five days.

28 Flux-Pen™ is a trademark of Kester.

125

Figure 71. All three ProASIC3 Test Boards soldered and integrated—ready for testing.

After assembly of the PCBs, electrical testing of the PA3TB proceeded with the

test bench setup illustrated in Figure 72. The ProASIC3 Test Board was connected to the

bench-top power supplies with the FlashPro4 programmer attached to the JTAG

interface. Initially, there were issues with the configuration of the FPGA, as the device

would pass the JTAG scan chain with a returned identification (ID) code; however,

erasing and configuration of the FPGA failed. The problem was determined to be in the

power wiring to the PCB. Once a new power harness was constructed, using the

appropriate end connector and clamped pin sets, the problem with erasing and

configuration of the FPGA was resolved. All device tests passed and programming of

several test bitstream files succeeded.

126

Figure 72. Test bench setup of ProASIC3 Test Board wired to power supply; FlashPro4

interface via USB to desktop computer station and programmer interface.

Initial testing of LEDs for verification through Verilog coding was successful, all

initial pin-out specifications and PCB layout graphics for the trial design are located in

later sections of this appendix. For the Verilog test code for LED testing, see Appendix

D.

127

B.2 BILL OF MATERIALS

The following bill of materials specifies the required components necessary to

construct the PA3TB in the same configuration specified schematically and in PCB

layout. Values for the associated components are located on the schematics.

128

B.3 MECHANICAL DIMENSIONS AND ELECTRICAL SCHEMATICS

The following diagrams illustrate the mechanical sizing constraints and electrical

schematics for the PA3TB. The schematic is broken up into left and right-halves to fit the

size constraints of the page. The schematics are available electronically for import into

Altium, for reproduction or modification of the design as necessary.

129

•:n"a

"t'l'

•

"

t " -k<>• IQ~I·~
~. ,,

t " t " tOo-.f llll•f

"'"' """

! " t ·· (!~ l<'tl

"
:!=,ns :!=,n.s r ..)(.. ri ·'"'r
"'"' """

t "t " IO~F I~F

~. ,,

(.ihA!.to.'=«SIU
lm!RSUI

(lllfl t.tolllt'>lll
(lllC1>10!JitSUI

IOO'lSUI
OCC' l •to!SitSBI
(.i(.t.'l'tO:»lS.UI
<CAMOUit'>lll
OC,\Itm'llltSBI
()ffl t.TONft'\111

10.1CftSBI
(.d)l'MOJIRSUI
(JlX'Clto.l!RSBI
GO,\ItolJitSIII

Actel ProASIC3 Nano Test Board

"Pl'!J>

<---..2.

"'
I 'i~T I ~

o · ~

'" ' I "<X • "

vn-•·•r "

id:

""
" " • =

U!f ,,....,., :::E Vl'UMJ> VMVl

\'('COl~ "' VJTAG ""'"' -"'--'
\'('COli :::E vo: \'MV!

\~C

" vcc VCtlliO
..J!!l.J '~" \'MVO

AM'I'I~OVQ!W

A~"-'l'fo.\'(1! ~).tUI

"'"
\~nt.r \'rOl.ti'I.F "

AM'I'I~OVQ!W

(JF.-\OIOSIRSlU
GL\l<IO»RSll3
(lr i"CoU')(IR$.11)
GEL'I•I~·IIl$113

~An ·ll'.mKS!l.l
GFANm.IRSlU
tollAl'I~R$!1.1
(lr..\Oof()(111.~Tl)

GFOOIOS'.IR$113
(;FI)' li'lto)II.~TI)

IOoi ,RSlU
t()t.2RS!I.I

<iACNOotlRSlU
l(l(HR$113

(V.I)}>Ii'lll(fi.~TI)

"'''"''" <.iAI\2•l()t.iRS!l.l

H i ll'!
" · o·,~
I ' OH
1· ' 1) ~ .,. · u-,~
" II) ~ ..
• ' 0 -$11

• 0 ~7 ·o·,.,.
l• ' U-00

•n .. ,
' 0 -6Z
II) ft}
· o-o..
· u-o~
' ll""
' 0 -61

I \'{:(.'100

.,hn _,he;
Ttoo-.FT•o.,F
"'"' ""

\'{:(_'IIJ)

.,h<" .,hno
T~o)co.rT.r..r
"'"' """

(. '

'--

130

·~ mr "
'"' "
""

,,
roo,
lfll h)~

.~\'()100

tL......,-
'- I l r---h <..NO

~...._ J .- r
'--- ' ' , •r-- I

r. ::::!= J, ., ' " .l.l.J' '"" ~Xl db

•

"
"''

..
. "

131

B.4 2-D PCB LAYER DIAGRAMS

The following PCB layer diagrams illustrate the layout decisions in the PA3TB

placement of components. The various diagrams included are the overall layer set, signal

layer, plane layer, non-signal layer, and mechanical layer. These layouts are available

electronically for import into Altium, for reproduction or modification of the design as

necessary.

132

133

134

B.5 3-D PCB COMPONENT PLACEMENT

Top and bottom face 3-D views of the PA3TB are provided to depict component

fit and placement upon the PCB. These layouts are available electronically for import into

Altium, for reproduction or modification of the design as necessary.

135

B.6 APPENDIX SUMMARY

In Appendix B, the development of the design was presented from schematic to

PCB layout with reasons presented for component selection and placement. A complete

description of the board assembly process was provided, with difficulties in manufacture

specified. An overview of the PCB testing process for programming was outlined with

the initial power supply harness issue resolution. The work in this appendix led to the

development of the SADv3 presented in Chapter IV.

136

THIS PAGE INTENTIONALLY LEFT BLANK

137

APPENDIX C. SAD VERSION 3 – FLIGHT PROTOTYPE BOARD

– REFERENCE, SCHEMATICS, AND PCB LAYOUT DIAGRAMS

The design files for the SAD Version 3 – Flight Prototype Board are divided into

four sections: the bill of materials, schematics for electrical connections, the 2-D PCB

layout documents, and 3-D component placement views. All of the associated documents

were constructed using Altium Designer 10 during the development portion of this

research.

C.1 SAD VERSION 3 – FLIGHT PROTOTYPE BOARD DEVELOPMENT

METHODOLOGY

1. Selection of Board Size and Layer Count

The transition of sequencer from the PA3TB to SADv3 necessitates an increased

board size and layer count to support the BGA FPGA and fit within the confines of the

SAD enclosure. The scope for interface within the enclosure incorporates the sequencer

as a motherboard. The relay firing circuitry is attached as a daughter-board via ribbon

cable. The overall dimensions of the SADv3 board utilized are 9.81 in. × 3.28 in. (32.177

in
2
). These dimensions, however, do not take into account the reduced area due to cut-

outs for possible inclusion of battery packs, bolt holes, and rounded corners to fit within

the enclosure. The size and shape of the board were chosen to conform to the already

specified size of the relay board. The relay board will fit underneath the sequencer board,

attached with the same bolt-hole pattern and ribbon cable for signal transmission. This

board is in the process of being developed with primary work on it accomplished by

another student [105]. The current PCB design for the relay board is shown in Figure 73.

Manufacturing and testing of this relay board had not occurred at the time of publication

of this thesis.

138

Figure 73. Current 2-D layout and 3-D component placement of SADv3 Relay daughter-

board with size and shape for proper enclosure fit (From [98]).

Since the SADv3 has an increased board size, there were additional areas for

expansion upon the PCB itself. These were targeted for the incorporation of additional

SRAM and flash-memory devices and a breadboard prototyping area. Additionally,

139

headers were desired for ease of connection to the various general and differential pair

I/Os. These were accommodated by three 40-pin headers (20×2).

To properly develop the SADv3 layer design, the move to a six-layer PCB was

accomplished. Attempting to fan-out the BGA FPGA was possible at this layer count;

however, there were insufficient power planes internal to the PCB to fit the overall

voltage scheme. Due to the requirements for a 3.3, 2.5, and 1.2 VDC power supply, plus

the addition of a ground plane, the decision was made to transition to an eight-layer

design. This allows for the incorporation of the ground and power planes internal to the

PCB with the outer four planes consisting of signal layers. The power planes and ground

plane were structured in a manner to limit the capacitance between layers or any

inductive effects that may impact signal lines. The overall layer structure of the SADv3 is

illustrated in Figure 74. Through-hole vias were used throughout the design for coupling

between layers.

Figure 74. Eight-layer stack of the SAD Version 3 – Flight Prototype Board with internal

power planes and external signal layers.

140

Figure 75. Final fanned-out configuration of the ProASIC3EL FPGA with multiple

signal layers and all vias visible.

The final fan-out configuration of the ProASIC3EL FG484 BGA FPGA is shown

in Figure 75. This configuration was chosen as the optimum solution once the additional

power planes were added to the footprint of the FPGA design. This allowed for through-

hole vias connecting to the necessary pins of the device while still allowing for enough

room to route signal lines. This was not possible with the previous six-layer PCB design

as there were certain pins trapped within the footprint. In addition, the revised eight-layer

PCB allowed for the proper fan-out configuration of a crossed middle-channel open

beneath the footprint of the FPGA, as illustrated in Figure 76. This allows enough room

for various power decoupling capacitors to be placed immediately below and near the

BGA footprint vias on the bottom plane of the board. To properly fit these surface-mount

technology (SMT) capacitors within the footprint of the center-channel left, sizing of the

capacitors must be equal to or less than 0603. Fortunately, many of the secondary

required components to support the FPGA could be maintained at the 0603 footprint;

although, some of the smaller resistors chosen necessitated 0402 sizing. Past experience

shows manually soldering at less than 0603 size to be problematic.

141

Figure 76. Bottom plane pattern of vias within FPGA footprint on eight-layer PCB with

room for center-channel power decoupling capacitors.

2. Selection of Components

In contrast to the off-board power supply scheme of the PA3TB, the SADv3

requires all associated power supply hardware to be co-located upon the PCB for proper

operation. Due to the increased requirement for multiple voltage levels, the supporting

circuitry designed for power distribution included 3.3, 2.5, and 1.2 VDC levels. Texas

Instruments low-dropout (LDO) low-power linear voltage regulators (P/N TPS79601)

were chosen as the means of reducing the +5 VDC input voltage to the required levels.

These devices feature high power supply rejection ratio (PSRR), ultralow-noise, fast

start-up, and excellent line and load transient responses [106].

For future expansion purposes, the inclusion of SRAM and flash-based memory

was necessary to allow for more data handling capability by the FPGA. Choice of the

memory devices used was done in concert with the reference design for the ProASIC3

development board. This was done to allow for design modifications where necessary

while allowing for similar pin specification and design constrain files to be utilized. In

the case of the sequencer, these devices will not be necessary for inclusion on the PCB,

and the footprints can be left open if not included. For the CMOS Static RAM, 4-Mbit

142

(256k words × 16-bit) devices were chosen from Cypress Semiconductor (P/N

CY7C1041DV33) [106]. The logic block diagram of these SRAM chips can be seen in

Figure 77 with proper address and data lines specified.

The embedded flash-memory used for this design consisted of two Intel /

Numonyx™ 0.13 µm NOR-based, 64-Mbit density devices (P/N JS28F640J3D-75).

Specified features include reliable, low-voltage capability (3 VDC read, program, and

erase) with high-speed, low-power operation [107]. These feature 75 ns initial access

speed and operation at the 3.3 VDC voltage level. The 64-Mbit capacity (8 Mbyte) is

configured as sixty-four 128-kbyte erase blocks. Security features are also present on the

device that prevent altering of code through different code protection schemes that can be

implemented based on user requirements [107]. The logic block diagram of these flash-

memory chips can be seen in Figure 78. All lines indicated are utilized as per

specification in the manufacture’s datasheet [107].

Figure 77. Logic block diagram of Cypress Semiconductor 4-Mbit (256k words × 16-bit)

SRAM devices illustrating address and data line use (From [99]).

143

Figure 78. Logic block diagram of Numonyx™ 64-Mbit embedded flash-memory

devices illustrating address, data, and signal line use (From [107]).

The incorporation of a crystal clock oscillator was necessary to allow for future

timing accuracy as a secondary clock signal source for the FPGA. Similar to the

reference design, an Abracon 48.0-MHz through-hole oscillator was chosen for inclusion

(P/N ACHL 48.0MHz-EK). This design features a compatible 3.3 VDC supply voltage,

CMOS and transistor-transistor logic (TTL) compatibility, and tight frequency stability

on the order of ± 30 parts per million (ppm) [108].

The remainder of components chosen was done to maximize the design

similarities between the PA3TB and the SADv3. The JTAG interface design was

reutilized with capacitor differences utilized where necessary. Additionally, the test LEDs

of the PA3TB were included for troubleshooting purposes. An ‘always-on’ power LED

was substituted for the PWR LED of the PA3TB; this change was made for easy of

seeing the board power application, as a commanded signal should not be necessary for

board power indication.

The full ‘Bill of Materials’ for the SAD Version 3 – Flight Prototype Board is

provided in Appendix B.

144

3. Discussion of Schematic

The first component placed on the schematic was the ProASIC3EL BGA FPGA,

with instantiation provided via the Altium Hobart vault. This online design vault specifies

many of the FPGA devices made by vendors and greatly simplifies the inclusion into a

design. The schematic layout of the FPGA consisted of seven banks, four of which were

the associated ‘Bank 0 through 4’ as provided in datasheet specifications. The remaining

banks were either non-connections or power and ground supply for core and bank

voltages. A great deal of time was spent specifying the signal lines in a similar format to

the ProASIC3 development board reference design.

The setup of the TPS79601 power supply circuitry was accomplished as specified

in the datasheet, as illustrated in Figure 79. Within that diagram input voltage (VIN) and

output voltage (VOUT) points lie at the left and right of the diagram respectively.

Additionally, the unregulated input to the device (IN), enabling pin to turn on the

regulator (EN), regulator ground (GND), output of the regulator (OUT), and feedback

input voltage for adjustment (FB) terminals are all visible [109]. Specification of the

desired output voltage utilized the following:

As per Equation (2), R1 and R2 must be chosen for approximately 40 µA of

divider current [109]. The recommended design procedure is to choose R2 = 30.1 kΩ to

set the divider current at 40 µA, set C1 = 15 pF for stability, and then calculate R1 using

Equation (3). The output capacitor was changed from the 1 µF value to 2.2 µF, as per

datasheet specifications [109]. There were three difference circuits schematically wired to

meet the positive voltage requirements of the FPGA and associated circuitry. All three

voltages were placed into nets for inclusion in the internal power planes of the PCB. This

145

will allow for local power to be provided rather than tracing out long power lines to the

FPGA and secondary components.

Figure 79. TPS79601 adjustable LDO regulator programming schematic for proper

specification of R1 and R2 values (From [109]).

After development of the additional power circuitry necessary to power the board

concluded, work was done to add the additional SRAM and flash-based memory to the

design. The devices were wired with address and data lines as specified in datasheets

[106], [107]. The schematic layouts of the SRAM and flash-memory devices are seen in

Figure 80. The various data and address lines are wired to the appropriate pins of the

FPGA with data control lines included as applicable. Both types of memory devices are

wired to the 3.3 VDC net, which allows for via coupling the associated voltage plane. A

more complete representation of these layouts with their associated power decoupling

capacitors may be found in Appendix B.

The general purpose and differential pair I/Os were next placed on the schematic

with the various data lines being coupled to the 40-pin headers as appropriate. The

general purpose I/Os utilize the 3.3 VDC voltage net, while the low-voltage differential

signaling (LVDS) signal lines utilize the 2.5 VDC net. The schematic representation of a

subset of these connectors is illustrated in Figure 81.

All of the remaining power de-coupling capacitors, JTAG circuitry, resistor

banks, and clock oscillation circuitry were wired as in the PA3TB case or as specified by

datasheets. The complete SAD Version 3 – Flight Prototype Board schematic is presented

in Appendix B for further reference if modification to the design is desired.

146

Figure 80. Schematic wiring of SRAM and flash-memory devices with address, control,

and data lines as specified by design documents.

Figure 81. 40-pin general digital and LVDS headers as placed on the schematic.

4. Discussion of PCB Layout and Component Placement

After placement of the ProASIC3EL BGA FPGA, 40-pin I/O headers, breadboard

prototyping area, and relay board connector as previously discussed in this chapter, the

placement of the SRAM and flash-memory was accomplished. These were placed as

close to the FPGA as practical to limit signal line losses between the components. The

147

orientation of these devices was done to best position the connectors of the memory chips

to their respective pins on the FPGA. Fan-out of the memory devices was done to better

route signal traces upon the four signal layers of the PCB. The flash-memory devices are

located to the bottom of the FPGA when viewing the top plane, while the SRAM chips

are located to the right of the FPGA footprint. The flash-memory devices come in 56-lead

thin small-outline packages (TSOPs); the SRAM devices are 44-pin TSOPs (Z44-II).

These devices required custom footprints and pin-outs to be built in the schematic and

footprint editors in Altium. The location of these chips relative to the FPGA is seen in

Figure 82.

Figure 82. Location of SRAM and flash-based memory chips relative to BGA FPGA

device; JTAG header visible in lower-right corner.

All of the required power supply decoupling capacitors, LDO voltage regulators,

resistor banks, JTAG circuitry, crystal clock oscillator, and any additional components

were then added from the schematic to their associated PCB footprint. The LDO voltage

regulators used the SOT223-6 footprint, which required additional custom footprint and

pin-out specification in Altium. Placement of these individual components is a tedious

process, requiring many weeks of locating components to their best electrical and

physical separations. Wiring of these components will require at least one to two months

of concerted work to associate all traces amongst the four signal layers.

148

Initial test cases were run to test various Altium settings on the auto-routing of the

design. In all cases, the auto-router is limited in the choices it makes regarding traces.

Though there are a myriad of settings available (including trace widths, bend radius, via

allocations, and placement strategies), the output of the auto-router is not optimum in the

decisions it makes regarding traces. There are many instances where shorter traces could

be shortened or run across less signal layers. Portions of the initial auto-route 2-D and 3-

D test cases of the PCB are illustrated in Figures 83 and 84. Certain features of the auto-

router, especially fan-out, will be utilized in the final PCB board design; however, the

majority of signal lines must be manually routed.

Figure 83. Auto-route testing of SRAM and flash-memory connections to ProASIC3EL

FPGA across four-layer signal planes.

Figure 84. Initial 3-D footprint placement of FPGA and memory devices in isometric

view of PCB top plane.

149

C.2 BILL OF MATERIALS

The following bill of materials specifies the required components necessary to

construct the SADv3 in the same configuration specified schematically and in PCB

layout. Values for the associated components are located on the schematics.

Comrent Desc<¢on Oesignalo< ._, Li>Ref C>Jantity

Pobrizecl Capacitor
~~· -~· ~" · ~ ··- ~ · · .
C17. C227. C230. C243.

Cop Po13 (Surface Mount) C246 aJ805 CapPol3 t O

C2. C8. C 10. C12. C 16,
C21. C22. C218. C219.
C235. C236. C237. C238.
C239. C240. C242. C245,
C247. C248. C249, C250.
C25t . C252. C253. C254.
C255. C256. C257. C258.
C259. C260. C261, C264.
C265. C266. C267. C268.
C270. C271. C272. C273,
C274. C275. C276. C2n.
C278. C279. C280. C28-1.

C282. C286. C288. C289.
C290. C29 1. C292. C293.
C294. C295. C296. C297.
C298. C289. C300. C302.
C303. C304. C305. C306.

Clpacitor C307. C309. C311, C312,
(SerricondUctor SIM C313 , C314 . C315. C317 ,

Cop Se<ri Model) C321. C322. C325 1608{0603) CapSerri 80

[TANT_ t07A) (Surface Mount) C15 aJ805 CapPol3 1

Precision Micropower

Shunt Voltage
LM404t CEM3X-1.2 Reference. 3-pin SOT -23 04 MF03A_M CMP.Q074.QD738-1 1

y~;~:;,,~~~~
LTST-C150GKT LED D6 3.2X1.6X1.1 LED2 1

Header 10X2A Header, 10-Pin. Dual row 081 EHT~ Header 10X2A 1

~IV•u ~~" v uppresgon
Feni'.e Bead WE~F. Z

FERRITE_BEAD = 1000hm FB2 SM~5 CMP.Q22Q.00039-1 1

150

5VOC SupptyC:~tor J3 K~02 PWR2.5 1 - JuiTC)ef' Wire JP5 RAM.2 Jurrpe' 1

Header5X2 Header, 5-P'n . Dual row P I HDR2X5 Header 5X2 1

Header20X2 He.lder, 20-Pin, Du.ll row P2. P3, P4 HDR2X20 Header 20X2 3

FDV301N Digital FET, N-Oiannel Q3 SOT23_N FDV301N 1

Res3 Resistor R 1. R223. R245. R246 J l -0603 Res3 4

n o · " " · " 'u· " " ·
R IB. R216. R217. R221l.
R221. R222. R235.
R236. R237. R238.

1% Resistor R239. R240 J l -0603 Res3 16

~~: ~;;:~~:
R506. R507. R508.
R509. R510. R511.
R512. R513. R514,
R515. R516. R517,

R518. R519. R520.
R521. R522. R523.
R524. R525. R526.
R527. R528. R529.
R530. R531. R532.

1% Resistor R533. R534. R535 0402 Res3 36

Flash Faniy FP~ 270
User lOs. 600K System
Gates. 108 Kbds RAM. 1
Kbit RashROM, 6Plls.
484&11 FB~ Miitary

A3PEOOOI.~S4M Grado U l FG484 CMP.()141.()00Q0.1 1 ~ ..
TPS79601 Regulato<S (SOT223-a) U 12. U2 1. U22 SOT223-a TPS79601 3

JS28F640J3D-75 Flash ;;rrory U 13. U 14 56-Le.ld T SCP JS28F640J30-75 2

CV7C1041DV33 4~bit (256K x 16) Sca:ic U 16. U 18 T~Z44-11 CY7C10410 V33 2

151

C.3 MECHANICAL DIMENSIONS AND ELECTRICAL SCHEMATICS

The following diagrams illustrate the mechanical sizing constraints and electrical

schematics for the SADv3. The schematic is broken up into multiple pages for ease of

viewing in this thesis format. An overall schematic is available electronically for import

into Altium, for reproduction or modification of the design as necessary.

1
5
2

A

B

c

D

U!A

0

':.::

~
Cl

GAAOIJOOORSBO
GAA1JJ001RSBO
GABM 0 01RSBO
GAB111003RSBO
GACM004RSBO
GAC1110 05RSBO

1006RSBO
1007RSBO
IOOSRSBO
1009RSBO
1010RSBO
IOllRSBO
1012RSBO
IOllRSBO
1014RSBO
1015RSBO
1016RSBO
1017RSBO
101SRSBO
I019RSBO
1010RSBO
1011RSBO
IO>_?_RSBO
IOIJRSBO
1014RSBO
1015RSBO
1026RSBO
IOVRSBO
102SRSBO
1019RSBO
I030RSBO
1031RSBO
1031RSBO
103JRSBO
1034RSBO
1035RSBO
1036RSBO
1037RSBO
103SRSBO
1039RSBO
1040RSBO
I041RSBO
1042RSBO
104JRSBO
1044RSBO
1045RSBO
1046RSBO
1047RSBO
104SRSBO
1049RSBO
1050RSBO
1051RSBO
I052RSBO
105JRSBO

GBCM054RSBO
GBCI/10 55RSBO
GBBM056RSBO
GBB 111057RSBO
GBAM058RSBO
GBA111059RSBO

A3PE600L-FG4S4M

FPGA Signal Linl's
COMPLETE

U!D

"" ::.: z
~

GEAOII0 144J-.1)B3
GEAI/10 144PDB3
GEBOJ10145NDB3
GEB1Jl 0 145PDB3
GECO!JOI46NPB3
GEC1Jl 0 146PPB3

10147NPBJ
10147 PPBJ
I0 14SNDBJ
1014SPDBJ
10 149NDBJ
10149PDBJ
10 150NDBJ
10150PDBJ
10151NPBJ
10151PPBJ

10 152NDBJ
10152PDBJ
10 15JNDBJ
JO];JPDBJ
10 154NDBJ
10154PDBJ
10 155NDB3
10155PDBJ
1015~1'Bl

10156PPBJ
10 151NDBJ
10157PDBJ
10158J-.1'Bl
1015SPPBJ
I0 159NDBJ

GFC21l0 159PDB3
10 160NDBJ

GFB2110 160PDB3
10161l'I1'Bl

GFA'-110 16 lPPB3
GFAOII0 16b'\1)B3
GFA!Jl 0 162PDB3
GFBOJ10 163NPB3
GFB!Jl 0 163PPB3
GFCO!J0164NPB3
GFC!JJ0 164PPB3

10 165NDBJ
10165PDBJ
10 166NDBJ
10166PDBJ
1016Th1'Bl
10167PPBJ
10168J-.1'Bl
1016SPPBJ

10 169NDBJ
10169PDBJ
I0170NDBJ
10170PDBJ
10 171NDBJ
10171PDB3
10 172NDBJ

GACW 0 171PDB3
!Ol73NDBJ

GABW 0 173PDB3
I0 174NDBJ

GAA2il 0 174PDB3

AJPE600L-FG4S4M

_IOS_P7

-~~~-28

~:gHts
,d_IOS=P 10
Q_IOS_P 11
.2 lOS Pl3
'5 PROC_TDI

,1~ i~~STOO

,; ~~~_31

U!B

::.: z
~

10 6ID.1)B I
GBA211060PDB1

10 61NPB1
GBBW 061PPB 1

10 6:2.'-1)B1
GBCW062PDB1

10 6JJ-.1)BJ
10 63PDB1
I0 64NPB1
1064PPB1
10 65NPB1
1065PPBI

1066:\1)B1
10 66PDB1
10 61N1'B I
1061PPB1
106~1)B1
10 6SPDBI

GCCM069NPB1
GCCU!069PPBI
GCB0/1070NPB1
GCB111070PPB1

GCA0/10 71NPBI
GCA1110 71PPB1

10 7Th1)B1
GCA211072PDB1

10 73l'I1'B1
GCBW 0 73PPB 1

10 74N1'BI
GCCW074PPB 1

I0 75J\1)BI
10 75PDB1
10 7'"'-1)B1
10 76PDBI
10 7Th1)B1
10 77PDB1
10 78J-.1'B I
107SPPB1
1079NPBI
1079PPBI
IOSONPB1
IOSOPPBI

IOS1l\1)B1
IOS1PDB1
IOS2J\1)BJ
IOS2PDB1
IOSJl\1)B1
IOS3PDBI
IOS4l\1)B1
IOS4PDB I
10 Sll\1)BJ
IOS5PDB1

GDCO/JOS6J-.1)B 1
GDC1/IOS6PDB1
GDBM OS7NPB 1
GDB 1/JOS1PPB1

GDAMOSSl\1)B1
GOA 1/JOSSPDB 1

U!C

M GDA2110 S9RSB1
;:,: GDB2110 90RSB2
z GDC2il 0 91RSB2
< 109IRSB2
::l 1093RSB2

1094RSB2
1095RSB2
1096RSB2
1097RSB2
109SRSB2
1099RSB2

!0 100RSB2
10 101RSB2
10 10IRSB2
10 103RSB2
10 104RSB2
10 105RSB2
10 106RSB2
10 107RSB2
I0 10SRSB2
10 109RSB2
10 110RSB2
10 111RSB2
10 11IRSB2
10 113RSB2
!0 114RSB2
10 115RSB2
10 116RSB2
10 117RSB2
10 11SRSB2
I0 119RSB2
10 120RSB2
10 121RSB2
10 122RSB2
10 123RSB2
IOl 24RSB2
10 125RSB2
10 126RSB2
IOl 27RSB2
10 12SRSB2
10 129RSB2
I0130RSB2
!Ol31RSB2
1013IRSB2
!Ol33RSB2
!Ol34RSB2
10 135RSB2
10 136RSB2
!Ol37RSB2
!0 13SRSB2
10 139RSB2
10 140RSB2

GEC2110 141RSB2
IDGEB211014IRSB2

GEA211014JRSB2

A3PE600L-FG4S4M

A3PE600L-FG4S4M
Title

Actel A3PE600L-FG484M SADv3 - Flight P:rototype

Size I Number
t.

A 1 1 Re"ision

Date: 1112612012 St...t 5of 6
File: C:\Users\..\Core Sii!.SchDoc T>r..um Ry: LT Lue1s S . Parobek. USN

A

B

c

D

1
5
3

f(ii'AOOR£

U l f

GN"o

VlfO

VI'UMP I tn7 1.. I I 'i"JMP I

OSD

FOI'A l.OBANK O ft.PA I.IC) a.A.'Ot:. l

"'"
F01'A l.OBANK 2 ft.PA I.IC) a.A.'Ot:. J

em
I I OOi uF I O,OiuF I O.O I..F I OO I ~F I O.OIJ

C>66 "' 1 1 O.IJf J fl. l .,r 1 o 1 .. r 1 10ur I I O. l ~F I O. l ~F I l floF J I O..f I IOUF

D
OSD "'" To"'

:>o~e

V!fAG

FPG.-\ Power Lines
COMPLETE

Aclcl A3P£.600t...~ SAIM · f1ojlli1PO'Wll)pc>

""""" 'ie."- ..
llrnnlll2 Sloo<t 4.)(6
C \ IJoeri\ 'C<.<cl"'ofScloi)(le o · .. , K>t- LT I....:•S, I'.oan ..,l

D

1
5
4

(;p!J()R • ""' (;pt()WOC l

I'KI I&S

""' '" Digital Headers & LYDS Diff. Pairs
""'

, ..
(;p!J()R) C;f1()WOC l

CO:-.JPLETE I'KI I&S

(;p!J()R l it ""' C;ntt)HTX 10

I'KI I&S

"'" '"
(;p!J()R 9 "'"

, ..
(;f1()H'OC 9

I'KI I&S

(;p!J()R 2 ""' C;f1()WOC 2

I'KI I&S

""' '"
""'

, ..
(;pii()R I (if'110H'OC 1

I'KI I&S

(;p!J()R II .,.
C;f1()WOC l

I'KI I&S

""' '"
(;p!J()R 7 ""'

, ..
C;f1()WOC 7

I'KI I&S

(;p!J()R U "'" C;ntt)HTX l3 llPIOO"
..,,. C'tf'IORTX 16

I'KI I&S

"""' '" 16~ "'" '" '"
(;p!J()R U "'"

, ..
C;ntt)HTX U llPIOO" "'" "' C'tf'IORTX U

I'KI I&S
'" 16~

(;p!J()R ~ ~ """ C;ntt)HTX U OIWFA21' R.SU nlfl"AlPTX

I'KI I&S '" 16~ "'" '" '"
(;p!J()R 16 .,., , ..

C;ntt)HTX 16 OIWFA:!S IUD "' nlfl"ATh'TX

I'KI I&S
'" 16~

(;P!l()R 19 ""' (;po!)lfTX 19 OIWI-"BIN "'" nlfni i ')(OC

I'Ki l&S .,., '" 16~ "'" '" '"
(;P!l()R 26

..,. , ..
(;po!)lfTX 21) OIWI-"BIP "'" "' ni»BIPTX

I'Ki l&S
'" 16~

~ llPIOO" "'" Ci!'IORTX 111

""" '" 16~ "'" '" '" D l -··· ,, ..
"'" "' (~ 11P10017 C'tf'IORTX 1.7

'" 16~

' (;pu)A 1 J
(;p,j[) A l 7
(;p,j[) A .S 9
(;p,j[) A 7
(;p,j[) A 9
(;p,j[) A ll
(;p,j[) A ll
(;p,j[) A l.s
(;p,j[) A 1 7
(;p,j[) A l !l
(;p,j[) A ! I
<;p,;[JA n
(;p,j[) A !S
(;p,j[) A n
(;p,j[) A !'J

~
Ctf'IOA 0

G f'IOA 6
GfiOA"'i

F.PiOA'ii
F.PiOA"ii

G f'JCJA :NI

F.PiOA"ii

(;p,j[) A l l n!Fl'AIN
DH.fAl P

"'
••

~
Ctf'JO(: It
GfiOC"'i
GfiOC""i
iifiOC'6
GfiOC""i

G f'J()(; 10

~
~
~
~
~
~
~
~
~
G f'J()(;)0

.!!!:!ill'
mn<~

ClPIOSitX .S R!40 (;f!Oin.X to

' " 100

ClPIOSitX 11 R%38 (;f!Oin.X 12

' " 100

ClPIOSitX l7 R%)7 (;f!Oin.X l l

' " 100

ClPIOSitX !J a.et. (;f!Oin.X :U

' " 100

ClPIOSitX !9 R%3~ (;ftOSRX ~

' " 100

nl»lllPRX R%)6 IY.n 'RTh'RX

' " 100

T•llo
Aclel A3PE600t..-f'GlMM SAD.J • f1ojllll Prol(lt}pc>

:>o..- """""
. .,. .. _ ..

n.a.. llrnnGU Shod ""'r 6
C 'dheri\\Kllo._Sch!kie o · .. n K>o- LTI.-..-.S, ~L.Usl\1

D

1
5
5

D

11'0_0
11'0_ 1
11'0_1
li'O_l
11'0_,
II'O_S
11'0_6
11'0_7
II'O_l

1~~!~
1.0) s

SRA..\1 & flash Memory
COMPLETE

: :s::i:r ,\ilk:.lo'IAIJllal l AO

,\ilk:.lo'l A 1Jlla4 l A I

! D htEM_DATAJ ,\ilk:.lo'l AIJlla~ '
Al

U htEM_DATA4 ,\ilk:.lo'l A 1Jlla6 ~ "' l 4 htf:M_DATAS ,\ilk:.lo'IA1Jlla7 I ll ..
U htEM_DATA6 ,\ilk:.lo'l A IJllall 19

.,
! 6 htEM_DATA7 ,\ilk:.lo'l A IJlla!l lD A6

19 htEM_DATA8 ,\ilk:.lo'l A 1Jllal lt2 1
.,

)D htf:M_DATA9 ,\ilk:.lo'l A IJllal l ll Al

) I htEM_DATA i t ,\ilk:.lo'IAIJllallll A9

ll htEM_DATA I I ,\ilk:.lo'IAIJllai.:H a AIO

H5;E=:~::!
,\ilk:.lo'l A IJllaiaU A ll

,\ilk:.lo'l AIJlla l ~ ll> All

,\ilk:.lo'l A 1Jlla16 27
AI)

) II htEM:DATA I S ,\ilk:.lo'IA1Jlla17 4l A I'
A"

VJPl

b m .l..o ., ...Lo n b :uo b us ...1:!:<.'2.16
I ooi .. F I o.otu T o.otu T u .. r T o.l..t· T 1

o.F

drD
VJPl

J:cu, l ou l cus l cm l c:u• ...l..<.'lSJ
I ooi .. F I o.otu T o.otu T u .. r T o.l..t· T LouF

drD

M F.M A 1)!)1!2 111 AO DC)O

~E~=g:t~ ,\ilk:.lo'IA1Jlla2 211
MF.M AIJ!l i!J l1 AI 0()1

(iND ,\ilk:.lo'IAIJllal 21
MF.M A DDU 16 Al DO>

aGMO.(DATAJ Mk:.lo'IA1Jlla4 ::u.
MF.M AIJ!l iU A3 O()l

'-" MEM DATM ,\ilk:.lo'l AIJlla~

MF.M A lm M 1.4
.. ""' ~MEM:DATAJ ,\ilk:.lo'IA1Jlla6 l '

MF.M AIJ!l R7 !3
., ""' a~MEM DATA6 ,\ilk:.lo'l A 1Jlla7 li

MF.M AIJ!l l!lll U A6 ""' i! ~~=g:~~ ,\ilk:.lo'l A IJllall 2l
MF.M AIJ!lR~ 10 A7 0()7

,\ilk:.lo'l A IJlla!l lD
MF.M AIJ!l RIII I !I AI ""' i:~~:g:~~To ,\ilk:.lo'l A 1Jllal lt l 9
MF.M AIJ!l RII III A9 ""' ,\ilk:.lo'IAIJllal) l ll
MF.M AIJ!l RI2 17 AIO DQIO

U MEM_DATAII ,\ilk:.lo'IA1Jlla12 17
MF.M AIJ!l Ril U All DQll

~E5~i~g~~
,\ilk:.lo'IAIJllaU U

MF.M AIJ!l Rl4 12 All DQU ,\ilk:.lo'IAIJllaia U
MF.M AIJ!l RU I I AU """ ,\ilk:.lo'l AIJlla l ~ l l

MF.M AIJ!l RII> l D
... """ ,\ilk:.lo'l A 1Jlla16 10
A" """ ,\ilk:.lo'IA1Jllal 7 II
A16 .., , ... , MUIIAIXlRII 1

All Cfll ' ,.
A19 v"" ,\ilk:.lo'IAIJllaM ~

A20 RP
,\ilk:.lo'l A 1Jlla2l :i

All CD
AU BYrE

,\ilk:.lo'IAIJllall I

All STS
,\ilk:.lo'l A 1Jlla2a)O ... OE -- ·-

""" ,!,..,.. b.,. b.,. _L000 .L.""' ..l!.cm
I oo1 .. r I ooi .. F I ooi .. F I o.1 .. r T o.1 .. r T 1011F

J.,

" DQO
AI DQI
u DQ>
.u ""' " ""' " ""' " DQ6
AI ""' u ""' A9 ""' '" 1>0 10
AU I)QI I
AU I)Qi l
m I)QU

" ' I)() I'

"' "'
I>QI S

' " All ,.
A>>
m
m

"' " '

n ..ASH l.L"F. N Ret

1<0:

n ..ASH HCF. ;s R~

1<0:

V>P>

""" N R223

~ ,!,..,, b... J,.., .L."'' .L."'' ...Lcm
I ool .. r I ooi .. F I ooi .. F I o.1 .. r T o.1 .. r T 1o..r

J.,

ToOlo

:>o~e

Aclcl A3P:.600t,.~M SAD.J • f1ojllll Prol(lt)pc>

"""""
Hn~-:wu

C\11~\ \.">RA\oi tbt. .. Sdon~

i"e."-
I •

Sl...,. ;~t.,r 6

n · .. n 'h- LT I....,• l>, l'.u'l'lhol

'

D

1
5
6

A

2.5V
U22 TPS79601

V2P5 YIN ~ ~ 2
YIN 0 VOUT YIN z
EN~ ~ FB

0

2.Cl4

R18
.- 2.2uF

30.lk
1%

B

c
I YIN

' -· • FERRITE_BEAD

GND
+5.0V DCIN

Powt>r Supplit>s COMPLETE

D

U21

YIN

EN~
0

R216

TPS79601

~ VOUT

~ I'B
~

Title

R16
5Llk

1%

R15
30J k

1%

V3P3

R14

1~'0

0 6
,,LTST~C150GKT

GNb

Actel A3PE600L-FG484M S.>\Dv3 - Thght Protof>~

Size

A

Da~:
File:

Number

1112612012
C:\Users\..\PwT SUDU)y Y-hfkw.

Revision

"
S~t lof 6-------,
~um Rv: LT LuasS. Parobek. tJSN

A

B

c

D

157

C.4 2-D PCB LAYER DIAGRAMS

The following PCB layer diagrams illustrate the layout decisions in the PA3TB

placement of components. The various diagrams included are combined signal layers,

plane layer, non-signal layer, mechanical layer, top plane layers, and bottom plane layers.

These layouts are available electronically for import into Altium, for reproduction or

modification of the design as necessary.

158

159

160

161

162

163

C.5 3-D PCB COMPONENT PLACEMENT

Top and bottom face 3-D views of the SADv3 are provided to depict component

fit and placement upon the PCB. These layouts are available electronically for import into

Altium for reproduction or modification of the design as necessary.

164

C.6 APPENDIX SUMMARY

In Appendix C, design decisions were presented concerning the manner in which

they drove PCB component selection. Development of the design was presented from

schematic to PCB layout with reasons presented for component selection and placement.

Difficulties in schematic design with associated PCB layout complexities were presented.

165

APPENDIX D. SEQUENCER HDL PRESENTATION

The source code to generate the various bitstream files for testing of FSM and

TMR logic was developed utilizing Verilog and VHDL. The code was synthesized using

Xilinx ISE 14.3 and Libero SoC 10.1 and was executed on a Windows 7 PC with 8 GB of

RAM and an Intel® i7™ 2600K CPU operating at 4.2 GHz. The code is designed for

implementation onto the various Xilinx and Actel development kits and can be easily

ported to the final SAD Version 3 - Flight Prototype Board.

All source code was formatted for presentation using Notepad++.

D.1.1 SEVEN-SEGMENT LED COUNTER (BASYS2USERDEMO.VHD)

The following code is a modified form of the top-level module for instantiation of

a seven-segment LED counter with the clocking required:

-- Company: Digilent RO

-- Engineer: Mircea Dabacan

-- Modified by: LT Lucas S. Parobek

--

-- Create Date: 23:51:25 03/22/2009

-- Modified on: 19:41:00 10/15/2012

-- Design Name: Basys 2 User Demo

-- Module Name: Basys2UserDemo - Structural

-- Project Name: Basys 2

-- Target Devices: Spartan 3E 100 (250)

-- Tool versions: ISE 10.1.03 / ISE 14.3

-- Description: Overall top-level module for seven-segment LED counter.

-- Modification to occur to transfer to schematic representation.

--

-- The file contains the structural description of the Basys2 User Demo.

-- It combines the components:

-- - ckMux - to select between mclk and uclk

-- - SimpleSsegLedDemo - to test buttons, switches, LEDs and 7- segment disp.

--

-- Dependencies: ckMux.vhd, SimpleSsegLedDemo.vhd

--

-- Revision:

-- Revision 1.00 - File Modified for Use in TMR Design

-- Revision 0.01 - File Created

-- Additional Comments: All signal lines reproduced in schematic depiction...

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Basys2UserDemo is

166

 port (

 mclk : in std_logic;

 uclk : in std_logic;

 btn : in std_logic_vector (3 downto 0);

 sw : in std_logic_vector (7 downto 0);

 led : out std_logic_vector (7 downto 0);

 seg : out std_logic_vector (6 downto 0);

 an : out std_logic_vector (3 downto 0);

 dp : out std_logic

);

end Basys2UserDemo;

architecture Structural of Basys2UserDemo is

 signal ck50MHz : std_logic;

 component SimpleSsegLedDemo

 port (ck : in std_logic;

 btn : in std_logic_vector (3 downto 0);

 sw : in std_logic_vector (7 downto 0);

 led : out std_logic_vector (7 downto 0);

 seg : out std_logic_vector (6 downto 0);

 an : out std_logic_vector (3 downto 0);

 dp : out std_logic

);

 end component;

 component ckMux

 port (ck0 : in std_logic;

 ck1 : in std_logic;

 sel : in std_logic;

 ckOut : out std_logic

);

 end component;

begin

 SimpleSsegLedDemoInst : SimpleSsegLedDemo

 port map (

 ck=>mclk,

 btn(3 downto 0)=>btn(3 downto 0),

 sw(7 downto 0)=>sw(7 downto 0),

 led(7 downto 0)=>led(7 downto 0),

 seg(6 downto 0)=>seg(6 downto 0),

 an(3 downto 0)=>an(3 downto 0),

 dp=>dp

);

 ckMuxInst : ckMux

 port map (

 ck0=>mclk,

 ck1=>uclk,

 sel=>sw(7),

 ckOut=>ck50MHz

);

end Structural;

167

D.1.2 SEVEN-SEGMENT LED COUNTER (SIMPLESSEGLEDDEMO.VHD)

The following code is a the seven-segment LED module for instantiation of a

seven-segment LED counter and corresponding switch and button inputs:

-- Company: Digilent RO

-- Engineer: Mircea Dabacan

-- Modified by: LT Lucas S. Parobek

--

-- Create Date: 19:04:55 03/22/2009

-- Modified on: 19:45:00 10/15/2012

-- Design Name: Basys 2 User Demo

-- Module Name: SimpleSsegLedDemo - Behavioral

-- Project Name: Basys 2

-- Target Devices: Spartan 3E 100 (250)

-- Tool versions: ISE 10.1.03 / ISE 14.3

-- Description: Test buttons, switches, LEDs and seven segment disp.

--

-- This is the source file for the Simple Demo for Basys 2,

-- provided by the Digilent Reference Component Library.

-- The project demonstrates the behavior of:

-- - seven segment display: all digits count synchronously from 0 to F

-- hexadecimal. All decimal points are turned ON.

-- - buttons: pressing a button turns OFF the corresponding seven

-- segment display digit

-- - Switches and LEDs: switches control LEDs state

--

-- Dependencies: Basys2UserDemo.vhd (parent)

--

-- Revision:

-- Revision 1.00 - File Modified for Use in TMR Design

-- Revision 0.01 - File Created 20/03/2009(MirceaD)

-- Additional Comments: Modified for Use in TMR Design (+ Synth. Flags)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SimpleSsegLedDemo is

 Port (ck: in std_logic;

 btn: in std_logic_vector(3 downto 0);

 sw: in std_logic_vector(7 downto 0);

 led: out std_logic_vector(7 downto 0);

 seg: out std_logic_vector(6 downto 0);

 dp: out std_logic;

 an: out std_logic_vector(3 downto 0)

);

end SimpleSsegLedDemo;

architecture Behavioral of SimpleSsegLedDemo is

 signal cntDiv: std_logic_vector(28 downto 0); -- general clock div/cnt

 alias cntDisp: std_logic_vector(3 downto 0) is cntDiv(28 downto 25);

168

 -- four bits of the main counter

-- Synthesis Flags to Prevent Logic Trimming (LSP - 10/15/2012)

attribute equivalent_register_removal: string;

attribute equivalent_register_removal of cntDiv : signal is "no";

begin

 led <= sw; -- switches control LEDs

 ckDivider: process(ck)

 begin

 if ck'event and ck='1' then

 cntDiv <= cntDiv + '1';

 end if;

 end process;

 --HEX-to-seven-segment decoder

-- HEX: in STD_LOGIC_VECTOR (3 downto 0);

-- LED: out STD_LOGIC_VECTOR (6 downto 0);

--

-- segment encoinputg

-- 0

-- ---

-- 5 | | 1

-- --- <- 6

-- 4 | | 2

-- ---

-- 3

 with cntDisp SELect

 seg<= "1111001" when "0001", --1

 "0100100" when "0010", --2

 "0110000" when "0011", --3

 "0011001" when "0100", --4

 "0010010" when "0101", --5

 "0000010" when "0110", --6

 "1111000" when "0111", --7

 "0000000" when "1000", --8

 "0010000" when "1001", --9

 "0001000" when "1010", --A

 "0000011" when "1011", --b

 "1000110" when "1100", --C

 "0100001" when "1101", --d

 "0000110" when "1110", --E

 "0001110" when "1111", --F

 "1000000" when others; --0

 an <= btn; -- released buttons turn corresponding digits ON

 dp <= '0'; -- all decimal point ON

end Behavioral;

169

D.1.3 SEVEN-SEGMENT LED COUNTER (VOTER.V)

The following code is a the voter module for instantiation of a seven-segment

LED counter in TMR and corresponding switch and button inputs:

///

// Company: Naval Postgraduate School

// Engineer: LT Lucas S. Parobek

//

// Create Date: 19:48:32 10/23/2012

// Design Name: Seven-Segment LED Counter – TMR Version

// Module Name: voter.v

// Project Name: Basys 2

// Target Devices: Spartan 3E 100 (250)

// Tool versions: ISE 14.3

// Description: Voter module to allow for TMR representation of counter.

//

// Dependencies: Basys2UserDemo.vhd (parent)

//

// Revision:

// Revision 1.00 - File Modified for Use in TMR Design

// Additional Comments: All switch and button lines voted on to allow for

// continued operation as per non-TMR design…

///

`timescale 1ns / 1ps

module voter(dp0,dp1,dp2,

 l0,l1,l2,

 s0,s1,s2,

 a0,a1,a2,

 dp,led,seg,an);

 input dp0;

 input dp1;

 input dp2;

 input [7:0] l0;

 input [7:0] l1;

 input [7:0] l2;

 input [6:0] s0;

 input [6:0] s1;

 input [6:0] s2;

 input [3:0] a0;

 input [3:0] a1;

 input [3:0] a2;

 output dp;

 output [7:0] led;

 output [6:0] seg;

 output [3:0] an;

assign dp = (dp0 & dp1) | (dp0 & dp2) | (dp1 & dp2);

assign led = (l0 & l1) | (l0 & l2) | (l1 & l2);

assign seg = (s0 & s1) | (s0 & s2) | (s1 & s2);

assign an = (a0 & a1) | (a0 & a2) | (a1 & a2);

endmodule

170

D.1.4 SEVEN-SEGMENT LED COUNTER (TMR SCHEMATIC)

The following schematic implements the seven-segment LED counter in TMR:

ckMux
mclk ckO ckOut f------+>

uclk ck1

e-- sel

SimpleSsegledDemo
ck bln (3:0) r------, bin 3:0) I

r------'

~7:0)
r------, swa:o r------'

dp

led(7:0)
r------,
r------'

seg(6:0)
r------,
r------'

an(3:0)
r------, voter

~ s0(6:0)

~
s1(6:0)

SimpleSsegledDemo ~
s2(6:0)

ck bln (3:0)
r------, dpO dp ~ r------'

~7:0)
r------, II dp1 led(7:0) ~led(7:0))

dp
dp 2 seg(6:0) ~seof6:0l :

~ 10(7:0) an(3:0) ~an3:0l : led(7:0)

II
~

r------, 11(7:0)
seg(6:0) r------'

~

r------, 12(7:0)
an(3:0) r------'

~

~ a0(3:0)
~

~ a1(3 :0)
~

~ a2(3 :0)

SimpleSsegledDemo ~

ck bln (3:0)
r------,
r------'

~7:0)
r------,
r------'

dp

led(7:0)
r------'

seg(6:0)
r------'

an(3:0)
r------'

171

D.2 LAUNCH SEQUENCE GENERATOR (LAUNCH_SEQUENCER.VHD)

The following VHDL code provides the preliminary basis of the launch sequencer

logic timing utilizing the FROM portion of the ProASIC3 to store timing constants:

--

-- Actel Corporation --

-- www.actel.com --

--

-- VHDL Design : Launch Sequence Generator --

-- Design : ACTEL Launch Sequence using FlashROM IP --

-- File name : launch_sequencer.vhd --

--

-- Description: This module implements the logic to generate a sequence of --

-- P-POD select signals in user defined time interval. Actels FlashROM design --

-- is configured and generated with different contents to meet this time --

-- difference. --

-- --

--

-- Modification History --

-- --

-- Initial revision --

-- --

-- Revision 1.0 --

--

--IMPORTANT-READ THESE TERMS CAREFULLY BEFORE UTILIZING THE INFORMATION --

--CONTAINED IN THIS DESIGN. --

-- --

--NO SUPPORT/NO WARRANTY. --

--THE DESIGN FILES AND DOCUMENTATION ARE PROVIDED WITHOUT SUPPORT OR WARRANTY --

--OF ANY KIND. --

--ACTEL IS NOT OBLIGATED TO PROVIDE UPDATES, BUG FIXES, OR TECHNICAL SUPPORT --

--AND DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE WARRANTIES --

--OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND WARRANTIES OF --

--NON-INFRINGEMENT OF THE RIGHTS OF THIRD PARTIES (INCLUDING, WITHOUT --

--LIMITATION, RIGHTS UNDER PATENT, COPYRIGHT, TRADE SECRET, OR OTHER --

--INTELLECTUAL PROPERTY RIGHTS). RECIPIENT ACCEPTS THE DESIGN FILES AND --

--DOCUMENTATION IN "AS-IS" CONDITION. --

--

--

-- L I B R A R Y --

--

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_arith.all;

use IEEE.STD_LOGIC_unsigned.all;

library proasic3;

use proasic3.all;

--

-- E N T I T Y --

--

entity launch_sequencer is

port(

 --Input Clock

 clk : in std_logic ;

 --Active low POWER ON RESET

 poreset_n : in std_logic ;

 --First P-POD Select signal

 cs1 : out std_logic;

 --Second P-POD Select signal

 cs2 : out std_logic;

 --Third P-POD Select signal

172

 cs3 : out std_logic;

 --Fourth P-POD Select signal

 cs4 : out std_logic;

 --Fifth P-POD Select signal

 cs5 : out std_logic;

 --Sixth P-POD Select signal

 cs6 : out std_logic;

 --Seventh P-POD Select signal

 cs7 : out std_logic;

 --Eighth P-POD Select signal

 cs8 : out std_logic;

 --Reference signal for all P-POD select signal

 reference_out : out std_logic

);

end launch_sequencer;

--

-- A R C H I T E C T U R E --

--

architecture launch_sequencer_arch of launch_sequencer is

-- FlashROM ip core

component FlashROM_cmp

 port

 (

 CLK : in std_logic;

 ADDR : in std_logic_vector(6 downto 0);

 DOUT : out std_logic_vector(7 downto 0)

) ;

end component;

signal addr_sig : std_logic_vector(6 downto 0);

signal dout_sig : std_logic_vector(7 downto 0);

signal data1_sig : std_logic_vector(7 downto 0);

signal data2_sig : std_logic_vector(7 downto 0);

signal data3_sig : std_logic_vector(7 downto 0);

signal data4_sig : std_logic_vector(7 downto 0);

signal data5_sig : std_logic_vector(7 downto 0);

signal data6_sig : std_logic_vector(7 downto 0);

signal data7_sig : std_logic_vector(7 downto 0);

signal data8_sig : std_logic_vector(7 downto 0);

signal count1_sig : std_logic_vector(7 downto 0);

signal count2_sig : std_logic_vector(7 downto 0);

signal count3_sig : std_logic_vector(7 downto 0);

signal count4_sig : std_logic_vector(7 downto 0);

signal count5_sig : std_logic_vector(7 downto 0);

signal count6_sig : std_logic_vector(7 downto 0);

signal count7_sig : std_logic_vector(7 downto 0);

signal count8_sig : std_logic_vector(7 downto 0);

signal nrst_sig : std_logic ;

signal addr_en : std_logic;

signal addr_fprom_s : std_logic_vector(6 downto 0);

component pll_4_40

 port(POWERDOWN, CLKA : in std_logic; LOCK, GLA, GLB : out

 std_logic) ;

end component;

signal lock_sig : std_logic;

signal div_clk : std_logic ;

signal clk_divider : std_logic_vector(9 downto 0);

signal div_clkms : std_logic ;

173

signal div_clkms_sig : std_logic ;

signal load_en_sig : std_logic ;

COMPONENT CLKINT

 port(

 A : in STD_ULOGIC;

 Y : out STD_ULOGIC);

END COMPONENT;

component addr_counter

 port(Aclr : in std_logic;

 Clock : in std_logic;

 Q : out std_logic_vector(6 downto 0);

 Enable : in std_logic

);

end component;

component data_counter

 port(Aclr : in std_logic;

 Clock : in std_logic;

 Q : out std_logic_vector(7 downto 0);

 Enable : in std_logic

);

end component;

signal clk_div_sig : std_logic;

signal clk_div2_sig : std_logic;

signal clk_div3_sig : std_logic;

signal clk_sig : std_logic ;

signal one_sig : std_logic;

signal two_sig : std_logic;

signal three_sig : std_logic;

signal four_sig : std_logic;

signal five_sig : std_logic;

signal six_sig : std_logic;

signal seven_sig : std_logic;

signal eight_sig : std_logic;

type from_read is (idle_st, en_st, delay1_st, add_en_st) ;

signal pr_st, nx_st : from_read;

signal from_en_sig : std_logic;

signal add_en_sig : std_logic;

signal clk_from_sig : std_logic;

signal clk_40 : std_logic;

signal en_sig : std_logic;

signal den1_sig: std_logic;

signal cs1_sig : std_logic;

signal den2_sig : std_logic;

signal cs2_sig : std_logic;

signal den3_sig : std_logic;

signal cs3_sig : std_logic;

signal den4_sig : std_logic;

signal cs4_sig : std_logic;

signal den5_sig : std_logic;

signal cs5_sig : std_logic;

signal den6_sig : std_logic;

signal cs6_sig : std_logic;

signal den7_sig : std_logic;

signal cs7_sig : std_logic;

signal den8_sig : std_logic;

signal cs8_sig : std_logic;

174

begin

----------- Active low reset on board ---------------

nrst_sig <= poreset_n and lock_sig;

----------- Time Interval Generation ----------------

--pll_4_40_inst: This PLL block generates 4Mhz and 40MHz clocks

--from external 48Mhz clock

pll_4_40_inst: pll_4_40

 port map

 (

 POWERDOWN => '1',

 CLKA => clk,

 LOCK => lock_sig,

 GLA => clk_div_sig,

 GLB => clk_40

) ;

Process(clk_40, nrst_sig)

begin

 if nrst_sig = '0' then

 clk_from_sig <= '0' ;

 elsif clk_40'event and clk_40 = '1' then

 clk_from_sig <= not clk_from_sig ;

 end if ;

end process;

Process(clk_div_sig, nrst_sig, load_en_sig)

begin

 if nrst_sig = '0' then

 clk_div2_sig <= '0' ;

 elsif clk_div_sig'event and clk_div_sig = '1' then

 if load_en_sig = '1' then

 clk_div2_sig <= not clk_div2_sig ;

 end if;

 end if ;

end process;

Process(clk_div2_sig, nrst_sig)

begin

 if nrst_sig = '0' then

 clk_div3_sig <= '0' ;

 elsif clk_div2_sig'event and clk_div2_sig = '1' then

 clk_div3_sig <= not clk_div3_sig ;

 end if ;

end process;

--1Mhz clock

div_clk <= clk_div3_sig ;

Process(div_clk, nrst_sig, clk_divider)

begin

 if nrst_sig = '0' then

 clk_divider <= (others => '0') ;

 div_clkms_sig <= '0' ;

 elsif div_clk'event and div_clk = '1' then

 if clk_divider = 0 then

 clk_divider <= "1111101000" ;

 div_clkms_sig <= '1' ;

 else

 clk_divider <= clk_divider - '1' ;

 div_clkms_sig <= '0' ;

 end if ;

 end if ;

end process ;

175

CLKINT_inst: CLKINT

 port map(

 A => div_clkms_sig,

 Y => div_clkms

);

----------- FlashROM ip core instantiation -----------

--FlashROM_cmp_inst: This FlashROM block is configured

--to generate different time interval between P-PODs

--select signals

FlashROM_cmp_inst: FlashROM_cmp port map

 (

 CLK => from_en_sig,

 ADDR => addr_sig,

 DOUT => dout_sig

) ;

----------- Address Generation -----------------------

----------state machine for generating clock enable for FlashROM and address enable for

addr_counter-------

process(clk_from_sig, nrst_sig)

begin

 if nrst_sig = '0' then

 pr_st <= idle_st ;

 elsif clk_from_sig'event and clk_from_sig = '1' then

 pr_st <= nx_st ;

 end if;

end process ;

process(pr_st)

begin

 case (pr_st) is

 when idle_st => nx_st <= en_st;

 when en_st => nx_st <= delay1_st;

 when delay1_st => nx_st <= add_en_st;

 when add_en_st => nx_st <= idle_st;

 when others => nx_st <= idle_st;

 end case ;

end process ;

process(pr_st)

begin

 case (pr_st) is

 when idle_st => from_en_sig <= '0' ; add_en_sig <= '0' ;

 when en_st => from_en_sig <= '1' ; add_en_sig <= '0' ;

 when delay1_st => from_en_sig <= '0' ; add_en_sig <= '0' ;

 when add_en_st => from_en_sig <= '0' ; add_en_sig <= '1' ;

 when others => from_en_sig <= '0' ; add_en_sig <= '0' ;

 end case ;

end process ;

en_sig <= add_en_sig and (not (load_en_sig)) ;

addr_counter_inst: addr_counter

 port map(Aclr => nrst_sig,

 Clock => clk_from_sig,

 Q => addr_fprom_s(6 downto 0),

176

 Enable => en_sig

);

ROMaddr_proc: Process(clk_from_sig, nrst_sig, addr_fprom_s, addr_en, add_en_sig)

begin

 if (nrst_sig = '0') then

 load_en_sig <= '0' ;

 elsif clk_from_sig'event and clk_from_sig = '1' then

 if addr_fprom_s = "0001001" then

 load_en_sig <= '1' ;

 end if;

 end if ;

end process ROMaddr_proc;

addr_sig <= addr_fprom_s(6 downto 0) ;

-----------Address Decoder ---------------

one_sig <= (not (addr_fprom_s(0))) and (not (addr_fprom_s(1))) and (not

(addr_fprom_s(2))) and (not (addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not

(addr_fprom_s(5))) and (not (addr_fprom_s(6))) ;

two_sig <= addr_fprom_s(0) and (not (addr_fprom_s(1))) and (not (addr_fprom_s(2)))

and (not (addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not (addr_fprom_s(5)))

and (not (addr_fprom_s(6))) ;

three_sig <= (not (addr_fprom_s(0))) and addr_fprom_s(1) and (not (addr_fprom_s(2)))

and (not (addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not (addr_fprom_s(5)))

and (not (addr_fprom_s(6))) ;

four_sig <= addr_fprom_s(0) and addr_fprom_s(1) and (not (addr_fprom_s(2))) and (not

(addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not (addr_fprom_s(5))) and (not

(addr_fprom_s(6))) ;

five_sig <= (not (addr_fprom_s(0))) and (not (addr_fprom_s(1))) and addr_fprom_s(2)

and (not (addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not (addr_fprom_s(5)))

and (not (addr_fprom_s(6))) ;

six_sig <= addr_fprom_s(0) and (not (addr_fprom_s(1))) and addr_fprom_s(2) and (not

(addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not (addr_fprom_s(5))) and (not

(addr_fprom_s(6))) ;

seven_sig <= (not (addr_fprom_s(0))) and addr_fprom_s(1) and addr_fprom_s(2) and (not

(addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not (addr_fprom_s(5))) and (not

(addr_fprom_s(6))) ;

eight_sig <= (not (from_en_sig)) and addr_fprom_s(0) and addr_fprom_s(1) and

addr_fprom_s(2) and (not (addr_fprom_s(3))) and (not (addr_fprom_s(4))) and (not

(addr_fprom_s(5))) and (not (addr_fprom_s(6))) ;

----------FROM content registers ----------------

Process(clk_from_sig, nrst_sig, add_en_sig, one_sig)

begin

 if nrst_sig = '0' then

 data1_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and one_sig = '1') then

 data1_sig <= dout_sig ;

 end if ;

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, two_sig)

begin

 if nrst_sig = '0' then

 data2_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and two_sig = '1') then

 data2_sig <= dout_sig ;

 end if ;

177

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, three_sig)

begin

 if nrst_sig = '0' then

 data3_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and three_sig = '1') then

 data3_sig <= dout_sig ;

 end if ;

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, four_sig)

begin

 if nrst_sig = '0' then

 data4_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and four_sig = '1') then

 data4_sig <= dout_sig ;

 end if ;

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, five_sig)

begin

 if nrst_sig = '0' then

 data5_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and five_sig = '1') then

 data5_sig <= dout_sig ;

 end if ;

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, six_sig)

begin

 if nrst_sig = '0' then

 data6_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and six_sig = '1') then

 data6_sig <= dout_sig ;

 end if ;

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, seven_sig)

begin

 if nrst_sig = '0' then

 data7_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and seven_sig = '1') then

 data7_sig <= dout_sig ;

 end if ;

 end if ;

end process;

Process(clk_from_sig, nrst_sig, add_en_sig, eight_sig)

begin

 if nrst_sig = '0' then

 data8_sig <= "11111111" ;

 elsif clk_from_sig'event and clk_from_sig = '0' then

 if (add_en_sig = '1' and eight_sig = '1') then

 data8_sig <= dout_sig ;

 end if ;

 end if ;

end process;

178

----------- CS Generation ----------------------------

den1_sig <= load_en_sig and (not(cs1_sig)) ;

data_counter1_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clk,

 Q => count1_sig,

 Enable => den1_sig

);

Process(div_clk, nrst_sig, count1_sig)

begin

 if (nrst_sig = '0') then

 cs1_sig <= '0' ;

 elsif div_clk'event and div_clk = '1' then

 if count1_sig = data1_sig then

 cs1_sig <= '1' ;

 end if ;

 end if ;

end process;

den2_sig <= load_en_sig and (not(cs2_sig)) ;

data_counter2_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clk,

 Q => count2_sig,

 Enable => den2_sig

);

Process(div_clk, nrst_sig, count2_sig)

begin

 if (nrst_sig = '0') then

 cs2_sig <= '0' ;

 elsif div_clk'event and div_clk = '1' then

 if count2_sig = data2_sig then

 cs2_sig <= '1' ;

 end if ;

 end if ;

end process;

den3_sig <= load_en_sig and (not(cs3_sig)) ;

data_counter3_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clk,

 Q => count3_sig,

 Enable => den3_sig

);

Process(div_clk, nrst_sig, count3_sig)

begin

 if (nrst_sig = '0') then

 cs3_sig <= '0' ;

 elsif div_clk'event and div_clk = '1' then

 if count3_sig = data3_sig then

 cs3_sig <= '1' ;

 end if ;

 end if ;

end process;

den4_sig <= load_en_sig and (not(cs4_sig)) ;

data_counter4_inst: data_counter

 port map (Aclr => nrst_sig,

179

 Clock => div_clk,

 Q => count4_sig,

 Enable => den4_sig

);

Process(div_clk, nrst_sig, count4_sig)

begin

 if (nrst_sig = '0') then

 cs4_sig <= '0' ;

 elsif div_clk'event and div_clk = '1' then

 if count4_sig = data4_sig then

 cs4_sig <= '1' ;

 end if ;

 end if ;

end process;

den5_sig <= load_en_sig and (not(cs5_sig)) ;

data_counter5_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clkms,

 Q => count5_sig,

 Enable => den5_sig

);

Process(div_clkms, nrst_sig, count5_sig)

begin

 if (nrst_sig = '0') then

 cs5_sig <= '0' ;

 elsif div_clkms'event and div_clkms = '1' then

 if count5_sig = data5_sig then

 cs5_sig <= '1' ;

 end if ;

 end if ;

end process;

den6_sig <= load_en_sig and (not(cs6_sig)) ;

data_counter6_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clkms,

 Q => count6_sig,

 Enable => den6_sig

);

Process(div_clkms, nrst_sig, count6_sig)

begin

 if (nrst_sig = '0') then

 cs6_sig <= '0' ;

 elsif div_clkms'event and div_clkms = '1' then

 if count6_sig = data6_sig then

 cs6_sig <= '1' ;

 end if ;

 end if ;

end process;

den7_sig <= load_en_sig and (not(cs7_sig)) ;

data_counter7_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clkms,

 Q => count7_sig,

 Enable => den7_sig

);

Process(div_clkms, nrst_sig, count7_sig)

180

begin

 if (nrst_sig = '0') then

 cs7_sig <= '0' ;

 elsif div_clkms'event and div_clkms = '1' then

 if count7_sig = data7_sig then

 cs7_sig <= '1' ;

 end if ;

 end if ;

end process;

den8_sig <= load_en_sig and (not(cs8_sig)) ;

data_counter8_inst: data_counter

 port map (Aclr => nrst_sig,

 Clock => div_clkms,

 Q => count8_sig,

 Enable => den8_sig

);

Process(div_clkms, nrst_sig, count8_sig)

begin

 if (nrst_sig = '0') then

 cs8_sig <= '0' ;

 elsif div_clkms'event and div_clkms = '1' then

 if count8_sig = data8_sig then

 cs8_sig <= '1' ;

 end if ;

 end if ;

end process;

--

-- launch_sequencer output signals --

--

Process(div_clk, nrst_sig)

begin

 if nrst_sig = '0' then

 reference_out <= '0' ;

 elsif div_clk'event and div_clk = '1' then

 reference_out <= '1' ;

 end if ;

end process ;

cs1 <= cs1_sig;

cs2 <= cs2_sig;

cs3 <= cs3_sig;

cs4 <= cs4_sig;

cs5 <= cs5_sig;

cs6 <= cs6_sig;

cs7 <= cs7_sig;

cs8 <= cs8_sig;

end launch_sequencer_arch ;

--

-- END OF FILE --

--

181

LIST OF REFERENCES

[1] H. Helvajian, P. D. Fuqua, W. W. Hansen, and S. Janson, “Laser microprocessing

for nanosatellite microthruster applications,” RIKEN Review, no. 32, pp. 57–63,

Jan. 2001.

[2] SPACE.com Staff, “Secret U.S. spy satellite launches into space after 6-week

delay,” Space.com, 13 September 2012. [Online] Available:

http://www.space.com/17592-secret-spy-satellite-rocket-launch-nrol-36.html.

[Accessed: 2 Nov. 2012]

[3] A. Chin, R. Coelho, R. Nugent, R. Munakata, and J. Puig-Suari, “CubeSat: the

pico-satellite standard for research and education,” presented at the AIAA Space

Conference and Exposition, San Diego, CA, 2008.

[4] Planetary Systems Corp., “User’s manual for Mark II Lightband,” 2000785

datasheet, 9 Jul. 2012.

[5] Kaushish, V., “NPSCuL user’s guide,” Technical Report, Naval Postgraduate

School, Monterey, CA, Aug. 2011.

[6] M. Niknahad, O. Sander, and J. Becker, “Fine grain fault tolerance - a key to high

reliability for FPGAs in space,” in Proceedings, 2012 IEEE Aerospace

Conference, pp. 1–10, Big Sky, MT, 2012.

[7] M. Niknahad, O. Sander, and J. Becker, “QFDR-an integration of quadded logic

for modern FPGAs to tolerate high radiation effect rates,” presented at the 12th

European Conference on Radiation and its Effects on Components and Systems

(RADECS), Sevilla, Spain, 19–23 Sept. 2011.

[8] S. A. Johnson, “Implementation of a configurable fault tolerant processor (CFTP),

M.S. thesis, Naval Postgraduate School, Monterey, CA, Mar. 2003.

[9] D. A. Ebert, “Design and development of a configurable fault-tolerant processor

(CFTP) for space applications,” M.S. thesis, Naval Postgraduate School,

Monterey, CA, Jun. 2003.

[10] R. Yuan, “Triple modular redundancy (TMR) in a configurable fault-tolerant

processor (CFTP) for space applications,” M.S. thesis, Naval Postgraduate

School, Monterey, CA, Dec. 2003.

[11] J. C. Coudeyras, “Radiation testing of the configurable fault tolerant processor

(CFTP) for space-based applications,” M.S. thesis, Naval Postgraduate School,

Monterey, CA, Dec. 2005.

182

[12] P. J. Majewicz, “Implementation of a configurable fault tolerant processor

(CFTP) using internal triple modular redundancy (TMR),” M.S. thesis, Naval

Postgraduate School, Monterey, CA, Dec. 2005.

[13] G. W. Caldwell, “Implementation of configurable fault tolerant processor (CFTP)

experiments,” M.S. thesis, Naval Postgraduate School, Monterey, CA, Dec. 2006.

[14] G. M. Perez Casanova, “Implementation of a fault tolerant control unit within an

FPGA for space applications,” M.S. thesis, Naval Postgraduate School, Monterey,

CA, Dec. 2006.

[15] D. Dwiggins, Jr., “Fault tolerant microcontroller for the configurable fault tolerant

processor,” M.S. thesis, Naval Postgraduate School, Monterey, CA, Sept. 2008.

[16] D. Sakoda, J. A. Horning, and S. D. Moseley, “Naval Postgraduate School

NPSAT1 small satellite,” presented at the ESA Small Satellite Systems and

Services Symposium, Sardinia, Italy, 25–29 Sept. 2006.

[17] Texas Instruments, “Precision timers,” NA555 datasheet, Sept. 1973 [Revised

Jun. 2010].

[18] ARM Holdings, “Real-Time Operating Systems (RTOS),” ARM.com, 2012

[Online]. Available: http://www.arm.com/community/software-enablement/rtos-

real-time-operating-system.php. [Accessed: 4 Nov. 2012]

[19] Microsemi Corp., “Radiation-tolerant ProASIC3 low power spaceflight flash

FPGAs with Flash*Freeze technology,” datasheet, Nov. 2009 [Revised Sept.

2012].

[20] D. A. Patterson and J. L. Hennessy, Computer Organization and Design – The

Hardware / Software Interface, 4th ed. Waltham, MA: Morgan Kaufmann, 2012.

[21] Actel Corp., “Single-event effects in FPGAs,” Tech Report 55700011–2,

Sunnyvale, CA, Oct. 2007.

[22] J. McHale, “Radiation-hardened electronic designers face increasing difficulty

with shrinking chip geometries,” in Military & Aerospace Electronics, 17 May

2011. [Online] Available:

http://www.militaryaerospace.com/articles/2011/05/radiation-hardened-

electronics.html. [Accessed: 9 Nov. 2012]

[23] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to

improve computer reliability,” IBM Journal of Research and Development, vol.

6, no. 2, pp. 200–209, Apr. 1962.

183

[24] F. H. Hardie and R. J. Suhocki, “Design and use of fault simulation for Saturn

computer design,” IEEE Transactions on Electronic Computers, vol. EC-16, no.

4, pp. 412–429, Aug. 1967.

[25] Xilinx Inc., “Considerations surrounding single-event effects in FPGAs, ASICs,

and processors,” WP402 white paper, Sept. 2011.

[26] E. J. Daly, A. Hilgers, G. Drolshagen, and H. D. R. Evans, “Space environment

analysis: Experience and trends,” in Proceedings, ESA Symposium on

Environment Modeling for Space-based Applications, 18 Sept. 2006.

[Online]Available: http://esamultimedia.esa.int/conferences

/96a09/Abstracts/abstract45/. [Accessed: 11 Nov. 2012]

[27] A. D. Tipton, J. A. Pellish, R. A. Reed, R. D. Schrimpf, et al., “Multiple-bit upset

in 130 nm CMOS technology,” in IEEE Transactions on Nuclear Science, vol. 53,

pp. 3259–3264, 2006.

[28] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization of multi-bit

soft error events in advanced SRAMs,” in Proceedings, IEEE International

Electronic Device Meeting, pp. 519–522, Dec. 2003.

[29] S. Rezgui, J. J. Wang, E. C. Tung, B. Cronquist, and J. McCollum, “New

methodologies for SET characterization and mitigation in flash-based FPGAs,” in

IEEE Transactions on Nuclear Science, vol. 54, pp. 2512–2524, 2007.

[30] S. Buchner and D. McMorrow, “Single-event transients in bipolar linear

integrated circuits,” in IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp.

3079–3102, Dec. 2006.

[31] J. R. Schwank, M. R. Shaneyfelt, J. Baggio, P. E. Dodd, et al., “Effects of particle

energy on proton-induced single-event Latchup,” in IEEE Transactions on

Nuclear Science, Vvol. 52, no. 6, pp. 2622–2629, Dec. 2005.

[32] H. J. Barnaby, “Total-ionizing-dose effects in modern CMOS technologies,” in

IEEE Transactions on Nuclear Science, vol. 53, no. 6, pp. 3103–3121, Dec. 2006.

[33] T. R. Oldham and F. B. McLean, “Total ionizing dose effects in MOS oxides and

devices,” in IEEE Transactions on Nuclear Science, vol. 50, no. 3, Jun. 2003.

[34] J. Tarrillo, J. R. Azambuja, F. L. Kastensmidt, E. C. Pereria Fonseca, et al.,

“Analyzing the effects of TID in an embedded system running in a flash-based

FPGA,” in IEEE Transactions on Nuclear Science, vol. 58, no. 6, Dec. 2011.

[35] J. S. George, R. Koga, and M. A. McMahan, “Neutron soft errors in Xilinx

FPGAs at Lawrence Berkeley National Laboratory,” presented at IEEE Radiation

Effects Data Workshop, Tucson, AZ, 14–18 Jul. 2008.

184

[36] Microsemi Corp., “FPGA reliability and the sunspot cycle,” Tech. Report

55900103–1, Aliso Viejo, CA, Sept. 2011.

[37] A. S. Keys, J. H. Adams, R. C. Darty, M. C. Patrick, et al., “Radiation Hardened

Electronics for Space Environments (RHESE) project overview,” presented at

International Planetary Probes Workshop, Atlanta, GA, 23–27 Jun. 2008.

[38] K. C. Fox, “The electrical atmosphere: plasma is next NASA science target,”

NASA.gov, 18 Jul. 2012. [Online] Available:

http://www.nasa.gov/mission_pages/rbsp/news/electric-atmosphere.html.

[Accessed: 12 Nov. 2012]

[39] E. G. Stassinopoulos and J. P. Raymond, “The space radiation environment for

electronics,” in Proceedings of the IEEE, vol. 76, no. 11, pp. 1423–1442, Nov.

1988.

[40] D. K. Pradhan, Fault-Tolerant Computer System Design. Upper Saddle River,

N.J.: Prentice Hall PTR, 1996.

[41] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfiguration via

configuration scrubbing,” in International Conference on Field Programmable

Logic and Applications, pp. 99–104, 2009.

[42] C. A. Hulme, H. H. Loomis, A. A. Ross, and R. Yuan, “Configurable fault-

tolerant processor (CFTP) for spacecraft onboard processing,” in Proceedings,

2004 Aerospace Conference, vol. 4, pp. 2269–2276, Big Sky, MT, 6–13 Mar.

2004.

[43] M. Niknahad, O. Sander, and J. Becker, “Fine grain fault tolerance – A key to

high reliability for FPGAs in space,” in Proceedings, 2012 IEEE Aerospace

Conference, pp. 1–10, Big Sky, MT, 2012.

[44] R. D. Do, “New tool for FPGA designers mitigates soft errors within synthesis,”

DSP-FPGA.com, 6 Dec. 2011. [Online] Available: http://dsp-

fpga.com/articles/new-errors-within-synthesis/. [Accessed: 13 Nov. 2012]

[45] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A comparison

of TMR with alternative fault-tolerant design techniques for FPGAs,” in IEEE

Transactions on Nuclear Science, vol. 54, pp. 2065–2072, 2007.

[46] J. G. Tryon, “Quadded logic,” in Redundancy Techniques for Computing Systems,

Wilcox and Mann, eds., pp. 205–228, Washington, D.C., 1962.

[47] J. Han, J. Gao, P. Jonker, Y. Qi, and J. A. B. Fortes, “Toward hardware-

redundant, fault-tolerant logic for nanoelectronics,” IEEE Design & Test of

Computers, vol. 22, pp. 328–339, 2005.

185

[48] M. Niknahad, O. Sander, and J. Becker, “QFDR – An integration of quadded

logic for modern FPGAs to tolerate high radiation effect rates,” presented at the

12th European Conference on Radiation and its Effects on Components and

Systems (RADECS), 19–23 Sept. 2011.

[49] Xilinx Inc., “Xilinx TMRTool Product Brief,” Xilinx.com, 2012

[Online].Available: http://www.xilinx.com/ise/optional_prod/tmrtool.htm.

[Accessed: 12 Nov. 2012]

[50] Mentor Graphics Corp., “Precision Hi-Rel,” 1028010 datasheet, May 2011.

[51] Xilinx Inc., “Field Programmable Gate Array (FPGA),” Xilinx.com, 2012

[Online]. Available: http://www.xilinx.com/training/fpga/fpga-field-

programmable-gate-array.htm. [Accessed: 2 Nov. 2012]

[52] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

26, pp. 203–215, 2007.

[53] G. Leopold, “Updated: How Mars rover got its ‘dream mode’,” EETimes.com, 15

Aug. 2012. [Online] Available: http://www.eetimes.com/electronics-

news/4394104/How-Mars-rover-got-its--dream-mode-. [Accessed: 4 Nov. 2012]

[54] National Instruments, “FPGA Fundamentals,” NI.com, 3 May 2012.

[Online]Available: http://www.ni.com/white-paper/6983/en. [Accessed: 6 Nov.

2012]

[55] Altera Corp., “Logic array blocks and adaptive logic modules in Stratix IV

devices,” SIV51002–3.1 datasheet, May 2008 [Revised Feb. 2011].

[56] C. Pfeil, “Fanout patterns, parts 1–4,” in Printed Circuit Design and Fabrication,

1 May 2008. [Online] Available: http://pcdandf.com/cms/magazine/95/4632.

[Accessed: 6 Nov. 2012]

[57] Altera Corp., “FPGA run-time reconfiguration: two approaches,” Tech. Report

WP-01055–1.0, San Jose, CA, Mar. 2008.

[58] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic hardware

plugins in an FPGA with partial run-time reconfiguration,” in Proceedings, 39th

Design Automation Conference, pp. 343–348, 2002.

[59] E. J. McDonald, “Runtime FPGA partial reconfiguration,” presented at the 2008

IEEE Aerospace Conference, pp. 1–7, 2008.

186

 [60] Computer History Museum, “1978 – PAL User-Programmable Logic Devices

Introduced,” ComputerHistory.org, 2007. [Online] Available:

http://www.computerhistory.org/semiconductor/timeline/1978-PAL.html.

[Accessed: 6 Nov. 2012]

[61] D. W. Page and L. R. Peterson, “Re-programmable PLA,” U.S. Patent 4,508,977,

2 Apr. 1985.

[62] D. W. Page, “Dynamic data re-programmable PLA,” U.S. Patent 4,524,430, 18

Jun. 1985.

[63] R. H. Freeman, “Configurable electrical circuit having configurable logic

elements and configurable interconnects,” U.S. Patent 4,870,302, 26 Sept. 1989.

[64] P. Alfke, I. Bolsens, B. Carter, M. Santarini, and S. Trimberger, “It’s an FPGA!,”

in IEEE Solid-State Circuits Magazine, vol. 3, no. 4, pp. 15–20, 2011.

[65] Xilinx Inc., “7 series FPGAs overview,” DS180 datasheet, Jun. 2010 [Revised

Oct. 2012].

[66] J. C. Pomager, “Parametric reliability of space-based field programmable gate

arrays,” M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB,

OH, Mar. 2007.

[67] Xilinx Inc., “Radiation-hardened, space-grade Virtex-5QV family overview,”

DS192 datasheet, Jul. 2010 [Revised Mar. 2012].

 [68] Actel Corp., “Design security in nonvolatile flash and antifuse FPGAs,” Tech.

Report 5172163–1, Sunnyvale, CA, Aug. 2002.

[69] K. O’Neill, “Antifuse FPGA technology: best option for satellite applications,” in

COTS Journal, Dec. 2003. [Online] Available:

http://www.cotsjournalonline.com/articles/print_article/100087. [Accessed: 7

Nov. 2012]

[70] Microsemi Corp., “RT ProASIC3 FPGAs,” Actel.com, 2012. [Online]Available:

http://www.actel.com/products/milaero/rtpa3/default.aspx. [Accessed: 7 Nov.

2012]

[71] L. Geppert, “The new indelible memories,” in IEEE Spectrum, Mar. 2003.

[Online] Available: http://spectrum.ieee.org/semiconductors/memory/the-

new-indelible-memories/2. [Accessed: 7 Nov. 2012]

[72] 1-Core Technologies, “FPGA Logic Cells Comparison,” 1-Core.com, 2009

[Online]. Available: http://www.1-core.com/library/digital/fpga-logic-cells/.

[Accessed: 16 Nov. 2012]

187

[73] Altium Limited, “Wiki – The Altium Designer Environment,” Altium.com, Jun.

2012 [Online] . Available: http://wiki.altium.com/display/ADOH

/The+Altium+Designer+Environment. [Accessed: 17 Nov. 2012]

[74] Microsemi Corp., “ProASIC3 nano flash FPGAs,” 51700111-10 datasheet, Oct.

2008 [Revised Sept. 2012].

[75] Microsemi Corp., “ProASIC3L low power flash FPGAs with Flash*Freeze

technology,” 51700100-12 datasheet, Feb. 2008 [Revised Sept. 2012].

[76] J. F. Wakerly, Digital Design – Principles and Practices, 2
nd

 ed., Englewood

Cliffs, N.J.: Prentice Hall, 1994.

[77] Actel Corp., “ProASIC3/E FlashROM (FROM),” 51900053-2 application note,

Jan. 2005 [Revised Jun. 2005].

[78] Actel Corp., “Using IGLOO and ProASIC3 FPGAs as a system power sequencer

design example,” AC268 application note, Apr. 2009.

[79] Microsemi Corp., “ProASIC3 Series Overview,” Actel.com, 2012 [Online].

Available: http://www.actel.com/products/pa3series/default.aspx. [Accessed: 16

Nov. 2012]

[80] VPT Inc., “SVSA2800D series – High reliability hybrid radiation tolerant DC-DC

converters,” SVSA2800D-2.0 datasheet, 2012.

[81] VPT Inc., “DVMA28 series – High reliability hybrid EMI filters,” DVMA28-2.0

datasheet, 2012.

[82] Microsemi Corp., “Core 10100 v4.0 handbook,” 50200077-6 datasheet, Feb.

2009.

[83] Microsemi Corp., “IP Cores,” Actel.com, 2012. [Online] Available:

http://www.actel.com/products/ip/default.aspx. [Accessed: 24 Nov. 2012]

[84] OpenCores, “Core Projects,” OpenCores.org, 2012. [Online] Available:

http://opencores.org/projects. [Accessed: 24 Nov. 2012]

[85] Microsemi Corp., “Display Reference Designs,” Actel.com, 2012 [Online].

Available: http://www.actel.com/products/solutions/display/refdesign.aspx.

[Accessed: 24 Nov. 2012]

[86] Xilinx Inc., “ISE WebPACK Design Software,” Xilinx.com, 2012 [Online].

Available: http://www.xilinx.com/products/design-tools/ise-design-suite/ise-

webpack.htm. [Accessed: 13 Nov. 2012]

188

[87] Microsemi Corp., “Microsemi FPGA and SoC Development Software,”

Actel.com, 2012 [Online]. Available: http://www.actel.com/products

/software/libero/default.aspx. [Accessed: 13 Nov. 2012]

[88] Actel Corp., “SmartDesign v8.4 user’s guide,” datasheet, Jul. 2008.

[89] M. Surratt, H. H. Loomis, A. A. Ross, and R. Duren, “Challenges of remote

FPGA configuration for space applications,” in Proceedings, 2005 IEEE

Aerospace Conference, Big Sky, MT, 2005.

[90] Xilinx Inc., “Virtex-5 FPGA user guide,” UG190 datasheet, Apr. 2006 [Revised

Mar. 2012].

[91] Digi-Key Corp., “XC5VFX130T-1FFG1738I,” DigiKey.com, 2012 [Online].

Available: http://www.digikey.com/product-detail/en/XC5VFX130T-

1FFG1738I/XC5VFX130T-1FFG1738I-ND/1957110. [Accessed: 16 Nov. 2012]

[92] Microsemi Corp., “RTSX-SU radiation-tolerant FPGAs (UMC),” 51700053-9

datasheet, Mar. 2006 [Revised Mar. 2012].

[93] Microsemi Corp., “ProASIC3L FPGA fabric user’s guide,” 502000261-4

datasheet, Jul. 2010 [Revised Sept. 2012].

[94] Microsemi Corp., “Total Ionizing Dose test report,” Tech. Report 11T-

RT3PE600L-CG484-QJA2H, Irvine, CA, Apr. 2011.

[95] Digi-Key Corp., “A3PE600-FG484,” DigiKey.com, 2012. [Online]Available:

http://www.digikey.com/product-detail/en/A3PE600-FG484/A3PE600-FG484-

ND/2858762. [Accessed: 16 Nov. 2012]

[96] Microsemi Corp., “What is the nominal voltage for VCCPLF in A3P030?,”

Actel.com, Jan. 2012. [Online] Available:

http://www.actel.com/kb/article.aspx?id=FQ1206. [Accessed: 17 Nov. 2012]

[97] Molex, “Micro-Fit 3.0 connectors,” 43045-0614 datasheet, Jun. 2012.

[98] Microsemi Corp., “FlashPro Programming System,” Actel.com, 2012 [Online].

Available: http://www.actel.com/products/hardware

/program_debug/flashpro/default.aspx. [Accessed: 17 Nov. 2012]

[99] Digi-Key Corp., “A33159-ND / 5103308-1,” Digi-Key.com, 2012 [Online].

Available: http://www.digikey.com/product-search/en?KeyWords=A33159-ND.

[Accessed: 17 Nov. 2012]

[100] Microsemi Corp., “FlashPro for software v10.1 user’s guide,” 5-02-9138-19

datasheet, Aug. 2012.

189

[101] Tyco Electronics, “Connector system for Universal Serial Bus (USB),” 7-

1773442-0 datasheet, Mar. 2006.

[102] Fairchild Semiconductor, “Surface mount LED lamp – Standard bright 0603 (0.6

mm Height),” 300087 datasheet, Feb. 2003.

[103] Advanced Circuits, “FreeDFM File Check Service,” My4PCB.com, 2012

[Online]. Available: https://www.my4pcb.com/net35/FreeDFMNet

/FreeDFMHome.aspx. [Accessed: 18 Nov. 2012]

[104] OSH Park, “Community PCB Order,” OSHPark.com, 2012. [Online]Available:

http://oshpark.com/. [Accessed: 18 Nov. 2012]

[105] Billy Beecher, “Sequencer relay board logic, schematic, and PCB design,”

unpublished lab notes and Altium design, 2012.

[106] Cypress Semiconductor Corp., “CY7C1041DV33 4-Mbit (256 K x 16) Static

RAM,” 38-05473 datasheet, Jul. 2008 [Revised Jun. 2011].

[107] Numonyx, “Embedded flash memory (J3 v D) – 64-Mbit Monolithic,” 316577-06

datasheet, Dec. 2007.

[108] Abracon, “Half size DIP low voltage 3.3V HCMOS/TTL compatible crystal clock

oscillator,” ACHL datasheet, Dec. 2010.

[109] Texas Instruments, “Ultralow-noise, high PSRR, fast, RF, 1A low-dropout linear

regulators,” SLVS351N datasheet, Sept. 2002 [Revised Jan. 2011].

190

THIS PAGE INTENTIONALLY LEFT BLANK

191

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

3. Professor R. Clark Robertson

 Chair, Department of Electrical and Computer Engineering

Naval Postgraduate School

 Monterey, California

4. Professor Rudolph Panholzer

 Chair, Space Systems Academic Group

 Naval Postgraduate School

 Monterey, California

5. Professor Herschel H. Loomis, Jr.

 Naval Postgraduate School

 Monterey, California

6. Professor James H. Newman

 Naval Postgraduate School

 Monterey, California

7. LT Lucas S. Parobek, USN

 National Reconnaissance Office

 Chantilly, Virginia

8. CAPT Bruce Dickey, USN

 National Reconnaissance Office

 Chantilly, Virginia

9. CAPT Paul Stewart, USN

 U.S. Naval Research Laboratory

 Washington, DC

10. CDR Michael Porter, USN

 National Reconnaissance Office

 Chantilly, Virginia

192

11. Lt. Col. Steve Lach

 National Reconnaissance Office

 Chantilly, Virginia

12. Professor John W. Peeples

 The Citadel

 Charleston, South Carolina

13. Professor Robert J. Barsanti, Jr.

 The Citadel

 Charleston, South Carolina

14. Professor Mark H. McKinney

 The Citadel

 Charleston, South Carolina

