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Abstract

Random variables can be described by their cumulative distribution functions, a class
of nondecreasing functions on the real line. Those functions can in turn be identified, after
the possible vertical gaps in their graphs are filled in, with maximal monotone relations.
Such relations are known to be the subdifferentials of convex functions.

Analysis of these connections yields new insights. The generalized inversion operation
between distribution functions and quantile functions corresponds to graphical inversion of
monotone relations. In subdifferential terms, it corresponds to passing to conjugate convex
functions under the Legendre-Fenchel transform. Among other things, this shows that
convergence in distribution for sequences of random variables is equivalent to graphical
convergence of the monotone relations and epigraphical convergence of the associated
convex functions.

Measures of risk that employ quantiles (VaR) and superquantiles (CVaR), either in-
dividually or in mixtures, are illuminated in this way. Formulas for their calculation are
seen from a perspective that reveals how they were discovered. The approach leads fur-
ther to developments in which the superquantiles for a given distribution are interpreted
as the quantiles for an overlying “superdistribution.” In this way a generalization of
Koenker-Basset error is derived which lays a foundation for superquantile regression as a
higher-order extension of quantile regression.
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1 Introduction

The aim of this article is to promote a way of looking at fundamental concepts in probability
and statistics by embedding them in a framework of convex analysis. The key is a thorough
duality between cumulative distribution functions on (−∞,∞) and quantile functions on (0, 1),
based on identifing them with the one-sided derivatives of conjugate pairs of convex functions.

Motivation for this framework comes from the modeling of risk in optimization under uncer-
tainty, along with applications to stochastic estimation and approximation. Sharply in focus,
beyond distribution functions and quantiles are “superquantiles,” which are quantifications of
random variables now recognized as essential building-blocks for “measures of risk” in finance
and engineering. Superquantiles fit most simply and naturally with random variables having
a cost/loss/damage orientation, in tune with the conventions of optimization theory in which
functions are minimized and inequality constraints are normalized to “≤” form. The upper tails
of the distributions of such random variables are usually then of more concern than the lower
tails. Corresponding adjustments in formulation and terminology from previous work having
the opposite orientation is one of our ongoing themes here. First- and second-order stochastic
dominance are adapted to this perspective, in particular.

A further benefit of the convex analysis framework is new characterizations of convergence
in distribution, a widely used property of approximation. Our analysis indicates moreover
how quantile regression, as an alternative to least-squares regression in statistics, can be boot-
strapped into a new higher-order approximation tool centered instead on superquantiles. Help-
ful estimates of superquantiles, for numerical work and more, are derived as well. Second-
derivative duality in convex analysis further produces a duality between distribution densities
and quantile densities.

Distribution functions versus quantile functions. The path to these developments
begins with elementary observations in a two-dimensional graphical setting with pairs of non-
decreasing functions in an extended inverse-like relationship.

A real-valued random variable X gives a probability measure on the real line IR which can
be described by the (cumulative) distribution function FX for X, namely

FX(x) = prob{X ≤ x } for x ∈ (−∞,∞). (1.1)

The function FX is nondecreasing and right-continuous on (−∞,∞), and it tends to 0 as
x → −∞ and to 1 as x → ∞. These properties characterize the class of functions that furnish
distributions of random variables. Right-continuity of a nondecreasing function reduces to
continuity except at points where the graph has a vertical gap. The set of such jump points, if
any, has to be finite or countably infinite.

The probability measure associated with a random variableX can alternatively be described
by its quantile function QX , namely

QX(p) = min{x |FX(x) ≥ p } for p ∈ (0, 1), (1.2)

so thatQX(p) is the lowest x such that prob {X > x} ≤ 1−p. The functionQX is nondecreasing
and left-continuous on (0, 1), and those properties characterize the class of functions that furnish
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Figure 1: distribution function FX and quantile function QX

quantiles of random variables. The correspondence between distribution functions and quantile
functions is one-to-one, with FX recoverable from QX by

FX(x) =


max{ p |QX(p) ≤ x } for x ∈ (inf QX , supQX ],
1 for x > supQX ,
0 for x ≤ inf QX .

(1.3)

The quantile function QX , like the distribution function FX , can have at most countably many
jumps where if fails to be continuous. The vertical gaps in the graph of QX correspond to the
horizontal segments in the graph of FX , and vice versa, as seen in Figure 1. It follows that FX

and QX can likewise have at most countably many horizontal segments in their graphs.
When the graph of FX has no vertical gaps or horizontal segments, so that FX is not only

continuous but (strictly) increasing, the “min” in (1.2) is superfluous and QX(p) is the unique
solution x to FX(x) = p. Then QX is just the inverse F−1

X of FX on (0, 1). Without such
restriction, though, one can only count on QX(FX(x)) ≥ x and FX(QX(p)) ≤ p, along with

FX(x) ≥ p ⇐⇒ QX(p) ≤ x. (1.4)

The generalized inversion represented in (1.4) and formulas (1.2) and (1.3) can be given
a solid footing in geometry. By filling in the vertical gaps in the graphs of FX and QX , and
adding infinite vertical segments at the right and left ends of the resulting “curve” for QX to
mimic the infinite horizontal segments which appear at the ends of the graph of FX when the
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Figure 2: the relation ΓX and its inverse ∆X

range of X is bounded from above or below, one obtains the “curves” ΓX and ∆X of Figure 2.
These “curves” are the reflections of each other across the 45-degree line in IR×IR where x = p.

In the classical mindset it would be anathema to fill in vertical gaps in the graph of a
function, thereby ruining its status as a “function” (single-valued). In this situation, though,
there are overriding advantages. The graphs ΓX and ∆X belong to a class of subsets of IR2

called maximal monotone relations . Such relations have powerful properties and are basic to
convex analysis, which identifies them with the “subdifferentials” of convex functions. This will
be recalled in Section 2. The graphical inversion in Figure 2, where

∆X = { (p, x) | (x, p) ∈ ΓX }, ΓX = { (x, p) | (p, x) ∈ ∆X },

will be portrayed there as corresponding to the Legendre-Fenchel transform, which dualizes a
convex function by pairing it with a conjugate convex function.

Although monotone relations are central in this paper, the idea of looking at conjugate pairs
of convex functions defined in one way or another through direct integration of FX and QX is
not new, cf. Ogryczak and Ruszczynski [14] and subsequently [15], [16]. What is different here
is a choice of functions that better suits random variables with cost/loss/damage orientation in
handling their upper tails. The need of such a switch for purposes in stochastic optimization
has recently motivated Dentcheva and Martinez [4] to adapt also in that direction, but our
approach seems to achieve that more simply and comprehensively.

The convergence theory for maximal monotone relations and the convex functions having
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them as their subdifferentials can be coordinated in our framework with results about the con-
vergence of sequences of random variables. A special feature is that approximations on the side
of convex analysis are most effectively studied through “set convergence.” Maximal monotone
relations are compared in terms of distances to their graphs, while convex functions are com-
pared in terms of distances to their epigraphs rather than their graphs. Indeed, epigraphical
convergence of convex functions is tantamount to graphical convergence of their subdifferentials.
Epigraphical convergence is the only topological convergence that renders the Legendre-Fenchel
transform continuous.

For a sequence of random variables Xk this leads, as we demonstrate in Section 3, to
fresh characterizations of “convergence in distribution” of Xk to a random variable X. It
corresponds to graphical convergence of the associated maximal monotone relations ΓXk

to
ΓX , or for that matter ∆Xk

to ∆X , and to epigraphical convergence of the convex functions
having their subdifferentials described by those relations. That epigraphical convergence, in
this special context, can essentially be reduced to pointwise convergence.

Superquantile functions. In associating with ΓX a convex function having it as subdif-
ferential, and then investigating the conjugate of that convex function, information is gained
about superquantiles of random variables. Superquantiles refer to values which, like quantiles,
capture all the information about the distribution of a random variable, but in doing that avoid
some of the troublesome properties of quantiles such as potential discontinuity and instability
with respect to parameterization. They have been studied under different names for model-
ing risk in finance, but here we are translating them to the general theory of statistics and
probability. Bringing out their significance in that environment is one of our goals.

For a random variable X with cost/loss/damage orientation, the superquantile QX(p) at
probability level p ∈ (0, 1) has two equivalent expressions which look quite different. First,

QX(p) = expectation in the (upper) p-tail distribution of X. (1.5)

This refers to the probability distribution on [QX(p),∞) which, in the case of FX(QX(p)) = p,
is the conditional distribution of X subject X ≥ QX(p), but which “rectifies” that conditional
distribution when FX has a jump at the quantile QX(p), so that FX(QX(p)) > p. In the latter
case there is a probability atom at QX(p) causing the interval [QX(p),∞) to have probability
larger than 1 − p and the interval (QX(p),∞) to have probability smaller than 1 − p. To

take care of the discrepancy, the p-tail distribution is defined in general as having F
[p]
X (x) =

max{0, FX(x)− p}/(1− p) as its distribution. This amounts to an appropriate splitting of the
probability atom at QX(p). The second expression for the superquantile is

QX(p) =
1

1− p

∫ 1

p
QX(p

′)dp′. (1.6)

The equivalence between the two expressions will be explained in Section 3, which will also
clarify the restrictions that need to be imposed to ensure both are well defined.

In finance, the quantileQX(p) is identical to the popular notion of the value-at-risk VaRp(X)
of X at probability level p.3 The superquantile QX(p) as defined by (1.5) goes back to Rockafel-
lar and Uryasev [22] (and an earlier working paper of 1999), with follow-up in [23]. There it was

3This is the case for cost/loss-oriented random variables. In applications centered on random variables Y
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Figure 3: the pth quantile and the p-tail

called conditional-value-at-risk , as suggested by (1.5) and its interpretation as the conditional
expectation of X subject to X ≥ QX(p) when FX has no jump at the quantile QX(p). It was
denoted by CVaRp(X) in order to contrast it with VaRp(X). The expression on the right side
of (1.6) was independently introduced around the same time by Acerbi [1] as “expected short-
fall,”4 but the equivalence of the two was soon realized. Because statistical terminology ought
to be free from dependence on financial terminology, we think it helpful to have “superquantile”
available as a neutral alternative name. This was suggested in our paper [20] on reliability in
engineering and has been pursued further in the “risk quadrangle” setting of [24].

That side-by-side approach advantageously suggests making a graphical comparison between
the superquantile function QX and the quantile function QX , as in Figure 4. A new and
immediate insight is that QX is the inverse of a distribution function FX generated from FX .
We call this the corresponding superdistribution function. It lets the superquantiles of X be
identified as the quantiles for an auxiliary probability measure on (−∞,∞). Specifically, FX

is the distribution function for an auxiliary random variable X derived from X, and this will

that are profit/gain-oriented, the value-at-risk of Y at probability level p is −Q[−Y ](1 − p). The avoidance of
such complications with minus signs is one of the reasons why we prefer cost/loss orientation in setting forth
principles for use in statistics and probability with applications to optimization.

4The interpretation of this integral as an average led Föllmer and Schied [7] to instead call this quantity
“average value-at-risk” with notation AVaR.
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Figure 4: superdistribution function FX and superquantile function QX

have valuable consequences:

FX = FX for the random variable X = QX(FX(X)). (1.7)

Motivating connections with risk. Although superquantiles have not previously been
touted as a potentially significant addition to basic statistics, their importance in formulating
problems of stochastic optimization is already well recognized. A brief discussion of “risk” will
help in understanding the interest in them coming from that direction.

A measure of risk is a functional R that assigns to a random variable X a value R(X)
in (−∞,∞] as a quantification of the risk in it.5 The context here is that of X representing
a generalized “cost,” “loss” or “damage” index, meaning that lower values are preferred to
higher values. Typically it is desired to have the outcomes of X below a threshold b, but some
violations may have to be accepted. For instance, it would be nice if the losses for a given
portfolio of financial assets were always ≤ 0, but arranging for that might not be feasible. How
then can trade-off preferences be captured? How can the desire to have X be “adequately” ≤ b
in its outcomes be given a mathematical formulation? The role of a risk measure R is to model
this as R(X) ≤ b.

Specific examples can help in appreciating the issues. In takingR(X) = E[X] (expectation),
the interpretation of R(X) ≤ b is that the outcomes of X are ≤ b “on average.” That choice

5Measures of risk are not “measures” in the usual sense of mathematics. This terminology, in which a
“measure” is a “quantification,” is widespread in finance.
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could be strengthened by taking the measure of risk to be R(X) = E[X] + λσ(X) for a
parameter value λ > 0, where σ(X) denotes standard deviation. Then the interpretation of
R(X) ≤ b is that outcomes of X above b can only be in the part of the distribution of X
lying more than λ standard deviation units beyond the expectation. Such a “safety margin”
approach is attractive for its resemblance to confidence levels in statistics. A third choice of
risk measure, aimed at enforcing certainty, is to take R(X) = supX (the essential supremum
of X, which might be ∞). Then R(X) ≤ b means there is zero probability of an outcome > b.

Two further examples, more directly in line with our interests in this article, are quantiles,
R(X) = QX(p), and superquantiles, R(X) = QX(p), as measures of risk. The corresponding
interpretations of having R(X) ≤ b are as follows:

QX(p) ≤ b ⇐⇒ prob{X ≤ b } ≥ p ⇐⇒ prob{X > b } ≤ 1− p, (1.8)

QX(p) ≤ b ⇐⇒ even in its p-tail distribution, X is ≤ b on average. (1.9)

Probabilistic constraints as in (1.8) have a wide following. In contrast, the condition in (1.9)
might appear arbitrary and hard to work with. But it has serious motivation in the theory
of risk, plus the virtue of taking into account some degree of effects in the upper tail of the
distribution of X beyond the threshold b.6

A feature of risk theory that elevates superquantiles above quantiles is found in the notion
of coherency proposed by Artzner et al. [2], originally for purposes of determining appropriate
cash reserves in the banking industry. Coherency of a risk measure R entails having

R(C) = C for constant random variables X ≡ C,
R(X) ≤ R(X ′) when X ≤ X ′ almost surely,
R(X +X ′) ≤ R(X) +R(X ′),
R(λX) = λX for λ > 0.

(1.10)

Along with the surface meaning of these axioms,7 there are crucial implications for preserving
convexity when measures of risk are employed in optimization. This is explained from several
angles in [24].

For the examples above, coherency holds for the extreme choices R(X) = E[X] and
R(X) = supX, but it is absent in general for R(X) = E[X] + λσ(X) with λ > 0 (because
the monotonicity axiom fails) and for R(X) = QX(p) (because the subadditivity axiom fails).
However, coherency does hold for R(X) = QX(p). Moreover it holds for weighted sums like
R(X) =

∑m
k=1 λkQX(pk) with λk > 0 and

∑m
k=1 λk = 1, and even for “continuous” versions of

those sums, R(X) =
∫ 1
0 QX(p) dλ(p) for a probability measure λ on (0, 1).8 In fact, a functional

6In reliability terms, with outcomes X > b signaling “failure,” 1− p is the probability of failure in (1.8) and
the buffered probability of failure in (1.9), cf. [20].

7The subadditivity inequality, for instance says, in the context of cash reserves in finance, that if the cash
amount R(X) is adequate for covering the risks in a portfolio with losses described by the random variable X,
and R(X ′) is enough for a separate portfolio with losses described by X ′, then the sum of these amounts should
cover the combined portfolio. This supports the idea of diversification of assets. See Föllmer and Schied [7] for
more about the role of coherency in finance.

8Such expressions relate strongly to “dual utility theory,” the foundations of which have recently been
strengthened by Dentcheva and Ruszczynski [6].
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R(X) expressible as the supremum of a collection of such superquantile integrals is known to
be the most general kind of coherent measure of risk that depends only on FX and possesses a
certain continuity property; see [10] and [7, Section 2.6].

This makes clear that superquantiles are basic to the foundations of risk theory and further
explains why we are intent here on positioning them prominently in view.

Although the defining formulas for superquantiles might raise a perception of them being
troublingly complicated or even intractable in comparison to quantiles, quite the opposite is
true. A double formula due to Rockafellar and Uryasev [22, 23] brings them together in a way
that supports practical methods of computation while bypassing technical issues in the defining
formulas (1.5) and (1.6):

QX(p) = minx{x+ Vp(X − x) }, where Vp(X) = 1
1−p

E[max{0, X}].
QX(p) = argminx{x+ Vp(X − x) } (left endpoint, if this is not a singleton),

(1.11)

The “argmin,” consisting of the x values for which the minimum is attained, is, in this formula,
a nonempty, closed, bounded interval which typically reduces to a single x. The functional Vp

satisfies
Vp(X) ≤ Vp(X

′) when X ≤ X ′ almost surely,
Vp(X +X ′) ≤ Vp(X) + V(X ′),
Vp(λX) = λVp(X) for λ > 0,
Vp(X) ≥ E[X], with equality holding only when X ≡ 0.

(1.12)

Such properties are associated with regular “measures of regret” (rather than risk) in the
terminology of [24], and it is appropriate therefore, in view of (1.11) to refer to Vp as quantile
regret . The functional Ep(X) = Vp(X)−E[X] paired with Vp by [24] as its associated “measure
of error” is normalized Koenker-Basset error. It underlies quantile regression as a statistical
methodology offering an alternative to least-squares regression [8], [9].

In models of stochastic optimization that incorporate superquantiles in constraints or objec-
tives, the superquantile formula in (1.11) can be substituted in each instance with an associated
auxiliary variable in the overall minimization. This greatly simplifies computations and simul-
taneously yields values for the corresponding quantiles in the solution; cf. [22, 23]. No such
computational help is available for constraints and objectives expressed in quantiles instead
of superquantiles. As the formulas in (1.11) underscore for anyone familiar with the relative
behavior of “min” and “argmin” in numerical optimization, quantiles are inherently less stable
than superquantiles in circumstances where random variables depend on decision parameters.

A byproduct of the connections explored here between distributions, monotone relations,
and the convex functions associated with them subdifferentially, will be an explanation—for the
first time—of how (1.11) was discovered in the background of [22, 23]. It came from recognition
of the consequences of applying the Legendre-Fenchel transformation to those convex functions.

A further goal of this article is to develop, in Section 4, a formula along the lines of (1.11)
in which the argmin gives the superquantile instead of the quantile:

QX(p) = argminx{x+ Vp(X − x) }

for the right choice of a “regret” functional Vp. Such a formula is needed to for the purpose
of generalizing “quantile regression” to “superquantile regression” in the framework of [25] and

9



[24]. Specifically, from Vp(X) as “superquantile regret,” the functional Ep(X) = Vp(X)−E[X]
will be the right substitute for Koenker-Basset error in that generalization. Expressions for
superquantile regret and superquantile error that serve in this manner have not previously
been identified.

2 Monotone Relations in Convex Analysis

In this section we review facts about monotone relations and the convex functions associated
with them in order to lay a foundation for analyzing the connections indicated in Section 1.
In that analysis, carried out in Section 3, the x variable will have a quantile role and the p
variable will be associated with probability, but for now both are abstract variables with roles
completely interchangeable.

Definition (monotonicity and maximal monotonicity). A set Γ of pairs (x, p) ∈ IR× IR is said
to give a monotone relation if

(x1 − x2)(p1 − p2) ≥ 0 for all (x1, p1) and (x2, p2) in Γ, (2.1)

so that either (x1, p1) ≤ (x2, p2) or (x1, p1) ≥ (x2, p2) in the usual coordinatewise ordering of
vectors in IR × IR. In other words, a monotone relation is a subset of IR × IR that is totally
ordered in that partial ordering. A monotone relation Γ is maximal if it cannot be enlarged
without destroying the total ordering; there is no monotone relation Γ′ ⊃ Γ with Γ′ ̸= Γ.

Any monotone relation can be extended to a maximal monotone relation (not necessarily
in only one way). Maximal monotonicity was introduced in 1960 by Minty [13] in the study of
relations between variables like current and voltage in electrical networks and their analogs in
other kinds of networks.

The symmetry in the roles of the two variables in monotonicity has the consequence that if
Γ is a monotone relation, then the inverse relation Γ−1, defined by

Γ−1 = { (p, x) | (x, p) ∈ Γ }, (2.2)

is likewise monotone. Maximality passes over in this manner as well.
A maximal monotone relation has the graphical appearance of an unbounded continuous

curve that “trends from southwest to northeast” and may incorporate horizontal and vertical
segments. It may even begin or end with such a segment of infinite length. As extreme cases,
an entire horizontal line gives a maximal monotone relation and so does an entire vertical line.
The union of the nonnegative x-axis with the nonpositive p-axis is likewise a maximal monotone
relation, moreover one which very commonly arises in applications (not tied to probability). It
is the “infinite gamma” shape of that relation that earlier suggested the notation Γ.

A noteworthy feature of a maximal monotone relation is its canonical parameterization by
an auxiliary variable t:

For a maximal monotone relation Γ and any t ∈ (−∞,∞),
the line x+ p = t intersects Γ in a unique point (x(t), p(t)),
and x(t) and p(t) are Lipschitz continuous as functions of t.

(2.3)

10



Put in another way, the graph of a maximal monotone relation is a sort of manifold that is
globally “lipeomorphic” to the real line. This striking property, so function-like, makes up for
the disadvantage, to classical eyes, of allowing the graph to contain vertical segments.

An exposition of the theory of maximal monotone relations which covers (2.3) and other
properties yet to be mentioned is available in [26, Chapter 12], where the subject is extended
beyond subsets of IR×IR to subsets of IRn×IRn. (In the higher dimensional setting, monotonicity
becomes a generalization of positive-semidefiniteness.) Some aspects are also in the earlier book
[17, Section 24]. A version of the subject dedicated to extending the original network ideas of
Minty, and offering many examples, is in [19, Chapter 8].

Some basic convexity properties are obvious from the Minty parameterization. For instance,
the domain and range of a maximal monotone relation Γ, namely

domΓ = {x | (x, p) ∈ Γ for some p }, rge Γ = { p | (x, p) ∈ Γ for some x }, (2.4)

are nonempty intervals, although not necessarily closed, while the sets

Γ(x) = { p | (x, p) ∈ Γ }, Γ−1(p) = {x | (x, p) ∈ Γ }, (2.5)

are closed intervals with Γ(x) ̸= ∅ when x ∈ domΓ, and Γ−1(p) ̸= ∅ when p ∈ rge Γ. Clearly
domΓ−1 = rge Γ and rge Γ−1 = domΓ.

The connection between maximal monotone relations Γ and nondecreasing functions γ on
(−∞,∞) is elementary and closely reflects the special case of distribution functions considered
in Section 1. Suppose γ : (−∞,∞) → [−∞,∞] is nondecreasing and not identically −∞ or
identically ∞. Then there are left and right limits

γ−(x) = lim
x′ ↗x

γ(x′), γ+(x) = lim
x′ ↘x

γ(x′), (2.6)

with γ−(x) ≤ γ(x) ≤ γ+(x). They define functions γ− and γ+ which are left-continuous and
right-continuous, respectively. A maximal monotone relation Γ is obtained by taking

Γ = { (x, p) ∈ IR× IR | γ−(x) ≤ p ≤ γ+(x) }. (2.7)

The original γ has no direct role in this and could be replaced by either γ+ or γ− from the
start, because (γ+)− = γ− and (γ+)+ = γ+, whereas (γ−)− = γ− and (γ−)+ = γ+. Conversely,
given a maximal monotone relation Γ one can define

γ−(x) = min{ p | (x, p) ∈ Γ } and γ+(x) = max{ p | (x, p) ∈ Γ } for x ∈ domΓ,
γ−(x) = γ+(x) = −∞ at points x to the left of domΓ (if any),
γ−(x) = γ+(x) = ∞ at points x to the right of domΓ (if any),

(2.8)

to get a pair of nondecreasing functions γ− and γ+, one continuous from the left and one
continuous from the right, which produce Γ through (2.7).

Subdifferentiation. The connection between maximal monotone relations and the subdif-
ferentiation of convex functions will be explained next. A proper convex function on (−∞,∞)
is a function f : (−∞,∞) → (−∞,∞] that is not ≡ ∞ and satisfies

f((1− τ)x+ τx′) ≤ (1− τ)f(x) + τf(x′) for all τ ∈ (0, 1) and all x, x′. (2.9)
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In terms of the effective domain and epigraph of f , defined by

dom f = {x | f(x) < ∞}, epi f = { (x, v) | f(x) ≤ v < ∞}, (2.10)

the definition is equivalent to saying that the proper convex functions are the functions f :
(−∞,∞) → (−∞,∞] for which epi f is a nonempty convex subset of IR × IR, or equivalent
on the other hand to taking a nonempty interval I, a finite convex function f on I, and then
defining f(x) = ∞ for x ̸∈ I; then dom f = I.

A proper convex function f is said to be closed when it is lower semicontinuous, i.e., has its
lower level sets {x | f(x) ≤ c } closed, for all c ∈ IR. This holds if and only if epi f is closed in
IR×IR. Because a finite convex function on an open interval is necessarily continuous, a proper
convex function has to be continuous except perhaps at the endpoints of dom f . Closedness
thus refers only to behavior at those endpoints. it requires that f(xk) → f(x) when x is an
endpoint and a sequence of points xk ̸= x in dom f tends to x.

For a proper convex function f and any x ∈ dom f , the left-derivative and the right-
derivatives of f , namely,

f ′−(x) = lim
x′ ↗x

f(x′)− f(x)

x′ − x
, f ′+(x) = lim

x′ ↘x

f(x′)− f(x)

x′ − x
, (2.11)

exist with f ′−(x) ≤ f ′+(x). The “set-valued” mapping ∂f defined by

∂f(x) =
{ { p ∈ IR | f ′−(x) ≤ p ≤ f ′+(x) } for x ∈ dom f ,

∅ for x /∈ dom f ,
(2.12)

is called the subdifferential of f . When f ′−(x) = f ′+(x), this common value (if finite) is the
derivative f ′(x). That holds for all but countably many points in the interior of dom f because
of the convexity of f : The one-sided derivatives, as functions of x, are nondecreasing and
respectively left-continuous and right-continuous, having (f ′−)+ = f ′+ and (f ′+)− = f ′−.

The key fact about subdifferentials ∂f in general, going beyond the case of single-valuedness,
is this:

for a proper convex function f that is closed, the graph of ∂f , namely
gph ∂f = { (x, p) | p ∈ ∂f(x) },

is a maximal monotone relation Γ; moreover every maximal monotone
relation Γ is the graph of ∂f for some closed proper convex function f ,
and such a functionf is uniquely determined up to an additive constant.

(2.13)

The first part of this statement stems from the observation that if the one-sided derivatives in
(2.12) are extended outside of dom f by taking

f ′−(x) = f ′+(x) = −∞ at points x to the left of dom f (if any),
f ′−(x) = f ′+(x) = ∞ at points x to the right of dom f (if any),

(2.14)

one gets as γ− = f ′− and γ+ = f ′+ a left-continuous/right-continuous pair on all of (−∞,∞)
for which the Γ associated by (2.7) is gph ∂f . The second part is established by taking for
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a given maximal monotone relation Γ the corresponding left-continuous/right-continuous pair
γ−, γ+, and for any γ between them and any x0 ∈ domΓ defining

f(x) =
∫ x

x0

γ(t)dt+ c for an arbitrary constant c. (2.15)

It turns out then that f is a closed proper convex function having γ− = f ′− and γ+ = f ′+.

Dualization through the Legendre-Fenchel transform. Duality is the topic reviewed
next. Its central feature is a one-to-one correspondence among closed proper convex functions
which unites them in pairs. Here we only look at it in the one-dimensional setting, but in
multi-dimensional and even infinite-dimensional convex analysis it is the repository of virtually
every duality property that is known; see [17, 18, 26].

For any closed proper convex function f on (−∞,∞) the formula
f ∗(p) = supx{xp− f(x) }

defines a closed proper convex function f ∗ on (−∞,∞) such that
f(x) = supp{xp− f∗(p) } = (f ∗)∗(x).

(2.16)

The passage from f to f∗ is the Legendre-Fenchel transform. Accompanying these formulas are
the subdifferential rules that

∂f ∗(p) = argmaxx {xp− f(x) }, ∂f(x) = argmaxp { px− f∗(p) }. (2.17)

A major consequence for purposes here is that

For any conjugate pair of closed proper convex functions, f and f ∗,
one has ∂f ∗ = (∂f)−1 meaning that x ∈ ∂f ∗(p) ⇐⇒ p ∈ ∂f(x).

(2.18)

Thus, the maximal monotone relations associated with f and f ∗ are inverse to each other. Note
that as special cases of (2.17) and (2.18) one has

inf f = −f ∗(0), argmin f = ∂f∗(0), inf f∗ = −f(0), argmin f ∗ = ∂f(0). (2.19)

Set convergence and its variants. Finally, notions of convergence that are natural to
convex analysis need to be explained, particularly because they hardly enter the standard frame
of analysis (although they should). We keep to the context of IR2 because that is all we require,
but a full theory in finite dimensions is provided in [26, Chapter 4].

For a nonempty closed subset S of IR2, the associated distance function is

dS(u) = min
w∈S

||u− w|| for the Euclidean norm || · ||.

(Any norm would do equally well.) This function dS is nonnegative with S = {u | dS(u) = 0 }
and it is Lipschitz continuous with Lipschitz constant 1. We are concerned with a sequence of
nonempty closed subsets Sk in IR2 and the issue of whether Sk “converges” to S as k → ∞,
with set-convergence in the Kuratowski/Painlevé sense intended. Although there are numerous
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characterizations of such convergence (cf. [26, Chapter 4]), it suffices here to concentrate on a
description that is easy to visualize:

lim
k→∞

Sk = S ⇐⇒ lim
k→∞

dSk
(u) = dS(u) for every u.

Because of the Lipschitz continuity, such pointwise convergence entails uniform convergence of
the distance functions on all bounded sets.

Two convergence notions more closely tuned to our present discussion are built around such
set convergence. First,

graphical convergence to Γ of a sequence of maximal monotone
relations Γk refers to their convergence as subsets of IR× IR.

(2.20)

Second,

epigraphical convergence to f of a sequence of closed proper convex functions
fk on (−∞,∞) refers to the set-convergence of epi fk to epi f in IR× IR.

(2.21)

Two celebrated results about these notions underscore their fundamental significance.

A sequence of closed proper convex functions fk epi-converges to f if and
only if the maximal monotone relations Γk = gph ∂fk converge graphically
to Γ = gph ∂f , while fk(xk) → f(x) for some sequence xk → x ∈ dom f .

(2.22)

On the other hand,

A sequence of closed proper convex functions fk epi-converges to such an f
if and only if their conjugate functions f ∗

k epi-converge to the conjugate f ∗.
(2.23)

In other words, the Legendre-Fenchel transform is continuous with respect to epi-convergence.
In general, it is possible for a sequence of functions to epi-converge without converging

pointwise everywhere, and conversely. However, in the applications we will make involving
random variables some degree of pointwise convergence can be utilized. This comes from the
following characterization.

For closed proper convex functions fk and f on (−∞,∞) with the
same nonempty open interval I as interior of dom f and dom fk, the
epi-convergence of fk to f is equivalent to the pointwise convergence
of fk to f on the interval I, or for that matter on a dense subset of I,
in which case the convergence is uniform on all compact subsets of I.

(2.24)

Graphical convergence of maximal monotone relations can likewise be furnished with char-
acterizations based on pointwise convergence:

for maximal monotone Γk and Γ associated with nondecreasing
functions γk and γ, graphical convergence of Γk to Γ corresponds
to pointwise convergence of γk to γ at all continuity points of γ, or
equivalently, to pointwise convergence of γk to γ almost everywhere.

(2.25)
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On an open interval I where the functions γk and γ are finite, such pointwise convergence
almost everywhere is furthermore equivalent to having∫ b

a
|γk(x)− γ(x)|dx → 0 for all [a, b] ⊂ I, (2.26)

as seen through application of Lebesgue dominated convergence in the context of these functions
being nondecreasing.

Second derivatives. Convex functions are known generally to be twice differentiable
almost everywhere. Where does this enter our picture? Monotone relations provide a helpful
graphical view.

For a closed proper convex function f the twice differentiability of f at x ∈ dom f means
that the one-sided derivative functions f ′− and f ′+ agree at x and are differentiable there.
Graphically in terms of the monotone relation Γ giving ∂f , an equivalent statement is that
there is a unique p such that (x, p) ∈ Γ, and furthermore a nonvertical tangent line to Γ at
(x, p).9 Here f ′(x) = p and the slope of the tangent is f ′′(x). This slope must of course be
nonnegative.

Let us call (x, p) a nonsingular point of Γ if there is a tangent line there which is nonvertical
and also nonhorizontal. This corresponds to f having a nonzero second derivative at x. The
symmetry in this notion provides us then with the following equivalences:

f has f ′(x) = p and second derivative f ′′(x) > 0
⇐⇒ (x, p) is a nonsingular point of Γ
⇐⇒ (p, x) is a nonsingular point of ∆ = Γ−1,
⇐⇒ f∗ has f ∗ ′(p) = x and second derivative f ∗ ′′(p) > 0,

in which case the second derivatives are reciprocal, f ∗ ′′(p) = 1/f ′′(x).

(2.27)

Beyond passing to second derivatives in this manner, one can think of the maximal monotone
relation Γ as directly associated with a measure “dΓ” defined in Lebesgue-Stieltjes manner
through the nondecreasing functions associated with it. (Vertical segments in Γ correspond to
atoms in this measure, and the continuous nondecreasing function obtained by shrinking them
out gives the rest of the measure in the usual way.) Likewise, the inverse relation ∆ yields a
measure “d∆. These measures are reciprocal in a certain sense that encompasses (2.27). They
can be construed as the generalized second derivatives of f and f∗.

3 Back to Random Variables

We turn now to applying the general results in Section 2 to random variables in the setting of
Section 1. We start with monotonicity and go on to duality. Then we see where this leads us
with convergence issues. Supporting facts about expectations need to be recorded beforehand.
To avoid complications that are inessential for our purposes, we make the assumption that

henceforth all random variables X have E[ |X| ] < ∞. (3.1)

9For tangency in general terms, see [26, Chapter 6].
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Then E[X] is well defined and finite, in particular.
Expectations with respect to the probability measure on (−∞,∞) induced by a random

variable X take the form of Lebesgue-Stieltjes integrals with respect to FX . One has

E[g(X)] =
∫ ∞

−∞
g(x)dFX(x) (3.2)

for any (measurable) function g such that the integrand g(x) is integrable with respect to the
probability measure in question, or at least is bounded from below by something integrable;
cf. Billingsley [3, Section 21].10 An expression of the same expectation in terms of the quantile
function QX instead of the distribution function FX is

E[g(X)] =
∫ 1

0
g(QX(p))dp, (3.3)

again as long as g(QX(p)) is bounded from below by something integrable. This holds because
the integrals on the right of (3.2) and (3.3) agree through a change-of-variable rule; cf. Billingsley
[3, Theorem 16.13].11 In particular,

E[X] =
∫∞
−∞ x dFX(x) =

∫ 1
0 QX(p) dp (finite),

E[ |X|r] =
∫∞
−∞ |x|rdFX(x) =

∫ 1
0 |QX(p)|rdp for r ≥ 1.

(3.4)

Also conforming to this rule is the equivalence of the alternative definitions in (1.5) and
(1.6) of the superquantile QX(p) for p ∈ (0, 1). This equivalence can be identified with the
version of the first equation in (3.4) that results from replacing FX by the p-tail distribution

function F
[p]
X described right after (1.5) and replacing QX accordingly by the quantile function

Q
[p]
X for F

[p]
X , with Q

[p]
X (t) = QX(p + t(1 − p)) for t ∈ (0, 1). Since Q

[p]
X (t) ≥ QX(p) > −∞, the

integrand in the quantile integral is bounded from below by an integrable function on (0, 1),
and the equivalence between (1.5) and (1.6) is thereby justified.

Maximal monotonicity from distributions and quantiles. The distribution function
FX , which is nondecreasing right-continuous, has a left-continuous counterpart F−

X . The mono-
tonicity construction in Section 2, when applied to this pair, yields the relation ΓX described
in Section 1 in terms of “filling in the vertical gaps”:

ΓX = { (x, p) ∈ IR× IR | F−
X(x) ≤ p ≤ FX(x) }. (3.5)

Hence ΓX is a maximal monotone relation. One can proceed similarly with the nondecreasing
left-continuous function QX by extending it in the natural way beyond (0, 1) with

QX(1) = lim
p↗ 1

QX(p), QX(p) = ∞ for p > 1, QX(p) = −∞ for p ≤ 0, (3.6)

10Recall that the integral of a nonnegative (measurable) function is always well defined but might be ∞. A
function is “integrable” if its absolute value has finite integral. The integral of any function that is bounded
below by an integrable function is likewise well defined as a finite value or ∞.

11The dFX measure on (−∞,∞) is the one induced from the dp measure on (0, 1) by the function QX .
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so as to get a nondecreasing left-continuous function on (−∞,∞). Its extended right-continuous
counterpart Q+

X has Q+

X(0) = limp↘ 0 QX(p) and Q+

X(1) = ∞. The relation ∆X described in
Section 1 is then

∆X = { (p, x) ∈ IR× IR | QX(p) ≤ x ≤ Q+

X(p) }, (3.7)

and it, too, is therefore a maximal monotone relation. Moreover these relations are inverse to
each other through the reciprocal formulas (1.2) and (1.3) for passing between FX and QX :

(x, p) ∈ ΓX ⇐⇒ (p, x) ∈ ∆X , i.e., ∆X = Γ−1
X and ΓX = ∆−1

X . (3.8)

This recalls the setting in (2.18) in which a pair of maximal monotone relations that are
the inverses of each other are the graphs of the subdifferentials of two convex functions that
are conjugate to each other. The construction of such functions are where we are now headed.

Superexpectation functions. A basic choice confronts us right away. We can pass from
ΓX to a convex function f having it as the graph of ∂f , but an additive constant is thereby left
undetermined. An idea coming straight to mind is to look at f(x) =

∫ x
0 FX(x

′)dx′, but that
has a big disadvantage for applications, as will be explained below. Another choice with a lot
behind it is taking f to be the function12

F
(2)
X (x) = E[max{0, x−X}] =

∫ x

−∞
FX(x)dx, (3.9)

which is finite13 and convex with right-derivative FX . Ogryczak and Rusczynski showed in [16,

Theorem 3.1] that the conjugate of F
(2)
X is the convex function given on [0, 1] by14

F
(−2)
X (p) =

∫ p

0
QX(p

′)dp′. (3.10)

but equalling ∞ outside of [0, 1]. It has QX as its left derivative on (0, 1). In statistics, F
(2)
X

and F
(−2)
X have long standing, but they emphasize the lower tail of X instead of the upper tail.

Desiring something tuned instead to upper tail properties, Dentcheva and Martinez in [4]
introduced in parallel to (3.9) the “excess function”

HX(x) = E[max{0, X − x}] =
∫ ∞

x
[1− FX(x)]dx, (3.11)

which likewise is finite and convex. They showed that its conjugate H∗
X can be expressed on

[0, 1] in terms of (although not directly as) the function15

LX(p) =
∫ 1

p
QX(p

′)dp′. (3.12)

However, LX is concave, not convex, and it has −QX(p) as its left-derivative at p, while HX

has FX(x) − 1 as its right-derivative at x. Thus, this adaptation to a “cost” orientation of X
does not sit comfortably in our duality framework.

12This function is traditionally important in “stochastic dominance,” to be taken up in Section 4.
13The finiteness of the integral is assured under (3.1).
14This gives the “Lorenz curve” [11] associated with X.
15This is the “upper Lorenz function” in their terminology, although the format of notation is ours.
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A different choice will therefore be made here instead. It is dictated in part by our interest
in coordinating with the “superquantiles” of random variables described in Section 1, as will
be apparent when we come to duality.

We define the superexpectation function EX associated with a random variable X by

EX(x) = E[max{x,X}] =
∫ ∞

−∞
max{x, x′} dFX(x

′) =
∫ 1

0
max{x,QX(p)} dp, (3.13)

with the value EX(x) being termed the superexpectation of X at level x.16

Theorem 1 (characterization of superexpectations). The superexpectation function EX for
a random variable X having E[ |X| ] < ∞ is a finite convex function on (−∞,∞) which
corresponds subdifferentially to the monotone relation ΓX and the distribution function FX

through
ΓX = gph ∂EX , FX(x) = E ′+

X (x). (3.14)

It is nondecreasing with

EX(x)− x ≥ 0, lim
x→∞

[EX(x)− x] = 0, lim
x→−∞

EX(x) = E[X] (3.15)

and has the additional convexity property that

EX(x) ≤ (1− λ)EX0(x) + λEX1(x) when X = (1− λ)X0 + λX1 with 0 < λ < 1. (3.16)

On the other hand, any convex function f on (−∞,∞) with the properties that

f(x)− x ≥ 0, lim
x↗∞

[f(x)− x] = 0, lim
x↘−∞

f(x) = a finite value, (3.17)

is EX for a random variable X having E[ |X| ] < ∞.

Proof. The asymptotics in (3.15) are evident from max{x, x′} − x = max{0, x′ − x} ≥ 0,
where the expressions as functions of x′ decrease pointwise to 0 as x tends to ∞ but increase
pointwise to x′ as x tends to −∞. To connect with FX giving the right derivative, observe for
x′ > x that

max{x′, t} −max{x, t}
x′ − x

=


1 if t ≤ x,
0 if t ≥ x′,
x′−t
x′−x

∈ (0, 1) if t ∈ (x, x′),

and therefore

prob {X ≤ x} ≤ EX(x
′)− EX(x)

x′ − x
≤ prob {X ≤ x′},

where the left side equals FX(x) and the right side equals FX(x
′). In taking the limit on both

sides as x′ ↘x and utilizing the right-continuity of FX , we confirm that E ′+
X (x) = FX(x).

The additional property in (3.16) is a consequence of the convexity of max{x,X} with
respect to X in the definition (3.13) of EX(x).

If a convex function f has the properties in (3.17), it must be finite on (−∞,∞) and
nondecreasing. Moreover its left-derivatives f ′−(x) and right-derivatives f ′−(x) must lie in [0, 1]

16Relative to the excess function HX in (3.11), we have clearly have EX(x) = HX(x) + x.
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and increase to 1 as x tends to ∞ but decrease to 0 as x tends to −∞. Thus in particular,
the right-continuous function f ′+ meets the requirements of a distribution function FX for a
random variable X.

The properties in (3.17) say that the graph of EX is above, but asymptotic to, the 45-degree
line y = x. The additional convexity property in (3.16) is valuable for applications in stochastic
optimization, which often involve random variables X(u) that depend linearly or convexly on a
parameter vector u. It is also a signal of the aptness of EX as our designated choice of a convex
function f having FX as its right-derivative. This property also holds for F

(2)
X as an antecedent

of FX , but that choice concentrates on the lower tail instead of the upper tail. It is absent for
other seemingly natural choices, such as f(x) =

∫ x
a FX(x

′)dx′. In that case,∫ x

a
FX(x

′)dx′ = EX(x)− EX(a) for any a ∈ (−∞,∞),

since both sides the same right-derivatives in x and both vanish at a. Although EX(a), like
EX(x), is convex with respect to X, the difference EX(x)− EX(a) that property.

Conjugate superexpectations. Dualization of the superexpectation function EX through
the Legendre-Fenchel transform will be addressed next. This is where the superquantiles QX(p)
of (1.5) and (1.6) come on stage.

The conjugacy claim in the following theorem is new only in its formulation, in view of the
conjugacy between (3.9) and (3.10) already established by Ogrychak and Ruszczynski in [16],
and the result of Dentcheva and Martinez in [4] about the relationship between the functions
in (3.11) and (3.12). However, the proof we supply takes a different route.

Theorem 2 (dualization of superexpectations). The closed proper convex function E∗
X on

(−∞,∞) that is conjugate to the superexpectation function EX on (−∞,∞) is given by

E∗
X(p) =


−(1− p)QX(p) for p ∈ (0, 1),
−E[X] for p = 0,
0 for p = 1,
∞ for p /∈ [0, 1].

(3.18)

It is continuous relative to [0, 1], entailing

lim
p↗ 1

(1− p)QX(p) = 0, lim
p↘ 0

QX(p) = E[X], (3.19)

and it corresponds subdifferentially to the maximal monotone relation ∆X = Γ−1
X and the

quantile function QX through

∆X = gph ∂E∗
X , QX(p) = E∗ ′−

X (p). (3.20)

On the other hand, any function g on (−∞,∞) that is finite convex and continuous on [0, 1]
with g(1) = 0, but g(p) = ∞ for p /∈ [0, 1], is E∗

X for some random variable X.

Proof. Let g denote the function of p ∈ (−∞,∞) described by the right side of (3.18). It will
be demonstrated in steps that g is a closed proper convex function having EX as its conjugate
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g∗. That will tell us through (2.16) that g is in turn the conjugate E∗
X . It will also confirm

the limits in (3.19), since a closed proper convex function on (−∞,∞) is always continuous
relative to an interval on which it is finite, cf. [17, Corollary 7.5.1].

From the expression for QX(p) in (1.6), already justified as being equivalent to the one
in (1.5), we have g(p) = −

∫ 1
p QX(p

′)dp′ for p ∈ (0, 1). This implies that g′−(p) = QX(p) and

g′+(p) = Q+

X(p) on (0, 1). Since the limit of −
∫ 1
p QX(p

′)dp′ as p↗1 is 0, while the limit as p↘0 is

−
∫ 1
0 QX(p

′)dp′ = −E[X] by (3.4), g is continuous relative to [0, 1]. Since QX is nondecreasing,
g is also convex on [0, 1] and hence, in its extension outside of [0, 1] by ∞, is a closed proper
convex function on (−∞,∞). Furthermore, the left- and right-derivative functions for g, as
extended in the manner of (2.14), are the functions QX and Q+

X as extended in (3.6). The
graph of ∂g, as determined by definition from g′− and g′+, is therefore the relation ∆X in (3.7).

It follows then from (2.18) that the convex function g∗ conjugate to g has the relation
Γ = ∆−1 as the graph of ∂g∗. Since EX is already known from Theorem 1 to have Γ as the
graph of ∂EX , the functions g∗ and EX can differ at most by a constant, EX = g∗ + c. On
taking conjugates again, we get E∗

X = (g∗ + c)∗ = (g∗)∗ − c = g− c. Thus, to verify that c = 0,
confirming that E∗

X = g, it will suffice to show that E∗
X(1) = 0. For this we apply the formula

for the Legendre-Fenchel transform: E∗
X(p) = supx { px− EX(x) } at p = 1. This gives us

−E∗
X(1) = infx{ − x+ E[max{x,X}] } = infx{E[max{0, X − x}] },

where the expectation of max{0, X − x} is always ≥ 0 but approaches 0 as x → ∞.
For the last part of the theorem, we note that for any g as described there the function

q = g′− on (0, 1) is left-continuous and nondecreasing, with g(p) = −
∫ 1
p q(p′)dp′. In other words,

q meets the requirement of being a quantile function QX for which the right side of (3.18) can
be identified with g. Then g must be the corresponding function E∗

X .

Corollary (superquantile functions). The conjugate E∗
X is uniquely determined by the super-

quantile function QX . Not only it, but also EX , FX and QX , along with ΓX and ∆X , can
be reconstructed from knowledge of QX . Moreover the following properties of a function ḡ on
(0, 1) are necessary and sufficient to have ḡ = QX for a random variable X with E[ |X| ] < ∞:

(1− p)ḡ(p) is concave in p with lim
p↗ 1

(1− p)ḡ(p) = 0, lim
p↘ 0

ḡ(p) = a finite value. (3.21)

Proof. Once QX has determined E∗
X from (3.18), we get EX as the conjugate (E∗

X)
∗. These

functions yield FX and QX through one-sided differentiation, and we then have the monotone
relations ΓX and ∆X as well. The conditions listed for a function ḡ correspond to the conditions
on g at the end of Theorem 2.

Besides this characterization, it is interesting to observe as a consequence of the formula
(1.6) for superquantiles QX(x) that

QX is a continuous increasing function of p ∈ (0, 1) with

Q
′−
X (p) =

QX(p)−QX(p)

1− p
≤ QX(p)−Q+

X(p)

1− p
= Q

′+
X (p).

(3.22)

In contrast, QX is only nondecreasing, not (strictly) increasing, and can be discontinuous.
There is no assurance that QX has left-derivatives or right-derivatives apart from the general
dictum that a nondecreasing function is differentiable almost everywhere.
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Example (exponential distributions). Let X be exponentially distributed with parameter λ >
0. Then the distribution function is FX(x) = 1− exp(−λx), the superexpectation function is

EX(x) =
{
x+ (1/λ) exp(−λx) for x ≥ 0,
1/λ for x < 0,

and the conjugate superexpectation function has E∗
X(p) = (1/λ)(p − 1)(1 − log(1 − p)) for

p ∈ [0, 1). Quantiles and superquantiles are thus given on (0, 1) by

QX(p) = −(1/λ) log(1− p), QX(p) = (1/λ)(1− log(1− p)).

Our results further make available new estimates for work with superquantiles.

Theorem 3 (superquantile estimates). For p ∈ [0, 1), one has
(a) |QX(p)−QY (p)| ≤ 1

1−p
E|X − Y | when E[ |X| ] < ∞, E[ |Y | ] < ∞.

(b) E[X] ≤ QX(p) ≤ E[X] + 1√
1−p

σ(X) when E[X2] < ∞, σ(X) = standard deviation.

Proof. Observe first that |max{x, a}−max{x, b}| ≤ |a−b|. For the superexpectation functions
corresponding to X and Y , this gives us

|EX(x)− EY (x)| = E[ |max{x,X} −max{x, Y }| ] ≤ E[ |X − Y | ].

or in other words, both EY ≤ EX + E[ |X − Y | ] and EX ≤ EY + E[ |X − Y | ]. Applying the
Legendre-Fenchel transform, which reverses functional inequalities, we see that

E∗
Y ≥ E∗

X − E[ |X − Y | ], E∗
X ≥ E∗

Y − E[ |X − Y | ],

and consequently |E∗
X(p)− E∗

Y (p)| ≤ E[ |X − Y | ] for p ∈ [0, 1). Then (3.18) yields (a).
For (b), we note that −E∗

X(p) =
∫ 1
p QX(p

′)dp′ =
∫ 1
0 QX(p

′)I[p,1](p
′)dp′ for the characteristic

function of the interval [1, p], while recalling that E[X] = inf QX . Then, by way of (3.18),
we have 0 ≤ (1 − p)(QX(p) − E[X]) =

∫ 1
0 (QX(p

′) − E[X])I[p,1](p
′)dp′. The Cauchy-Schwartz

inequality provides now that

(1− p)(QX(p)− E[X]) ≤
[ ∫ 1

0
(QX(p

′)(p′)− E[X] )2dp′
]1/2[ ∫ 1

0
I[p,1](p

′)2dp′
]1/2

,

where the first factor on the right is (E[ |X − E[X]|2])1/2 = σ(X) by (3.3) and the second is√
1− p. In dividing through by 1− p, one gets the upper bound in (b).

Convergence in distribution. Convergence of a sequence of random variables Xk to a
random variable X can now be brought into focus. There are several concepts of importance,
but the one we concentrate on is convergence in distribution, which is customarily defined by17

Xk → X in distribution when FXk
(x) → FX(x) at all continuity points x of FX . (3.23)

17In probability theory, random variables are generally presented as functions on a probability space. The
convergence of a sequence is viewed then with all the random variables regarded as functions on the same
probability space. Here we are working directly with distributions and only nominally with particular random
variables giving rise to them, which are not unique. However, Skorohod’s theorem reconciles these points of
view; cf. [3, Theorem 25.6]. It says that when distribution functions Fk converge to a distribution function F
in the manner of (3.23), it is possible to construct random variables Xk and X on a common probability space
such that Fk = FXk

, F = FX , and the functions Xk converge pointwise to X.
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This classical property has various characterizations, for instance

Xk → X in distribution ⇐⇒ E[ g(Xk) ] → E[ g(X) ] for bounded continuous g, (3.24)

which is recorded in Billingsley [3, Theorem 25.8]. Here we provide characterizations beyond
such classical theory.

Theorem 4 (characterizations of convergence in distribution). For a sequence of random vari-
ables Xk, convergence in distribution to a random variable X is equivalent also to each of the
following conditions:

(a) ΓXk
converges graphically to ΓX ,

(b) ∆Xk
converges graphically to ∆X ,

(c) QXk
(p) → QX(p) at all continuity points p of QX in (0, 1),

(d) EXk
(x) → EX(x) for all x ∈ (−∞,∞),

(e) QXk
(p) → QX(p) for all p ∈ (0, 1).

Proof. The equivalence with (a) is evident from the description of graphical convergence in
(2.25). The equivalence with (b) then follows because graphical convergence is preserved when
taking inverses. Application of (2.25) to the convergence in (b) gives the equivalence with (c).

When the defining property in (3.23) holds, the integrals
∫∞
x [1 − FXk

(x′)]dx′ converge to∫∞
x [1−FX ](x

′)]dx′ (inasmuch as the integrands are uniformly bounded). This yields the property
in (d) through the fact that EX(x) = HX(x)+x for the function HX in (3.11). For the opposite
implication, if (d) holds we can use derivative estimates for convex functions in the form

EX(x)− EX(x− ϵ)

ϵ
≤ E ′−

X (x) ≤ E ′+
X (x) ≤ EX(x+ ϵ)− EX(x)

ϵ
(3.25)

for any ϵ > 0 and in parallel

EXk
(x)− EXk

(x− ϵ)

ϵ
≤ E ′−

Xk
(x) ≤ E ′+

Xk
(x) ≤ EXk

(x+ ϵ)− EXk
(x)

ϵ
. (3.26)

where E ′+
Xk

(x) = FXk
(x) and E ′+

X (x) = FX(x). At a continuity point x of FX we also have
E ′−

X (x) = FX(x). Since the outer bounds in (3.25) approach those in (3.26) as k → ∞ by (d),
we conclude that

EX(x)− EX(x− ϵ)

ϵ
≤ lim inf

k→∞
FXk

(x) ≤ lim sup
k→∞

FXk
(x) ≤ EX(x+ ϵ)− EX(x)

ϵ
(3.27)

The upper and lower bounds in (3.27) both converge to E ′
X(x) = FX(x) at the continuity point

x, and therefore FXk
(x) → FX(x). Thus, (d) is equivalent to the defining property in (3.23) for

convergence in distribution.
Next we observe that, since (d) concerns finite convex functions, the pointwise convergence

there is equivalent to the epi-convergence of EXk
to EX ; recall (2.24). Applying (2.23) we get

the epi-convergence of the conjugate functions E∗
Xk

to E∗
X , and then the equivalence with (e),

once more via (2.24).

By taking advantage of (2.24), the everywhere pointwise convergence in (d) and (e) can
be replaced by pointwise convergence on a dense subset or uniform convergence on compact

22



intervals of (−∞,∞) and (0, 1), respectively. On the other hand, the pointwise convergence
property in (c) can be elaborated in terms of the alternative descriptions in (2.25) and (2.26).

It is apparent from (e) that a superquantile is stable under perturbations of the under-
lying probability distribution. This has importance consequences for optimization problems
with superquantiles of parametric random variables as objective functions and constraints. If
the superquantiles remain convex and finite as functions of the parameters, then Theorem 4
with (2.24) ensures epiconvergence of approximations obtained by replacing true probability
distributions with approximating ones. Moreover, optimal solutions of problems with approxi-
mations will tend to those of the true problems, justifying the use of approximate probability
distributions in applications.

Other useful implications of convergence in distribution, which relax the boundedness of g
in (3.24), can be derived from conditions on moments. Let us say, for r ≥ 1, that a continuous
function g : (−∞,∞) → (−∞,∞) has growth rate at most r when lim|x|→∞ |g(x)|/|x|r < ∞.
This is equivalent to having c > 0 such that |g(x)| ≤ c(1 + |x|r) everywhere.
Theorem 5 (further properties of convergence in distribution). If Xk converges in distribution
to X and lim supk E[ |Xk|r(1+ϵ) ] < ∞ for some r ≥ 1 and ϵ > 0, then

E[ g(Xk) ] → E[ g(X) ] (finite) for continuous g having growth rate at most r. (3.28)

Proof. Consider Yk(p) = g(QXk
(p)) and Y (p) = g(QX(p)) as random variables on the prob-

ability space (0, 1). We have E[Yk] = E[g(Xk)], E[Y ] = E[g(X)], by (3.3) and know from
Theorem 4 that the convergence in distribution of Xk to X entails Yk as a function on (0, 1)
converging pointwise to Y almost everywhere. Our aim is to show that the growth assumptions
imply E[Yk] → E[Y ] with E(Y ] finite. For that it suffices to confirm that those assumptions
guarantee uniform integrability of the functions Yk in the sense that

lim
a→∞

sup
k

∫
|Yk|≥a

|Yk(p)|dp = 0, (3.29)

see Billingsley [3, Theorem 25.12]. Because g has growth rate ≤ r, there exists c > 0 such that
|Yk(p)| ≤ c(1 + |QXk

(p)|r) for all k. It will be enough therefore to confirm that

lim
b→∞

sup
k

∫
Zk≥b

Zk(p)dp = 0 for Zk(p) = |QXk
(p)|r. (3.30)

We have (via Billingsley [3, (25.13)]) the estimate for any ϵ > 0 that∫
Zk≥b

Zk(p)dp ≤ 1

bϵ

∫ 1

0
Z1+ϵ

k (p)dp =
1

bϵ

∫ 1

0
|QXk

(p)|r(1+ϵ)dp =
1

bϵ
E[ |Xk|r(1+ϵ)].

Under our assumption that the expectations E[ |Xk|r+ϵ] are uniformly bounded from above (for
k sufficiently large), we obtain (3.30) and the desired uniform integrability.

As a particular case of Theorem 5 one can take g(x) = |x|r in (3.28) to get convergence of
moments: E[ |Xk|r] → E[ |X|r]. Note that even E[Xk] → E[X] is not assured by convergence
in distribution of Xk to X without something extra, despite having QXk

(p) → QX(p) almost
everywhere with E[Xk] = inf QXk

and E[X] = inf QX . Here the sufficient condition given for
E[Xk] → E[X] is the boundedness of E[ |Xk|1+ϵ] as k → ∞ for some ϵ > 0.
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Distribution densities and quantile densities. The symmetric view of second deriva-
tives of convex functions and their conjugates, built at the end of Section 3 around the maximal
monotone relations associated with them, will now be applied to random variables.

If a distribution function FX is differentiable, its derivative F ′
X gives the distribution density

function fX for X. Then18 ∫ ∞

−∞
g(x)dFX(x) =

∫ ∞

−∞
g(x)fX(x)dx. (3.31)

What is new now is the perspective from Theorem 1 that fX(x) is the second derivative E ′′
X(x),

and that a sort of duality lies in the background.
The measure dΓX = dFX has a counterpart d∆X = dQX , the Lebesgue-Stieltjes measure

associated with the quantile function QX as a nondecreasing left-continuous function on (0, 1).
We can equally contemplate the differentiability of QX , interpreting it as yielding a quan-
tile density function qX on (0, 1), with qX(p) being the second derivative E∗′′

X (p) according to
Theorem 2. Then19 ∫ 1

0
h(p)dQX(p) =

∫ 1

0
h(p)qX(p)dp. (3.32)

It is interesting in this respect to note that, through change of variables,20 one has∫ 1

0
h(p)dQX(p) =

∫ ∞

−∞
h(FX(x))dx. (3.33)

This is the quantile version of the distribution rule in the equivalence between (3.2) and (3.3).
Full differentiability of FX and QX is not a prerequisite to all insights. The available facts

can be specialized without that, although full differentiability does produce the nicest picture.

Theorem 6 (duality of densities). The following relations hold in general:

FX has derivative F ′
X(x) > 0

⇐⇒ (x, p) is a nonsingular point of ΓX

⇐⇒ (p, x) is a nonsingular point of ∆X = Γ−1
X ,

⇐⇒ QX has derivative Q′
X(p) > 0

in which case the derivatives are reciprocal, Q′
X(p) = 1/F ′

X(x).

(3.34)

In consequence,

FX is differentiable on (−∞,∞) with F ′
X(x) > 0 for x ∈ (infX, supX),

⇐⇒ QX is differentiable on (0, 1) with Q′
X(p) > 0 for p ∈ (0, 1),

(3.35)

in which case
Q′

X(p) = 1/F ′
X(QX(p)) for p ∈ (0, 1),

F ′
X(x) = 1/Q′

X(FX(x)) for x ∈ (infX, supX).
(3.36)

Proof. All of this is immediate from (2.27) with F ′
X and Q′

X being the second derivatives of
the convex functions EX and E∗

X .

18For measurable functions g that are integrable with respect to the dFX measure.
19For measurable functions h that are integrable with respect to the dQX measure.
20Again applying the rule in Billingsley [3, Theorem 16.13]; the dQX measure on (0, 1) is the one induced

from the dx measure on (−∞,∞) by the function FX .
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4 Applications to Quantifying Risk

The importance of QX and QX as so-called measures of risk has been recalled in Section 1, but
more can be said with the facts now at our disposal. An explanation of the joint minimization
formula (1.11) for QX(p) and QX(p) will be taken up first. An extension to a parallel formula,
in which QX(p) gives the argmin instead of the min, will follow.

Derivation of the joint rule for quantiles and superquantiles. The proof of Theo-
rem 2 took shortcuts by utilizing facts in convex analysis, but a direct approach to calculating
E∗

X from EX by the Legendre-Fenchel transform was the original route to discovery of the
minimization formula (1.11). The motivation in the first place was to obtain a minimization
formula for quantiles based on knowing that ΓX is the graph of ∂EX , namely

[QX(p), Q
+

X(p)] = ∂E−1
X (p) = ∂E∗

X(p) = argminx{EX(x)− xp } for any p ∈ (0, 1). (4.1)

by (2.17) and (2.18). Here

Ex(x)− px = (1− p)x+ (E[max{x,X}]− x) = (1− p)
(
x+

1

1− p
E[max{0, X − x}]

)
,

and consequently [QX(p), Q
+

X(p)] is the set of x’s that minimize x+ 1
1−p

E[max{0, X−x}]. The
argmin part of (1.11) is just this. At the same time we see that the Legendre-Fenchel formula
E∗

X(p) = supx{ px− EX(x) }, with attainment guaranteed for p ∈ (0, 1), translates to

−E∗
X(p)

1− p
= minx

{
x+

1

1− p
E[max{0, X − x}]

}
for p ∈ (0, 1).

The left side is QX(p) by Theorem 2, and this clinches the other half of the rule in (1.11).

Extension to “higher-order superquantiles.” We proceed now to look for an analog of
(1.11) in which the superquantiles take the place of quantiles in giving the minimum. The reason
for wanting to do this is the role of quantiles, and potentially superquantiles, in generalized
regression of the kind considered in [24] and [25], but explaining all that here would carry us
far away from the current theme. “Superquantile regression” is the subject introduced and
developed in our paper [21], with support from results secured here.

An observation to start from is that the main term E[max{0, X}] in (1.11) has the additional
expressions

E[max{0, X}] =
∫ ∞

−∞
max{0, x}dFX(x) =

∫ 1

0
max{0, QX(p)}dp. (4.2)

It turns out that all we need to do in order to build the right analog of (1.11) is to replace FX

by a different but closely related distribution function FX such that

the quantiles of FX are the superquantiles of FX . (4.3)

As indicated graphically in Section 1, this superdistribution function is obtained by “inverting”
QX , namely

FX(x) =


Q

−1
X (x) for limp↘ 0 QX(p) < x < limp↗ 1QX(p),
0 for x ≤ limp↘ 0 QX(p),
1 for x ≥ limp↗ 1 QX(p).

(4.4)
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It is the distribution function for the random variable X associated with X by (1.7), so that

QX(p) = QX(p).

Much that has already been worked out for FX carries over to FX , as long as E[ |X| ] < ∞
in accordance with the blanket assumption in (3.1) that we have been relying on. That is the
case when E[X2] < ∞, as seen through the estimate in Theorem 3(b). In particular, then,

FX = E
′
X for EX(x) =

∫ ∞

−∞
max{x, x′}dFX(x

′) =
∫ 1

0
max{x,QX(p)}dp, (4.5)

where the equivalence holds as an echo of (3.12) in the face of (4.3). The function EX is finite
and convex on (−∞,∞), again with EX(x)− x positive and tending to 0 as x → ∞.

The conjugate function E
∗
X can be determined by applying Theorem 2 in this setting. The

main ingredient in the resulting formula is the replacement of QX(p) by a higher analog, namely

QX(p) =
1

1− p

∫ ∞

QX(p)
x′dFX(x

′) =
1

1− p

∫ 1

p
QX(p

′)dp′. (4.6)

This “supersuperquantile” is the conditional expectation of X in its p-tail with respect to the
FX = FX distribution. The complications with the original definition of the p-tail fall away
because FX has no jumps; the FX distribution has no “probability atoms.” With respect to

FX , the interval [QX(p),∞) has probability 1− p. As a matter of fact, QX = QX .
This suggests, through (4.2), that the analog of the expression Vp in (1.11) as a “measure

of regret” might be taken to be

Vp(X) =
1

1− p

∫ ∞

−∞
max{0, x}dFX(x) =

1

1− p

∫ 1

0
max{0, QX(p

′)}dp′, (4.7)

and this does indeed give us what we want.

Theorem 7 (superquantiles as quantiles). Suppose E[ |X|2] < ∞. Then, as a measure of risk,

R(X) = QX(p) has the coherency properties in (1.10), like R(X) = QX(p). In terms of Vp

defined in (4.7), the two can be calculated simultaneously for p ∈ (0, 1) by

QX(p) = argminx{x+ Vp(X − x) },
QX(p) = minx{x+ Vp(X − x) }.

(4.8)

The functional Vp itself has the regret properties of Vp in (1.12), specifically

Vp(X) ≤ Vp(X
′) when X ≤ X ′ almost surely,

Vp(X +X ′) ≤ Vp(X) + Vp(X
′),

Vp(λX) = λV(X) for λ > 0,
Vp(X) ≥ E[X], with equality holding only when X ≡ 0.

(4.9)

Proof. The parallel structure suffices to confirm (4.8). The coherency properties of R(X) =
QX(p) in (1.10) with respect to X lead through the second integral expression in (4.6) to
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those same properties holding for R(X) = QX(p). The properties in (4.9) similarly come from
invoking (1.10) for QX(p) in the second formula for Vp(X) in (4.7) and calling on the fact that
QX(p) is an increasing function with E[X] as its infimum.

The minimization in (4.8) may seem to demand too much knowledge of the regret func-
tional V p be practical, but properties of the superquantile integrand, such as the estimates in
Theorem 3, can come to the rescue. The elementary theory of integration (approximation of in-
tegrands by step functions or piecewise linear functions) leads to approximating expressions for
Vp(X) that come from linear combinations of superquantiles QX(pk). The formula for QX(p)
in (1.11) for any p can be employed to calculate the value of such an expression for any X.
Upper and lower estimates can be developed for the closeness of such an expression to Vp(X).
Such estimates are worked out in our paper [21].

Stochastic dominance. Another notion that enters the study of risk is stochastic dom-
inance. Two versions, known as first-order and second-order, are especially important, but
the issue of “usage orientation” of a random variable again has to be respected. Most often,
stochastic dominance is articulated for the context of a random variable X being preferable to
a random variable Y when its outcomes are, by some quantification standard, generally higher.
That is profit/gain orientation, but in this article we are treating cost/loss/damage orientation,
so some inequalities need to be reversed in identifying the “dominance” of X over Y with X
being “better” then Y .

In profit/gain/benefit orientation, it is customary to define first-order stochastic dominance
X ≥1 Y as corresponding to FX ≤ FY (the graph of FX therefore being to the right of the

graph of FY ). Second-order stochastic stochastic dominance X ≥2 Y is taken as F
(2)
X ≤ F

(2)
Y ;

cf. (3.10). It is well known that these properties translate into having E[g(X)] ≥ E[g(Y )] for
a class of increasing functions in the first case and a class of increasing concave functions in
the second. However, some authors prefer to take such expectation properties directly as the
definition, since they provide the main motivation for the concept in applications. We follow
that pattern here in adapting to cost/loss/damage orientation.

Definition (first- and second-order dominance, inverted). First-order stochastic dominance of
X over Y in cost/loss/damage orientation, to be denoted by X ≤′

1 Y here,21 and second-order
stochastic dominance, X ≤′

2 Y , mean the following:

X ≤′
1 Y ⇐⇒ E[g(X)] ≤ E[g(Y )] for continuous bounded increasing g,

X ≤′
2 Y ⇐⇒ E[g(X)] ≤ E[g(Y )] for finite convex increasing g.

(4.12)

Recall here that a finite convex function g is automatically continuous. Also, it always has
g(x) ≥ ax + b for some a > 0 and b ∈ (−∞,∞), so that the expectations in (4.12) are sure
to be well defined, although possibly ∞, but not −∞ (under our blanket assumption (3.1) on
finite expectations).

If g is interpreted as a penalty function, the inequalities in (4.12) concern expected penalties
under X and Y . The two conditions then describe situations involving a pair of cost/loss
random variables X and Y in which X is less risky than Y regardless of the particular penalty

21The prime is a reminder of the switch from the usual orientation as seen in textbooks.
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function g that may have to be faced—within some category.22 This is attractive in situations
where a decision maker may have little knowledge of the penalties. An important example
for stochastic dominance in the profit/gain orientation comes up in finance, where penalty
functions are replaced by utility functions and convexity in the second-order case by concavity.

The second property in (4.12) is also known as “increasing convex order,” ≤ic, cf. [12], and
was featured by Dentcheva and Martinez [4] in their adaptation to cost/loss orientation.

Theorem 8 (stochastic dominance in cost/loss/damage orientation). First-order stochastic
dominance is characterized by

X ≤′
1 Y ⇐⇒ FX ≥ FY ⇐⇒ QX ≤ QY . (4.13)

Second-order stochastic dominance is characterized by

X ≤′
2 Y ⇐⇒ EX ≤ EY ⇐⇒ QX ≤ QY . (4.14)

Proof. We rely here, in part, on characterizations in the profit/gain orientation furnished
by Föllmer and Schied [7] (and elsewhere). Their Theorem 2.70 covers (4.13) with a slight
difference coming from our focus on the left-continuous quantile function. They contemplate a
class of “quantile functions” between these and their right-continuous partners, and accordingly
replace the pointwise inequality QX ≤ QY by an almost everywhere inequality.

For (4.14) the derivation is a bit more complicated and specialized toward the concepts
in this article. The cost/loss version of one characterization of second-order dominance in
Theorem 2.70 of [7] is that

X ≤′
2 Y ⇐⇒ E[max{0, X − c}] ≤ E[max{0, Y − c}] for all c. (4.15)

Because EX(c) = E[max{c,X}] = c+E[max{0, X − c}] and similarly EY (c), we can translate
(4.15) to saying that EX(c) ≤ EY (c) for all c. The observation to make next is that the
Legendre-Fenchel transform converts EX ≤ EY to E∗

X ≥ E∗
Y . The formula in Theorem 2 lets

us identify this with QX ≤ QY .

Stochastic dominance has important applications to constraint modeling in stochastic opti-
mization; see Dentcheva and Ruszczynski [5].

Comonotonicity. Another way that monotone relations enter the framework of risk is
through the property of comonotonicity.

Definition (comonotonicity of random variables). Two random variables X1 and X2 are said
to be comonotone if the essential range of outcomes of the pair (X1, X2) is a monotone relation
Γ in IR× IR.23

This means roughly that the two random variables move in tandem; the risk in one cannot
hedge against the risk in the other. Indeed, it implies the existence of a third random variable
X along with increasing Lipschitz continuous functions f1 and f2 such that X1 = f1(X) and

22This explains why we use ≤ in (4.12). It signals “less risky.”
23The essential range is the smallest closed set that, with probability 1, contains all outcomes.
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X2 = f2(X). For this, one can simply take X = X1+X2 and apply the Minty parameterization
of a maximal extension of Γ; cf. (2.3).

Besides the motivation for comotonicity as capturing this tandem behavior of a pair of
random variables, there are consequences for their quantiles and superquantiles. The fact that
comonotonicity of random variables leads to additivity of their quantiles, the initial property
below, is well known; cf. [7, Lemma 4.84]. We offer an argument for the converse and indicate
how this ties in with superquantiles and superexpectations.

Theorem 9 (characterizations of comonotonicity). The following properties of a pair of ran-
dom variables X1 and X2 are equivalent to comonotonicity:

(a) QX1+X2(p) = QX1(p) +QX2(p) for all p ∈ (0, 1),
(b) QX1+X2

(p) = QX1
(p) +QX2

(p) for all p ∈ (0, 1),
(c) EX1+X2(x) = min

x1+x2=x
{EX1(x1) + EX2(x2) } for all x ∈ (−∞,∞).

Proof. First we suppose comonotonicity and show that then (a) holds. The monotonicity
of the essential range Γ of (X1, X2) makes the function ϕ : (x1, x2) → x1 + x2 = x map
Γ monotonically one-to-one into the real line. The joint probability distribution of X1 and
X2 on IR × IR, concentrated in Γ, is thereby transformed into the probability distribution of
X = X1 + X2, concentrated in ϕ(Γ). For any p ∈ (0, 1) the quantile QX(p) gives the highest
point x of ϕ(Γ) such that FX(x) ≤ p. The unique antecedent ϕ−1(x) = (x1(x), x2(x)) ∈ Γ then
has to be (QX1(p), QX2(p)). Thus, QX(p) = QX1(p) +QX2(p), as claimed.

To demonstrate the converse, that (a) implies comonotonicity, we can make use of the fact
that the essential range of a random variable X is the closure of the range of its quantile
function QX . It is traced by QX(p) as p goes from 0 to 1 in (0, 1), except that where jumps
occur the right limit Q−

X(p) needs also to be brought in. This can be invoked for X1, X2 and
X = X1 + X2 to see that, when (a) holds, the probability parameter p traces the range of
(X1, X2) monotonically as (QX1(p), QX2(p)). This range is then a monotone relation.

The equivalence between (a) and (b) is obvious from the formula (1.6) for superquantiles in
terms of quantiles. This yields a further equivalence through Theorem 2 with having

E∗
X1+X2

(p) = E∗
X1
(p) + E∗

X2
(p) for all p.

Applying the rule in convex analysis that the conjugate of a sum is obtained by the operation
# of “inf-convolution” on the conjugate functions,24

(E∗
X1

+ E∗
X2
)∗(x) = (E∗∗

X1
#E∗∗

X2
)(x) = inf

x1+x2=x

{
E∗∗

X1
(x1) + E∗∗

X2
(x2)

}
,

we arrive at (c).

Theorem 9 relates also to an associated concept of comonotonicity for measures of risk due
to Ogryczak and Ruszczyński [14], [15], [16], namely that

R is comonotonic if R(X1 +X2) = R(X1) +R(X2) when X1, X2, are comonotone.
(4.16)

24For more on inf-convolution, see [17] and [26].
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The theorem says, among other things, that

the risk measure R(X) = QX(p) is comonotonic for every p ∈ (0, 1). (4.17)

It is easy to see that this carries over also to the mixed superquantile measures of risk in
(4.10) and (4.11). More on this topic can be found in the book of Föllmer and Schied [7] in
coordination with applications in finance.
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