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Abstract
An approximately globally convergent numerical method for a 1D coefficient
inverse problem for a hyperbolic PDE is applied to image dielectric constants
of targets from blind experimental data. The data were collected in the field by
the Forward Looking Radar of the US Army Research Laboratory. A posteriori
analysis has revealed that computed and tabulated values of dielectric constants
are in good agreement. Convergence analysis is presented.

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we test the 1D version [30] of the numerical method of recent publications
[5–12, 26, 27, 31, 47] for the case when the time-resolved backscattering electric signal is
measured experimentally in the field. Measurements were performed by the Forward Looking
Radar built in the US Army Research Laboratory (ARL). All kinds of clutters were present at

6 Formerly with University of North Carolina, Charlotte, NC, USA.
7 Author to whom any correspondence should be addressed.
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the site of data collection. The data are severely limited. The goal of this radar is to detect and
possibly identify shallow explosive-like targets. Prior to this effort, the focus of the ARL team
was on the image processing rather than on the target detection and identification [36]. The
current data processing procedure of ARL delivers only the energy information. The algorithm
of this paper computes values of dielectric constants of targets using those data. These values
represent a new, surprising and quite useful dimension of information for the ARL team. A
hope is that these values might be helpful in the target detection and identification process.

The UNCC/ChalmersGU team has worked only with the most challenging case
of blind experimental data. ‘Blind’ means that first computations were made by the
UNCC/ChalmersGU team without any knowledge of correct answers. Next, computational
results were sent to the ARL team. The ARL team has compared a posteriori those results
with the reality and then revealed correct answers to the UNCC/ChalmersGU team.

In the above cited works, a new numerical method was developed for some
multidimensional coefficient inverse problems (MCIPs) for a hyperbolic PDE with single
measurement data. ‘Single measurement’ means that either only a single position of the point
source or only a single direction of the incident plane wave is considered. Because of many
dangers on the battlefield, the single measurement arrangement is the most suitable one for
military applications. There were two goals of those publications.

Goal 1. To develop such a numerical method, which would have a rigorous guarantee
obtaining a good approximation for the exact solution of a coefficient inverse problem (CIP)
without using advanced knowledge of either a small neighborhood of that solution or of the
background medium in the domain of interest.

Goal 2. This method should demonstrate a good performance on both computationally
simulated and experimental data.

It is well known that it is enormously challenging to achieve both goals 1 and 2
simultaneously. Three substantial obstacles are combined here: the minimal information
content due to the single source only, nonlinearity and ill-posedness. Therefore, it was
inevitable in the above-cited publications to introduce some natural approximations. Although
those approximations cannot be rigorously justified sometimes, still they have resulted in the
simultaneous achievement of both goals; see more details in sections 4 and 6. The numerical
methods of [5–12, 26, 27, 30, 31, 47] use the structure of the underlying PDE operator rather
than a least-squares functional. The above thoughts are reflected in the following statement
of the review paper [12] ‘The key philosophical focus of our review is the above point about
natural assumptions/approximations which make the technique numerically efficient.’

Because of the measurement scheme of the Forward Looking Radar, the
UNCC/ChalmersGU team had only one time-resolved curve for each target. This curve was
the voltage averaged over some readings (section 7). Only one component of the electric field
was generated and measured in the backscattering regime. The reality is 3D, and the electric
field propagation is governed by the full Maxwell system. However, the above data structure
has left us with no choice but to model the process by a 1D CIP using only one hyperbolic
PDE.

The main challenge of working with these data was a huge misfit between them and
computationally simulated data, e.g. compare figure 3(b) with figures 4(b), (d) and (f).
Namely, the experimentally measured curves are highly oscillatory, unlike the computed
ones. Therefore, to make the experimental data suitable for the inversion, we apply a new
data pre-processing procedure, which is a crucial step. This procedure was unbiased, since
we have worked with the blind data only. See [10, 26] and chapter 5 of [6] for a similar data
pre-processing procedure for the case of transmitted experimental data. Both these procedures
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are based on the intuition only. The only justification for both is the accuracy of obtained
results; see also comments in section 9 below.

There are some classical numerical methods of solving 1D CIPs for hyperbolic equations;
see, e.g. [19, 25, 35] and references therein. However, because of many uncertainties in our
experimental data, including the above misfit and the 3D reality versus the 1D mathematical
model (also, see subsection 7.2), it is yet unclear how those methods would perform for our
data. This question deserves a separate research effort.

There are also MCIPs with multiple measurement data. ‘Multiple measurements’ means
that the data are generated either by the point source running along a manifold, or by the incident
plane wave, whose direction varies within a certain cone. These MCIPs have applications in
medical imaging. We refer to [1, 13, 16, 17, 21, 24, 37–40] for some non-local reconstruction
techniques for these MCIPs. An analogue of the technique of [5] for the case of a 2D CIP
for an elliptic PDE with the source running along a straight line was developed [28, 41,
42]. Validation of the latter for the case of experimental data with the application to stroke
detection in brains of small animals was done in [43]. We point out that one of the main keys
to the success of numerical results of [1, 16, 17] for the reconstruction algorithms of Novikov
[37–40] is the use of approximate mathematical models. The same can be said about [28,
41–43]. This concept is similar to the one above.

In section 2, we pose a CIP for a 1D wave-like PDE. In section 3, we study some
properties of the Laplace transform of the solution of the forward problem. In section 4,
we discuss the concept of the approximate global convergence property. In section 5, we
present our numerical method. Convergence analysis can be found in section 6. In section 7,
we describe the experimental setup, main uncertainties in the experimental data and the data
pre-processing procedure. Imaging results are presented in section 8. Section 9 is devoted to
discussion.

2. Statements of forward and inverse problems

Let the function εr(x), x ∈ R be the dielectric constant, spatially distributed on the real line.
Let the number d > 1. We assume below that

εr(x) ∈ [1, d), x ∈ [0, 1], εr ∈ C1 (R), (2.1)

εr(x) = 1, x /∈ (0, 1). (2.2)

Thus, the interval (0, 1) is our domain of interest in the inverse problem. The forward
problem is

εr(x)utt = uxx, x ∈ R, t ∈ (0,∞), (2.3)

u (x, 0) = 0, ut (x, 0) = δ (x − x0), (2.4)

x0 = const. < 0. (2.5)

CIP. Determine the coefficientεr(x), assuming that the following function g (t) is known

u (0, t) = g (t), t ∈ (0,∞). (2.6)

The function g (t) models the backscattering data measured by the Forward Looking
Radar. The condition t ∈ (0,∞) in (2.6) is not a restrictive one from the numerical standpoint.
Indeed, we use the Laplace transform (2.7) to solve this CIP. Since the kernel e−st of this
transform decays rapidly with respect to t, then in actuality a finite time interval is sufficient.
In addition, the data resulting from the data pre-processing procedure have a finite support in

3
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(0,∞) , see figures 5(a) and (b). Since this is the 1D case, uniqueness theorems for this CIP
are well known; see e.g. [35] and references therein.

Consider the Laplace transform

w(x, s) =
∫ ∞

0
u (x, t) e−st dt := Lu, s � s = const. > 0, (2.7)

where the number s = s (εr) is sufficiently large. We call the parameter s, pseudo frequency.
Hence,

wxx − s2εr(x)w = −δ (x − x0), x ∈ R, (2.8)

lim
|x|→∞

w(x, s) = 0; (2.9)

see theorem 3.1 for the proof of (2.9). By (2.6)

w (0, s) = ϕ(s) := Lg, s � s. (2.10)

We also need to know the derivative wx (0, s),

wx (0, s) = ρ(s), s � s.

Consider the fundamental solution w0(x, s) of problem (2.8) and (2.9) for εr(x) ≡ 1. Then

w0(x, s) = (2s)−1 exp (−s |x − x0|). (2.11)

Denote ŵ(x, s) = w(x, s) − w0(x, s). Using (2.8)–(2.10), we obtain

ŵxx − s2εr(x)ŵ = s2 (εr(x) − 1) w0, x ∈ R, (2.12)

lim
|x|→∞

ŵ(x, s) = 0, (2.13)

ŵ (0, s) = ϕ̂(s) := ϕ(s) − (2s)−1 exp (−s |x0|) . (2.14)

Also, (2.2) and (2.12)–(2.14) imply for x < 0,

ŵxx − s2ŵ = 0, x < 0, (2.15)

lim
x→−∞ ŵ(x, s) = 0, (2.16)

ŵ (0, s) = ϕ̂(s). (2.17)

It follows from (2.15)–(2.17) that ŵ(x, s) = ϕ̂(s) esx, x < 0. Hence, ŵx (0, s) = sϕ̂(s) =
s(ϕ(s) − (2s)−1 exp (−s |x0|)) and thus since x0 < 0, we have

wx (0, s) := ρ(s) = sϕ(s) − exp(sx0). (2.18)

3. Some properties of the function w(x, s)

Below Cα, α ∈ (0, 1) are Hölder spaces. In this section, we establish some properties of the
function w = Lu, which we need for the convergence analysis. Let f (t), t > 0 be a piecewise
continuous function such that | f (t)| � C eat, t > 1, where C = C ( f ), a = a ( f ) = const. >

0. Consider two types of Laplace transforms,

L1 ( f ) (t) = 1

2
√

πt3/2

∫ ∞

0
τ exp

(
−τ 2

4t

)
f (τ ) dτ,

L2 ( f ) (s) =
∫ ∞

0
f (t) e−s2t dt, s >

√
a ( f ).

4



Inverse Problems 28 (2012) 095007 A V Kuzhuget (UNCC/ChalmersGU team) et al

Lemma 3.1. L2 [L1 ( f )] (s) = L ( f ) (s) for s > a ( f ), where the operator L was defined
in (2.7).

Proof. Using formula (28) of section 4.5 of the book [2], we obtain∫ ∞

0

[
1

2
√

πt3/2
τ exp

(
−τ 2

4t

)]
e−s2t dt = e−sτ ,∀s > 0.

�

Theorem 3.1. Consider the function εr(x) ∈ Cα (R) satisfying the rest of conditions (2.1)
and (2.2). Let (2.5) hold. Then for any number s > 0 there exists a unique solution
p(x, s) ∈ C2+α (|x − x0| � β) ∩ C (R) ,∀β > 0 of the following problem:

pxx − s2εr(x)p = −δ (x − x0), x ∈ R, (3.1)

lim
|x|→∞

p(x, s) = 0. (3.2)

Also,

0 < p(x, s) � w0(x, s), ∀x ∈ R. (3.3)

In addition, let|x − x0| � β = const. > 0. Then there exists a sufficiently large number
ŝ = ŝ (d, β) such that

p(x, s) > wd(x, s), ∀x ∈ [x0 + β,∞), ∀s � ŝ, (3.4)

where wd(x, s) is the fundamental solution of equation (2.8) for the case εr(x) ≡ d,

wd(x, s) = (2s)−1 exp(−s
√

d|x − x0|). (3.5)

Finally, there exists a sufficiently large number s = s (εr) > 0 such that

w(x, s) := L (u) (x, s) = p(x, s), ∀s � s (εr) , ∀x ∈ R. (3.6)

Thus, (3.2) implies that (2.9) holds for s � s = s (εr).

Proof. Let the function v (x, t) be the solution of the following Cauchy problem:

εr(x)vt = vxx, (x, t) ∈ R × (0,∞), (3.7)

v (x, 0) = δ (x − x0). (3.8)

Let the function v0 (x, t) be the solution of problem (3.7), (3.8) for the case εr(x) ≡ 1,

v0 (x, t) = 1

2
√

πt
exp

[
− (x − x0)

2

4t

]
.

Let v̂ (x, t) = v (x, t) − v0 (x, t). Then

v̂xx − εr(x)̂vt = (εr(x) − 1) v0t, v̂ (x, 0) = 0. (3.9)

Detailed estimates of the fundamental solution of a general parabolic equation in [32, chapter
4] imply that v̂ ∈ C2+α,1+α/2 (R × [0, T ]),∀T > 0. Denote

ṽ (x, t) =
∫ t

0
v̂ (x, τ ) dτ =

∫ t

0
(v − v0) (x, τ ) dτ. (3.10)

By (3.9)

ṽxx − εr(x)̃vt = (εr(x) − 1) v0, ṽ (x, 0) = 0. (3.11)

5
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By (2.2) and (2.5), εr(x) − 1 = 0 in a neighborhood of the source point {x0}. Hence,
applying (2.2), we obtain (εr(x) − 1) v0 (x, t) � 0 in R × [0,∞) . Hence, applying the
maximum principle of [23, theorem 1 of chapter 2] to (3.11) we obtain

ṽ (x, t) � 0 in R × [0,∞). (3.12)

On the other hand, theorem 11 of chapter 2 of [23] ensures that the fundamental solution of
the parabolic equation is positive for t > 0. Hence,

v (x, t) > 0, t > 0. (3.13)

Hence, (3.10), (3.12) and (3.13) imply that

0 <

∫ t

0
v (x, τ ) dτ �

∫ t

0
v0 (x, τ ) dτ. (3.14)

Using the Fubini theorem, formula (27) of section 4.5 of the book [2] and (2.11), we obtain

L2

(∫ t

0
v0 (x, τ ) dτ

)
= 1

s2
L2 (v0) = w0(x, s)

s2
. (3.15)

Hence, using (3.13) and (3.14) and Fubini theorem, we obtain

L2

(∫ t

0
v (x, τ ) dτ

)
= 1

s2
L2 (v) (x, s) := y(x, s)

s2
� w0(x, s)

s2
, (3.16)

By (2.11), (3.13) and (3.16)

lim
|x|→∞

y(x, s) = 0. (3.17)

Next, by (3.10) and (3.11) ṽxx = εr(x)v − v0. Hence, |̃vxx| � dv + v0. Therefore,∫ ∞

0
|̃vxx (x, t)| e−s2t dt < ∞.

Hence,

∂2
x

∫ ∞

0
ṽ (x, t) e−s2t dt =

∫ ∞

0
ṽxx (x, t) e−s2t dt = εr(x)y − w0. (3.18)

On the other hand,∫ ∞

0
ṽxx (x, t) e−s2t dt =

∫ ∞

0

(∫ t

0
vxx (x, τ ) dτ

)
e−s2t dt −

∫ ∞

0

(∫ t

0
v0xx (x, τ ) dτ

)
e−s2t dt

= s−2 (yxx − w0xx) .

Comparing this with (3.18) and keeping in mind that w0xx − s2w0 = −δ (x − x0) , we obtain

yxx − s2εr(x)y = −δ (x − x0). (3.19)

By (3.17) and (3.19), the function y(x, s) = L2 (v) (x, s) satisfies conditions (3.1) and (3.2). It
follows from above that y(x, s) ∈ C2+α (|x − x0| � β) ∩ C (R),∀β, s > 0. Uniqueness of the
solution of problem (3.1) and (3.2) for this class of functions can be easily proven in the standard
way using the maximum principle for elliptic equations and (3.2). Hence, problem (3.1)
and (3.2) have the unique solution p(x, s) := y(x, s) ∈ C2+α (|x − x0| � β)∩C (R),∀β, s > 0.
The right estimate (3.3) follows from (3.16), and the left estimate follows from (3.16).
Lemma 3.1 implies (3.6).

We now prove (3.4). We obtain from (2.2), (3.1) and (3.2):

p(x, s) = exp (−s |x − x0|)
2s

− s

2

∫ 1

0
exp (−s |x − ξ |) (εr (ξ ) − 1) p (ξ , s) dξ . (3.20)

6
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Hence, by (2.1) and the right inequality (3.3)

p(x, s) � exp (−s |x − x0|)
2s

− (d − 1)

4

∫ 1

0
exp (−s |x − ξ |) exp (−s |ξ − x0|) dξ .

Assume now that x ∈ (x0, 0). Then,

p(x, s) � exp[−s(x − x0)]

2s
− (d − 1) exp [s (x + x0)]

4

∫ 1

0
e−2sξ dξ

= exp [−s(x − x0)]

2s

[
1 − (d − 1)

(
1 − e−2s

)
e2sx

4

]
.

Therefore,

p(x, s)

wd(x, s)
� exp[s(

√
d − 1)(x − x0)]

[
1 − (d − 1)

(
1 − e−2s

)
e2sx

4

]
, ∀x ∈ (x0, 0).

Hence, if β = const. ∈ (0, |x0|), then there exists a number ŝ = ŝ (d, β) such that

p(x, s)

wd(x, s)
> 1, ∀s � ŝ = ŝ (d, β) , ∀x ∈

[
x0 + β

2
, x0 + β

]
. (3.21)

Consider now the difference p̃(x, s) = p(x, s) − wd(x, s). Then,

p̃xx − s2εr(x) p̃ = s2 (εr(x) − d) wd < 0, x ∈ [x0 + β,∞), (3.22)

lim
x→∞ p̃(x, s) = 0. (3.23)

Let a > x0 +β be an arbitrary number. Consider the function p̃(x, s) on the interval [x0 + β, a]
for s � ŝ (d, β). Then, the maximum principle for elliptic equations (3.21) and (3.22) implies
that the negative minimum of p̃(x, s) on this interval can be achieved only at x = a. Setting
a → ∞ and using (3.23), we obtain that p̃(x, s) � 0 for x ∈ [x0 + β,∞), s � ŝ (d, β).

Assume now that there exist a point x ∈ [x0 + β,∞) and a number s � ŝ (d, β) such that
p̃ (x, s) = 0. Since p̃(x, s) � 0 for x ∈ [x0 + β,∞), therefore,

p̃ (x, s) = 0 = min
[x0+β,∞)

p̃(x, s). (3.24)

Hence, p̃xx (x, s) � 0. However, this and (3.24) contradict to the inequality in (3.22). �

Corollary 3.1. Let the function εr(x) ∈ Cα (R) satisfy the rest of conditions (2.1) and (2.2). For
each s > 0 and for each x ∈ R, the integral of the Laplace transform L2 (v (x, t)) converges
absolutely.

Proof. See (3.14), (3.15) and (3.16). �

Remark 3.1. By (3.6) the function ϕ(s) in (2.10) is defined only for s � s (εr). However,
using lemma 3.1 and corollary 3.1, we set below ϕ(s) := L2 [L1 (g)] (s),∀s > 0, where the
function g (t) is defined in (2.6).

Theorem 3.2. Let the function εr(x) ∈ Cα (R) satisfy the rest of conditions (2.1), (2.2)
and (2.5). Let the number s � ŝ (|x0|, d), where the number ŝ was defined in theorem 3.1. Let
the function p (x, s; εr) := p (x, s) ∈ C2+α (|x − x0| � β) ∩ C (R),∀β > 0 be the solution of
the problem (3.1) and (3.2). Denote

fk (x, s; εr) = s−2∂k
x [ln p (x, s)] , k = 1, 2.

7
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Then, there exists a constant B = B (x0, d, s) > 1 such that for all such functions εr,

‖ fk (x, s; εr)‖C[0,1] � B, k = 1, 2. (3.25)

Also, for any two functions ε(1)
r and ε(2)

r satisfying conditions of this theorem∥∥ fk
(
x, s; ε(1)

r

) − fk
(
x, s; ε(2)

r

)∥∥
L2(0,1)

� B
∥∥ε(1)

r − ε(2)
r

∥∥
L2(0,1)

, k = 1, 2. (3.26)

Proof. In this proof B = B (x0, d, s) > 1 denotes different constants depending on the listed
parameters. We have

f1 = px

s2 p
, f2 = pxx

s2 p
− p2

x

s2 p2
. (3.27)

Hence, by (3.4)

| f1 (x, s; εr)| � B |px (x, s; εr)| , | f2 (x, s; εr)| � B[|pxx| + |px|2] (x, s; εr) , x ∈ [0, 1].

(3.28)

To estimate the function |px|, we use the integral equation (3.20). We have for x ∈ (0, 1),

px(x, s) = −exp [−s(x − x0)]

2
+ s2

2

∫ 1

0
sgn (x − ξ ) exp (−s |x − ξ |) (εr (ξ ) − 1) p (ξ , s) dξ .

Hence, (2.1) and (3.3) imply that |px| � B for x ∈ [0, 1]. Since δ(x − x0) = 0 for
x ∈ [0, 1], (3.3) implies that pxx = s2εr(x)p for x ∈ [0, 1]. Hence, by (2.1) and (3.3)
|pxx| � B, x ∈ [0, 1]. Thus, (3.28) implies (3.25).

We now prove (3.26). Let p̃(x, s) = p
(
x, s; ε(1)

r

) − p
(
x, s; ε(2)

r

)
. Then by (3.1)

p̃xx − s2ε(1)
r (x) p̃ = s2 (

ε(1)
r − ε(2)

r

)
(x)p

(
x, s; ε(2)

r

)
, x ∈ R. (3.29)

In addition, it follows from (3.3) and (3.20) that functions ∂
j

x p̃ (x, s) , j = 0, 1 and 2 decay
exponentially with |x| → ∞. Hence, multiplying (3.29) by p̃, integrating over R and using (2.1)
and (3.3), we obtain ‖p̃‖H1(R) � B

∥∥ε(1)
r − ε(2)

r

∥∥
L2(0,1)

. Hence, (3.25) and (3.29) lead to

‖p̃‖H2(0,1) � B
∥∥ε(1)

r − ε(2)
r

∥∥
L2(0,1)

.

Thus, (3.4) and (3.27) imply (3.26). �

4. Approximate global convergence

4.1. The concept

As to the 1D version of the technique, which was published in [30] and which is used here,
originally the work of [30] was considered ‘only as a preliminary step before applying similar
ideas to 2D and 3D cases’ [30, p 125]. The authors of [30] meant the incorporation of the
quasi-reversibility method (QRM) in the techniques of [5–12, 26, 27, 31, 47]; see section 5.

Least-squares functionals for MCIPs with single measurement data suffer from multiple
local minima and ravines. This implies the local convergence of conventional numerical
methods for those MCIPs. The latter mean that iterations should start from a point located in
a sufficiently small neighborhood of the exact solution. The central question addressed in the
publications above was: How does one construct an effective numerical method, which would
lead to a point in a sufficiently small neighborhood of the exact solution of an MCIP without
any a priori information about that neighborhood with a rigorous guarantee of reaching that
neighborhood?

Because of the enormous challenge of addressing this central question (section 1), the
approach of [5–12, 26, 27, 30, 31, 47], as well as that of the current paper, consist of the
following six steps.
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Step 1. A reasonable approximate mathematical model is proposed. The accuracy of this
model cannot be rigorously estimated.

Step 2. A numerical method is developed, which works within the framework of this model.
Step 3. A theorem is proven, which guarantees that, within the framework of this model,

the numerical method of step 2 indeed reaches a sufficiently small neighborhood
of the exact solution, as long as the errors both in the data and in some additional
approximations are sufficiently small. It is central to our approach that this theorem
should not rely either on the assumption about a knowledge of any point in a
small neighborhood of the exact solution or on the assumption of knowledge of
the background medium inside of the domain of interest.

Step 4. That numerical method is tested on computationally simulated data.
Step 5. (Optional). The numerical method of step 2 is tested on experimental data. To have a

truly unbiased case, blind data are preferable. This step is optional because it is usually
not easy to actually obtain experimental data.

Step 6. Finally, if the results of step 4 and (optionally) step 5 are good ones, then that
approximate mathematical model is proclaimed as a valid one.

Step 6 is logical because its condition is that the resulting numerical method is proved to be
effective, i.e. goal 2 is successfully met; see also remark 4.4. After a finite (rather than infinite)
number of iterations it is sufficient to achieve the small neighborhood of the exact solution.
Next, because of approximations in the mathematical model, the resulting solution can be
refined via a locally convergent numerical method. The latter led to a two-stage numerical
procedure in [6–12, 31, 47]. In the first stage, the numerical method of step 2 is applied. In the
second stage, the adaptive finite element method (adaptivity) for MCIPs takes the solution of
the first stage as the starting point for iterations and refines it.

4.2. Definition

Considerations of subsection 4.1 led to the introduction of the approximate global convergence
property in [6, 12]. Since this definition is new, it is worth repeating it here. Recall that one of
the backbone principles of the theory of ill-posed problems is that, given an ill-posed problem,
it is reasonable to assume uniqueness and existence of the exact solution of this problem for
the ‘ideal’ noiseless data [6, 22, 46]. It is not necessary for an algorithm addressing the above
central question to start from any such point. In fact, it is sufficient for it to start from such
a reasonable point, which would not contain information about a small neighborhood of the
exact solution. The question of the validity of the approximate mathematical model M of
definition 4.1 should be addressed in steps 4 and 5 of subsection 4.1.

Definition 4.1. (Approximate global convergence) [6, 12]. Consider a nonlinear ill-
posed problem P. Suppose that this problem has a unique solution x∗ ∈ B for the
noiseless data y∗, where B is a Banach space with the norm ‖·‖B. We call x∗ the
‘exact solution’ or the ‘correct solution’. Suppose that a certain approximate mathematical
model M is proposed to solve the problem P numerically. Assume that, within the
framework of the model M, this problem has a unique exact solution x∗

M and let
x∗

M = x∗. Consider an iterative numerical method for solving the problem P. Suppose
that this method produces a sequence of points {xn}N

n=1 ⊂ B, where N ∈ [1,∞). Let
a sufficiently small number θ ∈ (0, 1). We call this numerical method approximately
globally convergent of the level θ , or shortly globally convergent if, within the framework
of the approximate model M, a theorem is proven, which guarantees that, without any

9



Inverse Problems 28 (2012) 095007 A V Kuzhuget (UNCC/ChalmersGU team) et al

a priori knowledge of a sufficiently small neighborhood of x∗, there exists a number N ∈ [1, N)

such that

‖xn − x∗‖B � θ, ∀n � N. (4.1)

Suppose that iterations are stopped at a certain number k � N. Then, the point xk is denoted
xk := xglob and is called ‘the approximate solution resulting from this method’.

Remark 4.1. We repeat that we have introduced this definition because, in simple terms,
nothing else works for MCIPs with single measurement data; see comments about goals 1 and
2 in section 1.

Remark 4.2. The most important requirement of definition 4.1 is that this numerical method
should provide a sufficiently good approximation for the exact solution x∗ without any
a priori knowledge of a sufficiently small neighborhood of x∗. Furthermore, one should
have a rigorous guarantee of the latter within the framework of the model M. In other words,
step 1 of subsection 4.1 should be addressed.

Remark 4.3. Unlike the classical convergence, this definition does not require limn→∞ xn = x∗.
Furthermore, the total number N of iterations can be finite.

Remark 4.4. As to the use of the approximate mathematical model M, all equations of
mathematical physics are approximate ones. The main criterion of their validity is the accuracy
of descriptions of experimental data, which is exactly what we do. Also, it is well known that
the Huygens–Fresnel optics is not yet rigorously derived from the Maxwell equations; see
section 8.1 of the classical book of Born and Wolf [14]. Nevertheless, it is the Huygens–
Fresnel theory which describes the experimental data of the diffraction optics very well.
Furthermore, the entire optical industry nowadays is based on the Huygens–Fresnel theory.
On the other hand, the derivation of this theory from the Maxwell equations is based on some
non-rigorous approximations. Analogously, although the numerical method of [5–12, 26, 27,
31, 47] is based on an approximate model, goal 2 has been consistently achieved.

5. Numerical method

Although a detailed description of the numerical method of this section can be found in [30],
we still present it rather briefly here in order to refer to some formulas in the convergence
analysis in section 6. Also, because of (2.2), we consider here the function ln (w/w0) instead
of ln w(x, s) in [30]. Let w(x, s) ∈ C2+α (|x − x0| � β) ∩ C (R),∀β, s > 0 be the solution of
problem (2.8) and (2.9); see theorem 3.1.

5.1. Integral differential equation

Since by (3.3) w(x, s) > 0, we can consider the function r(x, s),

r(x, s) = s−2 [ln w(x, s) − ln w0(x, s)] = s−2 ln [(w/w0) (x, s)] .

Then, (2.8), (2.10) and (2.18) imply that

rxx + s2r2
x − 2srx = εr(x) − 1, x > 0, (5.1)

r (0, s) = ϕ0(s), rx (0, s) = ϕ1(s), (5.2)

ϕ0(s) = s−2 [ln ϕ(s) − ln(2s)] + x0s−1, ϕ1(s) = 2/s − exp(sx0)(s
2ϕ(s))−1. (5.3)

10
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By (2.2), (2.5), (2.8) and (2.9), w(x, s) = C(s) e−sx for x � 1, where C(s) is a certain function
s dependent on s. Hence,

rx (1, s) = 0. (5.4)

Differentiate equation (5.1) with respect to s. Then,

q(x, s) = ∂sr(x, s), ψ0(s) = ϕ′
0(s), ψ1(s) = ϕ′

1(s), (5.5)

r(x, s) = −
∫ s

s
q (x, τ ) dτ + V (x, s), (5.6)

V (x, s) = s−2 [ln w (x, s) − ln w0 (x, s)] = r (x, s). (5.7)

Here, s > 0 is a sufficiently large number which is chosen in numerical experiments. We
call V (x, s) the tail function. Actually, s is the regularization parameter of this method.
Using (5.1)–(5.7), we obtain

qxx − 2s2qx

∫ s

s
qx (x, τ ) dτ + 2s

[∫ s

s
qx (x, τ ) dτ

]2

− 2sqx + 2
∫ s

s
qx (x, τ ) dτ

+ 2s2qxVx − 4sVx

∫ s

s
qx (x, τ ) dτ + 2s (Vx)

2 − 2Vx = 0, s ∈ [s, s], (5.8)

q (0, s) = ψ0(s), qx (0, s) = ψ1(s), qx (1, s) = 0, s ∈ [s, s]. (5.9)

Lemma 2.1 of [30] implies for k = 0, 1 and 2

Dk
xr(x, s) = Dk

x

{
−1

s

[∫ x

x0

√
εr (ξ ) dξ − (x − x0)

]
+ O

(
1

s3

)}
, x > 0, s → ∞. (5.10)

Hence, the function V (x, s) = r (x, s) is small for large values of s,

‖V (x, s)‖C2[0,1] = O (1/s) . (5.11)

The main difficulty of this numerical method is in the solution of problem (5.8) and (5.9).
Equation (5.8) has two unknown functions q and V . To approximate both of them, we use
a predictor/corrector-like scheme. First, given an approximation for V , we update q via
equation (5.8) and (5.9). Next, we update the unknown coefficient εr(x) and solve the forward
problem (2.8) and (2.9) for s := s with this updated coefficient εr(x). This is our predictor-like
step. On the corrector-like step we update the tail function V (x, s) via (5.7).

Consider a partition of the interval [s, s] into N small subintervals with the grid step size
h > 0 and assume that the function q(x, s) is piecewise constant with respect to s,

s = sN < sN−1 < · · · < s0 = s, si−1 − si = h; q(x, s) = qn(x), for s ∈ (sn, sn−1]. (5.12)

Let μ 
 1 be a large parameter which should be chosen in numerical experiments. Multiply
both sides of equation (5.8) by the Carleman weight function (CWF),

Cn,μ(s) = exp[−μ(sn−1 − s)], s ∈ (sn, sn−1], (5.13)

and integrate with respect to s ∈ (sn, sn−1). The CWF is introduced in order to mitigate the
influence of the nonlinear term Bn (μ, h)

(
q′

n

)2
in the resulting equation. If h is fixed, then

Bn(μ, h) = O(μ−1), μ → ∞. (5.14)

We ignore the nonlinear term, since we observed in our computations that it provides only
an insignificant impact in results for μ � 50. For each n, we perform inner iterations with
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respect to the tail function. This way we obtain functions qn,k and Vn,k. The equation for the
pair (qn,k,Vn,k) is

q′′
n,k −

⎛⎝A1,nh
n−1∑
j=0

q′
j − A1,nV

′
n,k − 2A2,n

⎞⎠ q′
n,k = −A2,nh2

⎛⎝n−1∑
j=0

q′
j

⎞⎠2

+ 2h
n−1∑
j=0

q′
j

+ 2A2,nV
′

n,k

⎛⎝h
n−1∑
j=0

q′
j

⎞⎠ − A2,n
(
V ′

n,k

)2 + 2A2,nV
′

n,k, q0 :≡ 0, x ∈ (0, 1),

(5.15)

qn,k (0) = ψ0,n, q′
n,k (0) = ψ1,n, q′

n,k (1) = 0, (5.16)

ψ0,n = 1

h

∫ sn−1

sn

ψ0(s) ds, ψ1,n = 1

h

∫ sn−1

sn

ψ1(s) ds. (5.17)

Here, A1,n and A2,n are certain numbers, whose exact expression is given in [5, 6]. It is known
that

max
μh�1

(A1,n, A2,n) � 8s2. (5.18)

Boundary conditions (5.16) for equation (5.15) are overdetermined ones. On the other hand, the
QRM is well suitable for solutions of such problems. Hence, we use the QRM to approximate
functions qn,k; see subsection 5.3 and remark 5.1.

5.2. The iterative process

Since equations (5.15) are generated by the Volterra-like integral differential equation (5.8), it
is natural to solve them sequentially starting from n = 1. Let ξ ∈ (0, 1) be a sufficiently small
number. Consider a function χ(x) ∈ C2 (R) such that

χ(x) =
⎧⎨⎩

1, x ∈ (ξ , 1 − ξ ) ,

between 0 and 1 for x ∈ (0, ξ ) ∪ (1 − ξ, 1),

0, x ∈ R� (0, 1) .

(5.19)

The existence of such functions is well known from the real analysis course. We choose the
first guess for the tail function V0(x) as in subsection 6.2. For each n ∈ [1, N], we perform m
iterations with respect to tails. Hence, we obtain three finite sequences of functions:

{qn,k(x)}(N,m)

(n,k)=(1,1)
, {Vn,k(x)}(N,m)

(n,k)=(1,1)
,

{
ε(n,k)

r (x)
}(N,m)

(n,k)=(1,1)
, x ∈ [0, 1]. (5.20)

Step n(1), n ∈ [1, N]. Suppose that functions q j(x) ∈ H4 (0, 1) and Vn−1(x) ∈ C3[0, 1] are
constructed. We set Vn,1(x) := Vn−1(x). In particular, V1,1(x) := V0(x). Next, using the QRM
(subsection 5.3), we approximately solve equation (5.15) for k = 1 with overdetermined
boundary conditions (5.16) and find the function qn,1 ∈ H4 (0, 1) this way (remark 5.1).
Hence, by the embedding theorem qn,1 ∈ C3[0, 1]. Next, we find the approximation ε(n,1)

r for
the unknown coefficient εr(x) via the following two formulas:

rn,1(x) = −hqn,1 − h
n−1∑
j=0

q j + Vn,1, x ∈ [0, 1], (5.21)

ε(n,1)
r (x) = 1 + r′′

n,1(x) + s2
n

[
r′

n,1(x)
]2 − 2snr′

n,1(x), x ∈ [0, 1], (5.22)

ε(n,1)
r (x) =

⎧⎨⎩
ε(n,1)

r (x), if ε(n,1)
r (x) ∈ [1, d] , x ∈ [0, 1],

1, if ε(n,1)
r (x) < 1, x ∈ [0, 1],

d, if ε(n,1)
r (x) > d, x ∈ [0, 1].

(5.23)
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Hence, ε(n,1)
r ∈ C1 [0, 1] and ε(n,1)

r ∈ Cα [0, 1],∀α ∈ (0, 1). Formulas (5.21) and (5.22) are
obvious discrete analogues of formulas (5.1) and (5.6), respectively. Consider the function

ε̂ (n,1)
r (x) = (1 − χ(x)) + χ(x)ε(n,1)

r (x), x ∈ R. (5.24)

It can be easily proven that ε̂ (n,1)
r (x) ∈ [1, d] for x ∈ R. This implies the ellipticity of the

operator (2.8) for

εr(x) := ε̂ (n,1)
r (x) ∈ Cα (R). (5.25)

Hence, we solve the forward problem (2.8), (2.9) and (5.25) for s := s. Let wn,1 (x, s) be the
solution of this problem considered in theorem 3.1. Then, using (5.7), we set for the next tail

Vn,2(x) := ln wn,1 (x, s) − ln w0 (x, s)

s2 . (5.26)

Step n(k), n ∈ [1, N] , k ∈ [2, m]. Suppose that functions qj(x) ∈ H4 (0, 1) and
j ∈ [0, n − 1], Vn,k(x) ∈ C2+α[0, 1] are constructed. Using the QRM, we approximately
solve the problem (5.15) and (5.16). This gives us the function qn,k ∈ H4 (0, 1) ⊂ C3[0, 1].
Next, we find the approximation ε(n,k)

r ∈ Cα[0, 1] for the function εr(x), using formulas (5.21)–
(5.23), where the index ‘1’ is replaced with the index ‘k’. Suppose now that n < N. Then, we
construct the function ε̂ (n,k)

r (x) via (5.24), where (n, 1) is replaced with (n, k) and solve the
forward problem (2.8) and (2.9) with εr(x) := ε̂ (n,k)

r (x) and s := s. If k < m, then calculate
the new tail Vn,k+1(x) by formula (5.26) where indices (n, 1) and (n, 2) are replaced with
(n, k) and (n, k + 1), respectively. If, however, n < N and k = m, then we set

Vn(x) := Vn,m+1(x) ∈ C3[0, 1], qn(x) := qn,m(x) (5.27)

and go to the step (n + 1)(1). Let n = N and k = m. Hence, sequences (5.20) are constructed.
Then, we set εr,glob(x) := ε(N,m)

r ∈ Cα[0, 1] and stop iterations. The function εr,glob(x) is our
final solution as defined in definition 4.1.

5.3. The quasi-reversibility method (QRM)

The QRM was first proposed in [33]. We refer to, e.g., [15, 18, 29] and references cited
there for some further developments. The QRM can solve linear ill-posed boundary value
problems for many PDEs, including problems with overdetermined boundary conditions. It
finds least-squares solutions. Let

an,k(x) = A1,nh
n−1∑
j=0

q′
j − A1,nV

′
n,k − 2A2,n,

and Hn,k(x) be the right-hand side of equation (5.15). Then an,k ∈ C2[0, 1], Hn,k ∈ L2 (0, 1).

Equation (5.15) can be rewritten as

Ln,k
(
qn,k

)
:= q′′

n,k − an,kq′
n,k = Hn,k.

Let γ ∈ (0, 1) be the regularization parameter. In the QRM, we minimize the following
Tikhonov functional with respect to the function qn,k, subject to the boundary conditions (5.16),

Jγ (qn,k, Hn,k) = ‖Ln,k(qn,k) − Hn,k‖2
L2(0,1) + γ ‖qn,k‖2

H4(0,1)
. (5.28)

Remark 5.1. There is a peculiarity of this technique in the 1D case. We use the approximate
least-squares QRM solutions of problem (5.15) and (5.16). On the other hand, it seems to
be at the first glance that for a given function Vn,k one can find the function qn,k via solving
equation (5.15) with only two out of three boundary conditions in (5.16). However, our attempt
to do so for computationally simulated data has failed to produce good quality results; see
remark 3.1 on page 130 of [30]. This is because of the approximate nature of our mathematical
model.
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Lemma 5.1 (Carleman estimate, see [29, p 168] and [30]). For any function u ∈ H2 (0, 1)

with u (0) = u′ (0) = 0 and for any parameter λ � 1, the following Carleman estimate holds:∫ 1

0

(
u′′)2

e−2λx dx � 1

16

∫ 1

0
[8(u′′)2 + λ(u′)2 + λ3(u)2] e−2λx dx. (5.29)

Lemma 5.2 [30]. For any number γ ∈ (0, 1) and for each function F ∈ L2(0, 1), there exists
a unique minimizer uγ ∈ H4 (0, 1) with uγ (0) = u′

γ (0) = 0 of the functional Jγ (u, F )

in (5.28) and

‖uγ ‖H4(0,1) � Cγ −1/2 ‖F‖L2(0,1) ,

where the constant C > 0 is independent of an,k, F, uγ , γ . Let
∥∥an,k

∥∥
C[0,1] � a0, where

a0 = const. > 0, Let the function u ∈ H4 (0, 1), Ln,k (u) = H and u (0) = u′ (0) = 0. Then,
there exists a constant K = K (a0) > 0 independent of F, H, uγ , u and γ such that

‖uγ − u‖H2(0,1) � K
(‖F − H‖L2(0,1) + √

γ ‖u‖H4(0,1)

)
.

The proof of lemma 5.2 is based on lemma 5.1, the Riesz theorem and the variational
principle. The main difference between lemma 5.1 and Carleman estimates for elliptic
operators in the n−D (n � 2) case is that we now have the integration on the right-hand
side of (5.29) over the entire interval (0, 1) rather than over a subdomain of the original
domain in n−D [34]. The absence of local minima of the functional (5.28) follows from
lemma 5.2. It can be derived from lemma 5.1 that it is not necessary to use the regularization
term γ

∥∥qn,k

∥∥2
H4(0,1)

in (5.28). Still, we use this term to ensure that functions ε(n,k)
r ∈ C1[0, 1].

Although lemma 5.1 implies that it is not necessary to use the condition q′
n,k (1) = 0, we still

use it in our computations to improve the stability.

5.4. A brief scheme of the numerical method

For the convenience of the reader, we present in this subsection a brief summary of the above
numerical method by outlining its main steps.

Step 1. Calculate the Laplace transform (2.7) Lg = ϕ(s) of the data g (t) in (2.6).
Step 2. Using the function ϕ(s) as well as formulas (5.3) and (5.5), calculate the boundary

data ψ0(s) := q (0, s) , ψ1(s) := qx (0, s) , s ∈ [
s, s

]
in (5.9) for the function

q(x, s) = ∂s
{
s−2 ln [(w/w0) (x, s)]

}
. Set q0(x) ≡ 0. Let {qn(x)}N

n=1 be functions
generated by the function q(x, s), as defined in (5.12). Use (5.17) to calculate the
boundary data for these functions at {x = 0} , ψ0,n := qn(0), ψ1,n := q′

n (0).

Step 3. Calculate the first tail function V0(x) as in subsection 6.2. Set V1,1(x) := V0(x).
Step 4. Given n ∈ [1, N], k ∈ [1, m], calculate the function qn,k(x). To do this, find an

approximate solution of equation (5.15) with boundary conditions (5.16), using
the QRM, via the minimization of the functional (5.28), subject to boundary
conditions (5.16). As soon as the function qn,k(x) is approximately calculated, find the
approximation ε(n,k)

r (x) for the unknown coefficient εr(x) via formulas (5.21)–(5.23).
Next, find the function ε̂ (n,k)

r (x) via (5.24). In formulas (5.21)–(5.24), the index ‘1’
should be replaced with the index ‘k’.

Step 5. Solve the forward problem (2.8) and (2.9), with s := s and εr(x) := ε̂(n,k)
r (x). Next,

calculate the new tail function Vn,k+1(x) using (5.26), where indices (n, 1) and (n, 2)

should be replaced respectively with (n, k) and (n, k + 1).
Step 6. If k < m, then go to step 4 with k := k + 1. If, however, k = m and n < N, then

use (5.27). Next, set Vn+1,1(x) := Vn (x) and go to step 4 with n := n + 1, k := 1.
Finally, if k = m and n = N, then set the approximate solution of the above CIP as
εr,glob(x) := ε(N,m)

r (x) (see definition 4.1) and stop the iterative process.
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6. Convergence analysis

6.1. The exact solution

Using again the concept of Tikhonov for ill-posed problems [6, 22, 25, 46], we assume that
there exists a unique exact solution ε∗

r (x) of our CIP with the ‘ideal’ noiseless data g∗ (t)
in (2.6), and the function ε∗

r (x) satisfies conditions (2.1) and (2.2). Then ε∗
r (x) generates

functions, which are defined similarly with the ones above, q∗
0 ≡ 0,

r∗(x, s),V ∗ (x, s) := r∗ (x, s) , q∗(x, s) = ∂sr
∗(x, s), q∗

n(x), ψ∗
0,n, ψ

∗
1,n, n ∈ [1, N] . (6.1)

Similarly with (5.15) and (5.16), we obtain from (5.8) and (5.9),

∂2
x q∗

n −
⎛⎝A1,nh

n−1∑
j=0

∂xq∗
j − A1,n∂xV

∗ − 2A2,n

⎞⎠ ∂xq∗
n = −A2,nh2

⎛⎝n−1∑
j=0

∂xq∗
j

⎞⎠2

+ 2h
n−1∑
j=0

∂xq∗
j

+ 2A2,n∂xV
∗

⎛⎝h
n−1∑
j=0

∂xq∗
j

⎞⎠ − A2,n
(
∂xV

∗)2 + 2A2,n∂xV
∗

+ F1,n (x, μ, h, s) , x ∈ (0, 1), (6.2)

q∗
n (0) = ψ∗

0,n, ∂xq∗
n (0) = ψ∗

1,n, ∂xq∗
n,k (1) = 0. (6.3)

In (6.2), Fn (x, μ, h) is the error function which is generated by averaging (5.17) of the
boundary functions ψ∗

0 and ψ∗
1. Also, the nonlinear term Bn (μ, h)

(
∂xq∗

n

)2
is included in F1,n.

By embedding theorem there exists a constant C2 � 1 such that

‖ f ‖C[0,1] � C2 ‖ f ‖H1(0,1) , ∀ f ∈ H1 (0, 1). (6.4)

By the above-mentioned concept of Tikhonov for ill-posed problems, we can assume that we
know a number C∗ > 0 such that

max
n∈[1,N]

∥∥q∗
n

∥∥
C1[0,1] � C∗

C2
, max

n∈[1,N]

∥∥q∗
n

∥∥
H4(0,1)

� C∗. (6.5)

6.2. Approximate mathematical model

Following definition 4.1, we introduce in this subsection an approximate mathematical model.
Assumptions of this model are based on the asymptotic formulas (5.10) and (5.11). These
assumptions actually mean that we consider only the first term of the asymptotic behavior of
the tail function V ∗ (x, s) when the pseudofrequency s → ∞ and truncate the rest. We call s
the truncation pseudofrequency. A similar assumption is used in, e.g. geometrical optics. Our
approximate mathematical model consists of the following two assumptions.

1. Let the parameter s > 1. Then, there exists a function a∗ ∈ H4 (0, 1) such that the
function V ∗(x, s) has the form

V ∗(x, s) = s−1a∗(x), ∀s � s, ∀x ∈ [0, 1]. (6.6)

2. The following equality holds:

s−1a∗(x) = s−2[ln w∗(x, s) − ln w0(x, s)]. (6.7)

Compare (6.6) and (6.7) with (5.7) and (5.11). Using the third condition (6.1) and (6.7), we
obtain

q∗ (x, s) = −s−2a∗(x). (6.8)
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Consider equation (5.8) for the pair (q∗(x, s),V ∗ (x, s)) , s ∈ [
s, s

]
. Then, the boundary

conditions (5.9) are valid with functions ψ∗
0 (s) and ψ∗

1 (s). Hence, substituting in (5.8) and (5.9)
s := s and using (6.8), we find that the function a∗(x) is the solution of the following
overdetermined boundary value problem:

∂2
x a∗(x) = 0, x ∈ (0, 1) , (6.9)

a∗ (0) = −s2ψ∗
0 (s), ∂xa∗ (0) = −s2ψ∗

1 (s) , ∂xa∗ (1) = 0. (6.10)

In (6.10), exact boundary data at x = 0 are used. In practice, however, we have the non-
exact data boundary ψ0(s), ψ∗

1 (s). Hence, consider the following boundary value problem for
the function a(x):

∂2
x a(x) = 0, x ∈ (0, 1), (6.11)

a (0) = −s2ψ0 (s) , ∂xa (0) = −s2ψ1 (s) , ∂xa (1) = 0. (6.12)

We solve problem (6.11) and (6.12) via the QRM (see remark 5.1). Let the function aγ ∈
H4 (0, 1) be the unique minimizer of the following analogue of the QRM functional (5.28):

Jγ (a) = ‖a′′‖2
L2(0,1) + γ ‖a‖2

H4(0,1)
, (6.13)

subject to boundary conditions (6.12). Because of (6.6)–(6.13), we define the first guess for
the tail function as

V0(x) = s−1aγ (x). (6.14)

Let σ ∈ (0, 1) be the level of the error in the boundary data. We assume that

|ψ0(s) − ψ∗
0 (s)| + |ψ1(s) − ψ∗

1 (s)| � σ. (6.15)

Remark 6.1. Let aγ (x) be the approximate solution of problem (6.11)–(6.13). Then,
substituting (6.14) into (5.1) and (5.6) at s = s, one can find a good approximation for
the exact coefficient ε∗

r (x). Furthermore, theorem 6.1 implies that all functions ε(n,k)
r are good

approximations for ε∗
r (x), as long as the total number of iterations is not too large. This

corresponds well with (4.1). Since we find aγ (x) only using the boundary data, this means
that our approximate mathematical model is indeed a good one. Hence, we can stop iterations
on any function ε(n,k)

r for those indices (n, k), which are ‘allowed’ by theorem 6.1. Next, one
can use the adaptivity procedure to refine the solution (the end of subsection 4.1). This was
confirmed numerically in tests 2 and 3 of [7] as well as in tests 2 and 3 in section 4.16.2 of
[6]. However, if not using the adaptivity for refinement, then, quite naturally, one needs to find
an optimal iteration number to stop; see figures 7.3, 7.5, 7.6 and 7.8 of [5], figures 3 and 4 of
[10], figures 6 of [26] and figure 1(b) of [30] (this again corresponds well with definition 4.1).
These figures can also be found in chapters 3–5 of [6], along with objective stopping criteria
for iterations.

Remark 6.2. Because of the approximate nature of equalities (6.6) and (6.7), equation (6.9)
does not match the asymptotic behavior (5.10), which is the single self-contradiction of this
approximate mathematical model. The same can be stated about all other versions of this
method in the above cited publications. Nevertheless, it was consistently demonstrated that
this numerical method works well for both computationally simulated and experimental data.
Based on our numerical experience, we believe that this is because of two factors: (1) the
truncation of the asymptotic series with respect to 1/s at s → ∞ in (6.6) is reasonable and (2)
the procedure of updating tail functions.
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Lemma 6.1. For each value of the regularization parameter, γ ∈ (0, 1), there exists a unique
minimizer aγ ∈ H4 (0, 1) of the functional (6.13) satisfying the boundary conditions (6.12).
The following estimates hold:

‖aγ ‖H4(0,1) � Cs2γ −1/2 (|ψ0 (s)| + |ψ1 (s)|),
where the constant C > 0 is independent of aγ , γ , s, ψ0(s), ψ1 (s). Let assumptions 1 and 2
hold and the function a∗ ∈ H4 (0, 1) be the solution of problems (6.9) and (6.10). Let (6.15)
hold. Then, there exists a constant K > 0 independent of a∗(x), aγ (x), γ , s, ψ0 (s) , ψ1 (s)
such that

‖V0 − V ∗‖H2(0,1) � Ks(σ + √
γ ‖a∗‖H4(0,1)).

This lemma easily follows from lemma 5.2, (5.5) and (6.6)–(6.14). Uniqueness within the
framework of this approximate mathematical model can be easily derived; see lemma 6.6.2
in [6] for a similar result. We assume below that the above exact solution ε∗

r (x) is exactly the
same as the one within the framework of this model, i.e.

ε∗
r (x) = r∗

xx + s2
(
r∗

x

)2 − 2sr∗
x + 1, s ∈ [s, s], x ∈ [0, 1]; (6.16)

see (5.1). Here, the function r∗ is defined via (5.6) and (5.7), where the functions q and V
are replaced with the functions q∗(x, s) and V ∗ (x, s), and (6.6)–(6.8) hold. Hence, (6.2)–(6.4)
and (6.16) imply the following analogues of the discrete formulas (5.21) and (5.22):

r∗
n (x) = −hq∗

n(x) − h
n−1∑
j=0

q∗
j (x) + V ∗ (x, s) + F2,n (x, h, s), x ∈ [0, 1], (6.17)

ε∗
r (x) = 1 + ∂2

x r∗
n (x) + s2

n

[
∂xr∗

n (x)
]2 − 2sn∂xr∗

n (x) + F3,n (x, h, s) , x ∈ [0, 1]. (6.18)

One can prove that
3∑

j=1

‖Fj,n‖L2(0,1) � C1s2(h + μ−1), (6.19)

where the constant C1 > 0 is independent of h, μ, s. We assume that

Fj,n ≡ 0, j = 1, 2, 3;ψ0,n = ψ∗
0,n, ψ1,n = ψ∗

1,n, n ∈ [1, N] . (6.20)

Therefore by (6.15) the error is ‘allowed’ only in numbers ψ∗
0 (s) and ψ∗

1 (s). We point out
that an analogue of theorem 6.1 can be proved very similarly for the realistic case (6.19) and
when

∣∣ψ0,n − ψ∗
0,n

∣∣ , ∣∣ψ1,n − ψ∗
1,n

∣∣ < σ. So, condition (6.20) is introduced for brevity only. An
additional simplification of the presentation comes from balancing the error parameters h and
σ with the regularization parameter γ and parameters ξ and μ in (5.13) and (5.19) as

σ = √
γ =

√
2ξ = μ−1 := h. (6.21)

6.3. Approximate global convergence theorem

The main new element of theorem 6.1 is that we iteratively estimate tails, which was not done
in [30]. To do this, we use (3.25) and (3.26). The proof of theorem 6.1 has some similarities
with the proof of theorem 6.7 of [6] for the 3D case. However, estimates of the H2-norm
of the QRM solution qn,k in [6] are obtained in a subdomain of the domain �. In turn, this
leads to the estimate of the accuracy of the computed target coefficient in another subdomain
of � rather than in the entire �. On the other hand, because of the 1D case, (5.29) implies
a stronger estimate of that accuracy in the whole interval (0, 1). Still, because of the above
similarity with the proof of theorem 6.7 of [6], and also because the proof of theorem 6.1 is
rather technical, we only outline it here.
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Theorem 6.1 (Approximate global convergence). Let the function ε∗
r (x) satisfying

conditions (2.1) and (2.2) be the exact solution of our CIP for the noiseless data g∗ (t)
in (2.6). Fix the truncation pseudo frequency s > max (̂s (d, |x0|) , 1), where the number
ŝ (d, |x0|) was defined in theorem 3.1. Let two assumptions of subsection 6.2 hold and
‖a∗‖H4(0,1) � C∗, where C∗ is the constant defined in (6.5). Let the first tail function V0(x)

be defined via (6.11)–(6.14). In addition, let conditions (6.15), (6.20) and (6.21) hold. Let
B = B (x0, d, s) > 1,C2,C∗ and K be the numbers defined in theorem 3.2, (6.4), (6.5) and
lemma 6.1. Define B1 = B1 (x0, d, s) = max (C2, B,C∗, Ks). Consider the iterative process
of subsection 5.2. Let the number N � 2 be independent of h. Then there exists a constant
D = D (x0, d, s) � 32s2B1 such that if for a constant b > 1 independent of x0, d, s,

h ∈ (0, h0), h0 = 1

bD2Nm+2
, (6.22)

then the following estimates are valid:∥∥qn,k − q∗
n

∥∥
H2(0,1)

� D(n−1)m+k+2h, (6.23)

‖qn,k‖C1[0,1] � 2C∗, (6.24)∥∥ε(n,k)
r − ε∗

r

∥∥
L2(0,1)

� D(n−1)m+k+1h, (6.25)

‖V ′
n,k − ∂xV

∗‖L2(0,1) + ‖V
′′

n,k − ∂2
x V ∗‖L2(0,1) � D(n−1)m+k+1h, (6.26)∥∥V ′

n,k

∥∥
C[0,1]

� 2B1, (6.27)

∣∣∣∣∣∣A1,nh
n−1∑
j=0

q′
j − A1,nV

′
n,k − 2A2,n

∣∣∣∣∣∣
C[0,1]

� 18s2B1 := a0. (6.28)

Here, qn,k are the QRM solutions of the boundary value problems (5.15) and (5.16). In
particular, let the number ω ∈ (0, 1) be defined as

ω = ln b

ln b + (2Nm + 2) ln D
.

Then (6.25) implies the Hölder-like estimate∥∥ε(n,k)
r − ε∗

r

∥∥
L2(0,1)

� hω := θ,

which guarantees the approximate global convergence property of the level θ of this iterative
process within the framework of the approximate mathematical model of subsection 6.2
(definition 4.1).

Remark 6.3. Since the number N of s subintervals (si, si−1) is assumed to be independent
of the partition step size h, then theorem 6.1 requires the length of the total s interval

[
s, s

]
covered in the iterative process of subsection 5.2 to decrease with the decrease of h. This seems
to be a natural requirement. Indeed, if the number s − s would be independent of h, then this
would mean the increase of the number of iteration Nm = m ·(s − s

)
/h. On the other hand, the

error increases with the iteration number, especially for nonlinear ill-posed problems. Hence,
the number of iterations Nm is one of the regularization parameters here. It was pointed out on
pages 156–7 of [22] that the total number of iterations can often be regarded as a regularization
parameter in the theory of ill-posed problems. Two other regularization parameters are s and
γ. Thus, we have a vector (Nm, s, γ ) of regularization parameters.
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Remark 6.4. Another argument justifying the smallness of the interval [s, s] is that the original
equation (5.8) contains Volterra-like integrals in nonlinear terms. It is well known from the
standard ODE course that the existence of the solutions of Volterra-like integral equations is
guaranteed only on sufficiently small intervals.

Outline of the proof of theorem 6.1. To avoid using new notation, below qn,k(x) means the
QRM solution of problem (5.15) and (5.16). The only exception is when we subtract (6.2)
and (6.3) from (5.15) and (5.16), respectively. Denote

q̃n,k = qn,k − q∗
n, ε̃

(n,k)
r = ε(n,k)

r − ε∗
r , Ṽn,k = Vn,k − V ∗.

Consider the case (n, k) = (1, 1). First, by lemma 6.1∥∥Ṽ ′
1,1

∥∥
L2(0,1)

+ ∥∥Ṽ ′′
1,1

∥∥
L2(0,1)

� B1h < D2h. (6.29)

Hence, (3.25), (6.4), (6.22) and (6.29) imply that∥∥V ′
1,1

∥∥
C[0,1]

= ∥∥Ṽ ′
1,1 + ∂xV

∗∥∥
C[0,1]

� C2D2h + B1 � 2B1. (6.30)

Estimates (6.29) and (6.30) establish (6.26) and (6.27) for (n, k) = (1, 1). Consider now the
function q̃1,1. Subtracting (6.2) from (5.15) and (6.3) from (5.16), using (6.20) and setting
n = k = 1, we obtain

q̃′′
1,1 + (

A1,1V
′

1,1 + 2A2,1
)

q̃′
1,1 = − [

A1,1∂xq∗
1 + A2,1

(
V ′

1,1 + ∂xV
∗)] Ṽ1,1, x ∈ (0, 1) , (6.31)

q̃1,1 (0) = q̃′
1,1 (0) = q̃′

1,1 (1) = 0. (6.32)

We now need to estimate the QRM solution q1,1 of problem (6.31) and (6.32). By (5.18), (6.29)
and (6.30) ∣∣A1,1V

′
1,1 + 2A2,1

∣∣ � 8s2 (B1 + 2) � 1
2 a. (6.33)

Next, using (3.25), (5.18), (6.5), (6.29) and (6.30), we obtain

|A1,1∂xq∗
1 + A2,1(V

′
1,1 + ∂xV

∗)| � 8s2(C∗ + 3B1) � 32s2B1,

‖[A1,1∂xq∗
1 + A2,1(V

′
1,1 + ∂xV

∗)]Ṽ ′
1,1‖ � 32s2B2

1h � D2h. (6.34)

We can take D � K (a0), where numbers a0 and K (a0) are defined in (6.33) and lemma 5.2,
respectively. Hence, lemma 5.2, (6.31), (6.32) and (6.34) imply that

‖q̃1,1‖H2(0,1) � D3h, (6.35)

which proves (6.23) for q̃1,1. Next, to prove (6.24), we use (6.5), (6.22) and (6.35),

‖q1,1‖C1[0,1] � C2‖q1,1‖H2(0,1) � C2‖q̃1,1‖H2(0,1) + C2‖q∗
1‖H2(0,1) � 2C∗. (6.36)

Next, subtract (6.18) from (5.22). Note that by (2.1) and (5.23)∣∣ε̃(n,k)
r (x)

∣∣ = ∣∣ε(n,k)
r (x) − ε∗

r (x)
∣∣ �

∣∣ε(n,k)
r (x) − ε∗

r (x)
∣∣, ∀x ∈ [0, 1].

Hence, using (6.22), (6.29), (6.30), (6.35) and (6.36), we obtain

‖ε̃(1,1)
r (x)‖L2(0,1) � (D3h2 + B1h)(1 + s2(3C∗h + 3B1 + 2))

� 7s2(D3h2 + B1h) � 14s2Dh � D2h,

which establishes (6.25) for n = k = 1. Next, using (3.26), (5.19), (5.24) and (6.21), we
obtain ∥∥Ṽ ′

1,2

∥∥
L2(0,1)

+ ∥∥Ṽ ′′
1,2

∥∥
L2(0,1)

� 2BD2h +
√

2ξd � D3h.

Hence, similarly with (6.30)
∥∥V ′

1,2

∥∥ � 2B1. Thus, (6.26) and (6.27) are established for
n = 1, k = 2. The rest of the proof can be done similarly using mathematical induction.
We need (6.28) to estimate norms

∥∥q̃n,k

∥∥
H2(0,1)

via lemma 5.2. The estimate (6.28) is proved
using (5.18), (6.22) and (6.24). �
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Figure 1. A schematic diagram of data collection by the Forward Looking Radar of the US Army
Research Laboratory.

7. Experimental setup and data pre-processing

7.1. Data collection

A schematic diagram of the data collection by the Forward Looking Radar is depicted in
figure 1. Time-resolved electric pulses are emitted by two sources installed on the radar. Only
one component of the electric field is both originated and measured in the backscattering
regime. The data are collected by 16 detectors with a step size in time of 0.133 ns. Only
shallow targets placed both below and above the ground can be detected. The depth of the
upper part of a shallow underground target is a few centimeters. A ground positioning system
(GPS) provides the distance between the radar and a point on the ground located above that
target. The error in the latter is of a few centimeters. Time-resolved voltages of backreflected
signals are integrated over radar/target distances between 20 and 8 m, and they are also
averaged with respect to both source positions and with respect to readings of 16 detectors.
Since the radar/target distance is known, it is approximately known which part of the measured
time-resolved signal corresponds to the reflections from that target; see figure 1. However,
clutter obviously obscures a significant part of that signal. For any target of interest, only a
single time-dependent curve can be extracted from the vast amount of data; see samples in
figures 4(b), (d) and (f). This is the curve we have worked with in each of the available five
cases of experimental data.

Since the radar/target distance is provided by the GPS with a good accuracy, geometrical
parameters of targets, including their depths, are not of interest here. The main goal of our
work was to calculate ratios R of dielectric constants

R = εr(target)

εr(bckgr)
, (7.1)

where εr (bckgr) is the dielectric constant of the background medium. If εr (bckgr) is known,
then (7.1) enables us to calculate εr (target). If a target is located above the ground, then εr

(bckgr) = εr (air) = 1. Since targets can be mixtures of constituent materials, the εr (target) is
a certain weighted average of dielectric constants of these materials. We image the ratio (7.1)
rather than the function εr(x) itself, since (2.1) requires that εr (bckgr) should have a constant
value outside of our domain of interest x ∈ (0, 1). The latter was true only for targets located
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above the ground. However, in the case of underground targets, this condition is invalid because
of the air/ground interface. Below ‘1’ stands for ‘1 m’.

A separate question is about the meaning of the dielectric constant in metallic targets.
Comparison of figures 2(a) and (b) shows that the electric field reflected from the metallic target
is about the same as that reflected from the dielectric target with a large value of the dielectric
constant. Next, we simulated the data for four large inclusion/background contrasts by solving
(2.8) and (2.9). Figure 2(c) shows the computed functions w (0, s) − w0 (0, s), s ∈ [1, 12]
for the case of a single inclusion embedded in the interval (0, 1) with four different values of
the function εr = 10, 20, 30, 40 in this inclusion; see figure 3(a) for the geometry. One can
observe that these curves do not change much with a change of εr ∈ [10, 30]. Furthermore,
curves for εr = 30, 40 are almost the same. Therefore, based on figures 2(a)–(c), we choose
interpretation (7.2) of the dielectric constant in metals. The physical meaning of (7.2) is
unknown, and we call it appearing dielectric constant for metals,

εr(metal) ∈ [10, 30]. (7.2)

7.2. Main uncertainties in the experimental data

To figure out what kind of ideal data one should expect for the case of one target only, we
performed computational simulations via solving the forward problem (2.3) and (2.4) for the
case of one target and for the source position

x0 = −1. (7.3)

In data simulation, we replaced R in (2.3) with the interval x ∈ (−6, 6) and have considered
zero Dirichlet boundary conditions for rather small times,

u (−6, t) = u (6, t) = 0, t ∈ (0, 4). (7.4)

Condition (7.4) is imposed because the wave front originated at the source position (7.3) does
not reach points x = ±6 for t ∈ (0, 4). The structure of the medium and the computed
function u (0, t) := g (t) are depicted in figures 3(a) and (b), respectively. In the case
εr (target) = const. ∈ (0, 1) the function g (t) looks similar (not shown), except that its
peak points downwards. Note that the constant background in figures 3(a) and (b) corresponds
to the fundamental solution of the 1D wave equation vtt = vxx,

u0 (x, t) = 1
2 H (t − |x − x0|),

where H is the Heaviside function. Figures 4(b), (d) and (f) show the experimental data for
different targets. A visual comparison of figures 4(b), (d) and (f) with figure 3(b), confirms the
above mentioned (section 1) substantial discrepancy between computationally simulated and
experimental data. This discrepancy is the main challenge of working with these data.

In addition to the above misfit and the 3D reality versus only a single curve for each target,
there were some other uncertainties here as well. The most significant uncertainties were as
follows.

(1) The reference signal was not measured.
(2) The direction of the incident plane wave was oblique to the ground rather than orthogonal;

see figures 4(a), (c) and (e).
(3) Units for the amplitude of experimental data were unknown.
(4) The location of the point source x0 was unknown. Thus, (7.3) is an intuitive choice.
(5) The time moment t = 0 on the data was unknown.
(6) The background was heterogeneous due to clutter.
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(a)

(b)

(c)

Figure 2. Appearing dielectric constant for metals for computationally simulated data at a single
frequency. (a) The amplitude of the electric field reflected from a dielectric target with εr = 10 in it.
(b) The amplitude of the electric field reflected from a metallic target of the same frequency as that of
(a). Reflected fields (a) and (b) are very similar. (c) Computed functions (w − w0) (0, s), s ∈ [1, 12]
for the case when one inclusion is embedded in the interval (0, 1) with different values of the
function εr; see figure 3(a) for the location of the inclusion. From top to bottom εr = 10, 20, 30, 40.
Curves for εr = 30, 40 almost coincide. Hence, the function w (0, s) does not change much with
an increase in the inclusion/background contrast from 10 to 40. (a)–(c) justify definition (7.2) of
the appearing dielectric constant for metals.
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Figure 3. Computationally simulated data u (0, t), where u (x, t) is the solution of problem (2.1)
and (2.2) with the source location x0 = −1. Boundary conditions (7.4) were used, since the wave
front did not yet reach points x = ±6 for times t ∈ (0, 4). (a) The function εr(x), x ∈ (0, 1). Also,
εr(x) = 1 for x /∈ (0, 1). (b) The function u (0, t) in time T = [0, 3.5].

Remark 7.1. It is because of items 4 and 5 that it was impossible to image locations of targets
correctly.

At the same time, the UNCC/ChalmersGU team had the following two pieces of the
information in advance.

(1) The presence of a single target for each data set.
(2) It was known whether the target was located above or below the ground.

7.3. Data pre-processing

We need to pre-process the experimental data in such a way that the resulting time-
resolved curves would look similar to figure 3(b), since this would fit, at least somehow,
our mathematical model. If the target is located above the ground, then εr (target) > 1, since
εr(bckgr) = εr (air) = 1 in this case. Figure 3(b) indicates that one should select on the
experimental curve only one downward-looking peak in this case. However, if the target is
buried in the ground, then there could be any relation between εr(target) and εr(bckgr). Hence,
based on figures 3(a) and (b) as well as their analogues for the case εr(target) < εr(bckgr) (not
shown), we selected on each experimental curve the earliest peak of the largest amplitude out
of all other peaks. The rest peak of each curve was set to zero. More precisely, our selection
of that peak was as follows: this should be the earliest peak of the largest amplitude

out of

{
all peaks for a target buried in the ground,
all downward-looking peaks for a target above the ground.

We assigned on each experimental curve the time zero {t = 0} to be such a point on the time
axis, which is 1 ns off to the left from the beginning of the selected peak. Next, we multiplied
the resulting data by the scaling factor (below) and have regarded the resulting curve as the
pre-processed data. Figure 5(a) displays the pre-processed data for the case of figure 4(b).
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(a) (b)

(c) (d)

Figure 4. Targets and experimental data for tests 1–3. The ground is dry sand with εr ∈ [3, 5]
[44]. Because of the blind study case, (a), (c) and (e) were released to the UNCC/ChalmersGU
team only after computations were made. (a) Bush standing along the road (clutter). (b) Scaled
experimental data for (a) (subsection 7.3). The horizontal axis is time in nanoseconds with a time
step of 0.133 ns. The vertical axis is the amplitude of the measured voltage. (c) Wood stake. (d)
Scaled experimental data for (c). (e) Metal box buried in the dry sand. (f) Scaled experimental
data for (e). The amplitude of the largest downward-looking peak on (f) is 0.0072, whereas the
amplitude of the largest upward-looking peak is 0.007. Therefore, the downward-looking peak
was used in our data pre-processing. A huge misfit between experimental and computationally
simulated data is evident: compare highly oscillatory curves of (b), (d) and (f) with figure 3(b).
Waveforms of (b), (d) and (f) show why the radar detection and discrimination problem is so
challenging. One can see three very different types of targets, yet their signatures are very similar.

Figure 5(b) shows superimposed pre-processed curves for all five cases of experimental data
we possess.

The amplitude of the time-resolved signal for each case was of the order of 105. This is well
above the amplitude of figure 3(b). Thus, all pre-processed data were multiplied by the scaling
number SN = 10−7. Here we show how we have chosen the number SN = 10−7. Consider
the pre-processed signal for the bush and multiply it by 10−7. We obtain the signal depicted
in figure 5(a). Next, calculate the Laplace transform for s ∈ [1, 5] of two signals: (1) that of
figure 5(a) and (2) that of the computationally simulated data of figure 3(b). Superimposed
graphs of the function ŵ(x, s) = w (0, s) − w0 (0, s), s ∈ [1, 5] for both these cases are
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(e) (f)

Figure 4. (Continued.)

(a) (b)

Figure 5. The horizontal axis is time in nanoseconds with a time step size of 0.133 ns. (a) The
pre-processed experimental data for the bush standing along the road (clutter); see figures 4(a)
and (b). (b) The pre-processed experimental data for all five cases (superimposed). In terms of our
mathematical model, we use these curves as functions u (0, t) − u0 (0, t).

displayed in figure 6. One can observe in this figure that minimal and maximal values of both
curves are approximately the same.

In fact, we initially tried three scaling numbers: SN1 = 10−6, SN2 = 10−7 and SN3 = 10−8.

In the end we have chosen SN2 := SN = 10−7 out of these three. We have made this choice
because of our observation that this was the only case out of three when minimal and maximal
values of functions ŵ(x, s), s ∈ [1, 5] of both above curves: that of the Laplace transform
of the function depicted in figure 3(b) and that of the Laplace transform of the function of
figure 5(a), were approximately the same, see figure 6. On the other hand, for SN1 and SN3 the
minimal and maximal values were quite different from those of the Laplace transform of the
function of figure 3(b). As soon as SN = 10−7 was chosen, using only the data for the bush, we
multiplied the other four pre-processed signals by 10−7, and observed similar behavior of the
minimal and maximal values of the Laplace transforms of the resulting four functions. So, the
graphs of figure 5(b) represent five available pre-processed signals being multiplied by 10−7.
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Figure 6. Graphs of the function ŵ(x, s) = w (0, s)−w0 (0, s), s ∈ [1, 5] for the Laplace transform
of the computationally simulated data for the function εr(x) displayed in figure 3(a) and for the
signal of the bush of figure 5(a). Recall that graphs of figures 5(a) and (b) were obtained after
multiplying the pre-processed signals by the scaling number SN = 10−7. One can observe that
minimal and maximal values of the function ŵ(x, s) are approximately the same for both cases. A
similar observation was in place for four other cases of figure 5(b).

In the case of the upward-looking peak of figure 5(b), we compared the function |ŵ(x, s)|
for it with the function ŵ(x, s) for the simulated data above. Graphs of figures 4(b), (d) and
(f) were obtained from original experimental curves by multiplying them by SN = 10−7. In
addition, we conducted a limited sensitivity study with respect to the scaling factor; see test 2
in sections 8 and 9.

7.4. Functions ψ0(s) and ψ1(s)

Let g̃ (t) be the pre-processed experimental data for any of our targets. Based on figure 5, we
calculated the Laplace transform (2.7) ϕ(s) = L (g) by integration over the interval t ∈ (0, 2).

Next, we calculated the derivative ϕ′(s) as

ϕ′(s) = −
∫ 2

0
g̃ (t) t e−st dt + ∂sw0 (0, s), (7.5)

where the function w0 (0, s) is defined in (2.11). It was observed in computational simulations
of [30] that the function ϕ(s) has the best sensitivity to the presence of inclusions for
s ∈ [0.5, 1.2]. Nevertheless, we observed that the larger interval s ∈ [1, 12] provides better
quality images for simulated data. The function ϕ(s) was computed accurately for the entire
interval s ∈ [1, 12] with the step size �s = 0.05 in the s-direction. However, because of their
dependence on the derivative ϕ′(s) in (7.5), functions ψ0(s) = q(0, s), ψ1(s) = qx(0, s) have
oscillated for s ∈ [3, 12]. On the other hand, our testing of computationally simulated data has
shown that oscillations should not be present.
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Hence, we pre-processed the function ψ0(s) as follows. First, we calculated ψ0(s) for
s ∈ [1, 2.5] using the Laplace transform of the data, as in (7.5), with the 0.5 step size with
respect to s. Next, we set ψ0 (12) := 0.025 · ψ0 (2.5), then we linearly interpolated the plane
(s, ψ0) between points (2.5, ψ0 (2.5)) and (12, ψ0 (12)) and similarly for ψ1(s). Having
functions ψ0(s) and ψ1(s) for our pre-processed experimental data, we calculated numbers
ψ0,n and ψ1,n in (5.17), which are used as boundary conditions for the QRM.

8. Imaging results

A detailed description of the numerical implementation of the algorithm of subsections 5.2
and 5.3 can be found in [30]. We now briefly outline the main elements as well as some
differences with [30]. Unlike [30], where only synthetic data were used, the values qn (1) were
unknown to us now (naturally). But this turned out not to be a problem. Indeed, our numerical
experiments with computationally simulated data have shown to us that knowledge of the
numbers qn (1) affects only the accuracy of the image of the location of a target. However, it
does not affect the accuracy of the reconstruction of the target/background contrast in εr, which
is our main goal here; see remark 7.1. Thus, unlike [30], we did not assign any values to qn (1).

The initial tail function was taken as in (6.14). Although theorem 6.1 guarantees approximate
global convergence only for the case of a small s interval, our computational experience tells
us that the interval s ∈ [1, 12] is an optimal one. We attribute this to the well-known fact that
convergence estimates are routinely much more pessimistic than computational results. This
is because constants in convergence theorems usually are largely overestimated. Similarly,
although the above theory works only for the case εr(x) � 1, this did not prevent us from
computing one case with R < 1 in (7.1).

We regard R := R(x) in (7.1) as an x-dependent function. With respect to the results of
this section, εr(x) in (2.8) was replaced with R(x). Thus, it is R(x) which was computed by the
above algorithm. Let Rcomp(x) be the computed coefficient R(x). Then we define the computed
target/background contrast as R = max Rcomp(x) in the case when max Rcomp(x) > 1, and as
R = min Rcomp(x) in the case when max Rcomp(x) � 1. We set εr (target) := R · εr (bckgr).

For each test, we also computed two curves: the Laplace transform of the pre-processed
experimental data and the function w(0, s), where w (0, s) is the solution of problem (2.8)
and (2.9) with εr(x) := Rcomp(x). The interval s ∈ [1, 12] with the step size h = 0.5 was used
for the latter. These two curves were very close to each other for all tests.

Test 1. Computationally simulated data. First, we verify that our algorithm provides an
accurate target/background contrast for computationally simulated data. We image the structure
depicted in figure 3(a). Figure 7(a) displays the resulting image. Recall that we are interested in
accurate imaging of target/background contrasts rather than in accurate imaging of locations
of targets (subsection 7.1). The imaged target/background contrast is 3.8, whereas the real
contrast is 4. Thus, the imaged contrast is quite accurate. This gives us a hope that contrasts
for experimental data are also computed accurately.

Test 2. The image of a bush (see figures 4(a) and (b), 5(a) and (b)). This was the most difficult
case because the target was a highly heterogeneous one. Moreover, the maximum of the
modulus of the amplitude of the pre-processed signal for this target exceeds these values for
other targets by a factor of 2.57. Figures 7(b) and (c) display the resulting image and the above
superimposed curves, respectively. Only a small difference between the curves of figure 7(c)
is observed.

We conducted a limited sensitivity study with respect to the choice of the scaling number
SN. We varied SN by 20%. Figure 7(d) displays the computed function R(x) for the data for the
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(a) (b)

(c) (d)

Figure 7. Resulting images. (a) The computed image for computationally simulated data (test 1).
Solid and dashed lines are true and computed images, respectively. Recall that we are interested
in accurate imaging of target/background contrasts rather than in accurate imaging of locations of
targets (subsection 7.1). The computed target/background contrast is 3.8, which is 5% error. (b)
The computed image of the bush; see figure 4(a). Here R = 6.4, which is in the range of tabulated
values εr ∈ [3, 20] [20]. (c) The solid line is the Laplace transform of the function depicted in
figure 5(a). The dashed line is the function w(0, s) − w0(0, s), where w (0, s) is the solution of
problem (2.8) and (2.9) with εr(x) := Rcomp(x) of (b). (d) Results of a limited sensitivity study
with respect to the choice of the scaling number SN = 0.8 × 10−7, 10−7, 1.2 × 10−7 for the case
of the bush (recall that we chose SN = 10−7 for all our tests). One can observe that the computed
value of R varies as R = 4.5, 6.4, 8.6. All these three values are within tabulated limits; see table 1.
A similar observation took place for four other targets we worked with. (e) The computed image of
the wood stake (see figure 4(c)). Here R = 3.8, which is in the range of tabulated values εr ∈ [2, 6]
(see [44]). (f) The computed image of the metal box, R = 3.8.

bush obtained for SN = 0.8× 10−7, 10−7, 1.2×10−7. Recall that we chose SN = 10−7 for all
five sets of experimental data we possess (subsection 7.3). One can observe that corresponding
values of the computed target/background contrast R are R = 4.5, 6.4, 8.6. The value R = 6.4
is for SN = 10−7 and is, therefore, the same as that of figure 7(b). All these three values are
within tabulated limits, see table 1. The same study was conducted for four other data sets we
worked with. And the same observation was in place: the above three values of SN resulted
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(e) (f)

Figure 7. (Continued.)

Table 1. Blindly computed values R for five targets, εr,comp(target) := R · εr (bckgr). Here ‘a/b’
means ‘above/below the ground’. For ‘a’ and ‘b’ the background is air and dry sand, respectively.

Target a/b R εr(bckgr) εr,comp (target) εr,publ (target)

Figure 6(a) – 3.8 1 3.8 4, figure 6(a)
Bush a 6.4 1 6.4 ∈ [3, 20], see [20]
Wood stake a 3.8 1 3.8 ∈ [2, 6], see [44]
Metal box b 3.8 ∈ [3, 5], see [44] ∈ [11.4, 19] ∈ [10, 30], see (7.2)
Metal cylinder b 4.3 ∈ [3, 5], see [44] ∈ [12.9, 21.4] ∈ [10, 30], see (7.2)
Plastic cylinder b 0.28 ∈ [3, 5], see [44] ∈ [0.84, 1.4] 1.2, see [45]

in values of R, which were within tabulated limits (corresponding images are not shown for
brevity); also see section 9 for a discussion of this issue.

Test 3. The image of a wood stake (see figures 4(c) and 5(b)). The computed image is displayed
in figure 7(e).

Test 4. The image of a metal box (see figures 4(e) and 5(b)). The computed image is displayed
in figure 7(f).

Since we had total five sets of data in our possession, we also imaged two more cases:
plastic cylinder and metal box, both buried in soil. Dielectric constants were not measured
when the data were collected. Therefore, we compared computed values of dielectric constants
with those listed in tables [44, 45]. Note that these tables often provide a range of values rather
than exact numbers. The soil was dry sand, where the dielectric constant varies between 3 and
5 [44]. Denote εr,publ (target) the published value of the dielectric constant for non-metallic
targets. By (7.2) we regard εr,publ(target) ∈ [10, 30] for metals. The case of bush (vegetation)
is not listed in [44, 45]. Hence, we took εr,publ(target) for vegetation from figures 2 and 3 of
[20]. Table 1 summarizes our results.

9. Discussion

Since dielectric constants were not measured in experiments, the maximum that can be done
is to compare computational results with tabulated values (also, see the last paragraph of this
section). Therefore, the most important conclusion from table 1 is that computed dielectric
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constants of targets fall well within tabulated limits for five out of five available data sets. This
was achieved regardless of the significant limitations of our data. Naturally, these limitations
have resulted in a large and yet unknown noisy component in the data, which we have used as
inputs for our algorithm. Thus, we conclude that the above results point towards the robustness
of our algorithm.

Because of the discussion of this section, it is worth summarizing now the severe
limitations of our data.

(1) Time-resolved signals were integrated and averaged over radar/target distances between
20 and 8 m and then averaged with respect to two sources and 16 detectors.

(2) A huge misfit between experimentally measured and computationally simulated data.
(3) The 3D reality versus the necessity to model the process as 1D: because we had only one

time-resolved curve for each target.
(4) The need to use only one 1D hyperbolic PDE for modeling the process instead of the full

Maxwell system: because only one component of the electric field was measured.
(5) A number of other uncertainties listed in subsection 7.2.

It is unlikely that an accurate image of a 3D target can be calculated using only a single
time-dependent curve (item 3). Therefore, given the above limitations, we had only a very
limited goal in this study. More precisely, this goal was to calculate a single number for each
target, which would characterize the target/background ratio of dielectric constants, and, at the
same time, would fall within tabulated limits. That number is R. We point out that the number
R is still computed by first computing the function R(x) in (7.1).

The data pre-processing procedure, which was similar to that of subsection 7.3, was used in
[10, 26] and in chapter 5 of [6]. Similar to subsection 7.3, only one peak for each time-resolved
curve was singled out in [6, 10, 26]. In that case transmitted (rather than backscattering) time-
resolved experimental data were measured on many detectors that were located on a piece of
a plane. Because those data were collected on a piece of a plane, it was possible to compute
3D images by a 3D analogue of the algorithm of this paper. The data of [6, 10, 26] were
collected in a controlled laboratory environment, unlike the data of this paper, which were
collected in the uncontrolled environment in the field. Another important element, which led
to some differences with the method of subsection 7.3, was that the reference signal (i.e. the
one for the free space) was measured in [6, 10, 26]. The latter is not our case. Also, unlike
this paper, refractive indices n = √

εr of targets were directly measured a posteriori, i.e. after
computational results were obtained. In other words, refractive indices were computed for
the most difficult blind data case. Very accurate reconstructions of both refractive indices and
locations of targets were obtained in [6, 26]. Tables 5 and 6 in [26] as well as tables 5.4 and 5.5
in [6] show only a few per cent difference between computed and directly measured refractive
indices in six out of six cases. Next, the so-called adaptivity technique [3, 4] has refined
images. The adaptivity has provided quite accurate reconstructions of all three components
of targets: refractive indices, locations and shapes; see [10] and figures 5.13–5.16 in [6]. We
point out that the adaptivity has used the solution of the approximately globally convergent
algorithm as the starting point. There is no reason to apply the adaptivity to the data of this
paper, because of the 3D reality versus the 1D mathematical model (see item 3 above).

Since the data pre-processing procedure of subsection 7.3 results only in a single peak to
work with, it might miss some important yet unknown pieces of information. Still, because
of the analogy of this procedure with that of [6, 10, 26], we believe that the resulting pre-
processed data of figure 5(b) are sufficient for the very limited goal given above. We believe
that table 1 indicates that we have achieved that goal. It remains to be seen whether the number
R can be satisfactory computed by some other techniques if using our data.
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The scaling number SN = 10−7, which we chose on the basis of considerations of
subsection 7.3, might not be an optimal one. Hence, we conducted a limited sensitivity study
to see how sensitive R is to the choice of scaling number; see test 2 in section 8. We found
that variations of SN by 20%, SN = 0.8 × 10−7 and SN = 1.2 × 10−7 result in values of R,

which are still within tabulated limits for all five targets we worked with. An optimal value
of SN might likely be computed via comparison of values of R := R (SN) with the directly
measured value of R for a few targets. Next, the so-chosen SN should be used for all other
targets. At this point, however, we are not in a position to do this because of the absence of
direct measurements of dielectric constants of the above targets.

A more complete understanding of the capability of our algorithm to work with more
complicated targets as well as a better understanding of its accuracy limits for this kind of
experimental data will be one of the topics of our future research effort. In particular, that
effort will likely include a more sophisticated data pre-processing procedure, which would
result in a bigger information content being extracted from each experimental curve.

The recovered dielectric constant by itself is not sufficient information to distinguish one
target from another. The purpose of estimating the dielectric constant is to provide one extra
piece of information about the target. Indeed, up to this point, most of the radar community
relies solely on the intensity of the radar image for the detection and discrimination of targets.
It is hoped therefore that when the intensity information is coupled with the new dielectric
information, algorithms can then be designed that will ultimately provide better performance
in terms of probability of detection and false alarm rate. As is clear from table 1, some targets
will have dielectric values that tend to group together, but even that is useful information.
For example, if the estimated dielectric value is consistent with a plastic land mine, then this
would be another clue to uncovering the target.

In summary, we believe that the results of this paper indicate that our algorithm is
capable of stably and reliably calculating both the function R(x) and the number R from the
experimental data above. On the next step of this research one should directly measure values
of dielectric constants of targets and then compare measured and computational results. Such
a study might clarify at least some questions discussed above in this section. However, the
process of collection of the above experimental data is both expensive and time consuming.
This is the reason why we do not have any other experimental data at the moment. Still, we
might well get them in the future.
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