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ABSTRACT 

This thesis concerns various means of implementing fault tolerance in logic for use in a 

general payload processor design. The first specific application of this research is a 

sequencer developed for deploying CubeSats. The sequencer shall be capable of the 

timing and accurate deployment of multiple CubeSats from a host spacecraft and shall 

have the capability for quick reconfiguration prior to launch. This research considers a 

variety of hardware for suitability toward sequencer construction; field programmable 

gate arrays (FPGAs) are chosen as the primary device. The design further evolves to 

selection of the Actel ProASIC3 series of FPGAs. Initial logic test configurations are 

implemented on a development kit with analysis of results provided. Fault-tolerant 

techniques are compared with a set of experiments to determine optimum resource 

utilization and timing schemes. Triple modular redundancy (TMR) is selected as the 

technique for fault-tolerant logic implementation in the sequencer. Preliminary test 

boards are built via schematic design and printed circuit board layout. The 

manufacturing, integration and testing of the ‘ProASIC3 Test Board’ is fully discussed. A 

follow-on flight prototype board is designed with more extensive hardware allowing for 

implementation of fault-tolerant techniques and future growth capability. 

Recommendations for future work are discussed. 
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EXECUTIVE SUMMARY 

The research work contained in this thesis documents a means of implementing fault-

tolerant logic for use in a sequencer application developed for deploying CubeSats. The 

sequencer being developed at the Naval Postgraduate School (NPS) in Monterey, CA 

shall be capable of the timing and accurate launch of multiple CubeSat platforms from a 

host spacecraft and shall have the capability for quick reconfiguration prior to launch. 

This sequencer is one particular application of the general payload processor architecture 

developed in this work. This payload processor architecture is flexible enough to 

accommodate future needs and applications with few design alterations required. 

The NPS CubeSat Launcher (NPSCuL) currently utilizes host spacecraft 

resources to control the timing and execution of CubeSat deployment through a simple 

splitter architecture. Previously manufactured Splitter Auxiliary Device (SAD) versions 

incorporate wiring harnesses or printed circuit board (PCB) traces to accomplish power 

and signal splitting and recombining. The developed SAD Version 3 – Flight Prototype 

Board (SADv3) utilizes a field-programmable gate array (FPGA) device to accomplish 

the sequencing with primary and secondary power provided by the host spacecraft. 

Although SADv3 expects to get power from the launch vehicle bus, future versions may 

be designed with a capability for an internal battery power supply. By utilizing various 

fault-tolerant design techniques, the need for a fully radiation hardened (rad-hard) FPGA 

can possibly be avoided. This would save a great deal of money and could result in a 

product capable of missions beyond low Earth orbit (LEO). While LEO is of primary 

interest, there may be opportunities to send the general payload processor hardware to 

geosynchronous (GEO) or perhaps even interplanetary orbits. 

Several sequencer design methodologies are investigated. Since the sequencer 

requires only primary or secondary power, a finite-state machine (FSM) architecture is 

the appropriate choice. To limit the amount of logic required in the general payload 

processor architecture, a decision to avoid central processing unit (CPU) designs, such as 

an ARM processor core, was made. The need for embedded processing lends itself well 

to an FPGA-based implementation. Types of FPGAs compared include antifuse, static 
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random-access memory (SRAM), and flash-based designs. The hybrid approach of flash-

based FPGAs allows for several benefits such as reconfiguration and live-at-power-on 

capability, with no boot sequence or secondary support components required, along with 

increased tolerance to certain radiation effects. 

The overall goal of this research is to allow for the operation of a processing 

circuit in the radiation environment of space. Many of the various single-event effects 

(SEEs) that may affect the operation of the sequencer logic are considered. Of these, 

single-event upsets (SEUs), single-event transients (SETs), and single-event latch-ups 

(SELs) are investigated in further detail. These SEEs along with the amount of total 

ionizing dose (TID) tolerable by the various classes of FPGAs are an important driver to 

selection of a particular FPGA. Various forms of radiation fault-tolerant methods are 

considered for use within the sequencer logic—including scrubbing at set intervals, triple 

modular redundancy (TMR), quadded logic, triplicated interwoven redundancy (TIR), 

and quadruple force decide redundancy (QFDR). Since radiation hardening by design 

(RHBD) is the primary focus of this thesis, further investigation into these types of fault-

tolerant methods is justified, and the results become the rationale for selection of a 

particular fault-tolerant implementation. 

A comparison between Xilinx and Actel software and hardware products is made 

to determine the best applicable development suite for design of the sequencer logic. Of 

the two software products, Xilinx Integrated Software Environment (ISE1) 14.3 is the 

more capable product due to its incorporation of a schematic editor. In addition, the 

design flow of Xilinx software is more user-friendly and supports rapid re-targeting to 

different Xilinx FPGA products. Ultimately, the choice of software will depend upon the 

particular vendor of FPGA product chosen; although, there is a work-around for porting 

Xilinx schematically designed circuits to Actel instantiations. Since Xilinx devices are 

primarily SRAM-based, and Actel FPGAs are either antifuse or flash-based, selection of 

the vendor is primarily dependent on choice of FPGA architecture. In addition to the 

previously mentioned hybrid advantages of flash-based FPGAs, the Actel ProASIC23 

                                                 
1 ISE® is a registered trademark of Xilinx, Inc. 

2 ProASIC® is a registered trademark of Microsemi Corporation. 
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series has the added benefit of pin-to-pin and timing compatibility between military-

grade and rad-hard components. Even with the added difficulty of adopting Actel Libero3 

System on Chip (SoC) software over Xilinx ISE, the associated hardware attributes 

inherent to the ProASIC3 series are beneficial. Therefore, an Actel ProASIC3 is chosen 

as the FPGA for the sequencer design. Various development boards used in the 

performance of logic testing included designs from the Xilinx Spartan4-3E, Xilinx 

Virtex5-5, and Actel ProASIC3 series FPGAs; these were purchased to allow for all 

software development platforms to be tested. 

Prior to development of the more complex SADv3, a ProASIC3 Test Board 

(PA3TB) was designed and implemented. This provided significant experience with the 

Altium Designer6 electronic design automation (EDA) development environment. The 

Altium product suite allows for front-end schematic development, physical printed circuit 

board (PCB) layout, and FPGA hardware design. Testing of the Joint Test Action Group 

(JTAG) interface was possible on the PA3TB prior to implementation of an identical 

JTAG connector interface on the SADv3. The PA3TB incorporates a ProASIC3 nano 

series FPGA using a core voltage of 1.2 VDC. Bank input and output (I/O) voltages are set 

at 2.5 or 3.3 VDC levels with CubeSat deployment simulated using light-emitting diode 

(LED) indicators. The four-layer PCB utilized in the PA3TB serves as a precursor to the 

eight-layer SADv3 design. Additional experience was realized through surface-mount 

soldering in the construction of the PA3TB. All power supply circuitry for the PA3TB is 

located off-board for ease of troubleshooting the main FPGA and JTAG design. JTAG 

programming is accomplished via a Microsemi FlashPro74 USB-to-JTAG external 

programmer. A standard USB port is also provided on the PA3TB for interfacing with the 

design and possible future data-logging capability. 

                                                 
3 Libero® is a registered trademark of the Microsemi Corporation. 

4 Spartan® is a registered trademark of Xilinx, Inc. 

5 Virtex® is a registered trademark of Xilinx, Inc. 

6 Altium Designer® is a registered trademark of Altium Limited. 

7 FlashPro is a trademark of the Microsemi Corporation. 
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The implementation of a ball grid array (BGA) FPGA in the prototype flight-

hardware design is a more involved process than the development of the PA3TB. The 

incorporation of a BGA into the design limits manufacture to companies with the 

necessary equipment to accomplish the integration of the PCB. To provide for future 

expandability and features, SRAM and flash-based memory were added to the design. 

This added memory allows for additional processing features and data storage. Military-

grade Actel ProASIC3E/L FPGAs are used in the design of the SADv3; these devices 

allow for pin-to-pin replacement with a rad-hard Actel RT ProASIC3 FPGA should a 

mission require more robust hardware. The complexity of the PCB design is markedly 

increased due to an increased layer count and the requirement to manage the 484 pins of 

the BGA FPGA. Due to the increased risk of design error, extensive design review is 

necessary to prevent errors propagating to the final product. The PCB shape is tailored 

for optimum fit within the SAD enclosure utilized on NPSCuL. The design is a daughter 

board configuration for pairing with an associated relay board in the SAD box. 

In addition to the memory devices, the increase in SADv3 board area allowed for 

the inclusion of all power supply and power conditioning circuitry on the PCB. The 

increase in the number of FPGA I/O pins allow for the inclusion of three 40-pin headers 

for general-purpose use. A breadboard prototyping area is also provided to allow for 

future capability development using the PCB. An external crystal oscillator is provided 

for increased timing accuracy and directly connects to the FPGA for utilization in logic 

designs. Auto-routing of the design proved difficult as the decisions of the auto-router are 

not always in the best interest of the overall PCB layout. The fan-out features of Altium 

work well, after a considerable amount of setup time, to properly distribute the signals 

lines from the BGA FPGA to the four signal layers and four voltage planes. The majority 

of signal lines on the SADv3 are manually routed. 

To test various fault-tolerant techniques for inclusion in the sequencer, different 

combinational and sequential logic circuits were implemented. These designs were tested 

in the Xilinx and Actel software environments. An initial test of redundancy techniques is 

accomplished by constructing a seven-segment LED counter upon a Xilinx Spartan-3E 

development board. The design is triplicated schematically with code directives to the 
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synthesis tool. These directives prevent undesired logic removal by the automatic 

synthesis tool. Proper operation and timing of the design were seen in the default and 

triplicated cases of logic. A 16×16-bit array multiplier was constructed to further 

compare the various fault-tolerant schemes implemented. Fault-tolerant techniques are 

altered by varying the format of the overall design, mechanisms of full adder 

instantiation, and the inclusion of voter circuits as necessary for operation. A baseline 

scheme, TMR, quadded logic, triplicated interwoven redundancy (TIR), and stacked 

Quad-TMR / TIR-TMR fault-tolerant techniques are developed as versions of the array 

multiplier. In all cases, the outputs of the array multipliers implemented were identical. 

Although TIR uses the least resources of any fault-tolerant scheme, TMR has the best 

combination of device utilization and timing delay for logic design. There is future 

opportunity for research into different TMR schemes using commercial software such as 

Precision8 Hi-Rel. 

Manual insertion of fault injection techniques leads to the comparison of floating-

input, ‘stuck-at-0’, and ‘stuck-at-1’ faults. Preliminary research into a method of 

automatic and random fault injection is conducted, with several methods identified for 

further inspection. While the baseline FSM produces false timing signals or non-valid 

signal levels during fault injection runs, the TMR version of the FSM is able to overcome 

any errors in each of the three fault cases. Timing and resource utilization differences 

between the baseline and TMR versions of the FSM logic are small. In the future, the 

additional fault-tolerant techniques that need to be researched are variations in TMR 

design methods and clocking generation. 

Preliminary sequencer logic design is accomplished by developing code and 

schematics within Xilinx ISE that are subsequently ported to Actel Libero SoC. The 

initial sequencer logic includes the possibility of setting timing constants either as 

Verilog parameters or in the FlashROM area of the Actel ProASIC3 FPGA. The logic to 

be triplicated must be appropriately marked to reduce the possibility of trimming in 

Libero SoC. The resultant logic design can utilize either case or state switching within 

                                                 
8 Precision® is a registered trademark of Mentor Graphics. 
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Verilog to more fully define the operation of the sequencer logic. Schematic design 

within Xilinx ISE may be avoided once Actel Verilog techniques are fully developed. 

The switch from the Xilinx to Actel software environment is an important step toward 

verification of the design and ease of reconfiguration. 

Future mission features of the general purpose payload processor are envisioned 

to incorporate desired logic in a TMR representation. Due to the remaining logic 

available on the ProASIC3 FPGAs, there are a considerable number of projects which 

may be researched for inclusion. These may consist of telemetry and data-logging by the 

FPGA, two-way communication and charging of the CubeSats within the launcher, video 

feed and recording of CubeSat launches, and potential networking features to the host 

spacecraft bus – in addition to the already in-progress sequencer development. A 

complete signal path verification of the current eight-layer, BGA SADv3 should be 

accomplished prior to manufacture of the board. This will consist of a series of design 

reviews by multiple engineers. Future testing within a radiation environment, prior to 

launch, is also an important step in verifying the chosen fault-tolerant technique of TMR. 

In conclusion, there are a number of applications for which the ProASIC3 general 

purpose payload processor is suitable. The sequencer work contained in this thesis is one 

application in which a significant gain in the state of current CubeSat deployment 

technology may be realized. The ability to deploy CubeSats using TMR logic should be 

quite cost effective when compared to custom, rad-hard components, possibly with no 

loss of fault tolerance. TMR is useful for protecting both combinational and sequential 

circuits, especially given the available fault-tolerant software toolsets. Future designs 

using Actel flash-based FPGA technology may have wide applicability due to its 

configurability and the flexibility with which the I/O pairs can be assigned. The 

compactness of the ProASIC3 circuit design, when compared to the more traditional 

Xilinx Virtex series FPGAs, is readily apparent. It is anticipated that this design, or some 

evolution of it, will be quickly developed into a flight-ready product. 
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I. INTRODUCTION  

A. PURPOSE 

The purpose of this research is to determine an effective solution for 

implementing radiation fault tolerance utilizing inexpensive hardware coupled with a 

robust logic design. The need for fault tolerant processing drives the development of 

solutions targeted to the space environment, with particular interest in payload processing 

designs. By careful exploration of various logic implementations, the developed product 

will be capable of full operation in a radiation environment through redundancy in logic 

design. 

This research led to the development of a hardware and logic implementation 

suitable for a general payload processor package.  The first specific application of the 

payload processor is a sequencer for CubeSat launching applications. This sequencer is of 

primary interest because a low-cost, flight-ready sequencer does not exist. Similar 

commercial products cost upwards of hundreds of thousands of dollars for space-related 

applications. The primary cost drivers in the selection of these devices tend to be the 

amount of non-recurring engineering (NRE) development time and manufacturing that 

must accompany the design. The additional cost of fully radiation hardened components 

are not even factored in to these designs.  The cost of such devices can easily exceed the 

budget of all but the largest CubeSat1 projects. Due to the expense of purchasing 

radiation hardened (rad-hard), commercial off-the-shelf (COTS) technology, an 

alternative lower-cost solution is desired. It is expected that development of a sequencer 

will provide a cost-effective solution for government CubeSat launches. 

The technology behind fault tolerance in processors as applied to timing and 

sequencing devices is presented in this thesis, leading to the development of a sequencer. 

This sequencer is expected to have many of the same characteristics of more expensive 

radiation hardened products while using less costly commercial and military-grade 

                                                 
1 CubeSats are nanosatellites.  The term “nanosatellite” is applied to a satellite with a mass between  

1 kg and 10 kg (2.2 and 22 lbs) [1]. 
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components. The lack of hardware robustness against upsets is compensated for with 

fault-tolerant techniques in the logic design itself. Various fault-tolerant techniques are 

explored leading to the selection of the best logic design suitable for the radiation 

environment of space. This sequencer must be capable of executing a pre-programmed 

deployment sequence when the launch vehicle initiates power and deploy commands. 

The CubeSats may be deployed sequentially at specified intervals, or, in some cases, 

simultaneously. 

The need for the sequencer to be re-programmable prior to launch, to have the 

capability for future logic growth and the redundancy necessary to deal with space 

radiation upsets, has led to the use of field programmable gate arrays (FPGAs) in the 

project. Multiple manufacturers and product lines are considered to determine the 

particular design configuration for the sequencer design. The developed logic designs are 

synthesized and implemented on commercial development boards to provide testing and 

experience with chosen FPGAs and secondary components. 

Development of the hardware is carried through the research and schematic 

design phases. Full printed circuit board (PCB) layout is accomplished with techniques 

and difficulties discussed along the way. Initial test circuitry was assembled to gain 

familiarity with chosen components prior to final circuit board manufacture. The final 

circuit board design will be easily expandable for future projects or substitution into 

designs requiring a general-purpose processing capability in an easily modified form-

factor. In all cases, the design will complement work already completed prior to the 

initiation of the FPGA-based sequencer research. Though the chosen FPGA technology 

and fault-tolerant techniques apply specifically to deployment sequencer development in 

this thesis, the implemented methods have broader applications to space-based processors 

in general. 
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B. NAVAL POSTGRADUATE SCHOOL CUBESAT LAUNCHER (NPSCUL) 

BACKGROUND 

1. NPSCuL Objective and History 

The Naval Postgraduate School (NPS) in Monterey, CA, uses small satellites for 

focused research projects of national interest. NPS has several established CubeSat 

projects along with associated lab support. The Small Satellite Laboratory is equipped 

with capabilities such as a ‘Class 10k’ cleanroom, thermal vacuum chambers, vibration 

table, radio frequency interference (RFI) / electromagnetic interference (EMI) testing 

anechoic chamber, microscope-equipped soldering stations, and a large commercial-scale 

three-dimensional (3-D) printer. In particular, NPS has recently been involved in the 

development, integration, and launch of the NPS CubeSat Launcher (NPSCuL). NPSCuL 

launched on September 13, 2012, as part of the Operationally Unique Technologies 

Satellite (OUTSat) mission—carrying eleven CubeSats into orbit on NROL-36 [2]. 

NPSCuL was developed with support of the California Space Education and Workforce 

Institute (CSEWI) and the CubeSat Program Office at the National Reconnaissance 

Office (NRO). 

2. NPSCuL Physical Design Characteristics 

The NPSCuL design uses existing standards such as the Poly-Picosatellite Orbital 

Deployer (P-POD) from the California Polytechnic University and the EELV Secondary 

Payload Adapter (ESPA) mechanical interface. As illustrated in Figure 1, NPSCuL is 

capable of carrying eight P-PODs; each P-POD is capable of deploying up to three 1U 

CubeSat spacecraft [3]. An ESPA interface ensures compatibility with multiple launch 

vehicles. NPSCuL itself is a five sided box comprised of a base-plate, four walls, four 

brackets and the ESPA-compatible, non-separating adapter ring. The non-separating 

adapter ring could be replaced by a Planetary Systems Mark II Motorized Lightband2 [4], 

allowing NPSCuL to be deployed.  

                                                 
2 MKII Motorized Lightband is a registered trademark of the Planetary Systems Corporation. 
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Figure 1.   Final payload configuration and integration of NPSCuL with eight P-PODs. 

Deployment signals, either directly from the launch vehicle or via an on-board 

sequencer box, are required to activate the non-explosive actuators (NEAs), open the P-

POD doors, and deploy the CubeSats. To support both these scenarios, NPSCuL can be 

configured as follows: 

 If the launch vehicle has adequate resources (i.e., redundant power and 

signal lines) then it may be outfitted with a Splitter Auxiliary Device 

(SAD) to accept eight primary and secondary power signals from the 

launch vehicle and pass them through to the P-PODs. The SAD also has a 

pass through for lines monitoring the status of the doors on each of the P-

PODs [5]. 

 If the launch vehicle does not have adequate resources (i.e., only a single 

primary power, secondary power, and data line are available) then a 

sequencer is required. This device can be powered by the launch vehicle 

or by an internal battery and must be capable of providing deploy signals 

and monitoring the status of the P-POD doors switches [5]. 

The development of the sequencer is the primary concern of this thesis in order to 

satisfy the limited resources scenario. Such a sequencer will first be useful for missions to 

low Earth orbit (LEO). Beyond-LEO applications could include  deployment of CubeSats 

in geostationary Earth orbit (GEO) or for use as a payload processor for interplanetary 

missions in a greatly increased radiation environment. In any of these scenarios, a fault-

tolerant design must prevent radiation-induced upsets in logic. 
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3. History of Sequencer Requirement 

Currently, NPSCuL utilizes the host-launcher resources for the timing and 

execution of the deployment of the individual CubeSats from their P-POD. The SAD 

takes the eight lines from each of the launcher-provided primary power, secondary 

power, and data harnesses and splits them out to eight separate harnesses, each containing 

one primary power line and one secondary power line for redundancy in actuating the P-

PODs NEA, and one data line for monitoring the P-POD door microswitches. Each of 

eight harnesses is connected to one of the P-PODs, as illustrated in Figure 2. The first 

iteration of the SAD consisted of an internally harnessed, splitter configuration, as shown 

in Figure 3.  

 

Figure 2.   NPSCuL with associated Splitter Auxiliary Device (SAD) and external wiring 

visible. 

 

Figure 3.   Internal wiring harness structure for SAD depicting power and data line split 

to eight output ports. 
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4. Concept of Sequencer Development 

The need for a sequencer was realized shortly after the development of NPSCuL 

was initiated. The design of the sequencer, though simple in principle, should take into 

account the radiation environment in LEO. There were two approaches envisioned – one, 

that a radiation and fault-tolerant circuit be designed with the latest in integrated circuit 

(IC) and manufacturing processes; two, a robust approach involving individual discrete 

components with feature sizes and voltages that are inherently resistant to radiation 

induced upsets. This second approach was tailored to industrial parts such as automotive 

relays and other lower cost components and is the study of a separate, parallel research 

project. For the purposes of this thesis, only the first approach was considered. The 

constraints of the fiscal environment precluded the use of the most expensive rad-hard 

hardware, although, an upgrade path to that technology was considered. Thus, through 

utilizing lower-cost, commercial and military-grade components, drop-in compatibility of 

the more expensive rad-hard technology has been maintained. Future processing growth 

potential was also considered, with emphasis placed on both logic space available and 

incorporation of subsequent electrical connections. 

In modern FPGA applications, especially those dealing with space-based 

applications, the topic of fault detection and tolerance is often discussed. While there 

have been a myriad of approaches to sustain the operability of such devices in the past, 

recent advancements in both FPGA size and application have required updated, or in 

some cases new, techniques to be developed. Typical methods such as triple modular 

redundancy (TMR) have been further subdivided into categories based upon  

application [6]. New methods such as quadruple force decide redundancy (QFDR) [7] are 

being looked at as a means toward further refinement without the associated overhead of 

voter circuits. In all of these cases, the aim is to successfully protect the FPGA device 

from the effects of radiation-induced single-event upsets (SEUs) and multiple-bit upsets 

(MBUs) which can seriously impact, or even end, a mission. 

Various FPGA-specific cost metrics are utilized in comparing the fault-tolerant 

techniques evaluated. These include device-resource utilization, path-delay timing, ease 

of implementation, proper logic output, and availability of commercial solutions. The 
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metrics are assessed after concluding work on a particular fault-tolerant scheme. Logic 

design software allows for calculation of resource utilization and timing delays. Ease of 

implementation is more of a subjective realization regarding the time to manually insert 

the required fault tolerance means. In all cases, the designs are tested for logic accuracy 

in output under normal operating conditions. Fault injection is used to test for proper 

logic output in circuit degraded scenarios. Certain fault-tolerant schemes such as TMR 

are available in many commercial synthesis products; others, like quadded logic, have no 

commercial implementation and require intense amounts of time and effort to implement. 

Future testing with commercial, fault-tolerant synthesis software, under a radiation 

environment, will yield more data for assessing the effectiveness of a particular fault-

tolerant technique. 

5. Sequencer Requirements and Specifications 

For the sequencer application of the general purpose payload processor being 

developed, there are several requirements that must be considered prior to complete 

specification of the design and the logic approaches investigated. Specifically, the 

sequencer will be capable of initiating the door opening of the P-PODs either individually 

or simultaneously. The application of power, either through primary or secondary power 

supplies, serves to start the internal timing of the sequencer application. The inputs to the 

sequencer are minimized, in that application of power serves as both the ‘Arm’ and 

‘Deploy’ signal necessary to facilitate the deployment of the payload CubeSats. The 

removal of power to the sequencer device is sufficient to stop the deployment process. 

The timing sequencer and deployment of CubeSats will be reinitiated by again supplying 

power to the device. 

There are secondary requirements for the CubeSat launch sequencer which are 

important in the context of both the environment and application involved. These include 

radiation tolerance, reconfigurability, low-cost, and suitability toward differing 

applications. Specifically, the functional requirements of this application require that the 

general purpose payload processor be capable of operation in the radiation environment 

of space. This requires careful study of the various methods involved in targeting a 
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design with fault-tolerant aspects and an understanding of the relevant radiation 

environment. Several different logic designs will be investigated to determine the 

appropriate technique for fault-tolerance necessary for the sequencer application. 

Functionally, the design needs to be capable of operation even in the radiation 

environment of space. This operation should be indistinguishable from the operation of 

fully radiation-hardened hardware while allowing for an upgrade path to such hardware if 

desired. Additionally, the design is targeted to produce the same performance of such 

hardware, without the overhead of associated expense. 

The reconfiguration aspect of the design leads to the choice of FPGA technology, 

with the associated requirement for the sequencer to be adjusted for timing at any point 

prior to launch when physical access to the device is still possible. Thus, given the 

requirements for operation and design, the following specifications for the sequencer can 

be derived: 

 The general purpose payload processor (sequencer application) should fit 

in the same relative size and form-factor as the previous NPSCuL SAD 

enclosure space. 

 Operation of the sequencer should be indistinguishable from that 

occurring if the launch vehicle had initiated P-POD door openings. 

 A significant reduction in the number of incoming signal and power lines 

is required occur due to on-board logic taking the place of required 

external interfaces and data lines. 

 The sequencer shall be capable of opening the doors of any of the P-PODs 

individually, or simultaneously, as the application warrants. 

 The sequencer shall be capable of timing reconfiguration at any point prior 

to launch, when physical access to the device is still possible. This 

capability may be refined in future revisions to allow for remote 

reconfiguration. (Low Priority) 
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 Application of primary or secondary power is sufficient to start the 

deployment sequencer. Likewise, the removal of these power sources is 

sufficient to halt the deployment process and power down the sequencer. 

 The sequencer shall possess the proper fault-tolerant logic constructs to 

allow for continued operation in the presence of a radiation environment, 

particularly while in low earth orbit and possibly out to geosynchronous 

orbit. 

 The sequencer shall utilize commercial or military-grade, off-the-shelf 

hardware whenever possible to lead to an overall lower-cost. Hardware 

upgrade to radiation hardened versions should be allowed for with 

minimal re-design effort. 

 The sequencer should have sufficient logic overhead to allow future, 

secondary functions to be added with no change to the hardware design. 

This will allow for future expansion and/or the application of the hardware 

to designs other than the sequencer application. 

C. RELATED WORK AND DOCUMENTATION 

There have been many theses researching various fault-tolerant techniques, along 

with past development of FPGA-based hardware [8]–[15]. These works are related in 

their applicability toward the space environment and various developmental approaches 

toward the design of FPGA logic and circuitry. In particular, the previous thesis material 

on the development of the Configurable Fault-Tolerant Processor (CFTP) project was a 

good starting point for the research contained herein. CFTP was a multi-year, multiple-

student research project aimed at the orbital flight of an experimental package designed 

to test for radiation tolerance properties and mitigation techniques in earlier-generation 

FPGA technology [8]–[15]. The work on CFTP is still on-going with a second flight 

scheduled to take place in August 2015, with the launch of NPSAT1 [16]. The CFTP 

design uses SRAM-based FPGAs and provides a comprehensive guideline for the use of 

TMR within that type of technology. In this thesis, all available FPGA technologies are 

compared and evaluated for use in the final sequencer implementation. 
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Differences between this research and earlier CFTP theses include the type of 

technology utilized, number of secondary component requirements, transition from 

combinational to sequential logic, method of power-on configuration, and the transition 

from a test experiment to practical application. CFTP showed that logic redundancy was 

an important aspect of design when applied to the LEO radiation environment. It is not a 

question of if, but of how many, events would occur in LEO due to the radiation 

environment. The experiment was designed to report radiation events and CFTP’s 

response to them so as to benefit future fault-tolerant logic designs and hardware designs. 

Lessons learned from that research have led to an evolved selection of technology and 

logic design for this thesis. 

D. CONCEPT OF DEVELOPMENT STRATEGY 

Goals of this thesis research include the manufacture and integration of an initial 

sequencer test board, hardware schematic design and preliminary PCB layout of the flight 

prototype board, and selection of a particular fault tolerance technique for 

implementation into the sequencer. Since the sequencer is one specific application of the 

general payload processor design, the board will incorporate features to allow for easy 

expansion to other mission sets. All devised logic and prototype hardware will require 

extensive design review prior to board manufacture. In the future it is hoped to test the 

design at a radiation test facility to determine fault tolerance effectiveness prior to 

exposure to radiation in the space environment. 

To maximize the amount of time available for sequencer design research, 

including hardware and logic development, concurrent tasks were undertaken in the 

course of this research. From comparison of FPGA technologies and fault-tolerant 

schemes, choices are made regarding applicable devices and logic for implementation. 

After down-selection to a particular product line, a decision was made to quickly 

manufacture a sequencer test board. This resulted in considerable design experience with 

the hardware design software prior to implementation of the more complex flight 

prototype board. Since the lead time for design of a flight prototype board is vastly 

greater than the sequencer test board, work on the logic design occurred simultaneously. 
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This allowed for logic error testing of the chosen fault-tolerant schemes at the same time 

final hardware layout occurred. 

E. THESIS ORGANIZATION 

In Chapter I, the history of the sequencer requirement and a concept of application 

have been presented. This research relates to NPSCuL and follow-on missions, with 

information provided concerning related projects. The concepts of sequencer design, 

radiation hardening, and fault-tolerance techniques are discussed in Chapter II. A survey 

of field programmable gate arrays and selection of the particular FPGA and development 

boards used are presented in Chapter III. The preliminary hardware design of the 

sequencer test board and modification of the hardware design to a final sequencer logic 

board are presented in Chapter IV. A comparison of fault-tolerance methods and 

implementations, fault injection techniques, and preliminary sequencer logic design, is 

presented in Chapter V. Conclusions and recommendations for follow-on research are 

presented in Chapter VI. A comparison of vendor products, including existing software 

suites, hardware solutions and development kits, are contained in Appendix A. All 

schematics, circuit board layouts, and data sheets for the sequencer test board are 

contained in Appendix B. All schematics, circuit board layouts, and data sheets for the 

final sequencer logic board are contained in Appendix C. Documentation of the HDL 

source coding and test bench setups are contained in Appendix D.  
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II. SEQUENCERS, RADIATION HARDENING, AND FAULT-

TOLERANCE 

A. SEQUENCER DESIGN METHODOLOGY 

1. Timing Concerns Specific to Initiating P-POD Deployment 

The sequencer design is such that a pre-determined, periodic set of events is 

triggered in response to the power supplied by the launch vehicle bus. The clocked 

synchronous state machines within the sequencer must be robust enough to withstand the 

radiation environment of space, neither permitting premature deployment nor failing to 

deploy at all. The sequencer must be capable of energizing and de-energizing multiple 

outputs for variable amounts of time. Additionally, the re-programmable aspect of the 

sequencer demands that the implementation of the design not be dependent upon the 

wiring configuration of the overall circuit board or the associated supporting components 

such as resistors or capacitors. Many commonly used timing circuits are based on 

technology such as oscillators or 555 timer integrated circuits (ICs) whose timing outputs 

are fixed once inserted in a certain configuration [17]. These are insufficient for the 

design of a reconfigurable sequencer, as one should be able to re-program the deployment 

sequence as long as access to the SAD interface remains available. 

There are several options available which would meet the demands of sequencing. 

The use of a central processing unit (CPU), such as an ARM processor core, running 

some form of real-time operating system (RTOS) would be applicable to the sequencer 

development [18]. The resource demands, both in power consumption and protection of 

the CPU against radiation upset, are limiting factors in the use of this approach toward 

the sequencer development. Many of the rad-hard designed FPGAs preclude the inclusion 

of processing units (disabling them in hardware) to prevent these shortcomings in space 

applications [19]. 

The other option involves selection between various field programmable devices 

(FPDs). FPGAs are a type of FPD; ‘field programmable’ refers to configuration 

capability once installed without disassembly of the circuit. Programmable logic devices 
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(PLDs) are purely combinational devices while FPGAs provide both combinational and 

flip-flop logic. PLDs typically consist of two basic types – simple PLDs, which are 

usually either programmable logic array (PLA) or programmable array logic (PAL3), or 

complex PLDs (CPLDs), which allow more than one logic block as well as configurable 

interconnections [20]. The configurable PLA, consisting of logical connections in its and-

plane and or-plane, is a good analogue for the manner in which FPGAs are  

configured [20]. Since simple and complex PLDs are purely combinational and lack the 

memory devices of FPGAs, they are not suitable for implementing the sequencer finite-

state machine (FSM). The mechanisms of operation and the physical characteristics of 

FPGAs are discussed in Chapter III and Appendix A. 

2. Chosen Approach 

The FSM to be implemented in the sequencer will allow for the power-on signal 

to provide an ‘Arm’ situation when the sequencer is first turned on.  The sequencer will 

initiate the ‘Deploy’ signal from its internal logic to begin the CubeSat deployments. 

Once the command to deploy has been given, the machine architecture will be fully 

capable of moving from state to state without additional inputs from the host platform. 

Should there be a desire to stop the sequence for a contingency, power can simply be cut 

to the sequencer device, which will place it back in a fail-safe configuration. This may be 

further reinforced with secondary hardware, such as relays for an added layer of 

protection against misfire. This approach is in line with the derived requirements 

specified in Chapter I. 

The risk of logic upsets in a microprocessor in a radiation environment leads to 

the decision to utilize FPGA-based technology within the sequencer. FPGAs are a highly 

flexible means for implementing the sequencer FSM, where complex sequential timing 

outputs are necessary. The FPGA-based approach gives more flexibility than an 

embedded microprocessor and is expandable to perform other mission functions besides 

sequencing. The various PLDs previously discussed are all of combinational logic design 

and would require external memory devices to allow sequential operation. This would 

                                                 
3 PAL is a trademark of Advanced Micro Devices. 
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greatly add to the complexity of the design and introduce points of failure between the 

added memory and interfaces. Since FPGA-based technology is capable of many of the 

functions of a CPU, without the added requirement of an operating system, FPGAs are 

the logical choice for incorporation into the sequencer. Some background knowledge 

about FPGAs and their operation is important before down-selection to a particular 

product. 

B. RADIATION HARDENING 

Radiation can ionize atoms and disrupt a semiconductor’s crystal structure. High-

energy neutrons, which are present in the radiation environment of space, arise from the 

subatomic particles ejected from the Sun and deep space. A neutron that strikes a silicon 

atom in a semiconductor IC results in the ejection of heavy ions, as seen in Figure 4 [21]. 

These heavy ions can further lead to device effects, SEEs, as the possibility of firm or 

soft errors in logic blocks or the routing interconnect may result. Even in today’s low-

alpha compounds in FPGA packaging materials, alpha particle emission due to uranium 

and thorium present in molding compounds can present another significant challenge by 

making it difficult to protect the devices fully from SEEs [21]. 

 

Figure 4.   Neutron radiation strike of silicon atom resulting in ejection of heavy ions 

leading to firm error in transistor (From [21]). 
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While there has always been a problem of radiation within the space environment, 

older technologies had the benefit of largely segregated and independent components. 

The large can-size transistors and low-number integrated circuit counts of the 1960s and 

1970s served to protect the computers and equipment placed into space based on their 

feature sizes alone. As technology-level integration increased, and the number of 

transistors on ICs grew, the problem of SEEs was seen to manifest itself in ways which 

were wholly unfamiliar to logic designers of a generation before [22]. New methods of 

physical shielding and protection from the radiation environment were devised—and 

differed greatly from those previously developed to combat the strong blast type effects 

from a nuclear attack. Many of these schemes centered on proper logic operation of the 

circuit under varying environmental conditions. Such techniques included the use of voter 

circuits within TMR to correctly provide for functioning of the circuit with erroneous 

conditions present [23]. TMR has been successfully employed on computers for fault-

tolerant behavior since the design of the Saturn V Launch Vehicle Digital Computer in 

the early 1960s [24]. 

1. Single-Event Effects (SEEs) 

The general term for the effect caused by the interaction of high-energy particles 

with circuit elements in ICs is the single-event effect (SEE). The charged particles 

created by the ionization trail along the path of an incoming radiation particle can induce 

upsets in the states of transistors [25]. These may take the form of logic state changes, 

current and voltage spikes within the circuit elements, or permanent damage to the 

transistor itself. In general, SEEs fall into two categories – soft errors and hard errors, as 

seen in Figure 5. Soft errors are those events that have no damaging effects and are 

cleared by subsequent device operation, while hard errors are those events resulting in 

lasting damage [25]. 

The recoverable soft errors are further categorized into several groups, of which, 

SEUs (including single-bit errors and MBUs) and single-event transients (SETs) are of 

the most interest. Likewise, hard errors can be classified into several categories; single-

event latch-up (SEL) events are discussed further to provide an example of non-
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recoverable errors. Both of these categories of events are of primary interest for the 

performance of the sequencer.  

 

Figure 5.   Single-event effects classification diagram illustrating difference between 

recoverable and non-recoverable errors (From [25]). 

a. Single-Event Upsets (SEUs) 

Single-event upsets are the result of high-energy particles causing a 

change in the state of a memory element (SRAM, flash memory, FF, or latch) [25]. These 

can be further subdivided into single-bit upsets (SBUs) or MBUs. SBUs are by far the 

most common SEE seen in space-related applications [25]. The results of a SEU can lead 

to the erroneous output of data, which uncorrected can provide little faith in the 

correctness of the logic circuit in operation. 

MBUs are becoming more of an issue with later generations of hardware 

ICs, including the most recent revisions of FPGAs. As the transistor count has increased 

on devices, the associated transistor size has decreased. The probability of a particle 

crossing an individual bit might decrease, but the charge threshold usually also falls [26]. 

In addition, the number of bits on a device increases due to the increased transistor count, 

making the device as a whole more sensitive. Thus, a radiation impact upon the devices 

lattice structure has more of a potential to create cascading effects in the transistors 

surrounding the impact zone. This is illustrated in Figure 6, where five additional bit cells 

are upset due to the generation of an oxygen ion by an incident proton in 130-nm 
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complimentary metal-oxide semiconductor (CMOS) memory [27]. This may lead to 

MBU issues which are difficult to correct with legacy techniques. Studies have indicated 

that in one to five percent of SEU cases, MBUs may also be triggered [28]. 

 

Figure 6.   MBU of six bits triggered by proton induced oxygen heavy-ion in 130 nm 

CMOS memory cells (From [27]). 

b. Single-Event Transients (SETs) 

SETs result when a high-energy particle impacts a combinatorial path of a 

device and can induce a voltage or current spike. Although SETs are temporary in nature, 

they can lead to long-term effects if they trigger undesirable actions such as power resets. 

If the pulse width of the spike is sufficient and occurs at the right time, it can propagate 

throughout the circuit [25]. SETs differ from SEUs in affecting combinational rather than 

sequential logic. An SET may be indiscernible from a SEU if the transient propagates to 

the input of a FF during the clocking window of the FF. As a result, SETs can become the 

primary source of observable errors if hardening is incorporated into an FPGA’s 

sequential logic [29]. 

SETs pose a potentially serious threat to spacecraft as evidenced by 

system malfunctions in operational missions. These failures include NASA’s 
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TOPEX/Poseidon satellite, TDRS, Cassini-Huygens and others. In most cases, the SETs 

caused the satellites to switch into a failsafe mode, in which all nonessential systems 

were temporarily powered down until the cause was identified [30]. For the sequencer, 

such an event could be detrimental to the deployment sequence, as a power-down event 

could greatly impact the mission. Although the sequencer could be resumed after a 

transient event, this would delay the deployment timing, possibly in an unacceptable 

manner. For this reason, one must look into not only the SEU mitigation techniques for 

FPGAs but also the SET tolerance. 

c. Single-Event Latch-ups (SELs) 

A single-event latch-up (SEL) is a type of circuit latch-up induced by 

radiation [25]. This is one of the most common CMOS IC failures in the space 

environment and can degrade IC performance and potentially cause permanent  

failures [31]. Many space systems cannot tolerate even one SEL. Recent studies indicate 

that SELs may be caused by nuclear recoil interaction of protons with Tungsten plugs 

commonly used in high-density ICs [31]. These errors may be cleared by power cycling 

but in many cases may result in permanent damage and may be non-recoverable. For the 

FPGA-based sequencer, SELs must be avoided at all costs, with priority given to the 

technology with the greatest inherent resistance to SELs. 

2. Total Ionizing Dose (TID) 

Gamma ray photoinduced ionization damage is initiated when electron-hole-pairs 

(EHPs) are generated along the track of secondary electrons emitted via photo-material 

interactions such as that with silicon. The density of EHPs generated along the tracks of 

charged particles is proportional to the energy transferred to the target material. The 

stopping power or linear energy transfer (LET) expresses the energy loss per unit length 

(dE / dx) of a particle [32]. It is a function of the energy of the gamma ray photon and the 

target material’s density. The total amount of energy deposited by a gamma ray photon 

that results in EHP production is commonly referred to as total ionizing dose (TID) [32]. 

The typical unit of TID is the rad, which denotes the energy absorbed per unit mass of a 

material. One rad is equivalent to 100 ergs absorbed by one gram of the target material 
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[32]. An excellent background discussion of the physics behind EHP generation leading 

to accumulated TID is provided in [32] and [33]. The most common method of protection 

from TID effects is physical shielding of the PCB. This is accomplished by design of the 

overall enclosure or protective measures around individual components. Other means of 

protection from TID effects include the manufacture of specifically targeted radiation-

tolerant FPGAs, such as the Xilinx Virtex QV space-rated series of devices. Methods to 

increase the tolerance of these devices include manufacturing on a substrate such as 

silicon on insulator (SOI) or silicon on sapphire (SOS) and an increase in feature size to 

aid in resistance to radiation induced failures. 

3. Testing of FPGA Hardware in Radiation Environments 

Common means of producing various types of radiation for both SEE and TID 

testing include the use of a nuclear source, commonly cobalt-60 (Co-60), to produce a 

collimated gamma-ray beam [34]. Methods to generate broad-spectrum neutrons include 

bombarding a thick beryllium target with energetic deuterons from a cyclotron [35]. This 

is a highly-efficient process for testing for neutron SEEs and has been employed by light-

ion accelerators for many years. 

A common metric for measuring the radiation tolerance of an FPGA device is 

failures-in-time (FIT). One FIT represents a single failure in one billion hours of 

operation; a system that experiences one failure in 13,158 hours has a failure rate of 

1×10
9

 / 13,158 = 76,000 FITs. Acceptable FIT rates for commercial applications are 

fewer than 100, while acceptable FIT rates for system-critical applications (including the 

sequencer) are fewer than 20 [36].  Acceptable FIT rates for the sequencer could possibly 

be as high as one failure in one hundred thousand hours, equivalent to one failure in 

about thirteen years of run time.  This corresponds to 10
4
 FITs, producing a success rate 

of 99.999% or better for the sequencer’s roughly one hour of operation. 

4. Radiation Protection Approaches 

In looking to safeguard a system against the environment of space, multiple 

solutions are available to protect electronic systems from radiation in particular. These 

may be used independently or in combination to provide an optimum solution for the 
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radiation environment. Commonly utilized techniques include physical shielding of the 

device or radiation avoidance by mission design [37]. Since the CubeSat Ride Share 

missions are currently relegated to LEO, the radiation in the outer toroid of the Van Allen 

radiation belts are beyond the altitude of the mission. The South Atlantic Anomaly, due 

to asymmetry of the inner Van Allen belt, is closest to the Earth’s surface at 200 km (124 

mi) in altitude and presents the majority of the radiation received in LEO [38]. These two 

radiation belts are illustrated in Figure 7. Thus, radiation avoidance by mission design 

will be somewhat limited based on the planned orbit of the host spacecraft prior to 

deployment. For future missions extending beyond LEO, the radiation environment of 

GEO and deep space can be expected to further challenge the sequencer design. 

 

Figure 7.   Inner and outer torus-shaped layers of plasma of the Van Allen radiation belts. 

Energetic electrons form the outer belt; the inner belt consists of protons and 

electrons (From [39]).  

Other radiation protection approaches are beyond the scope of the sequencer 

project. These protection approaches include radiation hardening by process which 
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employs specific materials and non-conventional processing techniques and is usually 

performed on dedicated rad-hard fabrication lines [37]. The protection approaches which 

are under design control include radiation hardening by architecture and radiation 

hardening by design. The radiation hardening by architecture technique typically 

incorporates redundant configurations and component selection. This can be implemented 

at the component, board, subsystem, or spacecraft level [37]. Some of this will be utilized 

in the development of the FPGA-based sequencer; the overall architecture of the 

developed PCB will incorporate as many duplicative protection features to support the 

FPGA as possible. 

Certain forms of radiation faults are protected against, depending on the level of 

protection required, by selecting the appropriate device line within a vendor’s product 

offering. Devices are often classified as radiation-tolerant when they offer limited 

resistance to SEL, SEB, and TID effects. Some resistance to these effects is afforded in 

the commercial and military-grade lines of FPGAs depending on the vendor and 

production processes. In general, commercial grade devices provide almost no radiation-

tolerant properties and are rarely suitable for critical aerospace applications. Certain 

military-grade level FPGAs provide limited radiation-tolerant properties and can be used 

with varying degrees of success for critical aerospace applications when combined with 

other fault-tolerant logic methods. Typically, these military-grade components are used as 

prototyping devices before purchase of the more robust radiation-hardened FPGAs. 

In contrast, the full radiation-hardened devices typically provide much better 

resistance to SEU and SET effects. This resistance is due to the production processes 

inherent in the design and manufacture of the FPGAs. The logic cells within the devices 

are designed with a larger feature size and replicated in hardware to allow for the greatest 

level of resistance to SEEs as a whole. Coupled with the radiation tolerance afforded by 

the design of internal fault-tolerant logic, these physical hardware differences combined 

with fault-tolerant logic development are called radiation hardening by design (RHBD).  

The majority of this thesis research considers the protection approach afforded in 

RHBD. A portion of this technique incorporates fault-tolerant logic design techniques 

within the FPGA layout to overcome many of the SEU and SET challenges in the space 
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environment, as covered in Section C of this chapter. After introduction to the techniques 

in this chapter, the various schemes will be implemented in logic and tested further in 

Chapter V. Additionally, error correcting memory, parity bits, and watchdog timers are 

often utilized to provide even more protection. In Appendix A, TID tolerances provided 

by certain vendors and types of FPGAs are explored with a final selection based upon the 

best combination of hard and soft fault tolerances. 

C. FAULT TOLERANCE 

Fault tolerance is the ability of a system to continue to perform its tasks after the 

occurrence of faults [40]. The ultimate goal of fault-tolerant design is to prevent system 

failure from occurring. Various requirements satisfied by the introduction of fault 

tolerance to a system include: dependability, reliability, availability, safety, performance, 

maintainability, and testability [40].  

1. Scrubbing / Re-programming at Intervals 

Within the FPGA, the internal logic matrix most vulnerable to SEU effects is the 

configuration memory. It is this portion of the device that provides the configurable 

Boolean constructs and memory for operation of the developed FPGA logic. Depending 

upon the area of the configuration memory affected by a SBU or MBU, the device may 

have no indications of erroneous output other than transient invalid data being passed. In 

the worst cases, the FPGA may be altered in such a manner that consistently wrong 

outputs are generated, or the FPGA may cease to function altogether. Further discussion 

of FPGA physical configuration memory construction is provided in Chapter III.A. 

One of the most common and easiest ways to safeguard an FPGA’s configuration 

memory from SEUs involves the use of scrubbing. To ‘scrub’ an FPGA, as it is known, 

involves the complete re-flashing or re-programming of the device at a specified interval 

to mitigate or prevent the effects of SEUs upon the device [41]. Unfortunately, this 

requires either that the rate be such that it will not affect the functionality of the FPGA or 

that it be done regionally, in real time, so that the portion of the FPGA with the upset is 

reconfigured while other sections continue work. This partial reconfiguration capability is 

important in real-time operational scenarios. In the case of digital signal processing 
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(DSP) functions, the complete halt of a processing capability to allow for complete 

reconfiguration would be unacceptable. Thus, a capability to partially reconfigure based 

upon the partitioning scheme and fault-tolerance method implemented is desired. If errors 

are detected in a portion of logic, that section of logic should provide an event trigger to 

cause partial reconfiguration of the specific partition. This can be implemented via an 

error detection line with a counter technique to determine repeated errors. Both of these 

reconfiguration approaches may greatly cut down on the allowable resources of the 

device, or the quantity of time in which it is fully utilized – therefore, their use should be 

carefully evaluated before implementation. 

2. Triple Modular Redundancy (TMR) 

In simplest terms, TMR involves triplicating the logic functioning of the device 

(in the critical path sections) and including a set or series of voter circuits to determine 

majority output for proper operation [42]. In majority voting, the best two of three wins 

the vote and is considered the correct output. Unfortunately, if there is an error in the 

voter circuits themselves or the output path, then the voting scheme can lead to an overall 

logic failure. Triplicating voters guards against this type of failure. As such, the voters 

should be designed with sufficient logic to detect errors when compared to the other 

voting logic to trigger complete or partial reconfiguration of that portion in the TMR 

scheme. To better design for the environment of space, and to reflect the increased 

probabilities of SEUs and MBUs in newer FPGA series, new methods of TMR have been 

developed [43]. 

a. Block TMR (BTMR) 

The oldest form of TMR is known as Block TMR (BTMR), whereby the 

three levels of replicated logic are majority voted in one voter circuit [43]. Signal tracing 

between the triplicated logic outputs and the output of the voter circuit is useful in 

eliminating the voter as a suspect error source. By limiting the voter circuits to one copy, 

there is an overhead circuitry requirement to continuously monitor triplicated logic 

outputs in order to provide this troubleshooting method. Additionally, if one of the 

triplicated logic circuits should fail completely, then the ability to correct errors in any of 
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the remaining logic is lost. When coupled with the ever-present radiation environment of 

space, this leads to a highly increased probability of total failure for a mission. 

b. Local TMR (LTMR) 

As depicted in Figure 8, an improvement over BTMR is Local TMR 

(LTMR). In this case, the redundancy and triplication is done only at the Flip-Flop (FF) 

level where the results of the voted logic are transferred back to the FFs in feedback  

paths [43]. This has the advantage of masking and correction and greatly increases the 

overall reliability of the circuit in question. Unfortunately, the problems of clock skew 

and reset lines are not handled, and Single-Event Transients (SETs), which can lead to 

SEUs are still a possibility. 

 

Figure 8.   Local TMR with all sequential elements tripled and followed by a majority 

voter (From [44]). 

c. Global TMR (GTMR) 

As illustrated in Figure 9, Global TMR (GTMR) has the largest overhead 

of FPGA utilization and is also the most complex. In it, all sections of the FPGA are 

triplicated – three separate clocks with three separate domains [43]. The upset rate in 
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such a circuit is very low. This would be at first glance the most advantageous; however 

it is the most power hungry and wasteful of FPGA resources. It can be difficult to 

implement if large object libraries are used and difficult to verify and test such large 

designs. Additionally, the problem of clock-skew and mismatch between the three 

disparate clocks must be considered in the design methodology [43]. 

 

Figure 9.   Global TMR with all sequential elements, combinatorial logic, majority 

voters, clocking signals and global buffers triplicated (From [44]). 

d. Distributed TMR (DTMR) 

Lying somewhere in the middle of all these approaches is Distributed 

TMR (DTMR) – while similar to GTMR in that all logic and sequential elements are 

triplicated – the clock and resets are not [43]. That is to say, there is only one clocking 

and reset path. This is illustrated in Figure 10. This is seen to have many of the 

advantages of GTMR without the clock skew and mismatch concerns of the former. The 

clock line is still susceptible to effects. Often though, clock drivers are sufficiently less 

susceptible to SEEs. In all of the TMR techniques, the problem of verification of all 

nodes is seen to exist and becomes more challenging as feature sizes shrink and logic 

usage increases [43]. 
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Figure 10.   Distributed TMR with all sequential elements, combinatorial elements and 

majority voters triplicated. Clock signal is shared among resources (From [44]). 

3. Quadded Logic 

In quadded logic, all involved gates are replicated four times. Errors are corrected 

soon after they occur, since neighboring good values correct faulty values [45]. Quadded 

logic does not use voting schemes to determine error values and positions. Rather, it 

masks errors using logic gates with a particular interconnection pattern. 

As illustrated in Figure 11, Tryon conceived of a notion where an error may 

initially spread through the first series of logic gates but would be corrected further down 

the circuit. It is in this way that quadded logic can be thought of as a ‘self-healing’ 

circuit. The absence of voters occurs due to the fact that the logic values at the outputs 

should all have identical values by the time they reach that stage. The only conceivable 

failure point would occur should one of the last stage logic gates provide the wrong 

output due to error in that stage. For that reason, and the desire to recombine the quadded 

logic signals back into a singular value, voters or other recombination techniques are 

sometimes reintroduced to provide both of these desired properties. One difficulty with 

quadded logic is the lack of an error signal to trigger reconfiguration. Periodic scrubbing 

is necessary. 
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The interconnection patterns between gates are chosen such that the same pattern 

is not encountered twice consecutively. This is done in the cases when going from an 

AND gate to an OR gate or vice versa, as seen in Figure 11. There is an exception to this 

rule when connecting like gates. When driving an AND gate by an AND gate or an OR 

gate by an OR gate, the connecting patterns to the first and second identical gates must 

also be identical. This is not the case, however, when connecting NAND or NOR gates. 

In these cases, like NAND or NOR, repeating gates should have differing interconnection 

patterns. 

 

Figure 11.   Quadded logic illustrating error propagation and masking (From [46]). 

4. Triplicated Interwoven Redundancy (TIR) 

As the simplest form of random interwoven redundancy, triplicated interwoven 

redundancy (TIR) exists as a useful comparison to the techniques of TMR and quadded 
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logic. There are some of the interwoven benefits of quadded logic combined with the 

triplicated nature of TMR. Similar to TMR designs, TIR requires a voter at the outputs as 

a restoring device. The design of a TIR half-adder, without the associated voting logic, is 

represented in Figure 12. 

The general procedure for constructing a TIR circuit involves starting with the 

non-redundant form of the circuit, triplicating each gate, and then using the 

interconnection pattern of the non-redundant circuit – randomly selecting a gate from 

each triplet pair to use as an input for a gate that has no other inputs from the same triple. 

That is to say, the output of a gate in a pair of triplets is paired with the output of a gate in 

another pair of triplets to form the inputs of a gate in the next stage. This last step is 

repeated until all of the gates are connected in the TIR circuit. The method would be 

identical to TMR if the connection pattern utilized repeating inputs from the same triplet. 

Thus, TIR is a generalization of TMR to allow for random interconnections. 

 

Figure 12.   Design of TIR half-adder implementation illustrating interwoven connections 

(From [47]). 

Previous work and simulations have shown that the reliability of TIR circuits with 

random interconnections are comparable to their TMR equivalent circuits [47]. For 

certain interconnection patterns, the TIR structure would present weaker performance 
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than TMR where a single error’s effect in a circuit is not confined only to one set of 

outputs. The interconnection pattern used for experimental testing in the thesis was 

selected to alleviate much of these concerns. As with quadded logic, no error detection 

signal is provided, so periodic scrubbing is necessary. 

5. Quadruple Force Decide Redundancy (QFDR) 

Much of past logic research has dealt with the concept of quadded logic as it 

applies in the historical context of interest—dealing with AND and OR gates. Quadruple 

Force Decide Redundancy (QFDR) takes this idea further by applying it to larger general 

Boolean constructs—namely, the LUTs and FFs present on FPGA devices, as illustrated 

in Figure 13. The differences between quadded logic and QFDR allow for the FPGA 

resources to be allocated manually in a more efficient manner than allowing synthesis to 

auto-allocate resources. By specifying both the number and attachment point of the 

individual LUTs and FFs, one has greater control of the synthesis effort. This is 

accomplished by taking the output of the map phase and manually making edits to the 

layout before the place and route phase occurs [48]. This can be a very time intensive 

application of fault-tolerance. There are some software tools to aid in this approach; 

although, none are fully autonomous. 

 

Figure 13.   QFDR substituting LUTs and FFs constructs for logic gates (From [48]). 
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6. Advantages and Disadvantages of Various Fault-Tolerant Techniques 

There are many inherent advantages and disadvantages of the above techniques 

when implemented in logic. Scrubbing of an FPGA usually guarantees a clean working 

state of the device; however, it typically incurs large time penalties. These can be 

somewhat mitigated if partial reconfiguration is applicable to a certain device. TMR has 

the advantage of a long history of application and testing in the space environment. While 

the utilization requirements for the circuit are slightly more than three times the amount 

of logic when compared to a non-TMR design, the timing requirements for the design 

should only incur a modest penalty due to the addition of the voter circuit. The various 

subsets of TMR will be further studied to determine the appropriate instantiation for the 

particular type of circuit in development. 

Quadded logic and QFDR techniques have the disadvantage of utilizing even 

more logic resources than TMR. The elimination of a required voter circuit may be an 

advantage since that eliminates a single point of failure from the design, as the 

implementations mask any faults by the time the logic values reach the output state. 

Another advantage may come from increased MBU resiliency. Overall, both quadded 

logic and QFDR appear to be viable techniques; although, the automated methods of 

implementation have yet to be developed. TMR insertion using software such as Xilinx 

TMRTool4 or Mentor Graphics Precision5 Hi-Rel remains the only automated means for 

fault-tolerance insertion into existing logic designs [49], [50]. These logic design 

software packages are discussed in Chapter V. 

TIR exists as a hybrid approach between TMR and quadded logic, with the TMR 

design being a special case of a TIR solution. An inherent disadvantage is the uncertainty 

in the proper output unless the proper interwoven pattern is chosen. Timing conclusions 

for TIR, as compared to the TMR-case, remain to be seen. The suitability of the various 

fault-tolerant techniques compared in this study is assessed fully in Chapter V. 

                                                 
4 TMRTool® is a registered trademark of Xilinx, Inc. 

5 Precision® Hi-Rel is a registered trademark of Mentor Graphics Corporation. 
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D. CHAPTER SUMMARY 

The concepts of sequencer design, radiation hardening and fault tolerance were 

discussed in Chapter II. An FSM logic design was chosen for its suitability in the 

sequencer. Considerations unique to the CubeSat launching application are contributing 

factors to the FSM approach. Different types of programmable logic devices were 

analyzed with the FPGA being chosen as the most applicable hardware type. Trends in 

FPGA development were discussed with an emphasis placed on the evolution of the 

technology into different subcategories of underlying architecture.  

Background information regarding radiation effects in semiconductors was 

provided with a full description of recoverable versus non-recoverable errors. SEEs are 

subdivided into categories of SEUs, SETs, and SELs with an emphasis placed on those 

events which could impact the FPGA-based CubeSat deployer in a LEO radiation 

environment. TID resiliency is seen as another common metric for comparison between 

FPGA vendors’ products with the means of conducting testing for SEEs and TID 

introduced. RHBD is considered the focus of research within this thesis. 

Various means of fault-tolerant logic implementation were discussed with a 

breakdown of particular approaches. The particular advantages and disadvantages of 

scrubbing, TMR, quadded logic, TIR, and QFDR were presented. Initially, TMR is seen 

as the preferred choice due to software availability and a long history of use in space 

applications.  
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III. FIELD PROGRAMMABLE GATE ARRAYS AND SELECTION 

OF SEQUENCER TECHNOLOGY 

A. FIELD PROGRAMMABLE GATE ARRAYS 

The field programmable gate array is an IC designed to be configured by the end-

user after manufacture of the chip is completed [51]. The configuration process is aided 

by the use of various hardware description languages (HDLs) including VHDL, Verilog 

and schematic design. These HDLs are translated to actual FPGA layout configuration 

via various logic computer-aided drafting (CAD) software suites. These CAD software 

tools are usually vendor specific; although, generic toolsets are available. FPGAs have 

largely superseded custom application-specific integrated circuits (ASICs) as the method 

of choice for rapid prototyping of logic circuits [52]. Though custom ASICs are still often 

designed for large-quantity or application critical situations, FPGAs are rapidly becoming 

the primary device all the way to manufacture. This is largely due to the low-cost of 

FPGAs relative to the development costs inherent in ASIC production [52]. When ASICs 

are still required, the FPGA is an important tool in prototyping logic circuits that will 

eventually be laid out during very-large-scale integration (VLSI) logic design. There are 

even FPGAs onboard the most recent Mars rover, Curiosity [53]. 

1. Physical Construction 

The typical FPGA is internally configured as a matrix of logic blocks, input / 

output blocks (I/O), and programmable interconnects [54], as illustrated in Figure 14. In 

all cases, the internal configuration is programmable and, in many FPGA hardware types, 

re-programmable. This reconfiguration may take place as a wholesale re-programming of 

the device or a partial reconfiguration of certain sections of the FPGA. The partial 

reconfiguration capabilities of a particular FPGA device are dependent on the vendor and 

particular series of device utilized. In all cases, the particular reconfiguration 

characteristics of a device should be fully understood to allow for a combination of 

partial reconfiguration simultaneously with other fault-tolerant techniques. 
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Figure 14.   Typical FPGA internal architecture consisting of configurable logic blocks, 

I/O blocks and programmable interconnects (From [54]). 

a. Internal Fabric 

FPGAs are usually structured in a two-dimensional array with corridors 

dividing the rows and the columns used for global interconnects between the logic cells 

of the array [20]. Each cell consists of a combination of logic functions and flip-flops that 

can be programmed to perform a desired function. Logic functions are often implemented 

as lookup tables (LUTs) since they are basically small, programmable random-access 

memory (RAM). Newer FPGAs may contain more sophisticated building blocks such as 

adders and RAM. RAM blocks can be further used to build register files [20] as shown in 

Figure 15. Together these cell clusters of LUTs, gates, adders and RAM blocks can be 

termed configurable logic blocks (CLBs) or ‘slices.’ FPGAs that contain 16 and 32-bit 

CPU cores can often be found in commercial use; however, the use of FPGAs with built-

in CPU cores are extremely limited in space-based applications. This is due to the 

previously mentioned difficulties with radiation and power consumption. 
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Figure 15.   Typical FPGA logic cells with associated LUTs, gates, adders, memory 

devices, and interconnect buffers visible (From [55]). 

In addition to the ability to program individual cells for various functions, 

the interconnections between cells are also programmable. This allows FPGAs with 

hundreds of blocks and hundreds of thousands of gates to be utilized for complex logic 

functions. Interconnect is a major challenge in custom chips—this also holds true in the 

case of FPGAs. In many FPGAs, 90% of the area is reserved for the interconnection 

matrix and only 10% is dedicated toward logic and memory blocks [20]. The perimeter of 

the FPGA is typically surrounded by I/O blocks which are also programmable. On higher 

density devices, these I/O blocks can also be found running parallel to the corridors 
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onboard the device, allowing for connection to ball grid array (BGA) device pins [56]. 

These I/O blocks allow for various data lines to be routed to the appropriate pins of the 

device with reconfiguration possible at a later point. I/O blocks provide buffering and the 

appropriate voltage and current levels necessary to drive externally interfaced 

components at the signal level required. Often, these I/O blocks are grouped into I/O 

banks with differing voltage levels possible for various bank clusters. 

b. Programmability and Reconfiguration 

In general, the method of programming FPGAs involves writing HDL 

such as Verilog or VHDL and is known as configuration. Schematic diagrams may also 

be developed to do the same function. In most cases, the schematic designed is translated 

into an intermediate HDL format through the programming interface. This allows one to 

create a schematic representation of a logic circuit and later instantiate it through a code 

representation. After synthesis of the HDL code, the developed design is ready for 

translation, mapping, and place and route phases of implementation. It is at this point that 

a programming file can be generated for construction of the logic upon the desired 

device. The actual configuration of FPGAs takes place when the bitstream format of the 

programming file is loaded onto the device. All of the logic block, I/O block, and 

interconnect logic is configured on the device at this point in the development cycle. This 

configuration cycle may be repeated at any point in the future, dependent upon the nature 

of the technology with which the FPGA is constructed. 

Arguably, the largest benefit stemming from the development and rapid 

adoption of FPGA technology is the short time-span in which reconfiguration of devices 

is possible. Akin to a software upgrade within a computer, or firmware upgrade within a 

flash memory device, the re-programmable aspect of FPGAs allows for quick and easy 

maintenance of hardware logic. This ‘field programmable’ capability changes much of 

the traditionally held notion that once hardware was deployed, one would have to replace 

that hardware in order for capabilities upgrade or bug corrections. Many of the current 

approaches to FPGA reconfiguration involve “over-the-air” (OTA) re-programming, 

often at a remote location from the actual physical location of the FPGA device [57]. 
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Partial reconfiguration allows an FPGA to implement many concurrent 

functions and to change those functions while the system is running [58]. This is done by 

partitioning the device into several regions which may be re-programmed without 

impacting the other sections of the device. This dynamic reconfiguration during runtime 

is the real advantage of partial reconfiguration. Each vendor’s FPGAs have significant 

differences in the partial reconfiguration technique, advantages and perceived benefits 

due to the close coupling of the underlying FPGA fabric with the ability to partially 

reconfigure [59]. One of the largest benefits for partial reconfiguration would come in 

communications—the field of software-defined radios (SDRs). The partial 

reconfiguration of such a device, to allow for more modes or channels in specific 

frequency ranges, while the radio continues to operate on other areas of the FPGA, is 

extremely attractive.  

Applied to the CubeSat deployer, such a reconfiguration technique could 

be utilized to reconfigure the sequencer portion of the FPGA while another region of the 

device is still operating. This would be useful in future scenarios where expected feature 

upgrades to the sequencer will allow for multiple secondary functions. These functions 

could include such features as remote CubeSat monitoring via telemetry, video feed of 

the launch sequence occurring, and overall monitoring and data collection for NPSCuL. 

The ability to execute these mission areas simultaneously while still allowing for remote 

OTA re-programming is recommended for future study. For the first iteration of the 

sequencer, only the ability to execute the deployment sequence reliably is researched. 

This initial design will be reconfigurable through an interface on the SAD, with future 

designs possibly incorporating OTA reconfiguration. Another function of partial 

reconfiguration is configuration-fault repair, which was presented in more detail in 

Chapter II. 

2. Historical Overview of FPGA Technology 

PLD development was a new industry in the early to mid-1970s, developed by 

companies such as Motorola, Texas Instruments, and IBM [60]. The ability of PLDs to 

have not only programmable logic but programmable interconnection fabric gave rise to 
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the FPGA industry. Much of the groundwork for programmable logic arrays, gates and 

logic blocks are found in the two patents by David W. Page and LuVerne R. Peterson 

filed on January 11, 1983 [61], [62]. These patents were the first to incorporate the 

aspects of dynamic re-programmable PLAs. This gave way to the notion of devising a 

high-density programmable logic device from an SRAM cell in the mid-1980s. Ross 

Freeman founded the Xilinx Corporation in 1984 and successfully obtained a patent for a 

‘Configurable Electrical Circuit Having Configurable Logic Elements and Configurable 

Interconnects’ on September 26, 1989—the first FPGA [63]. Seiko Epson—

Semiconductor Division manufactured the first FPGAs for Xilinx in 1985 with a 1,000 

gate ASIC equivalency and clock speed of 18 MHz. This FPGA, the XC20646 had both 

programmable gates and programmable interconnects—64 configurable logic blocks 

(CLBs) each with two 3-input lookup tables (LUTs) [64]. 

Recent advancements in IC manufacturing techniques have led to a series of 

devices with feature sizes that were unthinkable in years before. These advancements 

have extended to FPGA families with some of the more advanced series (Xilinx Virtex7 6 

or 7) containing millions of logic devices onboard. In contrast to the XC2604, a Virtex 7 

with a clock speed of 1.866 GHz, may contain up to 305,400 CLBs with a total logic cell 

count of 1,954,560 and 1,221,600 6-input LUTs [65].  

With the reduction in feature size comes the added burden of an increased 

probability of SEUs occurring. Indeed, the smaller the feature sizes of the devices, the 

larger the problem and associated probability of failure [66]. Additionally, the newer 

problem of cascaded SEUs occurring in a section of a device, or an MBU occurring, has 

been seen to markedly increase over the past couple of generations of devices. The 

specifics of SEEs and MBUs, challenges of radiation-induced failures, and the associated 

mitigation techniques were previously discussed in Chapter II. 

For every generation of FPGA developed—the time it takes to fully space qualify 

an FPGA is seen to increase markedly. The physical differences between commercial and 

                                                 
6 XC2064® is a registered trademark of Xilinx, Inc. 

7 Virtex® is a registered trademark of Xilinx, Inc. 
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space-grade devices, and various radiation effect challenges, are presented in Chapters III 

and IV. Even though the Xilinx Virtex 7 series has been released for some time, only the 

Virtex 5QV series has been developed as a rad-hard variant of its commercial counterpart 

[67]. This is a lag time on the range of three to five years from release of their 

commercial counterparts. Obviously, a new method of fault tolerance is desired—to 

allow commercial or military grade devices to produce similar performance as a fully 

rad-hard, flight tested FPGA, in an identical environment. This change could reduce the 

need for the product lines of rad-hard devices from various manufacturing companies 

(Xilinx, Actel, Altera); however, it would readily open up their more recent and capable 

products to the space environment where they are currently not targeted. 

3. Types of Modern FPGA Technology 

The method of FPGA construction has evolved in recent years to one of three 

primary forms of design and implementation. Depending on the method of operation, 

these various FPGA technologies all possess their own set of strengths and weaknesses. 

In order to properly compare the three technologies: antifuse, SRAM-based, and flash-

based FPGAs—the relevant design features and differences are presented. 

a. Antifuse-based FPGAs 

Antifuse technology is a type of permanent configuration that allows a 

connection to be made or broken once, upon initial programming. The antifuse FPGAs, 

while configurable, are not re-configurable types of devices. The permanent connections 

involve the creation or destruction between two wires. Antifuse-based FPGAs use a small 

piece of dielectric, usually smaller than 1 μm
2
, as an open switch between the two lines. 

Layers of amorphous Silicon in the vias provide isolation between metal layers. Where a 

connection between the two metal lines is desired, a programming pulse is used to short 

out the dielectric. When this configuration voltage is applied, the amorphous silicon 

changes to a low impedance state, creating a metal-to-metal interconnect [68]. 

There are some benefits to this type of technology since it does not need to 

be configured each time power is applied to the device. It is this live-at-power-up 

capability that makes antifuse FPGAs a true single-chip solution for circuit design, 



 

40 

similar to ASICs. In addition, antifuse FPGAs do not suffer from radiation-induced 

configuration faults as their SRAM-based counterparts do [69]. 

b. SRAM-based FPGA Implementations 

Reconfigurable FPGAs store their configuration in some form of memory. 

This memory is often static random-access memory (SRAM) in its implementation. In 

SRAM-based FPGAs, the configuration is downloaded at power-on with the contents 

controlling the setting of various switches. These switches in turn determine which metal 

lines are connected within the FPGA interconnects and logic blocks [20]. There are three 

primary disadvantages of SRAM-based FPGAs—one, that the configuration is volatile 

and must be re-loaded at each subsequent power-on; two, the use of active transistors for 

switches slightly increases the resistance of such connections; and three, SRAM 

technology is more susceptible to SEUs due to its inherent structure and design [20]. 

Vendors of SRAM-based FPGAs typically offer higher logic densities when compared to 

antifuse based solutions with nearly the same performance and speed levels [69]. This 

makes them an attractive option for space-based implementations. 

The design decisions related to the use of SRAM-based FPGAs include 

the selection of secondary components to support boot configuration and the manner in 

which to configure within the time allocated for system startup. When a SRAM-based 

FPGA experiences a brownout or power-glitch, dedicated circuitry such as voltage 

supervisors and CPLDs must be in place to capture these events and force a reset and 

reconfiguration of the FPGA [69]. All of these design factors lead to a greater system 

cost, higher associated mass, increased circuit complexity, and higher power 

consumption. Since the sequencer is a resource intended for the space environment, 

weight and power consumption are important issues for consideration. 

Previous thesis work done at NPS regarding CFTP utilized Xilinx Virtex I 

and II FPGAs for the experimental componentry. These types of devices are SRAM-

based technology and required additional components for support such as synchronous 

dynamic random-access memory (SDRAM), programmable read-only memory (PROM), 

and electrically erasable PROM (EEPROM), as well as the discrete devices to support 
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those, including resistors, capacitors, voltage regulators, and an oscillator [9]. The 

EEPROM and PROM provide the configuration storage for the two FPGAs. 

c. Flash-based FPGAs 

Existing as a hybrid of antifuse and SRAM-based FPGA technologies, 

flash-based FPGAs offer many of the benefits of the two previously discussed types. 

These FPGAs utilize flash cells to store configuration information. Positive or negative 

charge stored on floating-gate transistors is used to hold pass transistors in either “on” or 

“off” states. This either opens or closes connections between routing tracks and logic 

resources [70]. This is similar to the method utilized for storage in typical flash-based 

memory, as illustrated in Figure 16. The flash cells are nonvolatile due to the storage of 

charge within the floating-gates, even when power is removed from the circuit. 

 

Figure 16.   Internal flash transistor configuration with charge build-up in floating gate 

allowing for reconfiguration and nonvolatile storage (From [71]). 

The flash-based technology allows the logic blocks, I/O block, and 

reconnect matrix to emulate reconfiguration capabilities of SRAM-based FPGAs while 

retaining the nonvolatile aspects of antifuse FPGAs. This allows the flash-based FPGA to 

have an operating mode almost instantaneously at power-up with no boot sequence or 

secondary components necessary to support. The inherent reduced SEU vulnerability of 

flash memory also makes them more desirable than SRAM for configuration memory. 
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4. Design Concerns 

There are some concerns that arise due to the differences in FPGA manufacturing. 

The primary concern for the sequencer is the FPGA’s radiation tolerance. Though not 

necessarily required for the sequencer application, a secondary interest is the ability of 

the general payload processor application to be re-programmable any time prior to 

launch. Reprogrammability demands that one of the two types of FPGAs incorporating 

re-writable characteristics in their logic blocks and interconnect matrix be utilized. 

Reconfiguration capability prior to launch for the general purpose payload processor 

design rules out using antifuse technology as the design would be permanent after the 

first configuration event. 

In comparing the SRAM to flash-based FPGAs, the difference must be carefully 

considered. Since the majority of FPGA use at the Naval Postgraduate School has been 

with SRAM-based products, there is a strong desire to remain within those product lines 

to benefit from the experience of past designs. The use of SRAM technology, however, 

makes the overall design more complex in schematic layout, microcontroller interfaces, 

and power provisioning. This is related to the requirement to restore the configuration of 

the SRAM-based FPGA at initial power-on from an external memory device. This 

increases the time from power-on until operation and the need to protect secondary 

components from the effects of the space environment. Radiation is a challenge no matter 

how many components are utilized, however, increasing the secondary required devices 

and interfaces only add to these difficulties. Inherently, SRAM-based FPGAs are more 

vulnerable to SEUs than flash-based products. 

On the basis of simplicity, with an eye toward speed and reliability, the initial 

viewpoint of the author is to take the flash-based FPGA route. This will yield a simple, 

reconfigurable circuit while providing the added speed benefit of operation at power-on. 

For the sequencer, this should eliminate any added “wait” time that would be necessary 

to account for before the deployment sequence proceeds. Due to the harsh environment 

and desire for very precise timing constraints, a sequencer that is ready to start 

deployments immediately upon receiving ‘Arm’ and ‘Deploy’ signals is of most interest. 

The final decision as to the type of FPGA technology to utilize is presented in the next 
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section of this chapter. The differences between the Actel and Xilinx FPGA technologies 

are more fully discussed in Appendix A. 

B. FINAL SELECTION OF ACTEL PROASIC3 SERIES FPGA 

1. Required FPGA Characteristics 

There are several important characteristics that an FPGA must possess for 

applications related to the space environment. When choosing the appropriate device, 

several factors must be taken into consideration: non-recoverable hard errors such as 

SELs and SEBs, TID tolerance, choice of technology utilized, computing power 

concerns, and the cost of the device. Within these, the tolerance of the FPGA chosen to 

SEL and SEB effects, along with its accumulated TID tolerance, are among the most 

important factors for consideration in the choice of a device. Since non-recoverable hard 

errors may lead to a complete electronic failure of the FPGA, these must be protected 

against at all cost. The gain in survivability with regards to these effects is often worth 

the higher cost rad-hard technology when utilized for mission critical applications. 

Following this, the computing power necessary for the proper operation of the 

logic necessary for a specific FPGA application is of immediate concern. If the FPGA is 

sufficiently protected from non-recoverable errors but unable to perform its desired 

function due to speed concerns, it will be of little use once on-orbit. Closely related to the 

speed of the device is the reconfigurable technology selected for the application. SRAM-

based FPGAs tend to have inherent speed advantages over their flash-based counterparts; 

however, many of the speed increases come at the added cost of reduced reliability for 

radiation tolerance. Additionally, the added circuitry and support components required 

for the SRAM-based designs greatly impact the overall cost of the platform as a whole. In 

many cases, cost may become a large driver on the selection of the technology as certain 

payload requirements call for multiple FPGAs to be utilized, along with any space-grade 

support circuitry. This may greatly limit the options available to the designer on smaller 

scale programs such as this sequencer project. 
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2. Overall Sequencer and Processor Characteristics 

When focusing on the specific sequencer application of this research toward a 

general-purpose payload processor, there are considerations that factor into selection of a 

particular FPGA. These include the resistance of the FPGA to recoverable, soft errors 

such as SEUs and SETs and the selection of a device with the lowest SWAP (size, 

weight, area, and power) requirements; the choice of a particular vendor and product line 

must take all these factors into account. 

In general, flash-based FPGAs are more resilient to SEU and SET effects than 

SRAM-based devices. Also, due to the lack of a requirement for secondary support 

circuitry, flash-bashed FPGAs again save SWAP when taken in comparison to SRAM-

based devices. The flash-based FPGAs are live-at-power-on, take almost no power during 

idle periods due to lack of a need to refresh the devices, and typically are smaller in 

SWAP requirements. This has the added effect of producing less of a thermal load, with 

less heat being produced by flash-based FPGAs. All of these factors typically lead to an 

overall smaller cost for flash-based FPGAs than SRAM-based FPGAs. The advantages of 

flash-based FPGAs over the SRAM-based products greatly sway the decision for these 

reasons. 

3. Comparisons of Xilinx and Actel FPGAs 

While the Virtex-5 series may provide more overall logic area for expansion, 

slightly increased TID radiation performance, and additional DSP functions not present in 

the ProASIC3 devices—for a sequencer designed to deploy CubeSats reliably, overall 

device utilization should not be the predominate factor. Even given the added logic 

overhead of TMR or quadded logic implementation, the ProASIC3 FPGA should be fully 

capable of configuration with the targeted design. A brief comparison of both the Virtex 

and ProASIC3 series FPGAs is provided in Table 1. More information concerning 

specifics of each device type is found in Appendix A. 

With the Xilinx FPGAs utilizing SRAM-based technology versus the Actel flash-

based FPGAs, the prominent difference between these two implementations exists at the 

hardware level. This equates to the need for secondary memory components required to 
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support the FPGA both during power-on configuration and subsequent operations. While 

the number of user I/Os is considerably less for the Actel ProASIC3 series, the provided 

270 maximum is more than enough for the sequencer application within the general-

purpose payload processor design. 

Table 1.   Overall hardware comparison between Actel ProASIC3 and Xilinx Virtex-5 

series FPGAs illustrating strengths and weaknesses. 

Actel RT ProASIC3 Xilinx Virtex-5QV

Device Type Flash-based SRAM-based

Quantity of Logic Cells 13,824 VersaTiles 20,480 Slices

Number of User I/Os 270 836

Number of Clocks 6 18

Clock Speed Frequency (MHz)
350 @ 1.5 VDC /

250 @ 1.2 VDC
450

SEL Immune (MeV-cm2/mg) 68 > 100

TID Immune 55 Krad 1 Mrad

External Memory Required No Yes

Number of Package Pins 484 1,738

Price (US Dollars) $63.87 $4,352.40

FPGA Device Series

 

 

If the goal of the general purpose payload processor were limited to DSP 

functions, or faster operation, the Xilinx Virtex-5 series would be a better solution. Since 

only comparing the number of logic gates is not meaningful when comparing different 

vendors, it is more useful to compare the baseline logic cell architectures. The 

equivalency for Xilinx logic slices to Actel VersaTiles is listed in Table 2 [72]. From this 

data, one may conclude that one Virtex-5 slice is equivalent to approximately eight Actel 

VersaTiles. Though the Virtex-5 slices have more logic capability than the Actel 

VersaTiles, there should be sufficient overhead in the Actel FPGAs for design of fault-

tolerant logic for a sequencer design. Testing of different fault-tolerant schemes for 

FPGA logic utilization factors is conducted in Chapter V.  
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Table 2.   Approximate relationship between different vendors FPGA logic blocks 

(After [72]). 

Logic Block Virtex-4 Slice Equiv.

Xilinx Virtex-4 Slice (Ref.) 1

Xilinx Virtex-5 Slice 2

Actel VersaTile 0.25  

 

The volatile nature of SRAM-based FPGAs and the overall requirements for 

secondary componentry result in the choice of Actel flash-based technology over the 

Xilinx product. Even considering the reduced schematic capabilities of adopting Actel 

SoC over Xilinx ISE8, the associated hardware benefits inherent to the ProASIC3 series 

are worth the effort. The difficulty in learning a new software package for logic design is 

more than compensated by the strengths of the single-chip Actel solution. This Actel 

ProASIC3 series is the clear choice for simplicity, due to the reduced number of 

secondary components, and the potential for reduced cost.  

Given the need for a low-power, low-cost general purpose fault-tolerant processor 

design, the Actel ProASIC3 FPGA is the suitable choice for the development of hardware 

in this thesis. This differs from earlier work done on CFTP by limiting the amount of 

secondary component design necessary for completion of a PCB. The overall technology 

behind the FPGA has changed from SRAM to flash-based in this implementation. As 

previously discussed in Section A.3 of this chapter, this flash-based technology also has 

the added benefit of increased SEU resistance in the configuration memory. Since one of 

the goals of this sequencer design is simplicity, the ability for the sequencer to function 

immediately upon power application of the ProASIC3 fits better with the desired 

sequencer operation. This should allow for an ‘Arm’ signal to be passed to the sequencer 

by the power initiation, with the ‘Deploy’ signal coming from the internal sequencer 

logic. Further detailed comparisons between the Xilinx and Actel products which result 

in the selection of the Actel ProASIC3 FPGA may be found in Appendix A. 

                                                 
8 ISE® is a registered trademark of Xilinx, Inc. 
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Initial work will be done to develop a ‘ProASIC3 Test Board’ using the Actel 

ProASIC3 nano series of FPGAs in Chapter IV. This will allow for design software 

familiarity prior to development of the flight prototype board. Altium Designer will be 

used for the schematic and PCB design of the ProASIC3 Test Board and SAD Version 3 

– Prototype Flight Board. All prototype flight hardware schematic and PCB design work 

will be accomplished using the Actel ProASIC3 military-grade component (A3PE600L-

FG484M) in Chapter IV. Drop-in compatibility with the lower-cost, commercial-grade 

FPGA (A3PE600-FG484) should allow for several prototypes to be manufactured. By 

staggering the design, one is able to quickly develop and manufacture a test board to 

become familiar with the Microsemi product lines, datasheet representations, and skill-set 

necessary to develop the more complete design. 

C. SELECTION OF DEVELOPMENT BOARDS FOR LOGIC DESIGN 

In addition to developing an in-house test board, various vendor manufactured 

development boards were purchased in tandem with this research. This allowed for a 

known working configuration to proceed with logic development parallel to hardware 

design and manufacture. Since past familiarity was with Xilinx FPGAs and software, a 

decision was made to purchase a Virtex-5 development board in addition to a ProASIC3 

variant. If unexpected results with logic area utilization were to occur, the Virtex-5 series 

would provide a backup choice for work to continue. For quick logic development and 

testing, a Spartan-3E series development board was utilized. This development board was 

USB powered, allowing for portability and rapid testing. Finally, a ProASIC3 

development board was purchased, with the same series of FPGA as the final BGA 

design—to allow for complete logic design testing. The comparison between the various 

boards is provided in Table 3. 
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Table 3.   Comparison of FPGA development boards used in logic design and testing. 

Board #1 Board #2 Board #3

FPGA Device Spartan-3E 100 Virtex-5 LX50T ProASIC3L 1000

FPGA Part No. XC3S100E XC5VLX50T M1A3P1000L

System Gates 100,000 Not Specified 1,000,000

Logic Cells 2,160 50,000 24,576

Total CLBs 240 3,600 N/A

Total Slices 960 7,200 N/A

VersaTiles N/A N/A 24,576

Distrib. RAM bits 15,360 491,520 147,456

Block RAM bits 73,728 2,211,840 147,456

Number of Clocks 2 6 6

User I/Os 66 480 300

Differential I/O Pairs 30 240 74

Max. Clock Speed 100 MHz 550 MHz 350 MHz

FPGA Size 16 x 16 mm 35 x 35 mm 23 x 23 mm

Number of Pins 100 1136 484  

 

D. CHAPTER SUMMARY 

In Chapter III, the Actel ProASIC3 FPGAs were seen as the best solution to the 

sequencer application. This is a result of the increased resilience to soft-error effects, 

reduced secondary hardware required for operation, ease of design, live at power-up 

operation, and pin-for-pin compatibility between versions. Antifuse FPGAs were 

discarded as a design choice due to the non-availability of reconfiguration. SRAM and 

flash-based FPGAs were contrasted with the differences in design considerations 

realized. Conclusively, flash-based FPGAs seem the most promising choice due to their 

configuration memory’s reduced SEU vulnerability, reduced system complexity, and 

live-at-power-on capability. The ProASIC3 Test Board will be developed in Chapter IV; 

follow-on development of the SAD Version 3 – Flight Prototype Board will also occur in 

Chapter IV.  
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IV. HARDWARE DEVELOPMENT – PROASIC3 TEST BOARDS 

AND PRELIMINARY FLIGHT PROTOTYPE 

A. PROASIC3 TEST BOARD 

Due to the need to obtain test hardware as rapidly as possible, a decision was 

made to build a set of ProASIC3 test boards prior to the development of a more 

challenging flight hardware prototype. This would serve two purposes—one, that a 

ProASIC3 Test Board (PA3TB) would quickly allow for rapid prototyping of logic 

designs; two, that familiarity would be gained with the hardware development package, 

Altium Designer 10. The ProASIC3 nano FPGA selected allowed for familiarity with the 

Actel Libero9 SoC software environment while retaining the ability to manufacture the 

test board in the Small Satellite Laboratory. The goal of the PA3TB design was to 

minimize the secondary components required and to realize the most basic design that 

could accomplish the requirements of the sequencer application. 

Altium Designer provides a unified product development environment including: 

front-end design and capture, physical PCB design, FPGA hardware design, FPGA 

system implementation and debugging, embedded software development, mixed-signal 

circuit simulation, signal integrity analysis, and PCB layout [73]. The standard 

development environment can be seen in Figure 17, where schematic, two-dimensional 

(2-D) PCB layout, and 3-D board placement views are visible on the separate monitors. 

 

Figure 17.   Altium Designer interface with separate schematic, 2-D PCB layout, and 3-D 

component placement views visible on separate monitors (From [73]). 

                                                 
9 Libero® is a registered trademark of the Microsemi Corporation. 
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An added benefit to obtaining the preliminary hardware was experience gained in 

the manufacture and testing of the design. This allowed for in-house soldering skill to be 

gained with the smaller surface-mount components as well as the baseline FPGA device. 

A complete testing of the JTAG interface to be utilized on the flight prototype board was 

also possible to ensure all design difficulties were worked out prior to scaling up the 

design. 

1. Derived Requirements 

There were several derived requirements determined for the ProASIC3 Test 

Board. The particular requirements utilized for design are as follows: 

1. Use of ProASIC3 FPGA with flash-based architecture; 

2. Core voltage of 1.2 VDC to reduce power consumption; 

3. Specification of I/O bank voltages at core voltage or higher rating; 

4. External JTAG (IEEE 1532) interface, compatible with standard hardware 

programmers; 

5. Simulation of CubeSat P-POD deployment via indicators; 

6. Expandability, in terms of additional I/O availability and extra interfaces 

such as USB; 

7. Implementing the design in the smallest form-factor available, which 

implies utilizing surface-mount components. 

2. Selection of Board Size and Layer Count 

Since the actual ProASIC3 nano FPGA has a relatively small footprint, the PCB 

size was chosen to minimize the size of the board—allowing associated secondary 

components the minimum amount of room for layout. This decision allowed for effective 

resource usage when placing desired components. The overall dimensions of the board 

chosen are 1.87 inches × 1.87 inches (3.497 in
2
). This allows for center placement of the 

FPGA upon the PCB with secondary components surrounding. 
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Since the SAD Version 3 Flight Prototype Board (SADv3) will use a BGA with 

hundreds of pins, the routing difficulties inherent to that technology mandate the use of a 

multi-layer PCB. To prepare for the evolution to that hardware, it was decided to 

manufacture the PA3TB using a four-layer design. Although the number of signal and 

power lines was such that a two-layer board could have been used, the experience gained 

from the four-layer PCB design will be valuable in the layout of the six to eight-layer 

SADv3. As is standard, the internal layers consisted of the ground (GND) and positive 

voltage (VCC) place. By placing VCC and GND copper polygon-filled areas internal to the 

PCB, the signal lines for data were visible on the top and bottom planes of the PCB. This 

allows for more flexibility in the case where signal lines are misrouted due to design-

error or manufacturing defects. Additionally, there are capacitive and signal-noise issues 

that are resolved when designed in this fashion. The overall layer structure of the PA3TB 

is illustrated in Figure 18. Through-hole vias were used throughout the design for 

coupling between layers. 

 

Figure 18.   Four-layer stack of the ProASIC3 Test Board with internal power planes and 

external signal layers. 

3. Selection of Components 

In Chapter III it was decided that the ProASIC3 architecture was the best 

approach; the decision was made to utilize a comparable FPGA technology without the 

overhead of BGA manufacturing for test board development. Actel’s ProASIC3 nano has 

the advantages of being a low-cost, single-chip solution utilizing flash-based technology 
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coupled with a 100-pin Very Thin Quad Flat Package (VQFP). The VQ100 package of 

the chosen A3PN250 FPGA, which allows for manufacture utilizing a microscope 

soldering station in the Small Satellite Laboratory, is illustrated in Figure 19. The 

particular characteristics of the chosen ProASIC3 FPGA are specified in Table 4. 

Specific schematic decisions, PCB layout and component placement choices, and the 

physical construction and testing of the PA3TB are fully described in Appendix B. 

 

Figure 19.   ProASIC3 nano VQ100 package of VQFP-type (From [74]). 

Table 4.   Characteristics of ProASIC3 nano FPGA (A3PN250) utilized in 

development of ProASIC3 Test Board (After [74]). 

PA3 Test Board

FPGA Device ProASIC3 nano

FPGA Part No. A3PN250

System Gates 250,000

Logic Cells 2,048

VersaTiles 6,144

Distrib. RAM bits 36,864

Block RAM bits 36,864

Number of Clocks 8

User I/Os 68

Differential I/O Pairs N/A

Max. Clock Speed 350 MHz

FPGA Size 14 x 14 mm

Number of Pins 100  
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The full 2-D PCB layout can be seen in Figure 20. Individual electrical and 

mechanical layouts for the various layers are presented individually in Appendix B. 

 

Figure 20.   ProASIC3 Test Board 2-D PCB layout with all component footprints, signal 

lines, and vias visible. 

After the 2-D layout was concluded, the various 3-D Standard for the Exchange of 

Product Data (STEP) models were imported into the design the check for fit. These 

components were viewed in a 3-D representation of the integrated PCB design, allowing 

for any fit issues to be quickly resolved, as illustrated in Figure 21. There were a few 

cases where vias or traces were moved to better accommodate the physical representation 

of the PCB. This is an important prototyping tool and saves a great deal of work prior to 

receiving the initial run of PCBs. The entire layout process took place over the course of 

approximately six weeks. 
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Figure 21.   ProASIC3 Test Board 3-D isometric view with component models indicating 

approximate sizing and spacing of integrated board. 

Further 3-D views of the top and bottom face of the PCB are available in 

Appendix B. 

B. SAD VERSION 3 – FLIGHT PROTOTYPE BOARD 

While work was proceeding with the fault-tolerant logic design, described in 

Chapter V, modification of the FPGA-based sequencer hardware design occurred in 

parallel. Concurrent design of the SAD Version 3 – Flight Prototype Board was 

undertaken to allow sufficient time for logic development and testing, with the 

anticipated long lead-time in PCB layout for a BGA FPGA. The means of implementing 

the more extensive BGA form-factor FPGA into a prototype, flight-hardware design is 

presented in Appendix C. The design of this board is not meant to be all-inclusive of the 

final general purpose processor design, as some necessary hardware revisions will 

understandably occur; the overall context of the schematic design along with supporting 

circuitry is expected to remain relatively constant. There is a desire for a design which 

can be easily expanded to incorporate future feature requests as necessary for future 
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missions. Though the sequencer is the first practical application of the general purpose 

payload processor, future iterations of the design may require extended logic and memory 

usage. As such, the developed BGA design incorporates several features such as 

additional SRAM and flash memory, along with general purpose and differentially paired 

I/Os to support future requests. The board developed is termed SADv3 for the purposes 

of the sequencer, however, it may be renamed in the future to indicate its general purpose 

feature set. 

As in the previous section, all work done on the design of the SADv3 was 

accomplished with Altium Designer. A great deal more schematic development was 

required in the implementation of this more extensive design. Additionally, the added 

work in PCB layout, when transitioning from a six to eight-layer PCB, was seen to 

increase almost exponentially. As such, the final design presented in the course of this 

research will require multi-person design panel review before manufacture—there are 

simply too many connections and possible failure points to risk production without 

extensive oversight on the development of the board. To initiate production prior to 

complete design review would invite an expensive redesign should an error be present. 

1. Discussion of Specific FPGA 

In the transition to a larger FPGA fabric to incorporate additional logic and I/Os, 

the need for switching from a VQFP to BGA became readily apparent. In the 

development of the PA3TB, the largest resource-area FPGA was chosen in the design of 

that board. Although the quantity of gates in that design are more than suitable for the 

instantiation of the sequencer logic, any additional features would quickly expand past 

the resources of the device, especially once TMR is implemented. As discussed in 

Chapter III, all prototype flight hardware schematic and PCB design work will be 

accomplished using the Actel ProASIC3EL military-grade component (A3PE600L-

FG484M). Drop-in compatibility with the lower-cost, commercial-grade FPGA 

(A3PE600-FG484) should allow for several prototypes to be manufactured. The FG484 

package of the chosen A3PE600L FPGA is illustrated in Figure 22. The particular 

characteristics of the chosen ProASIC3EL FPGA are specified in Table 5. Again, should 
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there be a need for the fully rad-hard FPGA in future missions, the RT ProASIC3 

(RT3PE600L-CG484B) is compatible with the defense-grade ProASIC3EL (A3PE600L-

FG484M). 

 

Figure 22.   FG484 BGA package of the Actel ProASIC3L A3PE600L FPGA (From [75]). 

Table 5.   Characteristics of ProASIC3L BGA (A3PE600L) utilized in development 

of SAD Version 3 – Flight Prototype Board (After [75]). 

Flight Prototype

FPGA Device ProASIC3EL

FPGA Part No. A3PE600L

System Gates 600,000

Logic Cells 4,608

VersaTiles 13,824

Distrib. RAM bits 110,592

Block RAM bits 110,592

Number of Clocks 8

User I/Os 270

Differential I/O Pairs 135

Max. Clock Speed 350 MHz

FPGA Size 23 x 23 mm

Number of Pins 484  
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In using the BGA FG484 form-factor, the complexity of the design is increased 

markedly with a corresponding increase in requirements for PCB design. Due to the BGA 

package, soldering of the PCB is impossible utilizing equipment in the lab; manufacture 

of the board and placement of surface-mount components for reflow soldering will take 

place with an outside PCB production company. The design of the PCB necessarily takes 

into account the required sizing and layer count to properly locate and support the BGA 

FPGA and all supporting components. 

The initial layout of the board shape with FPGA, headers, and prototyping area 

visible is illustrated in Figure 23. The ribbon-cable connector for attachment to the relay 

board can be seen toward the top edge of the PCB. As specified previously, the sequencer 

board is approximately half the width of the relay board (taking up area from the bottom 

to middle bolt-holes). This design allows for additional area in future revisions if the 

footprint is modified to be identical to the relay board. 

Work continues on the appropriate component placement and wiring of traces. 

Placement of the power de-coupling capacitors is somewhat problematic with relation to 

the FPGA footprint; careful selection of appropriate capacitors to place closest to the 

footprint is imperative for ease of trace laydown. After wiring, extensive design reviews 

must be accomplished to verify not only the schematic but also the layout of the PCB in 

2-D signal trace layers and 3-D component placement and sizing. 

 

Figure 23.   Initial 2-D PCB layout of FPGA, three 40-pin I/O headers, prototyping area, 

and ribbon-cable connector for relay board attachment. 
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Recent representations of individual electrical and mechanical layouts for the 

various layers are presented individually in Appendix C. Further 3-D views of the top and 

bottom face of the PCB are also available in Appendix C. 

2. Additional Modifications Considered 

Since the board developed is the first initial prototype of the eventual flight 

sequencer, there are some features included for bench testing which can be removed in 

the final representation of the design. For this design a +5 VDC connector was utilized to 

provide VIN to the LDO voltage regulators for conversion to the appropriate voltages. 

Since the relay board will be receiving a +28 VDC supply from the host spacecraft bus, 

there will be a way to incorporate this conversion on the relay or sequencer board itself. 

As such, the +5 VDC connector can be removed from the final flight design with the +5V 

net replacing the VIN net. The SRAM and flash-memory can be left off the footprint since 

they are not required in the sequencer design and can be installed as necessary for future 

missions. 

Additional modifications to the design include possible future incorporation of 

two-way telemetry concerning board and CubeSat status back to the host spacecraft, a 

video camera feed of CubeSat deployments with data saved in memory, smart charging 

and maintenance of CubeSats within NPSCuL prior to launch, and experimental payloads 

for testing of logic in a general payload processor design. One of the desired short-term 

features is the inclusion of an Ethernet port and standard for testing in radiation 

environments. Data provided over this port could be used in data logging the radiation 

upsets and recoveries during testing events. 

C. CHAPTER SUMMARY 

The reasons for the development of the ProASIC3 Test Board prior to design of 

the SAD Version 3 – Flight Prototype Board were discussed in this chapter. Development 

of the PA3TB was accomplished using Altium Designer 10 for the schematic and layout 

portions of board design. The design was implemented with a set of derived requirements 

to enable the rapid production of a hardware product; the PA3TB serves as a model for 

evolution to a more complex PCB. Minimization of PCB area and secondary components 
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were important in troubleshooting the device when problems were discovered. Other 

design decisions are presented concerning the manner in which they drove PCB 

component selection. 

In addition, the design modifications for the SAD Version 3 – Flight Prototype 

Board were also discussed in this chapter. Again, development of the SADv3 was 

accomplished using Altium Designer for the schematic and layout portions of board 

design. The work in this chapter on the SAD Version 3 – Flight Prototype Board 

continues with all of the circuitry having been schematically represented. Component 

placement and trace layout for the support devices on the board is still on-going. Specific 

considerations for future board development and expansion were provided. 
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V. COMPARISON OF FAULT-TOLERANCE METHODS FOR 

USE IN SEQUENCER LOGIC DEVELOPMENT 

A. TMR VERSUS OTHER FAULT TOLERANT APPROACHES 

For this portion of the thesis, the Xilinx Spartan-3E development board was used 

to simulate logic designs. The specifics of the FPGA utilized are listed in Chapter IV, 

Table 2. This device allowed for the utilization of the Xilinx ISE 14.3 WebPACK toolset 

so that all logic constructs could be created schematically and in VHDL or Verilog. A 

16×16-bit array multiplier was constructed to test for the proper operation of the device 

using different redundancy techniques. All designs were carried through the synthesis, 

map, and place and route phases to ensure accurate timing information was obtained in 

the simulation. Additionally, the Xilinx techniques were manipulated to program 

Microsemi ProASIC3 devices. These altered designs will be incorporated into the final 

sequencer logic using Microsemi Libero SoC 10.1. In Chapter III, a decision was made to 

use the Actel products due to hardware concerns of the SRAM-based Xilinx technology 

versus the flash-based FPGA technology. 

1. Maintaining Logic Structures within HDL Languages (Verilog / 

VHDL and Schematically) 

To test for proper operation and characteristics of the Xilinx ISE 14.3 software, it 

was first necessary to create a test circuit which could be successfully duplicated and 

verified. This was accomplished via a combination of synthesis and simulation with 

follow-on hardware testing. The design chosen for the test consisted of a simple seven-

segment LED counter. This design is a state-machine counter with sixteen states (0 

through F) with the added functionality of push button and switch status. The counter 

design is implemented in VHDL with the overall clocking setup and top-level design 

applied in a modular fashion. As illustrated in Figure 24, the design was implemented on 

a Digilent, Inc. BASYS2 development board. This board incorporates the Xilinx Spartan-

3E 100. Code for this state-machine counter is in Appendix D. 
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Figure 24.   Digilent BASYS2 development board counting with proper state logic. 

a. Baseline Design – Seven-Segment LED Counter Example 

The resource utilization for the baseline LED counter design was found to 

use 19 of 960 available slices (2%) with a corresponding 1% utilization of FFs and 1% 

use of LUTs. As depicted in Figure 25, the overall gate layout of the design in a 

technology schematic is visible for the unaltered design. This provided a good baseline 

for comparison once modification to the design evolved. 

 

Figure 25.   Default gate layout for baseline seven-segment LED counter. 
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b. Triplicated Design – Seven-Segment LED Counter Example 

Upon initial synthesis, there were some issues with ISE overly trimming 

the redundant logic from the design. This manifested itself in the removal of two of the 

three triplicated counter circuits and the voter circuit being marked as unnecessary in 

some cases. To alleviate these issues, ‘Resource Sharing’ in HDL Options and 

‘Equivalent Register Removal’ in Xilinx Specific Options must be disabled in the 

Synthesis – XST ‘Process Properties.’ This alone was insufficient to prevent logic 

trimming of desired redundant circuits, so the following lines were added to the VHDL 

code: 

attribute equivalent_register_removal: string; 

attribute equivalent_register_removal of signal : signal is “no”; 

The preceding lines must be added to the architecture structures within the logic that is 

being trimmed after the signal names are defined.  

For the operational test, the design was altered such that the top-level 

depiction occurs schematically, as seen in Figure 26. This was done by instantiating the 

seven-segment LED counter into its own schematic symbol. All signal lines were placed 

manually in the same fashion that they occurred in their VHDL depiction. The counter 

was triplicated, and a voter circuit was added at the output to test for proper operation and 

recombination of the signals. 

This produced the proper, anticipated results as illustrated in Figure 27. 

The logic of the unaltered design can clearly be seen as triplicated in the technology 

schematic view of the gate structure. The resource utilization for the triplicated design 

was found to use 61 of 960 available slices (~6%) with a corresponding 4% utilization of 

FFs and 5% use of LUTs. 

In the FPGA layout view, Figure 28, one of the three counters is 

highlighted in red with the triplicated counters occurring in the upper portion of the 

graphic. Since this occurs after the place and route phase, one can confidently say that the 

logic trimming of the redundant circuits has been prevented. This is an important step 

before continuing with the implementation of different fault-tolerant techniques. 
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Figure 26.   Triplicated seven-segment LED counter example with voting logic. 

 

Figure 27.   Triplicated gate layout with voting logic - seven-segment LED counter. 

When testing onboard the physical device, the functionality of the 

development board was seen to be identical in the triplicated logic case to the non-fault-

tolerant design. The FPGA continued to count in the proper state sequence with all push 

button and switch controls working as before. Finally, the design was altered to enable 

improper operation of one of the counters by reordering the states within that counter. 

This resulted in the mismatch of the output vectors between that counter and the other 

two, properly functioning counters. The voter was seen to work properly, as no 

discrepancies were noted in the operation of the development board FPGA. 
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Figure 28.   FPGA layout view illustrating placement of three counter structures. 

2. Implementation of Various Redundant Techniques in Combinational 

Logic Designs 

a. Baseline Design – 16×16-bit Array Multiplier 

The design chosen for further testing of fault-tolerance is a 16×16-bit 

array multiplier which has been implemented in a tree structure consisting of 4×4-bit 

array multiplier subsections. The output of the array multiplier is a 32-bit unsigned 

integer value which correctly represents the product of the two input vectors. The 4×4-bit 

array multipliers are carry-save-adder versions with 7-bit sum and 5-bit carry output 

vectors. They are combined in the following fashion to generate proper multiplication: 
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As illustrated in Figure 29, the 4×4-bit array multipliers are internally 

wired with a combination of 4-bit partial product generators and full adders configured to 

give the proper sum and carry output vectors. These adders were initially configured in 

the logic structure seen in Figure 30. Each of these full adder blocks were replaced in 

subsequent iterations to yield proper comparison with this baseline design. 

 

Figure 29.   4×4-bit array multiplier internal structure using partial product generators and 

full adders. 

The 4×4-bit multiplier modules are combined with carry-save adders and 

ripple-carry adders to form the 16×16-bit multiplier in the top-level structure of the 

design. Specifics of the code and the overall top-level block diagram of the default 

16×16-bit array multiplier structure are presented in Appendix D. This design is modified 
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slightly in the specific fault-tolerant schemes tested throughout the remainder of this 

chapter. 

 

Figure 30.   Full adder gate structure for the 16×16-bit array multiplier, baseline design. 

The resource utilization of the FPGA after layout is seen in Figure 31. It is 

important to note that the layout of the FPGA can be manually edited at this stage. 

 

Figure 31.   FPGA physical layout of default 16×16-bit array multiplier logic. 
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b. Triple Modular Redundancy (TMR) 

The next iteration of design involved the implementation of the 16×16-bit 

array multiplier in TMR format. As illustrated in Figure 32, the design was modified in a 

similar fashion as that accomplished in the previous seven-segment LED counter 

example, with all Verilog code instantiated as schematic symbols. These were wired 

together with a voter on the output for a majority voting scheme of the output vectors. 

 

Figure 32.   16×16-bit array multiplier implemented in TMR with voting logic. 

Again, with Verilog, some modification to the code is necessary to prevent 

trimming of logic that is desired for fault-tolerant purposes. In the case of Verilog, the 

code addition necessary is: 

(* equivalent_register_removal = “NO” *) 

This line must be placed immediately before the module declaration line 

in the Verilog file of each part of the design one does not want trimmed. In doing so, the 

FPGA layout of the device was seen to vary greatly from the unaltered case, as seen in 

Figure 33. 

The input vectors for this design were left as three separate pairs, which 

allowed a differing input product to be injected into one of the array multiplier blocks. 
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This allowed for quick testing of the voting logic and overall multiplication when 

analyzed through simulation. In all cases, the proper simulation results were obtained and 

those of the mismatched multiplication discarded by the voting scheme. This initial 

simulation run was important in later fault-tolerance schemes to determine proper 

operation of the overall circuit. 

 

Figure 33.   FPGA physical layout of 16×16-bit array multiplier using TMR logic. 

c. Quadded Logic 

To implement the quadded logic form of the 4×4-bit array multiplier, a 

NAND implementation of a half adder was constructed, as seen in Figure 34. This 

provided a good baseline for comparison and simulation to the quadded logic 

implementation; the half adder circuits were completely tested and simulated prior to 

being implemented in full adder combinations. To properly construct the OR gate for 

recombination of the carry output lines, a quadded NAND gate was also designed, as 

depicted in Figure 35. 

Once the NAND configuration of the half adder and quadded format were 

determined, modifications to the half adder to generate a quadded logic implementation 

were made. This can be seen in Figure 36. Again, this half adder was fully tested and 

compared to the non-quadded logic format before insertion into full adder structures. 

Once the quadded logic full adder was complete, the structure was substituted in for the 
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full adder blocks in the overall 4×4-bit array multiplier schematic. The follow-on 

recombination into the appropriate 16×16-bit array multiplier structure then took place. 

 

Figure 34.   Baseline NAND implementation of half adder. 

 

Figure 35.   Quadded logic version of NAND gate. 
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Figure 36.   Quadded logic version of half adder. 

As in the previous test cases, full simulation of the design was 

accomplished to account for proper outputs from the multiplier circuit. In all cases, the 

output product vectors were seen to match the baseline design. Further testing to alter the 

internal structure of the quadded logic half adders took place (i.e., tying certain gates to 

high or low logic values) to simulate internal errors. The quadded logic was seen to 

overcome these errors in all single and certain multiple upset cases. The outputs from the 

overall quadded logic circuit were identical to the non-error case. 
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It was particularly interesting to note the large amount of FPGA resources 

utilized in the layout view, as illustrated in Figure 37. This overhead is completely due to 

the quadded logic implementation of the full adders and should be approximately four 

times the resources as in the baseline 16×16-bit array multiplier. 

 

Figure 37.   FPGA physical layout of 16×16-bit array multiplier using quadded logic. 

d. Triplicated Interwoven Redundancy (TIR) 

In the construction of the triplicated interwoven redundancy (TIR) case, 

the half adders within the 4×4-bit array multiplier tree were replaced with the TIR half 

adder design, as depicted in Figure 38. These half adders were combined into a full adder 

configuration with the signal lines recombined with a voter on the output. This allowed 

for a quick insertion into the 4×4-bit array multiplier tree, as previously indicated. The 

4×4-bit array multipliers were again recombined into the overall 16×16-bit array 

multiplier tree structure to obtain the desired circuit. 

Simulation was accomplished to verify the design against the unaltered 

multiplier configuration; simulation results were identical in both cases. The resource 

utilization of TIR in FPGA physical layout is illustrated in Figure 39. 
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Figure 38.   TIR logic version of half adder. 

 

 

Figure 39.   FPGA physical layout of 16×16-bit array multiplier using TIR logic. 
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e. Stacked Techniques – Quad-TMR & TIR-TMR 

Since there was additional logic area on the FPGA for synthesis, a 

decision was made to attempt stacked fault-tolerant techniques to determine the limits of 

logic capacity and speed. This is similar to the manner in which encryption algorithms 

are stacked upon one another to increase the security of the encrypted electronic data. By 

stacking the fault-tolerant techniques, one should produce a more stable circuit in the 

event of multiple bit upsets or cascaded faults. 

In the first case, the attempt to place the quadded logic implementation of 

the 16×16-bit array multiplier into TMR layout failed due to the physical constraints of 

the target FPGA. The overall resource utilization was such that ‘OVERMAPPED’ errors 

occurred in the map / place and route phases of the implementation. This was due to the 

volume limitations of the selected Spartan 3E FPGA device. The simulation of the device 

could still be accomplished and the results matched those of previous runs, indicating that 

both the multipliers and voter scheme were functioning properly. 

 

Figure 40.   FPGA physical layout of 16×16-bit array multiplier using stacked TIR-TMR 

logic. 

Finally, the TIR implementation of the multiplier was stacked upon the 

TMR layout for the final synthesis and implementation run. The FPGA physical layout 
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for this combinational technique is illustrated in Figure 40. Again, the simulation runs of 

the design indicated all circuits were functioning properly and as anticipated. 

When utilizing these stacked fault-tolerant methods, it is difficult to 

predict the amount of logic resources that will fit in an FPGA’s logic matrix. This is 

mostly due to the manner in which the software toolsets attempt to auto-optimize logic by 

combining and trimming for either speed or resource area utilization. Should one desire 

to target a design with these techniques, care must be taken to account for sufficient logic 

resources once the stacked fault-tolerant methods are employed. 

3. Data Results and Analysis 

The results of all six methods of fault-tolerance implementation were compared to 

obtain both FPGA resource utilization and timing information. The post-place and route 

(P&R) timing analysis consisted of a worst-case path measurement. The resources looked 

at consisted of the 4-input LUTs, number of occupied slices, number of logic LUTs, 

number of route-thru LUTs, and the average fan-out of the circuits. The results of both of 

these comparisons are presented in Tables 6 and 7, respectively. 

 

Table 6.   FPGA worst-case path timing for various fault-tolerant designs. 

Worst-Case Path [ns]

Default 38.54

TIR 42.15

TMR 38.71

Quadded 53.37

TIR-TMR 45.52

Quad-TMR Fail to Map / P&R  

 

Table 7.   FPGA resource utilization for various fault-tolerant design methods. 

4-Input LUTs Occupied Slices # of Logic LUTs # of Route-Thru LUTs Avg. Fanout

Default 762 of 9,312 (8%) 389 of 4,656 (8%) 643 119 2.15

TIR 1,836 of 9,312 (19%) 949 of 4,656 (20%) 1,717 119 2.94

TMR 2,318 of 9,312 (24%) 1,196 of 4,656 (25%) 1,961 357 2.14

Quadded 4,445 of 9,312 (47%) 2,614 of 4,656 (56%) 4,325 120 3.29

TIR-TMR 5,540 of 9,312 (59%) 2,828 of 4,656 (60%) 5,183 357 2.93

Quad-TMR 13,361 of 9,312 (143%) 6,688 of 4,656 (143%) 13,001 360 3.28  
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These results are also presented graphically in Figures 41 and 42. The failed case 

for timing in the Quad-TMR scenarios was due to the aforementioned failure to map / 

place and route the design into the Spartan-3E FPGA. A retargeting of the design to a 

Xilinx Virtex 4/5 series was met with success; however, the resource utilization for this 

type of device was still high. 

 

Figure 41.   Timing analysis for worst-case paths in various fault-tolerant 

implementations. 

 

Figure 42.   FPGA LUT and slice resource utilization in fault-tolerant implementations. 
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4. Discussion of Results 

In looking closer at the timing analysis, it was interesting to note the variance in 

the TIR versus TMR design. Though both are similar (TIR being a version of modified 

TMR), the default and worst-case path timings were less in the TMR case. This extra 3.5 

to 16.1 ns difference may not impact the design of a simple 16×16-bit array multiplier but 

could have greater implications in a more complex circuit or sequential logic. Likewise, 

the quadded logic and stacked fault-tolerant techniques were seen to have an even greater 

increase in timing delays. Again, these would have to be weighed carefully, dependent 

upon timing criticality and SEU tolerance benefit of the various techniques. 

Similarly, the results of the FPGA resource utilization indicate that the TIR case, 

while having the increased timing requirements, uses less logic than the TMR case. The 

TMR case is fairly close to the TIR case—and has the added benefit of timing being 

fairly close to the baseline 16×16-bit array multiplier circuit. In the quadded logic case, 

the FPGA utilization was actually seen to consume more than the anticipated four times 

the amount of resources. This is likely due to the types of gates and LUTs necessary to 

synthesize this type of design. This is important to note, in that the extra work of wiring 

the quadded logic implementation of gates may not lead to the anticipated logic 

utilization. This, in combination with the markedly increased timing path delays, would 

preclude any but the simplest logic designs. One suspects that there would be added 

difficulties and overhead when incorporating quadded logic into sequential machines. 

If the FPGA device family has sufficient resources, a better approach may be to 

choose the TIR-TMR stacked fault-tolerant technique. Both the path timing delay and 

resource utilization are similar to the quadded logic implementation. Any fault-tolerant 

benefits of stacked techniques would have to be compared to existing, baseline 

techniques both through fault injection simulations and in the presence of a radiation 

environment. Synthesis and implementation of the design through the map / place and 

route phases would be necessary before conclusively knowing the required FPGA 

resources; however, the construction of this design is greatly simplified when compared 

to quadded logic. Since the stacked techniques can be implemented without much 
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difficulty, future testing for possible benefits of stacked fault-tolerant schemes may be 

accomplished in a cyclotron. 

Due to the path timing and FPGA resource utilization results, the best approach 

appears to be the complete TMR implementation of a design. This has almost exactly 

three times the required logic use plus the addition of the voting scheme. The timing 

being so similar to the non-modified case should yield excellent results in both 

combinational and sequential circuits. Future research should look more into the varying 

TMR techniques such as distributed versus global approaches. The different methods of 

clocking should produce varied results when used with sequentially clocked circuits. 

These methods should be combined with partial reconfiguration techniques, if necessary, 

to yield an optimal design for a particular scenario. 

Additional work needs to be done in the realm of QFDR as it compares to 

quadded logic. Past research has shown some benefit to the application of this technique 

both with regards to timing and resource utilization. An open-source toolset known as 

RapidSmith exists to assist with this implementation. This should be a useful toolset—

however, knowledge of Eclipse Java IDE and the interfaces between it and Xilinx ISE are 

necessary. 

B. SELECTION OF A FAULT-TOLERANT TECHNIQUE 

As a result of this study, the design of the sequencer being developed for NPSCuL 

will utilize Actel ProASIC3 flash-based FPGA logic in a TMR configuration. The 

sequential finite-state machines to control the timing and execution of deployments 

should benefit most from the decrease in path timing results and reduced logic utilization 

relative to other fault-tolerant techniques. Future work will analyze probabilities of 

failures, both in simulation and physically, in a radiation-exposed environment. Special 

attention needs to be given to the overall reliability measurements of the various fault-

tolerant techniques, with particular emphasis placed on TMR versus quadded logic and 

the benefits of stacked combinational techniques. 

One benefit to selection of the TMR technique in obtaining practical designs is 

the amount of commercial software available for implementation of these methods in 
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logic. While testing the TMR instantiations of redundant logic on combinatorial circuits, 

all designs were manually wired together in schematic form to achieve the results 

mentioned. One would desire to have these methods automatically inserted into a base-

line design for quick implementation and comparison to manually developed methods. As 

such, a quick comparison of commercial products to manual TMR development is 

appropriate. 

1. Xilinx TMRTool and Mentor Graphics Precision Hi-Rel 

Two of the commercially available, fault-tolerant synthesis products available for 

the design of TMR logic are Xilinx TMRTool and Mentor Graphics Precision10 Hi-Rel. 

The purpose of both these products is similar; an increase in designer productivity by 

reducing errors and speeding the time for TMR implementation. The main difference 

between the two tools is the family of products the software is intended for. TMRTool is 

only targeted toward Xilinx FPGAs; although, it works with all entry methods including 

schematics and HDLs [49]. Precision Hi-Rel, however, is a multi-vendor, multi-mode 

product [50]. While TMRTool is listed as an ITAR-controlled product [49], Precision Hi-

Rel does not appear to have similar restrictions. Since the design of sequencer logic is 

taking place upon Actel ProASIC3 hardware, Precision Hi-Rel is the most suited 

application for further use. 

Precision Hi-Rel offers fault recovery and fault-tolerant FSM encoding through a 

variety of features. This FPGA synthesis product was developed under NASA guidance. 

Precision Hi-Rel provides an enhanced form of safe FSM that offers full SEU detection 

and recovery [50]. The generated FSM, when it detects an invalid transition, must still go 

through a recovery process including an operational reset that may consume one or more 

clock cycles. Thus, Precision Hi-Rel also includes fault-tolerant FSM implementations 

which can absorb an SEU and continue operation without interruption [50]. Precision Hi-

Rel also allows for selection of LTMR, DTMR, and GTMR methods and handles all 

embedded resources. 

                                                 
10 Precision® is a registered trademark of Mentor Graphics. 
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The Precision Hi-Rel synthesis tool is not included as part of Microsemi’s Libero 

SoC package. Instead, the default synthesis tool provided with Libero SoC is Synplify 

Pro. Synplify Pro does not have any of the added TMR capabilities of Precision Hi-Rel. 

Application of Precision Hi-Rel to the sequencer project will require a separate software 

license, as an academic or trial version is not available for educational institutions. The 

author recommends that future design work on the sequencer incorporate the use of this 

software package, as it would allow for testing and comparison with the manually 

inserted TMR methods. The ability to quickly switch to LTMR, DTMR, and GTMR 

modes in logic would be greatly beneficial when testing the final design in a radiation 

environment. Additionally, it will allow for ease of migration of more complex logic 

designs to TMR instantiations once expanded features are added to the sequencer. 

2. Manual Insertion of TMR with Schematic and HDL Techniques 

Due to the lack of available commercial software during the performance of this 

research, all designs were implemented manually using the LTMR methodology. In this 

method, all logic elements were triplicated with error correction performed by one voter 

on the output path. Certain features of DTMR were carried forward into the sequential 

logic development, such as feedback path voting being triplicated and tied to all 

triplicated structures. The clock input to the sequential logic and single voter output can 

still be seen as limiting factors in the application of this technique to the final sequencer 

logic design. It would be greatly beneficial to obtain the benefits of full DTMR with the 

triplicated clock signals of GTMR in the final representation of this sequencer logic. 

C. APPLICATION OF TMR TO SEQUENTIAL LOGIC DESIGNS 

After deciding upon TMR as the appropriate fault tolerance method, based on the 

experimental results in the combinational logic testing earlier in this chapter, the TMR 

technique was implemented in sequential logic. Many of the means of constructing TMR 

sequential logic were very similar to that utilized previously. All logic elements within 

the FSM design were triplicated with a voting scheme on the output. There was one 

important difference due to the addition of logic to the feedback paths within the FSMs. 

The FSM chosen for triplication was a clocked synchronous state machine of Moore 
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design, similar to that found in [76]. This allows for a predictable state transition with 

plenty of points to test circuit output or allow for fault injection in testing. The schematic 

representation of the FSM under test is illustrated in Figure 43. 

 

Figure 43.   Moore design, clocked synchronous state machine utilizing positive-edge 

triggered D flip-flops (After [76]). 

The resultant output of the post-place and routed design was run through a 

simulation utilizing a testbench file. The code for the testbench can be found in Appendix 

D. The resultant timing diagram is illustrated in Figure 44. The top lines of the timing 

diagram corresponds to the output of the FSM (MAX), with the clock signal (CLK) and 

enable (EN) signal lines following. The next four signal lines of the timing diagram 

(highlighted in blue) are the inputs and outputs of each of the two D-FFs – D0, D1, Q0, 

and Q1. The output of the circuit is seen to go high whenever Q0 and Q1 are high, 

corresponding to D0 and D1 falling on the positive-edge of the clock signal. The fault-

free case of this timing diagram output appears as anticipated with the state transitions 

expected. 
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Figure 44.   Timing diagram for the Moore-type FSM developed with output, clock, 

enable and D-FF input/output signals visible (fault-free case). 

After sequential behavior for the fault-free case of the FSM was obtained through 

simulation, a decision was made to implement fault cases for comparison in the non-

TMR circuit. 

1. Manual Insertion of Faults 

For the initial testing on logic timing results due to error cases, there were three 

trials done to determine effects of error: floating-input, ‘stuck-at-0,’ and ‘stuck-at-1.’ 

These were inserted into the circuit on the second input of the second AND gate tied to 

the top OR gate. This would lead to an error in D0, dependent upon the combination of 

fault with the other passed logic values. 

a. Floating-Input Case 

For the floating-input case to the AND gate, the second input line was 

disconnected with no attachments, as illustrated in Figure 45. Breaks in the circuit similar 

to this case commonly result in non-valid logic values in the output represented by ‘x’ 

and a red floating line in timing diagrams. 

 

Figure 45.   Floating-input case of AND gate second input disconnected, simulating break 

in circuit or disruption in input. 
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The resultant timing diagram for the floating-input case is seen in Figure 

46. As anticipated, the logic values for both the overall circuit output and the intermediate 

D-FF inputs and outputs are inconclusive logic values. This floating break in the circuit 

leads to complete break-down of the overall FSM with inconclusive data returned. A 

disabling error such as this in the non-TMR case could produce erroneous or no output. 

 

Figure 46.   Timing diagram for the Moore-type FSM developed with output, clock, 

enable and D-FF input/output signals visible (floating-input case). 

b. ’Stuck-at-0’ Logic Fault 

For the constant logic ‘0’ or ‘stuck-at-0’ case to the AND gate, the second 

input line was pulled down with a biasing resistor tied to ground, as illustrated in Figure 

47. This simulates a constant value of binary zero to the second input of the AND gate, 

leading to incorrect output to the OR gate in certain cases. 

 

Figure 47.   Second input of AND gate tied to logic ‘0’, simulating constant logic zero or 

short in circuit to ground plane. 

The resultant timing diagram for the ’stuck-at-0’ case is seen in Figure 48. 

There are some noticeable differences in this timing diagram in comparison to the fault-

free case in Figure 44. While the output (MAX) appears to go high in the expected 

manner, a closer look at D0 and Q0 reveal the error injection as they do not always go 
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high where anticipated. As such, the output does not remain high over the last 150 ns as 

in the fault-free case. An error such as this in the circuit, where a line is shorted to ground 

by an SEL, could lead to erroneous output timing for the sequencer. This could lead to 

individual CubeSats being deployed at the inappropriate time or missed deployments 

altogether. 

 

Figure 48.   Timing diagram for the Moore-type FSM developed with output, clock, 

enable and D-FF input/output signals visible (constant logic ‘0’ case). 

c. ’Stuck-at-1’ Logic Fault 

For the constant logic ‘1’ or stuck-at-1 case to the AND gate, the second 

input line was pulled up with a biasing resistor tied to VCC, as illustrated in Figure 49. 

This simulates a constant value of binary one to the second input of the AND gate, 

leading to incorrect output to the OR gate in certain cases. 

 

Figure 49.   Second input of AND gate tied to logic ‘1’, simulating constant logic one or 

short in circuit to positive voltage plane. 

The resultant timing diagram for the ’stuck-at-1’ case is seen in Figure 50. 

Again, there are some noticeable differences in this timing diagram in comparison to the 

fault-free case in Figure 44. The output (MAX) appears to go high in many unexpected 
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places as the incorrect value is passed forward by the AND gate through to D0 and Q0. 

D0 and Q0 get stuck at a logic high value which creates oscillations in the output state of 

the circuit. These outputs eventually affect D1 and Q1, as Q0 is tied to the second OR 

gate tree via a feedback path. This will most assuredly lead to individual CubeSats being 

deployed at the inappropriate time and a complete loss of sequencer function. An SEL of 

a signal line creating this type of condition is a catastrophic event. 

 

Figure 50.   Timing diagram for the Moore-type FSM developed with output, clock, 

enable and D-FF input/output signals visible (constant logic ‘1’ case). 

2. Modification of FSM Design to TMR Representation 

Once the methods of fault injection were developed and fully tested for the non-

TMR FSM implementation, work was done to develop the design to a TMR instantiation. 

This was done by voting on the output path, similar to the combinational logic methods 

utilized earlier. In addition, voters were added to the feedback paths to each FSM in the 

triplicated logic. This negated any errors generated in propagating back to the next state. 

The triplicated version of the Moore-type FSM is illustrated in Figure 51. 

Initial testing of the TMR FSM yielded results identical to the non-TMR version 

of the circuit, as seen in the timing diagram of Figure 52. This verified the proper 

operation of the modified circuit with exact timing sequences matching the non-TMR 

case. To properly test for the fault cases, scenarios were run using each of the three 

manual, fault-injection test cases as previously specified. For the constant logic ‘0’ and 

constant logic ‘1’ cases, the output was seen to correct itself regardless of the 

intermediate states of D0, Q0, D1, and Q1. The more interesting of these cases, constant 

logic ‘1’, which yielded so many timing errors in the non-TMR instantiation, is illustrated 

in Figure 52. 
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Figure 51.   TMR representation of the Moore-type FSM with voting logic. 

 

Figure 52.   Timing diagram for the Moore-type, TMR version of the FSM developed 

showing output signal correction regardless of errors (constant logic ‘1’ case). 
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Equally as interesting was the manner in which the TMR version of the FSM 

corrected for the floating-input case. While the floating input lines may still be seen in the 

D0 and Q0 input and output of the first D-FF, the signal is corrected by the time it 

reaches the output, MAX. Additionally, the voting logic is working on the D0 and Q0 

signals to restore proper operation when possible. The amount of time left in the non-

valid logic states was minimized. This is illustrated in Figure 53. 

 

Figure 53.   Timing diagram for the Moore-type, TMR version of the FSM developed 

showing output signal correction regardless of errors (floating-input case). 

3. Timing and Resource Comparison for Sequential Circuits 

Another analysis of the timing and resource utilization between the two designs 

was made prior to proceeding to the next phase of logic design. Once verification of the 

TMR technique was made for a general Moore-type FSM, one desires to obtain accurate 

timing information to further validate the approach. In the case of the non-TMR 

representation of the FSM design, an average delay of 4.9 ns across three levels of logic 

was measured. This corresponds to a clock frequency of up to 204 MHz. Worst case 

delay across four levels of logic was found to be 5.5 ns due to the input and output buffer 

delays on the FPGA. After the place and route phase, net skew was measured as 0.0 ns 

with a maximum delay of 0.2 ns. Setup time was 1.9 ns and hold time 1.3 ns; thus, 

considering the sequencer will be under-clocked to conserve power at a frequency of 

approximately 50 MHz, any necessary timing constraints are met. 

For the TMR version of the FSM, the same measurements were conducted after 

the synthesis and place and route phases of design. An average delay of 6.5 ns across four 

levels of logic was measured. This corresponds to a clock frequency of up to 154 MHz. 

Worst case delay across four levels of logic was found to be 6.8 ns, again due to input 

and output buffer delays. After place and route, net skew was measured at 0.0 ns with a 
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maximum delay of 0.2 ns. Setup time was 3.1 ns and hold time 2.0 ns; again, any timing 

constraints necessary for the design are met. 

The data above indicated that the added delay of the voter circuits introduced in 

the TMR version of the FSM is responsible for the increased timing results and 

subsequent reduction in clock frequency. This may be somewhat further affected by the 

delays of the output buffers, as they do not appear in the feedback paths of the TMR 

version. Most interesting was the increase in setup and hold times between the non-TMR 

and TMR versions of the FSM. While the increase of approximately 0.5 to 1 ns should 

not affect the operation of the simple sequencer application considered in this research, 

more complex functions such as DSP algorithms or more complex processing schemes 

may have to take similar timing increases into account. Complete verification of the data 

timing sequences would need to be carefully analyzed in either of these two scenarios.  

A difference in resource utilization between the two designs was as anticipated. 

The non-TMR, baseline version of the FSM design utilized two of 9,312 FFs, three of 

9,312 LUTs, and two of 4,656 slices with an average fan-out of 2.00. The TMR version 

used six of 9,312 FFs, eleven of 9,312 LUTs, and six of 4,656 slices with an average fan-

out of 2.50. In both these baseline and TMR instantiations, the resource utilization for 

FFs and LUTs was well under 1% of the total available quantities. These resource 

utilization values should maintain an approximately three factor increase of TMR over 

the baseline design, as the complexity of the logic design increases. The three-fold 

increase of the TMR design in resource utilization from a baseline version will be readily 

apparent in percentages the larger a logic circuit becomes. 

The timing and resource utilization comparisons between the non-TMR and TMR 

forms of sequential logic revealed that either design may be used for the sequencer 

design. The additional setup and hold time, slower clock speed available, and slightly 

increased path delay will have little to no effect on the sequencer operation. The 

additional fault-tolerant features of TMR make it the best solution for the sequencer 

project while requiring a factor of three to four times the resource utilization for the 

design. 
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D. PRELIMINARY SEQUENCER LOGIC DESIGN 

After testing the validity of the TMR approach in sequential logic, design work 

proceeded with specific development of logic for use in the sequencer application. 

Transition of design work was carried over from the Xilinx test cases to Actel specific 

designs using Libero SoC. The Actel ProASIC3 development board was used for the first 

sequencer logic testing, as seen in Figure 54. 

1. Conversion of Xilinx HDL to Actel HDL 

One of the first challenges in carrying schematically-designed circuits from Xilinx 

ISE to Actel SoC is the manner in which logic primitives are specified in the two 

products when HDL is generated. This requires manual editing when porting the HDL 

specifying a Xilinx schematic design over to the Actel SoC development suite. For 

example, in Xilinx ISE the instantiation of a two-input NAND gate is as follows: 

  NAND2 XLXI_4 (.I0(XLXN_4),  

              .I1(XLXN_3),  

                .O(XLXN_5)); 

 

Figure 54.   Actel ProASIC3 development board showing sequencer LED testing with 

TMR logic implemented. 
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To properly port this design over to an Actel equivalent representation of the two-

input NAND gate, the signal inputs and output must be renamed to the appropriate 

variable term. In this instance, .I0 becomes .A, .I1 is renamed .B, and .O translates to .Y 

for the following representation: 

  NAND2 XLXI_4 (.A(XLXN_4),  

              .B(XLXN_3),  

                .Y(XLXN_5)); 

While the instance can be renamed from XLXI_4 to something else, leaving this 

device name helps with the realization that the code is ported from Xilinx to Actel 

representation. Comparing the two source code equivalents aids in troubleshooting the 

automatically generated HDL should errors occur. This may not seem like a great deal of 

work until one considers the amount of logic typically involved in complex designs. 

Since the design of the sequencer is implemented on the ProASIC3 family, knowledge of 

Verilog is critical to the success of the project; once the initial work is done 

schematically, time must be taken to understand any generated HDL code prior to porting 

the design to Actel SoC. 

2. Synplify Pro Representations of FSM Logic 

Once logic for an FSM is implemented in Actel SoC, there are a variety of 

synthesis tools available in Synplify Pro to aid in the realization of circuits. Instantiated 

logic can be viewed as a register-transfer level (RTL) or technology schematic. These 

views within Synplify Pro are illustrated in Figures 55 and 56 for a simple FSM. 

 

Figure 55.   Synplify Pro RTL view of instantiated FSM logic. 
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The program also features an FSM explorer which may be utilized in the 

generation of state tables and state diagrams for any generated design. The state table and 

diagram for the FSM implemented is seen in Table 8 and Figure 57. All code for this 

basic, non-TMR FSM can be found in Appendix D. 

The appeal of these tools is immediately apparent as they are beneficial in 

troubleshooting and verifying reference design material with generated output. During 

design of the TMR version of FSM logic, cross-referencing between the two state 

machines is possible in utilizing the features of Synplify Pro. Should the switch to 

Precision Hi-Rel occur in future testing, one may be able to check the output of that 

synthesis tool (various TMR representations of a base logic design) within Synplify Pro 

to verify expected output and state transitions. 

 

 

Figure 56.   Synplify Pro technology view of instantiated FSM logic. 
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Table 8.   Synplify Pro generated state table for FSM logic. 

 
 

 

Figure 57.   Synplify Pro generated state diagram for FSM logic. 

3. Designation of Timing Constraints within Logic 

In defining the timing variables for use in deployment, there are two possibilities 

for storage—saving the timing constants as parameters in Verilog and using the 

FlashROM feature of the ProASIC3 FPGA to store constant values. 
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a. Parameter Constants in Verilog HDL 

In Verilog, parameters are constant values and do not incorporate any 

other data types such as nets or registers. In defining these parameters during the initial 

portion of Verilog code, one is able to rapidly change the values and operation of a 

module prior to re-synthesis and configuration of a target FPGA device. These parameter 

values are not modifiable at runtime and can act as the timing constants necessary to 

control the deployment sequence. The following code illustrates the use of parameter 

values within a Verilog module: 

  // Module – Test Module 

module test_Mod (Clk, D, Q); 

parameter  width = 2, 

             delay = 10; 

input [width - 1 : 0] D; 

input Clk; 

output [width : 0] Q; 

assign #delay Q = D; 

endmodule 

 

In this manner, all eight of the timing constants defining the deployment 

sequence for the various P-POD deployments may be specified. Once the ‘Arm’ power 

signal activates the sequencer and the ‘Deploy’ command is internally generated, the 

sequencer FSM will execute the deployment sequence using the constant variables 

defined at the start of the Verilog declarations. To modify the timing sequence, only a 

quick re-declaration of parameters must occur prior to re-synthesis and implementation. 

The generated bitstream file for FPGA reconfiguration takes only minutes to produce. All 

interfacing and reprogramming may be accomplished through the JTAG port at any time 

prior to launch, when physical access to the sequencer is available. 

b. Constant Declarations in ProASIC3 FlashROM 

The ProASIC3/E devices have a dedicated nonvolatile Flash ROM 

(FROM) memory of 1,024 bits for storage of constant values or serial number 

identification. This FROM can be read, modified, and written using the JTAG interface; 

however, it can be read but not modified from the FPGA core. The FROM is logically 

organized as eight pages of 16 bytes and physically organized 8×128 bits [77]. Actel 
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ProASIC3/E devices are the only FPGA to support this feature as only flash-based 

technology supports reconfigurable, nonvolatile memory. 

The advantage of this FlashROM is immediately seen in any application 

utilizing the FROM. Since the FPGA can be configured using HDL code with a portion 

referring to the constants stored in FROM, any changes via JTAG interface to the 

constant values do not require complete reconfiguration of the FPGA. The main portion 

of the synthesized and implemented FPGA configuration can be left untouched with only 

a simple flash re-programming of the FROM. This reduces the time required to redefine 

variables for sequencing from minutes to seconds. 

Designation of FlashROM contents from within Actel SoC is a simple 

process of adding the appropriate module (‘FlashROM_cmp’) to a project requiring its 

use. The IP core is then instantiated as follows to call the FlashROM variables from the 

HDL code: 

 

----------- FlashROM ip core instantiation ----------- 

----------------------------------------------------- 

--FlashROM_cmp_inst: This FlashROM block is configured 

--to generate different time intervals between launch 

--select signals 

----------------------------------------------------- 

 

FlashROM_cmp_inst: FlashROM_cmp port map 

      ( 

         CLK  => from_en_sig, 

         ADDR => addr_sig, 

         DOUT => dout_sig 

      ) ; 

 

The above example is modeled after an eight chip power sequencer 

reference design provided by Actel [78]. The decimal values stored in the first eight bytes 

of page zero in the FlashROM are illustrated in Figure 58. The design of this reference 

power sequencer is very easily modified to fit the requirements of the CubeSat launching 

application. All that remains is the modification to TMR implementation of logic using 

manual or commercially available means along with radiation testing. Preliminary code 

for the CubeSat sequencing application is provided in Appendix D. 
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Figure 58.   FlashROM storage of eight bytes defining sequencing timing; the third value 

(0x2) is highlighted containing decimal value ‘15.’ 

E. CHAPTER SUMMARY 

The methods of implementing fault-tolerant techniques within logic leading to 

final selection of a particular method were presented in Chapter V. All combinational and 

sequential circuits were compared for accuracy in output, FPGA resource utilization, 

timing characteristics, and reliability for correcting errors. TMR was seen as the best 

solution for both combinational and sequential circuits due to small overhead 

requirements and small increases in logic delay. Discussion of manual and automatic 

fault injection techniques was provided. 

Further research was conducted toward developing the sequencer logic for use in 

the developed ProASIC3 design. Work was carried over from Xilinx ISE to Actel SoC 

with porting methods discussed. An overview of Actel SoC requirements for logic 

development was provided with suggestions for future code design. Differences in 

storage methods for sequencer timing values were discussed, including storage of 

variables within HDL code or in the internal FlashROM of the FPGA. The use of a power 

sequencer reference design for the ProASIC3 family, coupled with TMR logic, is seen as 

the way forward for the sequencer application. 
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

A. CONCLUSIONS 

During the development of a general payload processor, there were several items 

noted which vary from work done in the past. The research conducted to discern the 

appropriate type of processor suitable to the sequencer project led to a complete review of 

all available FPGA technology on the market. One of the most important differences 

between the development of the sequencer and work done previously on CFTP concerns 

the type of device utilized. While CFTP focused on SRAM-based FPGAs, with all of the 

inherent requirements for supporting secondary componentry, the fault-tolerant FPGA-

based sequencer project utilizes Actel ProASIC3 flash-type FPGAs for embedded 

processing. This has several benefits including a large reduction in the number of 

secondary components required to operate the device, a low-power operating mode that 

reduces power consumption by up to 40%, live-at-power-on processing capability, and 

the inherent radiation tolerant properties of flash-type technology [79]. This type of 

FPGA has not been previously utilized in space-systems projects at NPS, and future 

research should incorporate this design. While the Xilinx Virtex-5 series has certain clock 

frequency and quantity of logic resources advantages, the Actel ProASIC3 series is 

suitable in all but the most demanding DSP applications. The ability to have one flash-

based FPGA take the place of up to a dozen components on a SRAM-based platform is of 

great benefit in the radiation environment of space. When only one device is involved, 

protection of the design from radiation induced faults becomes a more manageable 

challenge. 

In researching the various means of fault tolerance available, one is faced with the 

task of choosing between several competing schemes—each of which promises to 

accomplish the same end-state of reducing radiation-induced errors in logic. While there 

are certain benefits to the quadded logic approach, such as the elimination of the voter 

circuitry, the combined effects of greatly increased resource utilization coupled with a 

significant timing delay reduce the suitability of this approach. Additionally, the time-
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intensive manual wiring of logic that accompanies the quadded logic approach is 

disproportionate to the returns in error masking. Similarly, TIR offers many of the same 

benefits of TMR in a slightly more resource efficient design; however, the lack of 

certainty in error correction coupled with delay path differences in the circuit negatively 

affects its usefulness. TMR offers the best combination of logic utilization and timing 

path delay for any of the circuits investigated. 

The development of the PA3TB was instrumental in developing skills necessary 

for effective use of Altium Designer. Altium was found to be a highly capable platform 

for development of schematic and PCB layout. The ability to easily try out circuit 

implementations while linking 2-D footprint and 3-D models to their associated 

components is of great interest to any circuit designer. Many errors were avoided by 

careful planning of the schematic before layout and placement fitting of components. 

There were excellent results obtained in the development of the first PA3TB design; it 

served as a familiarization with not only the design software toolset but also the 

manufacturing and integration of multi-layer PCBs and SMT components. There was a 

general realization of what features would work or be too difficult to manufacture on the 

more complex SADv3 design after gaining hands-on experience with the integration of 

the PA3TB. 

Design work and implementation of the SADv3 is seen as the most time-intensive 

portion of work occurring in this research. The complexities involved when moving from 

a four to eight-layer PCB design with a 484-pin BGA FPGA are easily the most daunting 

task accomplished. Overall design complexities involved with supporting the FPGA 

require pre-planning in the number and type of supporting circuitry such as capacitor and 

resistor banks. The automatic trace routing choices made by Altium Designer are not 

always in the best interest of the PCB layout. The traces and escape patterns provided by 

the auto-router may be permissible once extensive work is done to manage the settings 

and parameters of the layout options. The addition of the SRAM and flash-based memory 

components to the design is done in the best interest of future operations and mission 

sets. Although not necessary for the sequencer application, any additional data logging or 

data processing application will find these devices useful. 



 

99 

In both combinational and sequential circuits, the logic outputs of the TMR 

instantiated circuit under test were identical to the non-triplicated version. Additionally, 

the timing path differences between the two versions of circuitry were negligible. In all 

but the most complex circuits, this should remain the case. The ability to quickly 

represent HDL code within a schematic or Verilog representation, triplicate the 

instantiation, and combine with voting logic is a simple means of providing logic 

redundancy to any design. Sequential circuits take a bit more work, as the feedback paths 

providing next-state logic must also be properly protected to prevent error propagation. In 

all cases of TMR testing upon sequential logic, the designed circuit was able to correct 

any introduced fault prior to affecting the output. This is a clear benefit for the sequencer 

application, the greatest advantage of which is guaranteed timing and CubeSat 

deployments during the periods specified. 

The ability to manually inject faults for testing, while applicable to the work in 

this thesis, is a time-intensive proposition. To test all possible fault points within a circuit, 

a more automated version of the fault injection technique must be developed. 

Additionally, the manner of TMR development and insertion has great implications 

concerning time available to pursue other logic research, development, and testing. With 

the availability of commercial software products, a great deal of time and effort can be 

saved by automatically configuring different forms of TMR for logic implementation 

using software packages such as Precision Hi-Rel. Use of this commercial synthesis 

software will allow for comparisons between the manual TMR methods developed and 

automated TMR generation. This program should be licensed to allow for continued 

testing of the various subsets of TMR implementations. 

Any transitions from Xilinx to Actel Verilog HDL code require reformatting all 

instantiated logic components into the proper syntax for use by the Actel synthesis tools. 

This process is lengthy and tedious with regards to the appropriate syntax for transition 

from one software toolset to the other. Since Precision Hi-Rel can be targeted toward any 

vendor’s devices generically, it should also aid in automating syntax exchange to some 

degree. Even if the logic has been designed schematically in Xilinx, the Precision Hi-Rel 

package will be able to TMR the design and adapt it for Actel FPGA usage. 
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The development of HDL sequencer logic is an important step toward the 

realization of the integrated payload design. Through careful application of various 

techniques, including Verilog variable declarations and ProASIC3 FlashROM utilization, 

there are a variety of options available for logic implementation on the sequencer. The 

ability to quickly realize an FSM design using Verilog case and state assignments saves a 

great deal of time and effort. This is in contrast to attempt to reproduce a complex FSM 

design schematically with logic gate equivalency. 

The design work in developing a general-purpose payload processor has many 

real world applications. Specifically, the work contained in this thesis sequencer design is 

applicable to a real-world, CubeSat deployment application for potential use on future 

missions. In developing a novel approach to processing and timing management 

operations, a low-cost solution to a difficult problem is realized. There is still research to 

be conducted and testing necessary to validate the design prior to manufacture and 

launch. This additional research should allow for several subsequent theses to be 

prepared on the topic. The general-purpose payload processor is flexible enough both in 

configurability and logic capacity to target new implementations. The TMR techniques 

and logic implementations for the sequencer are only a single example of an application. 

B. FOLLOW-ON RESEARCH AND TESTING 

There are several avenues available for development of the general payload 

processor design.  One of the first tasks to accomplish is final component placement and 

subsequent trace verification of the SADv3 by a design review committee. This team of 

engineers must work to ensure that the design of the eight-layer PCB and all associated 

components are verified prior to board manufacture. As there are a large number of signal 

lines on the design schematic, care must be taken to verify all traces to ensure proper 

endpoint termination and routing. The choice of power supply may also be combined 

with current means of power conversion to obtain the required +5 VDC voltage for down-

conversion to other voltages. VPT Incorporated manufactures DC-DC converters for 

space applications which are rated to 30 krad TID and SEE characterized to 44 MeV-

cm
2
/mg with up to 85 MeV-cm

2
/mg parts available [80]. They also manufacture an 
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associated electromagnetic interference (EMI) filter for use with the DC-DC converters 

[81]. These will work well in converting the +28 VDC power supplied by the host 

spacecraft into a more manageable +5 VDC for further regulation on the PCB. Their use 

has already been space-qualified in several previous mission hardware designs. 

Another desired feature for inclusion on the SADv3 design is the incorporation of 

Ethernet for data logging during radiation testing. Preliminary research into the 

incorporation of Ethernet standards, in combination with ProASIC3 FPGAs, indicates 

that there is a Microsemi available 10/100 Ethernet Media Access Control (MAC) core to 

connect to local area networks (LANs) [82]. Work will need to be done to interface the 

appropriate pins of the FPGA and determine logic area utilization and suitability for 

triplication. Actel provided 10/100 MAC core specifications for the ProASIC3 series that 

specify an estimated 44% device utilization with a corresponding 49 MHz clock 

performance [82]. This utilization factor precludes TMR instantiation of this portion of 

the FPGA logic on the ProASIC3 series of devices. 

The addition of SRAM and flash-based memory to the SADv3 design opens up 

new possibilities in both processing and video feed features. Implementation of the 

FPGA into a general payload processor arrangement for other applications can utilize 

such features. There are a multitude of cores available for processing available directly 

from the vendor [83]. While much of this IP may cost extra to license, there are open-

source cores available which may serve an equally useful purpose [84]. The available 

open-source cores include communications controllers, processors, systems controllers, 

and video controllers. Research into these IP options should be conducted to find suitable 

items for possible inclusion into the SADv3 design. There are display reference designs 

available including video and still-shot camera design and programming files [85]. It 

should be noted that the large relative device utilization of such proprietary cores may 

make it impossible to TMR such features on the FPGA while leaving sufficient logic 

resources to TMR the sequencer portion of the design. Additional difficulties are incurred 

in trying to TMR proprietary IP with regard to timing constraints and power 

requirements. Some testing of this may be possible with the Precision Hi-Rel software 
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packages, although, there is still a logic resource utilization challenge as seen in the 

10/100 MAC core specified previously. 

The majority of remaining work involves radiation testing of a flight-ready 

SADv3 board with various fault-tolerant schemes. This is necessary to determine the best 

combination of FPGA hardware and configuration logic. The various forms of radiation 

introduction to the PCB need to be investigated, including FPGA dose rates and the 

possibility of whole board testing. Radiation levels need to be sufficient to push the 

FPGA to specified limits and beyond to determine suitability for the space environment. 

For the nuclear source chosen for testing, coordination between NPS and the cyclotron 

provider needs to be managed up-front to avoid testing errors in setup. 

In conclusion, there are a number of applications for which the ProASIC3 general 

purpose payload processor is suitable. The sequencer work contained in this thesis is one 

application in which a significant gain in the state of current CubeSat deployment 

technology may be realized. The ability to deploy CubeSats using TMR logic should be 

quite cost effective when compared to custom, rad-hard components, possibly with no 

loss of fault tolerance. TMR is useful for protecting both combinational and sequential 

circuits, especially given the available fault-tolerant software toolsets. Future designs 

using Actel flash-based FPGA technology may have wide applicability due to its 

configurability and the flexibility with which the I/O pairs can be assigned. The 

compactness of the ProASIC3 circuit design, when compared to the more traditional 

Xilinx Virtex series FPGAs, is readily apparent. It is anticipated that this design, or some 

evolution of it, will be quickly developed into a flight-ready product. 
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APPENDIX A. FPGA HARDWARE PRODUCTS AND 

SOFTWARE DEVELOPMENT TOOL DIFFERENCES 

A.1 COMPARISON OF XILINX AND ACTEL PRODUCTS 

The goal of this appendix is to look at all of the considered hardware vendors to 

determine the optimal solution to the choice of FPGA for use in the CubeSat deployment 

sequencer. A variety of features are compared, including software packages and hardware 

feature sets. In past chapters, the choice of the FSM type, FPGA types considered, 

radiation challenges faced, and fault-tolerant logic implementations were discussed. The 

choice of a SRAM-based or flash-based FPGA using a Moore machine FSM was settled 

upon as the desired configuration for the sequencer. This appendix looks to further that 

choice to a specific product, having considered the software suites available and the 

particular hardware configurations which may fit a chosen fault-tolerant scheme. 

In both cases, Xilinx or Actel products, design choices are limited to those 

devices with a full upgrade path to rad-hard technology. The devices compared are those 

that would have pin-to-pin compatibility between commercial and military-grade 

products with their rad-hard counterparts. Both vendors’ software products are compared 

in terms of feature sets, usability, and ease of hardware interface. In all cases, attempts 

are made to test various logic designs upon the hardware compared using vendor 

provided development boards. These experimentation results were discussed previously 

in Chapter VII. 

1. Software Feature Set 

For the purposes of this research, two of the most prominent vendors of SRAM-

based and flash-based FPGAs were compared in hardware and software features. Xilinx 

Corporation is known for its Spartan11 and Virtex series of devices - with legacy Virtex I 

FPGAs being flown on CFTP during MidSTAR-1 and the upcoming NPSAT1 satellite 

missions. Xilinx devices are SRAM-based with all of the previously mentioned design 

challenges. Xilinx devices are best programmed with the Xilinx Integrated Software 

                                                 
11 Spartan® is a registered trademark of Xilinx, Inc. 
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Environment (ISE12) development package [86]. Meanwhile, Actel (now a division of 

Microsemi) Corporation has long focused on antifuse technology but has recently made 

strides in configuring their ProASIC133/L flash-based FPGAs for the space environment. 

Similar to ISE, Microsemi provides a software environment known as Libero14 System 

on Chip (SoC) targeted to its various FPGA product lines [87]. 

a. Xilinx ISE 14.3 

ISE WebPACK15 design software is the name of the free Xilinx PLD 

development suite made for Linux, Windows16 XP, and Windows 7. ISE WebPACK is a 

downloadable solution for FPGA and CPLD design offering HDL synthesis and 

simulation, implementation, device fitting, and Joint Test Action Group (JTAG) 

programming. It consists of the software development kit (SDK), MicroBlaze17 controller 

system, project navigator, CORE Generator14, PlanAhead14, ChipScope14 Pro, Xilinx 

Power Analyzer (XPA), ISE Simulator (ISim), and Xilinx Synthesis Tool (XST). The 

software package is upgradable to more extended editions including the Logic, 

Embedded, and DSP versions of the package [86]. The use of Xilinx ISE has a long 

history at NPS, an earlier version being the toolset utilized for the development of CFTP. 

Xilinx ISE, having used Mentor’s ModelSim18 in the past, now defaults to its proprietary 

ISim simulator. The primary interface of Xilinx ISE can be seen in Figure 59. 

                                                 
12 ISE® is a registered trademark of Xilinx, Inc. 

13 ProASIC® is a registered trademark of the Microsemi Corporation. 

14 Libero® is a registered trademark of the Microsemi Corporation. 

15 WebPACK™ is a trademark of Xilinx, Inc. 

16 Windows® is a registered trademark of Microsoft Corporation. 

17 MicroBlaze™, CORE Generator™, PlanAhead™, and ChipScope™ are trademarks of Xilinx, Inc. 

18 ModelSim® is a registered trademark of the Mentor Graphics Corporation. 
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Figure 59.   Interface of Xilinx ISE 14.3 showing schematic layout and design flow. 

For the initial tasks of developing simple combinational and sequential 

circuits, an important difference between Xilinx ISE and Libero SoC was readily 

apparent. The Xilinx ISE package was found to have a much more comprehensive and 

accessible schematic editor, making construction of logic circuits using baseline gate 

instantiations a great deal easier. The Libero SoC package was found to be greatly limited 

in this aspect, with an overall system level schematic design being available yet difficult 

to use. One must suspect that the limited adoption of Actel FPGA products (in 

comparison to the widely utilized Xilinx series) may be due in some part to the 

limitations of this feature. 

Additionally, the overall design flow of the Xilinx ISE product seemed to 

be more flexible and easy to grasp than that of the Actel SoC product. Xilinx ISE is 

useful in that it generates an overall 'Design Summary' at every step of the process and is 
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the default view upon starting a project or continuing work, as illustrated in Figure 60. 

This lets one view, in a stoplight and metric fashion, the remaining tasks and the overall 

logic utilization throughout every step of the process. The output of each process can be 

exported in a text logbook fashion for future reference and design history. 

 

Figure 60.   ISE ‘Design Summary’ window listing FPGA utilization and design flow. 

The options within the toolset allow for easy customization of the 

programming options for FPGA synthesis. Logic designs can be tailored for speed, area 

optimization (size), or further customized to fit individual needs. The ability to rapidly 

reconfigure a target design to other FPGA target devices is as simple as changing a 

configuration option and was used extensively in the testing in Chapter VII. This allowed 

for selection of Spartan versus Virtex products in the development of stacked methods of 

fault tolerance to test sizing constraints. 

Furthermore, the transition from schematic diagrams to generate HDL was 

seamless, as Xilinx ISE allows for HDL generation to Verilog or VHDL. In all cases, the 
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generated code was easy to follow due to the naming scheme and instantiations matching 

the schematic labeling. Actual synthesis of a design was very informative in the case of 

errors generated by XST. XST provided enough context help to locate the line of code in 

error or the schematic discrepancy. HDL files and schematic files can be checked for 

concurrency with standards prior to implementation. 

b. Actel Libero SoC 10.1 

Libero SoC is a comprehensive design software toolset for use with 

Microsemi’s SmartFusion19, IGLOO16, ProASIC3 and Fusion16 FPGA families. This 

software suite allows for entire design flow from design entry, synthesis and simulation, 

through place-and-route, timing and power analysis, with enhanced integration of the 

embedded design flow [87]. Libero SoC consists of the product design flow and 

management system including a ‘Core Catalog’ with commonly configurable cores and 

the SmartDesign20 creation tool for building high level modular systems and subsystems. 

Additional software tools provided include Synplify Pro21 AE, Synphony Model22 

Compiler AE, ModelSim AE, physical design layout, SmartTime23, and SmartPower20. 

The primary interface of Libero SoC can be seen in Figure 61. 

In contrast with Xilinx ISE, the Actel Libero SoC package seems more 

tailored to system level design, especially once the baseline HDL is written for the FPGA 

logic. While product literature indicates that SmartDesign is tailored to assemble and 

connection Microsemi intellectual property (IP), user-generated IP, and custom HDL 

modules [88], the development of initial HDL models (especially schematically) is 

troublesome within Libero SoC. Since Xilinx ISE is able to create schematic symbols for 

synthesized Verilog and VHDL, the product is more easily suited to wiring those 

instantiated symbols graphically. 

                                                 
19 SmartFusion®, IGLOO®, and Fusion® are registered trademarks of the Microsemi Corporation. 

20 SmartDesign™ is a trademark of Synopsys, Inc. 

21 Synplify Pro® is a registered trademark of Synopsys, Inc. 

22 Synphony Model™ is a trademark of Synopsys, Inc. 

23 SmartTime™ and SmartPower™ are trademarks of the Microsemi Corporation. 
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Figure 61.   Interface of Libero SoC 10.1 showing Verilog HDL and design flow. 

Both Xilinx and Actel have strong chip planning toolsets when looking at 

device pin-outs and logic floor plans. Much of the chosen product depends upon comfort 

with simulation software available for the two suites. Actel SoC defaults to Synplify Pro 

as its simulator of choice. Any reasonable experience with either of these two simulators 

could lead to a tendency to choose one software package over the other. The author has 

found, in extensive testing, that the feature sets of both ISim and Synplify are quite 

similar with logic timing diagrams generated being almost identical. Users of either 

simulation product should not have any difficulty switching from one to the other. 

Overall choice of software package comes down to comfort level of HDL versus 

schematic design and choice of FPGA. Both are fully capable in their synthesis, 

simulation results, and final output of bitstream files for FPGA configuration. 
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c. Results of Software Comparison 

Overall, Xilinx ISE appears to be a more robust and feature-filled software 

suite. The ease of transition from HDL instantiation, to simulation, to synthesis and 

implementation is seamless and requires only a few hours of experimentation to grasp the 

basics. In contrast, Libero SoC seems very difficult to grasp, especially considering there 

are logic flow difference between versions 9.1 and 10.1 of the package. It appears as if 

Actel is trying to utilize a more contextual menu interface for design flow (similar to 

Xilinx) in its newer product, however, the graphical flow diagrams of the 9.1 software 

suite made a great deal more sense. On the basis of software alone, Xilinx ISE is a clear 

winner in feature set, configuration options, and the usability of the software package. 

2. Hardware Feature Set 

Significant differences in the Xilinx and Actel series of FPGAs are apparent in the 

choice of hardware for design. The SRAM-based implementations of Xilinx compared to 

the flash-based FPGAs of Actel are significantly different in their utilized technology. 

While the initial research in Chapter II led to the conclusion that flash-based FPGAs are 

superior in their simplicity, there is much left to be considered including their suitability 

in space-applications. For the sequencer developed for CubeSat deployment applications, 

one desires a re-programmable, low-power device of the most simplistic nature available. 

SRAM-based FPGAs, due to their requirement for external PROM type devices for 

configuration and microcontrollers to enable the power-on configuration, are significantly 

more challenging in the secondary component requirements. 

Experience with Xilinx FPGAs shows that at least 90% of SEEs cause 

configuration faults rather than logic faults. Configuration faults can cause persistent 

errors in computation. The error-correcting technique used in the logic must detect as 

well as correct any errors in the computation. Detection of a repeated error in the 

computation then should signal the need for reconfiguration. Until reconfiguration of that 

portion containing the configuration error, the error-correction capability maintains 

correctness of the result [89]. 
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A comparison between the radiation tolerant properties of both devices is 

necessary for down-selection to a specific product line. While many of the overall 

features, include logic real-estate, configuration methodology, and use in the final circuit 

are similar, clearly the differences in radiation tolerant properties and secondary 

component requirements have the most impact upon selection. The two product lines 

considered for use in the research are the Xilinx Virtex and Actel ProASIC3 series of 

FPGA devices. Experiments conducted on logic development in Chapter VII were 

targeted to both vendors’ products, allowing for the earlier software feature comparison 

and subsequent testing of development boards. 

a. Xilinx Virtex Series FPGAs 

The Xilinx SRAM-based Virtex series of FPGAs are consistently utilized 

devices with long heritage in space applications. Their product familiarity, coupled with 

many years of on-orbit lifetime utilization, has led to a product line extending almost a 

decade. The space-rated rad-hard versions of the Virtex-I/II gave rise to the Virtex-4QV 

that has, in turn, led to the development and fielding of the radiation hardened Virtex-

5QV. One must suspect that their more recent product lines, including the Virtex-7 series 

FPGAs, are undergoing modification and certification for use in the space environment. 

For the rad-hard Virtex-5QV device, the FPGA consists of 131,072 logic 

cells, 87,920 internal fabric FFs, 87,920 real 6-input LUTs utilizing greater than five 

million LUT bits, 450 MHz system performance, up to 18 total clock generators, 836 user 

I/Os, and 20,480 configuration logic blocks (CLBs). Each CLB slice contains four LUTs 

and four FFs (an increase from earlier generation devices). There are also 320 DSP slices 

consisting of a 25×18-bit multiplier, an adder, and an accumulator [61]. The internal 

structure of a Virtex-5 CLB slice is illustrated in Figure 62. 
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Figure 62.   Each Virtex-5 CLB slice contains four LUTs and four FFs (From [79]). 

The Virtex-5QV series advertises guaranteed SEL immunity to LET 

greater than 100 MeV-cm
2
/mg, 1 Mrad TID, SEU hardened configuration memory cells 

and control logic with 3.8×10
-10

 errors/bit/day, and SEU and SET hardened CLB flip 

flops and internal data paths [61]. The SRAM cells used for the configuration memory of 

the Xilinx FPGAs are larger and more robust than the SRAM cells used for general-

purpose memory, which are optimized for speed and cost [25]. These configuration 

memory cells are optimized for SEU resistance by a combination of their feature size and 

manufacturing technique. 

The Virtex-5QV is listed as compatible with the commercial and defense-

grade Virtex 5 FPGAs, allowing for low-cost, rapid prototyping and easy design 

migration to flight hardware. For the purposes of a component comparison, the Virtex-
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5QV (XQR5VFX130) rad-hard version is compatible with the commercial-grade Virtex-

5 (XC5VFX130T) [90]. The embedded microprocessor of the Virtex-5QV is disabled 

when compared to the commercial versions. Also, there are some pin differences, as the 

rad-hard version contains 1,752 pins, while the commercial version utilizes 1,738 pins 

[61], [90]. There are compatibility guides provided by Xilinx for the correct pin 

conversions from one design type to the other. The lowest cost for a commercial-grade 

Virtex-5 is $4,352.40 [91]. 

b. Actel ProASIC3 Series FPGAs 

A more recent development in FPGA manufacturing stems from the use of 

flash-based FPGA technology to provide operational capability at power initiation and 

reprogrammable aspects, as previously discussed. The use of flash technology is a great 

enabler for the reduction in secondary components required for operation. Additionally, 

one may benefit from the inherent radiation tolerant properties of flash-memory when 

compared to SRAM-based FPGA configurations. In this sequencer research, the RTAX24 

and RTSX antifuse products from Actel were discounted for lack of reconfiguration 

techniques previously discussed. Therefore, only RT ProASIC3 devices, with pin-

compatibility to the ProASIC3L defense-grade of FPGAs, were considered for use in the 

project. With lack of a reconfiguration requirement, however, RTSX-SU devices, which 

implement TMR in hardware, could be ideal [92]. 

In the RT ProASIC3 device, the FPGA consists of 600,000 logic gates 

including: 13,824 VersaTiles25 (D-FFs), 350 MHz system performance at 1.5 VDC or 250 

MHz at 1.2 VDC, six clock-conditioning circuits (CCCs) with integrated phase-locked 

loops (PLLs), 270 user I/Os, and 135 differential I/O pairs. Each VersaTile can be 

configured as a three-input logic function, a D-flip-flop (with or without enable), or a 

latch by programming the appropriate flash-switch interconnections. There is also 108 

kbit of RAM and 1 kbit of non-volatile ROM provided [19]. The internal structure of a 

ProASIC3 VersaTile is illustrated in Figure 63. 

                                                 
24 RTAX™ is a trademark of the Microsemi Corporation. 

25 VersaTile™ is a trademark of the Microsemi Corporation. 
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Figure 63.   Configuration of low-power ProASIC3 device core VersaTile (From [93]). 

The RT ProASIC3 series advertises SEL immunity to a projected LET 

threshold of 68 MeV-cm
2
/mg, D-FFs and internal SRAM SEU limits of 63.5 MeV 

protons, and heavy ion transients on the global clock networks and I/O banks greater than 

70 MeV-cm
2
/mg [43]. SEE mitigation strategies mentioned include TMR of the clock 

network, I/O banks and D-FFs. This may not be the most efficient manner to mitigate 

SEEs in the combinatorial logic and embedded SRAM memory; strategies for these logic 

types are explained in more detail in Microsemi’s radiation reports [29]. 

RT ProASIC3 devices have been tested for TID effects under x-ray and 

gamma ray environments [94]. There is an observable effect of increase in propagation 

delay through pass transistors as TID increases. This is due to floating gates being less 

able to hold interconnection pass transistors in their ‘on’ state. With a dose rate of 5 
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krad/min, an increase in propagation delay of 10% has been observed at a gamma ray 

TID of 25 to 30 krad. The results of this analysis are indicated in Figure 64. At 1 rad/min, 

which is more representative of the space environment of LEO, the 10% propagation 

delay occurs at a TID level of approximately 40 krad. A 15% propagation delay was seen 

at a TID level up to 55 krad [83]. Microsemi is working to alter Libero SoC to include 

propagation delay increase for designers wishing to incorporate these delays into 

simulation and static timing analysis prior to deployment [83]. 

 

Figure 64.   Degradation of propagation delay versus TID for RT ProASIC3 (From [83]). 

The RT ProASIC3 is listed as pin-to-pin and timing compatible with the 

defense-grade ProASIC3EL FPGAs. For the purposes of a component comparison, the 

RT ProASIC3 (RT3PE600L-CG484B) rad-hard version is compatible with the defense-

grade ProASIC3EL (A3PE600L-FG484M). The use of the M version (military 

temperature range) ensures that timing can be verified in hardware across the full 

temperature range from -55 C to 125 C [83]. The lack of pin differences between the rad-

hard and military-grade components is of great benefit in comparison to the Xilinx 

Virtex-5QV. This should allow for one standard design in which schematics can be 

developed and not modified if utilizing either the rad-hard or military-grade FPGA. Since 

the overall goal of this thesis is to select lower-cost componentry, with the possibility for 
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future upgrade dependent on mission, the Actel series devices are more design friendly in 

this regard. The individual cost for both these devices require product quotes; a logic 

compatible device in the 484 pin-package can be purchased for as little as $63.87—this 

device (A3PE600-FG484) should be sufficient for initial prototype testing [95]. 

Depending on the results of future radiation testing, this prototype FPGA may be reliable 

enough with redundant logic to utilize on final flight hardware. 

3. Associated Hardware Requirements 

 There are many associated benefits with the ProASIC3 and ProASIC3L FPGAs 

related to supporting hardware. These devices can be powered from a single 1.2 VDC or 

1.5 VDC supply for core voltage and I/Os. There is no requirement for a 2.5 VDC or 3.3 

VDC supply for power-up; although, these are added as necessary to supply I/O bank 

voltages. Running the entire system on a single supply saves costs and area associated 

with voltage regulators [90]. 

Since there is no boot PROM or flash microcontroller required to load the FPGA 

at system power-up, the ProASIC3 line is a single-chip solution [90]. Since CPLDs are 

not required, ProASIC3 FPGAs are live at power-up. Again, this saves on board layout 

area and total system cost. Additionally, no power-up monitor chip is required; unlike 

SRAM configuration bits, flash configuration switches do not brownout [90]. Clock 

management is also simplified by live at power-up CCCs and PLLs, allowing for the 

removal of additional clock distribution chips often used to boot SRAM FPGAs or 

microcontrollers during system start-up [90]. 

A.2 APPENDIX SUMMARY 

The comparison of Xilinx versus Actel software and hardware products was 

discussed in Appendix A. Xilinx ISE 14.3 was compared to Actel SoC 10.1 with ISE 

being realized as the more complete design suite due to its’ integrated schematic editor. 

Both software suites were seen to have capable synthesis and simulation toolsets. 
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APPENDIX B. PROASIC3 TEST BOARD – REFERENCE, 

SCHEMATICS, AND PCB LAYOUT DIAGRAMS 

The design files for the ProASIC3 Test Board are divided into four sections: the 

bill of materials, schematics for electrical connections, the 2-D PCB layout documents, 

and 3-D component placement views. All of the associated documents were constructed 

using Altium Designer 10 during the development portion of this research. 

B.1 PROASIC3 TEST BOARD DEVELOPMENT METHODOLOGY 

1. Detailed Discussion of ProASIC3 Test Board Design Decisions 

Since one of the objectives of this test board was to minimize the amount of 

secondary components placed upon the PCB, the power regulation circuitry for the 

PA3TB was not implemented on the PCB. A wiring harness configuration was 

determined to be the proper method for providing power to the board. A bench-top 

Agilent E3632A DC power supply was utilized for the power supplied to the FPGA core 

with an Agilent E3631A triple output DC power supply used to supply secondary 

voltages. By using external power supply and conditioning, any design errors could be 

localized to the FPGA design rather than the power circuitry. This greatly aids in trouble 

shooting, should the PA3TB not operate as anticipated upon integration. 

For the power supply harness, a six wire configuration was chosen as it would 

supply the required voltages and ground for proper operation of the FPGA in various 

manners. As seen in Figure 65, pin 1 is tied to ground, pin 2 is USB voltage (optional), 

pin 3 is VCCPLF (tied to 1.5 VDC or GND dependent upon analog PLL usage) [96], pin 4 is 

VCC (1.2 VDC), and pins 4 and 5 provide I/O bank voltages (1.2, 2.5, or 3.3 VDC). This 

allows for maximum flexibility in testing of the PCB, as one desires to enable certain 

features or drive I/O lines at different voltages depending on connections. A Molex 

43045-0614 2×3 Micro-Fit 3.026 connector was chosen as the six wire header [97]. 

                                                 
26 Micro-Fit 3.0™ is a trademark of Molex. 
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Figure 65.   Footprint of Molex Micro-Fit 3.0 6-pin header for power supply to FPGA core 

and I/O bank voltages. 

Similarly, the JTAG header was chosen for ease of interface to the Microsemi 

hardware programming device, a FlashPro427. The FlashPro4 provides in-system 

programming for all series of Actel FPGAs including the ProASIC3 (nano and rad-hard 

variants). The FlashPro4 supports IEEE 1149 and IEEE 1532 standards for programming 

[98]. This allows for easy programming when coupling the Libero SoC IDE and FlashPro 

software. The JTAG interface is a 10-pin header in a 5×2 configuration. The footprint of 

this connector as seen on the PCB layout as illustrated in Figure 66. The straight pin 

header used on the PCB board for JTAG interface is manufactured by TE Connectivity 

(P/N 5103308-1) [99]. This part is the replacement for the discontinued components 

specified in the FlashPro4 user’s guide [100]. 

 

Figure 66.   Footprint of FlashPro4 JTAG 10-pin header for programmer interface. 

                                                 
27 FlashPro is a trademark of the Microsemi Corporation. 
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To allow for future debugging and interfacing with secondary data logging 

equipment, a USB connector was added to the PA3TB design. This interface was useful 

in adding experience in interfacing secondary standards with the FPGA I/O banks. A 

standard USB 1.1 Series-B receptacle was added. A Tyco Electronics receptacle 

assembly was chosen as the device for implementation (P/N 292304-1) [101]. 

The emulation of CubeSat P-POD deployment is simulated by the inclusion of 

eight ‘bit’ light-emitting diodes (LEDs) which light to indicate activity on that particular 

I/O pin of the FPGA. These were labeled BIT0 through BIT7. The specific LEDs chosen 

were green, surface-mount of standard brightness in the 0603 form-factor (P/N 

QTLP601C-4) [102]. These were coupled with current-limiting resistors also in the 0603 

form-factor. By utilizing these LEDs, we can realize a visual representation of sequencer 

timing. Four additional LEDs were added on a different bank for testing and indication 

purposes, labeled PWR and TST0 through TST2. 

Since the LEDs and resistors chosen were of 0603 type, all power-decoupling 

capacitors required for the FPGA power inputs were also selected as 0603 form-factor. 

This minimizes board area necessary for wiring while still allowing for soldering under 

the microscope. These small LEDs, chip resistors and capacitors can be manipulated with 

tweezers while soldering with a fine-tip so long as magnification is available. In addition, 

the VQ100 package of the ProASIC3 nano is able to be soldered under the microscope. 

The remaining requirement of expandability is met by adding as many copper 

pads to the PCB as will fit. This will be discussed during the PCB layout section of this 

appendix. The full ‘Bill of Materials’ for the ProASIC3 Test Board is provided in 

Appendix A. 

2. Discussion of Schematic 

For the development of PA3TB, the schematic portion of Altium Designer was 

utilized to develop the circuit design. The ProASIC3 nano was laid out first, with the 

banks not utilized in construction (‘Bank 1’ and ‘Bank 3’) placed with non-connected 

I/Os. These are additional connections that can be implemented in future designs with 

this device. Concerning ‘Bank 0’, very few of the available I/O resources were utilized; 
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I/O_00 through I/O_03 were tied to the PWR and TST0 through TST3 indicators. I/O_04 

through I/O_19 were seen as points to implement future electrical connections. These 

I/Os are tied to copper pad areas on the PCB for expandability. ‘Bank 2’ I/O_38 through 

I/O_40 were utilized for the USB connection with resistive values allocated as per the 

datasheets [101]. The BIT0 through BIT7 LEDs were also implemented on this bank via 

I/O_41 through I/O_48; resistor values of 390 Ω were utilized as per specifications for 

LED protection. A close-up schematic view of the USB and LED connections are 

illustrated in Figure 67. 

 

Figure 67.   Schematic view of PA3TB ‘Bank 2’ connections to USB connector and BIT0 

through BIT7 LEDs. 
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All power de-coupling capacitors for the FPGA were tied to the appropriate VCC 

inputs for proper operation. Again, this was done in accordance with the ProASIC3 

datasheet to reduce noise from the power supply to the FPGA [74]. The 6-pin 2×3 Micro-

Fit 3.0 connector was placed on the schematic and wired to the appropriate power and 

ground lines on the FPGA and USB header. In placing the JTAG connector on the 

schematic, a 5×2 header was utilized for the electrical connections as seen in Figure 68. 

Proper biasing of the VPUMP connection was done in accordance with the datasheet [74]. 

 

Figure 68.   Schematic wiring diagram of JTAG interface header to ProASIC3 nano 

connection points on PA3TB. 

The complete ProASIC3 Test Board schematic is presented in Appendix A. 

3. Discussion of PCB Layout and Component Placement 

After schematic design of the ProASIC3 Test Board was complete, development 

moved into the PCB layout and board management phase. The PCB was setup with the 

previously specified dimensions and layer configuration and all components from the 

schematic phase brought into the layout view for placement. Initial work concentrated on 

placing the ProASIC3 nano FPGA toward the center of the board design to obtain area 

utilization data. The FPGA was seen to require approximately 12% to 15% of the 

available board area on the top face of the PCB (including fan-out pad fingers). Work 

was then done to place the de-coupling capacitors as close to the FPGA as possible, in 

line with the manufacturer recommendations. Thus, the capacitors were placed within the 

footprint of the FPGA on the bottom face of the PCB. They are staggered in a 
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configuration which allows them all to fit and utilize vias for connection from top to 

bottom signal layer planes to their associated VCC and GND connections. 

Placement of the USB, power header, and JTAG header occurred next as these 

were the next largest components on the PCB. The headers and connector were also 

placed on the top face of the PCB to allow for the bottom face of the board to rest flat 

upon a surface. When associated with their required resistors and capacitors, the 

combination of USB, headers, and FPGA utilize approximately 50% of the available PCB 

area. This is before any wiring was accomplished to tie electrical connections together. 

The USB and power header were placed near the top of the PCB; since the power harness 

extends quite a distance from the PCB to the associated bench power supply, this reduces 

wiring clutter with the JTAG interface. The JTAG interface was placed at the bottom of 

the PCB, allowing for electrical connection to the FlashPro4 programmer via ribbon 

cable. 

Layout of the PWR, TST0 – TST2, and BIT0 – BIT7 LEDs with their associated 

resistors was then undertaken. These components were seen to fill another 25% of the 

PCB top layer area. All of the BIT indicators were placed on the left side of the PCB so 

that any prototyped sequencer timings could be quickly visualized on LED indication. 

The power indicator and TST LEDs were placed at the top-right of the PCB to keep them 

separated from the BIT indicators. This also has the benefit of tying these lines to their 

‘Bank 0’ electrical connections on the FPGA without any complicated routing 

requirements. 

The sixteen copper pad areas were placed in the middle and lower-right section of 

the PCB. These are used in the connection of the PCB to any external equipment desired; 

the first iteration of the sequencer relay board can be tested with these I/Os for 

prototyping of the sequencer logic. This allows for a quick breadboard type setup to be 

accomplished while work is completed on the SADv3 design. 

All of the remaining board area was used for the connection of signal lines 

between the FPGA, secondary components, and required resistors and capacitors. The 

large diameter vias for power and ground supply were tied to the internal VCC and GND 
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planes, which connected the internal power planes to their associated nets. With this 

method, extraneous wiring from component ground points to localized vias is minimized.  

Most of the top face traces are associated with the LED indicators or copper pad 

fingers. The bottom face traces are associated with the various capacitor and resistor 

banks. Wiring was accomplished with 8.0 mil traces. Care was taken to avoid any right 

angle routed traces. All PCB footprints and component identifications were placed on top 

and bottom silkscreen layers, with board identification information filling the remaining 

space.  

4. Physical Construction and Testing 

After completion of PCB layout, the design was exported in mechanical and 

electrical Gerber Computer-Aided Manufacturing (CAM) files for fabrication. These files 

were verified by automated design checking tools by Advanced Circuits [103]. This 

allowed for any mechanical or electrical deficiencies to be detected prior to 

manufacturing; several issues were reported as potential errors and these were corrected 

with corrected CAM files re-exported. Since the initial PA3TB run consisted of only 

three boards, these were sent to a local PCB manufacturer for production [104]. This was 

a lower-cost option for small production runs of non-flight, non-ITAR (International 

Traffic in Arms Regulations) hardware restricted PCBs. The turn-around time for the 

manufacturing of the PCBs was approximately two weeks. One of the manufactured 

PCBs prior to integration appears in Figure 69. 

 

Figure 69.   Manufactured four-layer PCB with gold surface pads and through-hole vias. 
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One the PCBs were received, work began on the integration of surface-mount 

components onto the PCB. This was accomplished with a PACE PRC 200 Process 

Control System station equipped with a microscope and video camera output, as seen in 

Figure 70. The soldering iron was equipped with the smallest tip available, a 1/64 in. 

conical sharp tip set at an 800 F operating temperature. 

 

Figure 70.   External camera view of ProASIC3 nano soldering to PCB board as seen 

through the microscope. 

All soldering was done under the microscope with the finest diameter solder in 

the laboratory, Kester “44” 0.38 mm lead-tin (Sn 63% / Pb 37%) rosin-core. This fine 

diameter solder was very well suited to the 0603 surface-mount component size and 

VQ100 FPGA package pins. A Luxo 150-watt fiber optic illuminator provided extra 

lighting under magnification for ease of assemble. Thorough wetting with a Kester #186 

rosin flux, type RMA Flux-Pen28 was necessary to prevent oxidation of surfaces and ease 

of solder flow. The assembly of all three PCBs, as seen in Figure 71, took approximately 

five days. 

                                                 
28 Flux-Pen™ is a trademark of Kester. 
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Figure 71.   All three ProASIC3 Test Boards soldered and integrated—ready for testing. 

After assembly of the PCBs, electrical testing of the PA3TB proceeded with the 

test bench setup illustrated in Figure 72. The ProASIC3 Test Board was connected to the 

bench-top power supplies with the FlashPro4 programmer attached to the JTAG 

interface. Initially, there were issues with the configuration of the FPGA, as the device 

would pass the JTAG scan chain with a returned identification (ID) code; however, 

erasing and configuration of the FPGA failed. The problem was determined to be in the 

power wiring to the PCB. Once a new power harness was constructed, using the 

appropriate end connector and clamped pin sets, the problem with erasing and 

configuration of the FPGA was resolved. All device tests passed and programming of 

several test bitstream files succeeded. 
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Figure 72.   Test bench setup of ProASIC3 Test Board wired to power supply; FlashPro4 

interface via USB to desktop computer station and programmer interface. 

Initial testing of LEDs for verification through Verilog coding was successful, all 

initial pin-out specifications and PCB layout graphics for the trial design are located in 

later sections of this appendix. For the Verilog test code for LED testing, see Appendix 

D. 
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B.2 BILL OF MATERIALS 

The following bill of materials specifies the required components necessary to 

construct the PA3TB in the same configuration specified schematically and in PCB 

layout. Values for the associated components are located on the schematics. 
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B.3 MECHANICAL DIMENSIONS AND ELECTRICAL SCHEMATICS 

The following diagrams illustrate the mechanical sizing constraints and electrical 

schematics for the PA3TB. The schematic is broken up into left and right-halves to fit the 

size constraints of the page. The schematics are available electronically for import into 

Altium, for reproduction or modification of the design as necessary. 
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B.4 2-D PCB LAYER DIAGRAMS 

The following PCB layer diagrams illustrate the layout decisions in the PA3TB 

placement of components. The various diagrams included are the overall layer set, signal 

layer, plane layer, non-signal layer, and mechanical layer. These layouts are available 

electronically for import into Altium, for reproduction or modification of the design as 

necessary. 
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B.5 3-D PCB COMPONENT PLACEMENT 

Top and bottom face 3-D views of the PA3TB are provided to depict component 

fit and placement upon the PCB. These layouts are available electronically for import into 

Altium, for reproduction or modification of the design as necessary. 
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B.6 APPENDIX SUMMARY 

In Appendix B, the development of the design was presented from schematic to 

PCB layout with reasons presented for component selection and placement. A complete 

description of the board assembly process was provided, with difficulties in manufacture 

specified. An overview of the PCB testing process for programming was outlined with 

the initial power supply harness issue resolution. The work in this appendix led to the 

development of the SADv3 presented in Chapter IV. 
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APPENDIX C. SAD VERSION 3 – FLIGHT PROTOTYPE BOARD 

– REFERENCE, SCHEMATICS, AND PCB LAYOUT DIAGRAMS 

The design files for the SAD Version 3 – Flight Prototype Board are divided into 

four sections: the bill of materials, schematics for electrical connections, the 2-D PCB 

layout documents, and 3-D component placement views. All of the associated documents 

were constructed using Altium Designer 10 during the development portion of this 

research. 

C.1 SAD VERSION 3 – FLIGHT PROTOTYPE BOARD DEVELOPMENT 

METHODOLOGY 

1. Selection of Board Size and Layer Count 

The transition of sequencer from the PA3TB to SADv3 necessitates an increased 

board size and layer count to support the BGA FPGA and fit within the confines of the 

SAD enclosure. The scope for interface within the enclosure incorporates the sequencer 

as a motherboard. The relay firing circuitry is attached as a daughter-board via ribbon 

cable. The overall dimensions of the SADv3 board utilized are 9.81 in. × 3.28 in. (32.177 

in
2
). These dimensions, however, do not take into account the reduced area due to cut-

outs for possible inclusion of battery packs, bolt holes, and rounded corners to fit within 

the enclosure. The size and shape of the board were chosen to conform to the already 

specified size of the relay board. The relay board will fit underneath the sequencer board, 

attached with the same bolt-hole pattern and ribbon cable for signal transmission. This 

board is in the process of being developed with primary work on it accomplished by 

another student [105]. The current PCB design for the relay board is shown in Figure 73. 

Manufacturing and testing of this relay board had not occurred at the time of publication 

of this thesis. 
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Figure 73.   Current 2-D layout and 3-D component placement of SADv3 Relay daughter-

board with size and shape for proper enclosure fit (From [98]). 

Since the SADv3 has an increased board size, there were additional areas for 

expansion upon the PCB itself. These were targeted for the incorporation of additional 

SRAM and flash-memory devices and a breadboard prototyping area. Additionally, 
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headers were desired for ease of connection to the various general and differential pair 

I/Os. These were accommodated by three 40-pin headers (20×2).  

To properly develop the SADv3 layer design, the move to a six-layer PCB was 

accomplished. Attempting to fan-out the BGA FPGA was possible at this layer count; 

however, there were insufficient power planes internal to the PCB to fit the overall 

voltage scheme. Due to the requirements for a 3.3, 2.5, and 1.2 VDC power supply, plus 

the addition of a ground plane, the decision was made to transition to an eight-layer 

design. This allows for the incorporation of the ground and power planes internal to the 

PCB with the outer four planes consisting of signal layers. The power planes and ground 

plane were structured in a manner to limit the capacitance between layers or any 

inductive effects that may impact signal lines. The overall layer structure of the SADv3 is 

illustrated in Figure 74. Through-hole vias were used throughout the design for coupling 

between layers. 

 

Figure 74.   Eight-layer stack of the SAD Version 3 – Flight Prototype Board with internal 

power planes and external signal layers. 
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Figure 75.   Final fanned-out configuration of the ProASIC3EL FPGA with multiple 

signal layers and all vias visible. 

The final fan-out configuration of the ProASIC3EL FG484 BGA FPGA is shown 

in Figure 75. This configuration was chosen as the optimum solution once the additional 

power planes were added to the footprint of the FPGA design. This allowed for through-

hole vias connecting to the necessary pins of the device while still allowing for enough 

room to route signal lines. This was not possible with the previous six-layer PCB design 

as there were certain pins trapped within the footprint. In addition, the revised eight-layer 

PCB allowed for the proper fan-out configuration of a crossed middle-channel open 

beneath the footprint of the FPGA, as illustrated in Figure 76. This allows enough room 

for various power decoupling capacitors to be placed immediately below and near the 

BGA footprint vias on the bottom plane of the board. To properly fit these surface-mount 

technology (SMT) capacitors within the footprint of the center-channel left, sizing of the 

capacitors must be equal to or less than 0603. Fortunately, many of the secondary 

required components to support the FPGA could be maintained at the 0603 footprint; 

although, some of the smaller resistors chosen necessitated 0402 sizing. Past experience 

shows manually soldering at less than 0603 size to be problematic. 
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Figure 76.   Bottom plane pattern of vias within FPGA footprint on eight-layer PCB with 

room for center-channel power decoupling capacitors. 

2. Selection of Components 

In contrast to the off-board power supply scheme of the PA3TB, the SADv3 

requires all associated power supply hardware to be co-located upon the PCB for proper 

operation. Due to the increased requirement for multiple voltage levels, the supporting 

circuitry designed for power distribution included 3.3, 2.5, and 1.2 VDC levels. Texas 

Instruments low-dropout (LDO) low-power linear voltage regulators (P/N TPS79601) 

were chosen as the means of reducing the +5 VDC input voltage to the required levels. 

These devices feature high power supply rejection ratio (PSRR), ultralow-noise, fast 

start-up, and excellent line and load transient responses [106]. 

For future expansion purposes, the inclusion of SRAM and flash-based memory 

was necessary to allow for more data handling capability by the FPGA. Choice of the 

memory devices used was done in concert with the reference design for the ProASIC3 

development board. This was done to allow for design modifications where necessary 

while allowing for similar pin specification and design constrain files to be utilized. In 

the case of the sequencer, these devices will not be necessary for inclusion on the PCB, 

and the footprints can be left open if not included. For the CMOS Static RAM, 4-Mbit 
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(256k words × 16-bit) devices were chosen from Cypress Semiconductor (P/N 

CY7C1041DV33) [106]. The logic block diagram of these SRAM chips can be seen in 

Figure 77 with proper address and data lines specified. 

The embedded flash-memory used for this design consisted of two Intel / 

Numonyx™ 0.13 µm NOR-based, 64-Mbit density devices (P/N JS28F640J3D-75). 

Specified features include reliable, low-voltage capability (3 VDC read, program, and 

erase) with high-speed, low-power operation [107]. These feature 75 ns initial access 

speed and operation at the 3.3 VDC voltage level. The 64-Mbit capacity (8 Mbyte) is 

configured as sixty-four 128-kbyte erase blocks. Security features are also present on the 

device that prevent altering of code through different code protection schemes that can be 

implemented based on user requirements [107]. The logic block diagram of these flash-

memory chips can be seen in Figure 78. All lines indicated are utilized as per 

specification in the manufacture’s datasheet [107]. 

 

Figure 77.   Logic block diagram of Cypress Semiconductor 4-Mbit (256k words × 16-bit) 

SRAM devices illustrating address and data line use (From [99]). 
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Figure 78.   Logic block diagram of Numonyx™ 64-Mbit embedded flash-memory 

devices illustrating address, data, and signal line use (From [107]). 

The incorporation of a crystal clock oscillator was necessary to allow for future 

timing accuracy as a secondary clock signal source for the FPGA. Similar to the 

reference design, an Abracon 48.0-MHz through-hole oscillator was chosen for inclusion 

(P/N ACHL 48.0MHz-EK). This design features a compatible 3.3 VDC supply voltage, 

CMOS and transistor-transistor logic (TTL) compatibility, and tight frequency stability 

on the order of ± 30 parts per million (ppm) [108]. 

The remainder of components chosen was done to maximize the design 

similarities between the PA3TB and the SADv3. The JTAG interface design was 

reutilized with capacitor differences utilized where necessary. Additionally, the test LEDs 

of the PA3TB were included for troubleshooting purposes. An ‘always-on’ power LED 

was substituted for the PWR LED of the PA3TB; this change was made for easy of 

seeing the board power application, as a commanded signal should not be necessary for 

board power indication. 

The full ‘Bill of Materials’ for the SAD Version 3 – Flight Prototype Board is 

provided in Appendix B. 
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3. Discussion of Schematic 

The first component placed on the schematic was the ProASIC3EL BGA FPGA, 

with instantiation provided via the Altium Hobart vault. This online design vault specifies 

many of the FPGA devices made by vendors and greatly simplifies the inclusion into a 

design. The schematic layout of the FPGA consisted of seven banks, four of which were 

the associated ‘Bank 0 through 4’ as provided in datasheet specifications. The remaining 

banks were either non-connections or power and ground supply for core and bank 

voltages. A great deal of time was spent specifying the signal lines in a similar format to 

the ProASIC3 development board reference design. 

The setup of the TPS79601 power supply circuitry was accomplished as specified 

in the datasheet, as illustrated in Figure 79. Within that diagram input voltage (VIN) and 

output voltage (VOUT) points lie at the left and right of the diagram respectively. 

Additionally, the unregulated input to the device (IN), enabling pin to turn on the 

regulator (EN), regulator ground (GND), output of the regulator (OUT), and feedback 

input voltage for adjustment (FB) terminals are all visible [109]. Specification of the 

desired output voltage utilized the following: 

 

 
 

As per Equation (2), R1 and R2 must be chosen for approximately 40 µA of 

divider current [109]. The recommended design procedure is to choose R2 = 30.1 kΩ to 

set the divider current at 40 µA, set C1 = 15 pF for stability, and then calculate R1 using 

Equation (3). The output capacitor was changed from the 1 µF value to 2.2 µF, as per 

datasheet specifications [109]. There were three difference circuits schematically wired to 

meet the positive voltage requirements of the FPGA and associated circuitry. All three 

voltages were placed into nets for inclusion in the internal power planes of the PCB. This 
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will allow for local power to be provided rather than tracing out long power lines to the 

FPGA and secondary components. 

 

Figure 79.   TPS79601 adjustable LDO regulator programming schematic for proper 

specification of R1 and R2 values (From [109]). 

After development of the additional power circuitry necessary to power the board 

concluded, work was done to add the additional SRAM and flash-based memory to the 

design. The devices were wired with address and data lines as specified in datasheets 

[106], [107]. The schematic layouts of the SRAM and flash-memory devices are seen in 

Figure 80. The various data and address lines are wired to the appropriate pins of the 

FPGA with data control lines included as applicable. Both types of memory devices are 

wired to the 3.3 VDC net, which allows for via coupling the associated voltage plane. A 

more complete representation of these layouts with their associated power decoupling 

capacitors may be found in Appendix B. 

The general purpose and differential pair I/Os were next placed on the schematic 

with the various data lines being coupled to the 40-pin headers as appropriate. The 

general purpose I/Os utilize the 3.3 VDC voltage net, while the low-voltage differential 

signaling (LVDS) signal lines utilize the 2.5 VDC net. The schematic representation of a 

subset of these connectors is illustrated in Figure 81. 

All of the remaining power de-coupling capacitors, JTAG circuitry, resistor 

banks, and clock oscillation circuitry were wired as in the PA3TB case or as specified by 

datasheets. The complete SAD Version 3 – Flight Prototype Board schematic is presented 

in Appendix B for further reference if modification to the design is desired. 
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Figure 80.   Schematic wiring of SRAM and flash-memory devices with address, control, 

and data lines as specified by design documents. 

 

Figure 81.   40-pin general digital and LVDS headers as placed on the schematic. 

4. Discussion of PCB Layout and Component Placement 

After placement of the ProASIC3EL BGA FPGA, 40-pin I/O headers, breadboard 

prototyping area, and relay board connector as previously discussed in this chapter, the 

placement of the SRAM and flash-memory was accomplished. These were placed as 

close to the FPGA as practical to limit signal line losses between the components. The 
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orientation of these devices was done to best position the connectors of the memory chips 

to their respective pins on the FPGA. Fan-out of the memory devices was done to better 

route signal traces upon the four signal layers of the PCB. The flash-memory devices are 

located to the bottom of the FPGA when viewing the top plane, while the SRAM chips 

are located to the right of the FPGA footprint. The flash-memory devices come in 56-lead 

thin small-outline packages (TSOPs); the SRAM devices are 44-pin TSOPs (Z44-II). 

These devices required custom footprints and pin-outs to be built in the schematic and 

footprint editors in Altium. The location of these chips relative to the FPGA is seen in 

Figure 82. 

 

Figure 82.   Location of SRAM and flash-based memory chips relative to BGA FPGA 

device; JTAG header visible in lower-right corner. 

All of the required power supply decoupling capacitors, LDO voltage regulators, 

resistor banks, JTAG circuitry, crystal clock oscillator, and any additional components 

were then added from the schematic to their associated PCB footprint. The LDO voltage 

regulators used the SOT223-6 footprint, which required additional custom footprint and 

pin-out specification in Altium. Placement of these individual components is a tedious 

process, requiring many weeks of locating components to their best electrical and 

physical separations. Wiring of these components will require at least one to two months 

of concerted work to associate all traces amongst the four signal layers. 
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Initial test cases were run to test various Altium settings on the auto-routing of the 

design. In all cases, the auto-router is limited in the choices it makes regarding traces. 

Though there are a myriad of settings available (including trace widths, bend radius, via 

allocations, and placement strategies), the output of the auto-router is not optimum in the 

decisions it makes regarding traces. There are many instances where shorter traces could 

be shortened or run across less signal layers. Portions of the initial auto-route 2-D and 3-

D test cases of the PCB are illustrated in Figures 83 and 84. Certain features of the auto-

router, especially fan-out, will be utilized in the final PCB board design; however, the 

majority of signal lines must be manually routed. 

 

Figure 83.   Auto-route testing of SRAM and flash-memory connections to ProASIC3EL 

FPGA across four-layer signal planes. 

 

Figure 84.   Initial 3-D footprint placement of FPGA and memory devices in isometric 

view of PCB top plane. 
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C.2 BILL OF MATERIALS 

The following bill of materials specifies the required components necessary to 

construct the SADv3 in the same configuration specified schematically and in PCB 

layout. Values for the associated components are located on the schematics. 

 

Comrent Desc<¢on Oesignalo< ._, Li>Ref C>Jantity 

Pobrizecl Capacitor 
~~· -~· ~" · ~ ··- ~ · · . 
C17. C227. C230. C243. 

Cop Po13 (Surface Mount) C246 aJ805 CapPol3 t O 

C2. C8. C 10. C12. C 16, 
C21. C22. C218. C219. 
C235. C236. C237. C238. 
C239. C240. C242. C245, 
C247. C248. C249, C250. 
C25t . C252. C253. C254. 
C255. C256. C257. C258. 
C259. C260. C261, C264. 
C265. C266. C267. C268. 
C270. C271. C272. C273, 
C274. C275. C276. C2n. 
C278. C279. C280. C28-1. 

C282. C286. C288. C289. 
C290. C29 1. C292. C293. 
C294. C295. C296. C297. 
C298. C289. C300. C302. 
C303. C304. C305. C306. 

Clpacitor C307. C309. C311, C312, 
(SerricondUctor SIM C313 , C314 . C315. C317 , 

Cop Se<ri Model) C321. C322. C325 1608{0603) CapSerri 80 

[TANT_ t07A) (Surface Mount) C15 aJ805 CapPol3 1 

Precision Micropower 

Shunt Voltage 
LM404t CEM3X-1.2 Reference. 3-pin SOT -23 04 MF03A_M CMP.Q074.QD738-1 1 

y~;~:;,,~~~~ 
LTST-C150GKT LED D6 3.2X1.6X1.1 LED2 1 

Header 10X2A Header, 10-Pin. Dual row 081 EHT~ Header 10X2A 1 

~IV•u ~~" v uppresgon 
Feni'.e Bead WE~F. Z 

FERRITE_BEAD = 1000hm FB2 SM~5 CMP.Q22Q.00039-1 1 
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5VOC SupptyC:~tor J3 K~02 PWR2.5 1 - JuiTC)ef' Wire JP5 RAM.2 Jurrpe' 1 

Header5X2 Header, 5-P'n . Dual row P I HDR2X5 Header 5X2 1 

Header20X2 He.lder, 20-Pin, Du.ll row P2. P3, P4 HDR2X20 Header 20X2 3 

FDV301N Digital FET, N-Oiannel Q3 SOT23_N FDV301N 1 

Res3 Resistor R 1. R223. R245. R246 J l -0603 Res3 4 

n o · " " · " 'u· " " · 
R IB. R216. R217. R221l. 
R221. R222. R235. 
R236. R237. R238. 

1% Resistor R239. R240 J l -0603 Res3 16 

~~: ~;;:~~: 
R506. R507. R508. 
R509. R510. R511. 
R512. R513. R514, 
R515. R516. R517, 

R518. R519. R520. 
R521. R522. R523. 
R524. R525. R526. 
R527. R528. R529. 
R530. R531. R532. 

1% Resistor R533. R534. R535 0402 Res3 36 

Flash Faniy FP~ 270 
User lOs. 600K System 
Gates. 108 Kbds RAM. 1 
Kbit RashROM, 6Plls. 
484&11 FB~ Miitary 

A3PEOOOI.~S4M Grado U l FG484 CMP.()141.()00Q0.1 1 .... ~ .. 
TPS79601 Regulato<S (SOT223-a) U 12. U2 1. U22 SOT223-a TPS79601 3 

JS28F640J3D-75 Flash ;;rrory U 13. U 14 56-Le.ld T SCP JS28F640J30-75 2 

CV7C1041DV33 4~bit (256K x 16) Sca:ic U 16. U 18 T~Z44-11 CY7C10410 V33 2 
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C.3 MECHANICAL DIMENSIONS AND ELECTRICAL SCHEMATICS 

The following diagrams illustrate the mechanical sizing constraints and electrical 

schematics for the SADv3. The schematic is broken up into multiple pages for ease of 

viewing in this thesis format. An overall schematic is available electronically for import 

into Altium, for reproduction or modification of the design as necessary. 
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C.4 2-D PCB LAYER DIAGRAMS 

The following PCB layer diagrams illustrate the layout decisions in the PA3TB 

placement of components. The various diagrams included are combined signal layers, 

plane layer, non-signal layer, mechanical layer, top plane layers, and bottom plane layers. 

These layouts are available electronically for import into Altium, for reproduction or 

modification of the design as necessary. 
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C.5 3-D PCB COMPONENT PLACEMENT 

Top and bottom face 3-D views of the SADv3 are provided to depict component 

fit and placement upon the PCB. These layouts are available electronically for import into 

Altium for reproduction or modification of the design as necessary. 
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C.6 APPENDIX SUMMARY 

In Appendix C, design decisions were presented concerning the manner in which 

they drove PCB component selection. Development of the design was presented from 

schematic to PCB layout with reasons presented for component selection and placement. 

Difficulties in schematic design with associated PCB layout complexities were presented.  
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APPENDIX D. SEQUENCER HDL PRESENTATION 

The source code to generate the various bitstream files for testing of FSM and 

TMR logic was developed utilizing Verilog and VHDL. The code was synthesized using 

Xilinx ISE 14.3 and Libero SoC 10.1 and was executed on a Windows 7 PC with 8 GB of 

RAM and an Intel® i7™ 2600K CPU operating at 4.2 GHz. The code is designed for 

implementation onto the various Xilinx and Actel development kits and can be easily 

ported to the final SAD Version 3 - Flight Prototype Board. 

All source code was formatted for presentation using Notepad++. 

D.1.1 SEVEN-SEGMENT LED COUNTER (BASYS2USERDEMO.VHD) 

The following code is a modified form of the top-level module for instantiation of 

a seven-segment LED counter with the clocking required: 

------------------------------------------------------------------------------- 

-- Company: Digilent RO 

-- Engineer: Mircea Dabacan 

-- Modified by: LT Lucas S. Parobek 

--  

-- Create Date:  23:51:25 03/22/2009  

-- Modified on:  19:41:00 10/15/2012 

-- Design Name:  Basys 2 User Demo 

-- Module Name:  Basys2UserDemo - Structural  

-- Project Name: Basys 2 

-- Target Devices: Spartan 3E 100 (250) 

-- Tool versions: ISE 10.1.03 / ISE 14.3 

-- Description:  Overall top-level module for seven-segment LED counter. 

--               Modification to occur to transfer to schematic representation. 

-- 

-- The file contains the structural description of the Basys2 User Demo. 

-- It combines the components: 

-- - ckMux - to select between mclk and uclk 

-- - SimpleSsegLedDemo - to test buttons, switches, LEDs and 7- segment disp. 

--  

-- Dependencies: ckMux.vhd, SimpleSsegLedDemo.vhd 

-- 

-- Revision:  

-- Revision 1.00 - File Modified for Use in TMR Design 

-- Revision 0.01 - File Created 

-- Additional Comments: All signal lines reproduced in schematic depiction... 

------------------------------------------------------------------------------- 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity Basys2UserDemo is 
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   port (  

          mclk     : in    std_logic;  

          uclk     : in    std_logic;  

          btn      : in    std_logic_vector (3 downto 0);  

          sw       : in    std_logic_vector (7 downto 0);  

          led      : out   std_logic_vector (7 downto 0);  

          seg      : out   std_logic_vector (6 downto 0);  

          an       : out   std_logic_vector (3 downto 0);  

          dp       : out   std_logic 

        ); 

 

end Basys2UserDemo; 

 

architecture Structural of Basys2UserDemo is 

 

   signal ck50MHz  : std_logic; 

 

   component SimpleSsegLedDemo 

      port ( ck  : in    std_logic;  

             btn : in    std_logic_vector (3 downto 0);  

             sw  : in    std_logic_vector (7 downto 0); 

             led : out   std_logic_vector (7 downto 0);  

             seg : out   std_logic_vector (6 downto 0);  

             an  : out   std_logic_vector (3 downto 0); 

             dp  : out   std_logic 

            );  

   end component; 

    

   component ckMux 

      port ( ck0   : in    std_logic;  

             ck1   : in    std_logic;  

             sel   : in    std_logic;  

             ckOut : out   std_logic 

            ); 

   end component; 

    

begin 

 

   SimpleSsegLedDemoInst : SimpleSsegLedDemo 

      port map ( 

                ck=>mclk, 

                btn(3 downto 0)=>btn(3 downto 0), 

                sw(7 downto 0)=>sw(7 downto 0), 

                led(7 downto 0)=>led(7 downto 0), 

                seg(6 downto 0)=>seg(6 downto 0), 

                an(3 downto 0)=>an(3 downto 0), 

                dp=>dp 

                ); 

    

   ckMuxInst : ckMux 

      port map ( 

                ck0=>mclk, 

                ck1=>uclk, 

                sel=>sw(7), 

                ckOut=>ck50MHz 

                ); 

    

end Structural; 
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D.1.2 SEVEN-SEGMENT LED COUNTER (SIMPLESSEGLEDDEMO.VHD) 

The following code is a the seven-segment LED module for instantiation of a 

seven-segment LED counter and corresponding switch and button inputs: 

------------------------------------------------------------------------------- 

-- Company: Digilent RO 

-- Engineer: Mircea Dabacan 

-- Modified by: LT Lucas S. Parobek 

--  

-- Create Date:  19:04:55 03/22/2009  

-- Modified on:  19:45:00 10/15/2012 

-- Design Name:  Basys 2 User Demo 

-- Module Name:  SimpleSsegLedDemo - Behavioral  

-- Project Name: Basys 2 

-- Target Devices: Spartan 3E 100 (250) 

-- Tool versions:  ISE 10.1.03 / ISE 14.3 

-- Description:    Test buttons, switches, LEDs and seven segment disp. 

-- 

-- This is the source file for the Simple Demo for Basys 2,  

-- provided by the Digilent Reference Component Library. 

 

-- The project demonstrates the behavior of: 

--  - seven segment display: all digits count synchronously from 0 to F 

--    hexadecimal. All decimal points are turned ON.  

--  - buttons: pressing a button turns OFF the corresponding seven  

--    segment display digit 

--  - Switches and LEDs: switches control LEDs state 

-- 

-- Dependencies: Basys2UserDemo.vhd (parent) 

-- 

-- Revision:  

-- Revision 1.00 - File Modified for Use in TMR Design 

-- Revision 0.01 - File Created 20/03/2009(MirceaD) 

-- Additional Comments: Modified for Use in TMR Design (+ Synth. Flags) 

------------------------------------------------------------------------------- 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity SimpleSsegLedDemo is 

 

  Port (ck:  in  std_logic; 

        btn: in  std_logic_vector(3 downto 0); 

        sw:  in  std_logic_vector(7 downto 0); 

        led: out std_logic_vector(7 downto 0); 

        seg: out std_logic_vector(6 downto 0); 

        dp:  out std_logic; 

        an:  out std_logic_vector(3 downto 0) 

          ); 

 

end SimpleSsegLedDemo; 

 

architecture Behavioral of SimpleSsegLedDemo is 

 

  signal cntDiv: std_logic_vector(28 downto 0); -- general clock div/cnt 

  alias cntDisp: std_logic_vector(3 downto 0) is cntDiv(28 downto 25); 
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  -- four bits of the main counter 

 

-- Synthesis Flags to Prevent Logic Trimming (LSP - 10/15/2012) 

attribute equivalent_register_removal: string; 

attribute equivalent_register_removal of cntDiv : signal is "no"; 

 

begin 

 

  led <= sw;  -- switches control LEDs 

 

  ckDivider: process(ck) 

  begin 

    if ck'event and ck='1' then 

      cntDiv <= cntDiv + '1'; 

    end if; 

  end process; 

 

  --HEX-to-seven-segment decoder 

--   HEX:   in    STD_LOGIC_VECTOR (3 downto 0); 

--   LED:   out   STD_LOGIC_VECTOR (6 downto 0); 

--  

-- segment encoinputg 

--      0 

--     ---   

--  5 |   | 1 

--     ---   <- 6 

--  4 |   | 2 

--     --- 

--      3 

    

    with cntDisp SELect 

   seg<= "1111001" when "0001",   --1 

         "0100100" when "0010",   --2 

         "0110000" when "0011",   --3 

         "0011001" when "0100",   --4 

         "0010010" when "0101",   --5 

         "0000010" when "0110",   --6 

         "1111000" when "0111",   --7 

         "0000000" when "1000",   --8 

         "0010000" when "1001",   --9 

         "0001000" when "1010",   --A 

         "0000011" when "1011",   --b 

         "1000110" when "1100",   --C 

         "0100001" when "1101",   --d 

         "0000110" when "1110",   --E 

         "0001110" when "1111",   --F 

         "1000000" when others;   --0 

  

  an <= btn;  -- released buttons turn corresponding digits ON 

  dp <= '0';  -- all decimal point ON 

 

end Behavioral; 
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D.1.3 SEVEN-SEGMENT LED COUNTER (VOTER.V) 

The following code is a the voter module for instantiation of a seven-segment 

LED counter in TMR and corresponding switch and button inputs: 

/////////////////////////////////////////////////////////////////////////////// 

// Company: Naval Postgraduate School 

// Engineer: LT Lucas S. Parobek 

//  

// Create Date:    19:48:32 10/23/2012  

// Design Name:    Seven-Segment LED Counter – TMR Version 

// Module Name:    voter.v 

// Project Name:   Basys 2 

// Target Devices: Spartan 3E 100 (250) 

// Tool versions:  ISE 14.3 

// Description:    Voter module to allow for TMR representation of counter. 

// 

// Dependencies:   Basys2UserDemo.vhd (parent) 

// 

// Revision:  

// Revision 1.00 - File Modified for Use in TMR Design 

// Additional Comments: All switch and button lines voted on to allow for 

//                      continued operation as per non-TMR design… 

/////////////////////////////////////////////////////////////////////////////// 

`timescale 1ns / 1ps 

module voter(dp0,dp1,dp2, 

                 l0,l1,l2, 

                 s0,s1,s2, 

                 a0,a1,a2, 

                 dp,led,seg,an); 

      

     input dp0; 

     input dp1; 

     input dp2; 

      

     input [7:0] l0; 

     input [7:0] l1; 

     input [7:0] l2; 

      

     input [6:0] s0; 

     input [6:0] s1; 

     input [6:0] s2; 

      

     input [3:0] a0; 

     input [3:0] a1; 

     input [3:0] a2; 

      

    output dp; 

    output [7:0] led; 

    output [6:0] seg; 

    output [3:0] an; 

 

assign dp = (dp0 & dp1) | (dp0 & dp2) | (dp1 & dp2);  

assign led = (l0 & l1) | (l0 & l2) | (l1 & l2);  

assign seg = (s0 & s1) | (s0 & s2) | (s1 & s2);  

assign an = (a0 & a1) | (a0 & a2) | (a1 & a2);  

 

endmodule 
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D.1.4 SEVEN-SEGMENT LED COUNTER (TMR SCHEMATIC) 

The following schematic implements the seven-segment LED counter in TMR: 
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D.2 LAUNCH SEQUENCE GENERATOR (LAUNCH_SEQUENCER.VHD) 

The following VHDL code provides the preliminary basis of the launch sequencer 

logic timing utilizing the FROM portion of the ProASIC3 to store timing constants: 

-------------------------------------------------------------------------------- 

--                       Actel Corporation                                    -- 

--                             www.actel.com                                  -- 

-------------------------------------------------------------------------------- 

--        VHDL Design :  Launch Sequence Generator                            -- 

--         Design     :  ACTEL Launch Sequence using FlashROM IP              -- 

--         File name  :  launch_sequencer.vhd                                 -- 

-------------------------------------------------------------------------------- 

-- Description: This module implements the logic to generate a sequence of    -- 

-- P-POD select signals in user defined time interval. Actels FlashROM design -- 

-- is configured and generated with different contents to meet this time      -- 

-- difference.                                                                --                                               

--                                                                            -- 

-------------------------------------------------------------------------------- 

-- Modification History                                                       -- 

--                                                                            -- 

-- Initial revision                                                           -- 

--                                                                            -- 

-- Revision 1.0                                                               -- 

-------------------------------------------------------------------------------- 

--IMPORTANT-READ THESE TERMS CAREFULLY BEFORE UTILIZING THE INFORMATION       -- 

--CONTAINED IN THIS DESIGN.                                                   -- 

--                                                                            -- 

--NO SUPPORT/NO WARRANTY.                                                     -- 

--THE DESIGN FILES AND DOCUMENTATION ARE PROVIDED WITHOUT SUPPORT OR WARRANTY -- 

--OF ANY KIND.                                                                -- 

--ACTEL IS NOT OBLIGATED TO PROVIDE UPDATES, BUG FIXES, OR TECHNICAL SUPPORT  -- 

--AND DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE WARRANTIES  -- 

--OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND WARRANTIES OF     -- 

--NON-INFRINGEMENT OF THE RIGHTS OF THIRD PARTIES (INCLUDING, WITHOUT         -- 

--LIMITATION, RIGHTS UNDER PATENT, COPYRIGHT, TRADE SECRET, OR OTHER          -- 

--INTELLECTUAL PROPERTY RIGHTS).  RECIPIENT ACCEPTS THE DESIGN FILES AND      -- 

--DOCUMENTATION IN "AS-IS" CONDITION.                                         -- 

-------------------------------------------------------------------------------- 

 

-------------------------------------------------------------------------------- 

--                               L I B R A R Y                                -- 

-------------------------------------------------------------------------------- 

library IEEE; 

 

use IEEE.STD_LOGIC_1164.all;  

use IEEE.STD_LOGIC_arith.all; 

use IEEE.STD_LOGIC_unsigned.all; 

 

library proasic3; 

use proasic3.all; 

 

-------------------------------------------------------------------------------- 

--                               E N T I T Y                                  -- 

-------------------------------------------------------------------------------- 

entity launch_sequencer is 

port( 

        --Input Clock 

        clk        : in std_logic ; 

        --Active low POWER ON RESET 

        poreset_n     : in std_logic ; 

        --First P-POD Select signal 

        cs1        : out std_logic;  

        --Second P-POD Select signal 

        cs2        : out std_logic;  

        --Third P-POD Select signal 
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        cs3        : out std_logic;  

        --Fourth P-POD Select signal 

        cs4        : out std_logic; 

        --Fifth P-POD Select signal 

        cs5        : out std_logic;  

        --Sixth P-POD Select signal 

        cs6        : out std_logic;  

        --Seventh P-POD Select signal 

        cs7        : out std_logic;  

        --Eighth P-POD Select signal 

        cs8        : out std_logic; 

        --Reference signal for all P-POD select signal 

        reference_out        : out std_logic 

 

   ); 

end launch_sequencer; 

 

-------------------------------------------------------------------------------- 

--                         A R C H I T E C T U R E                            -- 

-------------------------------------------------------------------------------- 

architecture launch_sequencer_arch of launch_sequencer is 

 

-- FlashROM ip core 

component FlashROM_cmp   

    port 

    ( 

     CLK  : in std_logic;  

     ADDR : in std_logic_vector(6 downto 0);  

     DOUT : out std_logic_vector(7 downto 0) 

    ) ; 

end component; 

 

signal addr_sig : std_logic_vector(6 downto 0);  

signal dout_sig : std_logic_vector(7 downto 0);  

  

signal data1_sig : std_logic_vector(7 downto 0); 

signal data2_sig : std_logic_vector(7 downto 0); 

signal data3_sig : std_logic_vector(7 downto 0); 

signal data4_sig : std_logic_vector(7 downto 0); 

signal data5_sig : std_logic_vector(7 downto 0); 

signal data6_sig : std_logic_vector(7 downto 0); 

signal data7_sig : std_logic_vector(7 downto 0); 

signal data8_sig : std_logic_vector(7 downto 0); 

 

signal count1_sig : std_logic_vector(7 downto 0); 

signal count2_sig : std_logic_vector(7 downto 0); 

signal count3_sig : std_logic_vector(7 downto 0); 

signal count4_sig : std_logic_vector(7 downto 0); 

signal count5_sig : std_logic_vector(7 downto 0); 

signal count6_sig : std_logic_vector(7 downto 0); 

signal count7_sig : std_logic_vector(7 downto 0); 

signal count8_sig : std_logic_vector(7 downto 0); 

 

signal nrst_sig : std_logic ; 

 

signal addr_en : std_logic; 

signal addr_fprom_s :  std_logic_vector(6 downto 0); 

 

component pll_4_40   

    port(POWERDOWN, CLKA : in std_logic;  LOCK, GLA, GLB : out  

        std_logic) ; 

end component; 

 

signal lock_sig : std_logic; 

signal div_clk : std_logic ; 

 

signal clk_divider : std_logic_vector(9 downto 0); 

signal div_clkms : std_logic ;  
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signal div_clkms_sig : std_logic ;  

signal load_en_sig : std_logic ;  

 

COMPONENT CLKINT  

  port( 

                A         : in    STD_ULOGIC; 

               Y                : out    STD_ULOGIC); 

END COMPONENT; 

 

component addr_counter  

 

    port( Aclr   : in    std_logic; 

          Clock  : in    std_logic; 

          Q      : out   std_logic_vector(6 downto 0); 

          Enable : in    std_logic 

        ); 

 

end component; 

 

component data_counter 

 

    port( Aclr   : in    std_logic; 

          Clock  : in    std_logic; 

          Q      : out   std_logic_vector(7 downto 0); 

          Enable : in    std_logic 

        ); 

 

end component; 

 

signal clk_div_sig : std_logic; 

signal clk_div2_sig : std_logic; 

signal clk_div3_sig : std_logic; 

signal clk_sig     : std_logic ;  

 

signal one_sig : std_logic; 

signal two_sig : std_logic; 

signal three_sig : std_logic; 

signal four_sig : std_logic; 

signal five_sig : std_logic; 

signal six_sig : std_logic; 

signal seven_sig : std_logic; 

signal eight_sig : std_logic; 

 

type from_read is (idle_st, en_st, delay1_st, add_en_st) ; 

signal pr_st, nx_st : from_read; 

 

signal from_en_sig : std_logic; 

signal add_en_sig : std_logic; 

 

signal clk_from_sig : std_logic; 

signal clk_40 : std_logic; 

signal en_sig : std_logic; 

 

signal den1_sig: std_logic; 

signal cs1_sig : std_logic; 

signal den2_sig : std_logic; 

signal cs2_sig : std_logic; 

signal den3_sig : std_logic; 

signal cs3_sig : std_logic; 

signal den4_sig : std_logic; 

signal cs4_sig : std_logic; 

signal den5_sig : std_logic; 

signal cs5_sig : std_logic; 

signal den6_sig : std_logic; 

signal cs6_sig : std_logic; 

signal den7_sig : std_logic; 

signal cs7_sig : std_logic; 

signal den8_sig : std_logic; 

signal cs8_sig : std_logic; 
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begin 

 

----------- Active low reset on board --------------- 

nrst_sig <= poreset_n and lock_sig; 

 

 

----------- Time Interval Generation ---------------- 

----------------------------------------------------- 

--pll_4_40_inst: This PLL block generates 4Mhz and 40MHz clocks 

--from external 48Mhz clock 

----------------------------------------------------- 

pll_4_40_inst: pll_4_40 

      port map 

      ( 

         POWERDOWN => '1', 

         CLKA      => clk, 

         LOCK  => lock_sig, 

         GLA   => clk_div_sig, 

         GLB   => clk_40 

      ) ; 

 

Process(clk_40, nrst_sig) 

begin 

     if nrst_sig = '0' then 

       clk_from_sig <= '0' ; 

     elsif clk_40'event and clk_40 = '1' then 

       clk_from_sig <= not clk_from_sig ; 

     end if ; 

end process; 

 

Process(clk_div_sig, nrst_sig, load_en_sig) 

begin 

     if nrst_sig = '0' then 

       clk_div2_sig <= '0' ; 

     elsif clk_div_sig'event and clk_div_sig = '1' then 

      if load_en_sig = '1' then 

       clk_div2_sig <= not clk_div2_sig ; 

      end if; 

     end if ; 

end process; 

 

Process(clk_div2_sig, nrst_sig) 

begin 

     if nrst_sig = '0' then 

       clk_div3_sig <= '0' ; 

     elsif clk_div2_sig'event and clk_div2_sig = '1' then 

       clk_div3_sig <= not clk_div3_sig ; 

     end if ; 

end process; 

 

--1Mhz clock 

div_clk <= clk_div3_sig ;    

 

Process(div_clk, nrst_sig, clk_divider) 

begin 

     if nrst_sig = '0' then 

       clk_divider <= (others => '0') ; 

       div_clkms_sig   <= '0' ; 

     elsif div_clk'event and div_clk = '1' then 

      if clk_divider = 0 then 

           clk_divider <= "1111101000" ; 

           div_clkms_sig   <= '1' ; 

      else 

           clk_divider <= clk_divider - '1' ; 

           div_clkms_sig   <= '0' ; 

      end if ; 

     end if ; 

end process ; 
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CLKINT_inst: CLKINT 

    port map( 

               A => div_clkms_sig, 

               Y   => div_clkms 

            ); 

 

----------- FlashROM ip core instantiation ----------- 

----------------------------------------------------- 

--FlashROM_cmp_inst: This FlashROM block is configured 

--to generate different time interval between P-PODs 

--select signals 

----------------------------------------------------- 

FlashROM_cmp_inst: FlashROM_cmp port map 

      ( 

         CLK  => from_en_sig, 

         ADDR => addr_sig, 

         DOUT => dout_sig 

      ) ; 

 

----------- Address Generation ----------------------- 

 

----------state machine for generating clock enable for FlashROM and address enable for 

addr_counter------- 

process(clk_from_sig, nrst_sig) 

begin 

        if nrst_sig = '0' then 

          pr_st <= idle_st ; 

        elsif clk_from_sig'event and clk_from_sig = '1' then 

          pr_st <= nx_st ; 

        end if;           

end process ; 

 

 

process(pr_st) 

begin 

      case (pr_st) is 

 

         when idle_st   =>  nx_st <=  en_st; 

         when en_st     =>  nx_st <=  delay1_st; 

         when delay1_st =>  nx_st <=  add_en_st; 

         when add_en_st =>  nx_st <=  idle_st; 

 

         when others =>  nx_st <=  idle_st; 

      end case ; 

end process ; 

 

process(pr_st) 

begin 

      case (pr_st) is 

 

         when idle_st   =>  from_en_sig <= '0' ; add_en_sig <= '0' ; 

         when en_st     =>  from_en_sig <= '1' ; add_en_sig <= '0' ;   

         when delay1_st =>  from_en_sig <= '0' ; add_en_sig <= '0' ;   

         when add_en_st =>  from_en_sig <= '0' ; add_en_sig <= '1' ;   

 

         when others    =>  from_en_sig <= '0' ; add_en_sig <= '0' ; 

 

      end case ; 

end process ; 

 

en_sig <= add_en_sig and (not (load_en_sig)) ; 

 

addr_counter_inst: addr_counter  

 

    port map( Aclr   => nrst_sig, 

              Clock  => clk_from_sig, 

              Q      => addr_fprom_s(6 downto 0), 
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              Enable => en_sig 

            ); 

 

ROMaddr_proc: Process(clk_from_sig, nrst_sig, addr_fprom_s, addr_en, add_en_sig) 

begin 

     if (nrst_sig = '0') then 

       load_en_sig <= '0' ; 

     elsif clk_from_sig'event and clk_from_sig = '1' then 

        if addr_fprom_s = "0001001" then 

           load_en_sig <= '1' ; 

        end if; 

     end if ; 

end process ROMaddr_proc; 

 

addr_sig <= addr_fprom_s(6 downto 0) ; 

 

-----------Address Decoder --------------- 

one_sig  <=  (not (addr_fprom_s(0)) ) and (not (addr_fprom_s(1)) ) and (not 

(addr_fprom_s(2)) ) and (not (addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not 

(addr_fprom_s(5)) ) and (not (addr_fprom_s(6)) ) ; 

 

two_sig  <=  addr_fprom_s(0) and (not (addr_fprom_s(1)) ) and (not (addr_fprom_s(2)) ) 

and (not (addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not (addr_fprom_s(5)) ) 

and (not (addr_fprom_s(6)) ) ; 

 

three_sig  <=  (not (addr_fprom_s(0)) ) and addr_fprom_s(1) and (not (addr_fprom_s(2)) ) 

and (not (addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not (addr_fprom_s(5)) ) 

and (not (addr_fprom_s(6)) ) ; 

 

four_sig  <=  addr_fprom_s(0) and addr_fprom_s(1) and (not (addr_fprom_s(2)) ) and (not 

(addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not (addr_fprom_s(5)) ) and (not 

(addr_fprom_s(6)) ) ; 

 

five_sig  <=  (not (addr_fprom_s(0)) ) and (not (addr_fprom_s(1)) ) and addr_fprom_s(2) 

and (not (addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not (addr_fprom_s(5)) ) 

and (not (addr_fprom_s(6)) ) ; 

 

six_sig  <=  addr_fprom_s(0) and (not (addr_fprom_s(1)) ) and addr_fprom_s(2) and (not 

(addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not (addr_fprom_s(5)) ) and (not 

(addr_fprom_s(6)) ) ; 

 

seven_sig  <=  (not (addr_fprom_s(0)) ) and addr_fprom_s(1) and addr_fprom_s(2) and (not 

(addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not (addr_fprom_s(5)) ) and (not 

(addr_fprom_s(6)) ) ; 

 

eight_sig  <= (not (from_en_sig)) and addr_fprom_s(0) and addr_fprom_s(1) and 

addr_fprom_s(2) and (not (addr_fprom_s(3)) ) and (not (addr_fprom_s(4)) ) and (not 

(addr_fprom_s(5)) ) and (not (addr_fprom_s(6)) ) ; 

 

----------FROM content registers ---------------- 

Process(clk_from_sig, nrst_sig, add_en_sig, one_sig) 

begin 

     if nrst_sig = '0' then 

       data1_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and one_sig = '1') then 

           data1_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, two_sig) 

begin 

     if nrst_sig = '0' then 

       data2_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and two_sig = '1') then 

           data2_sig <= dout_sig ; 

      end if ; 
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     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, three_sig) 

begin 

     if nrst_sig = '0' then 

       data3_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and three_sig = '1') then 

           data3_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, four_sig) 

begin 

     if nrst_sig = '0' then 

       data4_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and four_sig = '1') then 

           data4_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, five_sig) 

begin 

     if nrst_sig = '0' then 

       data5_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and five_sig = '1') then 

           data5_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, six_sig) 

begin 

     if nrst_sig = '0' then 

       data6_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and six_sig = '1') then 

           data6_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, seven_sig) 

begin 

     if nrst_sig = '0' then 

       data7_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and seven_sig = '1') then 

           data7_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 

 

Process(clk_from_sig, nrst_sig, add_en_sig, eight_sig) 

begin 

     if nrst_sig = '0' then 

       data8_sig <= "11111111" ; 

     elsif clk_from_sig'event and clk_from_sig = '0' then 

      if (add_en_sig = '1' and eight_sig = '1') then 

           data8_sig <= dout_sig ; 

      end if ; 

     end if ; 

end process; 
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----------- CS Generation ---------------------------- 

den1_sig <= load_en_sig and ( not(cs1_sig) ) ; 

 

data_counter1_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clk,  

               Q      => count1_sig, 

               Enable => den1_sig 

             ); 

 

Process(div_clk, nrst_sig,  count1_sig) 

begin 

     if (nrst_sig = '0' ) then 

       cs1_sig <= '0' ; 

     elsif div_clk'event and div_clk = '1' then 

      if count1_sig = data1_sig then 

           cs1_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den2_sig <= load_en_sig and ( not(cs2_sig) ) ; 

 

data_counter2_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clk,  

               Q      => count2_sig, 

               Enable => den2_sig 

             ); 

 

Process(div_clk, nrst_sig,  count2_sig) 

begin 

     if (nrst_sig = '0' ) then 

       cs2_sig <= '0' ; 

     elsif div_clk'event and div_clk = '1' then 

      if count2_sig = data2_sig then 

           cs2_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den3_sig <= load_en_sig and ( not(cs3_sig) ) ; 

 

data_counter3_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clk,  

               Q      => count3_sig, 

               Enable => den3_sig 

             ); 

 

Process(div_clk, nrst_sig,  count3_sig) 

begin 

     if (nrst_sig = '0' ) then 

       cs3_sig <= '0' ; 

     elsif div_clk'event and div_clk = '1' then 

      if count3_sig = data3_sig then 

           cs3_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den4_sig <= load_en_sig and ( not(cs4_sig) ) ; 

 

data_counter4_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  
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               Clock  => div_clk,  

               Q      => count4_sig, 

               Enable => den4_sig 

             ); 

 

Process(div_clk, nrst_sig,  count4_sig) 

begin 

     if (nrst_sig = '0' ) then 

       cs4_sig <= '0' ; 

     elsif div_clk'event and div_clk = '1' then 

      if count4_sig = data4_sig then 

           cs4_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den5_sig <= load_en_sig and ( not(cs5_sig) ) ; 

 

data_counter5_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clkms,  

               Q      => count5_sig, 

               Enable => den5_sig 

             ); 

 

Process(div_clkms, nrst_sig,  count5_sig ) 

begin 

     if (nrst_sig = '0' ) then 

       cs5_sig <= '0' ; 

     elsif div_clkms'event and div_clkms = '1' then 

      if count5_sig = data5_sig then 

           cs5_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den6_sig <= load_en_sig and ( not(cs6_sig) ) ; 

 

data_counter6_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clkms,  

               Q      => count6_sig, 

               Enable => den6_sig 

             ); 

 

Process(div_clkms, nrst_sig,  count6_sig) 

begin 

     if (nrst_sig = '0' ) then 

       cs6_sig <= '0' ; 

     elsif div_clkms'event and div_clkms = '1' then 

      if count6_sig = data6_sig then 

           cs6_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den7_sig <= load_en_sig and ( not(cs7_sig) ) ; 

 

data_counter7_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clkms,  

               Q      => count7_sig, 

               Enable => den7_sig 

             ); 

 

Process(div_clkms, nrst_sig,  count7_sig) 
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begin 

     if (nrst_sig = '0' ) then 

       cs7_sig <= '0' ; 

     elsif div_clkms'event and div_clkms = '1' then 

      if count7_sig = data7_sig then 

           cs7_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

den8_sig <= load_en_sig and ( not(cs8_sig) ) ; 

 

data_counter8_inst: data_counter 

 

    port map ( Aclr   => nrst_sig,  

               Clock  => div_clkms,  

               Q      => count8_sig, 

               Enable => den8_sig 

             ); 

 

Process(div_clkms, nrst_sig,  count8_sig) 

begin 

     if (nrst_sig = '0' ) then 

       cs8_sig <= '0' ; 

     elsif div_clkms'event and div_clkms = '1' then 

      if count8_sig = data8_sig then 

           cs8_sig <= '1' ; 

      end if ; 

     end if ; 

end process; 

 

-------------------------------------------------------------------------------- 

-- launch_sequencer output signals                                            -- 

-------------------------------------------------------------------------------- 

Process(div_clk, nrst_sig) 

begin 

     if nrst_sig = '0' then 

       reference_out   <= '0' ; 

     elsif div_clk'event and div_clk = '1' then 

           reference_out   <= '1' ; 

     end if ; 

end process ; 

 

cs1 <= cs1_sig; 

cs2 <= cs2_sig; 

cs3 <= cs3_sig; 

cs4 <= cs4_sig; 

cs5 <= cs5_sig; 

cs6 <= cs6_sig; 

cs7 <= cs7_sig; 

cs8 <= cs8_sig; 

 

end launch_sequencer_arch ; 

-------------------------------------------------------------------------------- 

--                               END OF FILE                                  -- 

-------------------------------------------------------------------------------- 
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