

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

May 1990 Conference paper

See report.

See report.

See report.

See report.

Distribution Statement A - Approved for public release; distribution is unlimited.

Presented at the IEEE 1990 National Aerospace and Electronics Conference (NAECON 1990) held in Dayton, Ohio, on 21-25 May 1990.

See report.

Unclassified Unclassified Unclassified
UU

The JIAWG Input/Output System (JIOS)

John Newport, Ph.D.
Naval Avionic Center

Indianapolis, Indiana 46219-21B

Chuck Roark, Ph.D.
Texas Instruments Defense Systems & Electronics Group

Plano, Texas 75086

ABSTRACT: The JIAWG Input/Output System (JIOS)
provides the software/hardware Interface for
Built-In-Test and l/0 provided via the PI-Bus and
TM-Bus for the JIAWG 16-b lt Common Modules. This
paper describes the need for JIOS, the
functionality of the JIOS , concerns related to
the use of the JIOS, and a planned JIOS
demonstration.

1.0 Overview

The Joint Integrated Avionics Working Group
(JIAWG) Is a Congressionally mandated trl-servlce
organization founded to establish design standards
and specifications for the three service's next
generation aircraft. A subset of these documents
Is concerned with the development of
Interchangeable hardware modules. Two hardware
modules are considered Interchangeable If

• the two modules wll 1 work electrically
to specifications within the same slot

• operational software will execute on both
modules without modification.

These common modules are to be usable by all three
services and are to be built under the philosophy
of form-fit-function-and-Interface (as compared
to built-to-print). The JIAWG produced documents

wll 1 be referenced contractually In the next
generation aircraft procurements.

Two JIAWG documents are responsible for
defining the standard 16-blt processing module.
Specifically, these documents are the 16-Bit
Common Avionics Processor (CAP-16) specification
and the Common Avionics Processor 16-Bit
Instruction Set Architecture (!SA) specif ication.
Together, these documents define the standard
16-blt processing module to be a MIL-STD-1750A,
Notice I Instruction Set Architecture (ISA),
together with the module hardware and software
Interfaces and functions. Two of the most
difficult Issues to solve regarding the ISA have
been the Input/Output (1/0) Implementation and
a standard approach to module level Built- In-Test
(BIT).

The type of 1/0 required for CAP- 16 Is
associated with the backplane bus hardware. The
primary lntermodule communication channel Is a
dual redundant, single controller, Very High Speed
Integrated Circuit (VHSIC), Phase II, PI-Bus, as
specified In the JIAWG PI-Bus specification. A
dual VHSIC Test and Maintenance (TM) Bus
Interface, as defined by the JIAWG TM-Bus

Table 1. Differences in CAP-16 Vendor Designs

ITEM I
I DIFFERENCES

------------------------•----------------------------------
Software Interface to
PI-Bus

Software Interface to
TM-Bus

Software Interface to
Built-In-Test

- Different XIO assignments
- Difference In PI-Bus data structures
- Difference in Interrupt structure
- Even though there is much common

functionality, there are some
differences In functionality

- Different XIO assignments
- Difference In TM-Bus data structures
-Major differences in overall

commands and functionality
- difference in interrupt structure

- Different BIT reporting methods,
including amount of and format
of Information reported

-Difference In BIT functionality
supported and In manner
BIT functionality initiated

1071 CH2881-1 /90/0000-1 071 $1 .00 " 1990 IEEE

specification, is also needed to provide
lntermodule support for fault tolerance,
testabll fty, and diagnostics. Finally, a
Built-In-Test Interface Is required to provide
software access to the module diagnostic hardware.

Four CAP-16 vendors support next generation
aircraft Demonstration/Validation and Fuff Scale
Development programs of the three services.
However, each of the ongoing programs began prior
to establishment of the JIAWG. As a consequence,
the great flexibility that MIL-STD-1750 allows
regarding l/0 allowed the four JfAWG CAP-16
vendors' designs to be quite different. A summary
of these differences fs presented in Table I. This
Is a major commonality problem that required an
unconventional solution, the JIAWG Input/Output
System (JIOS). In order to understand the problem
more fully, though, an examination of the f/0
requirements of MIL-STD-1750A is needed.

2.0 MIL-STD-1750 INPUT/OUTPUT

Within the MIL-STD-1750A Instruction Set
Architecture all l/0 fs required to occur through
eXecute Input/Output (XIOl Instructions. There are
three types of XfO Instructions: mandatory,
optional, and user defined. The user defined XIO
Instructions are used to allow MfL-STD-1750A
processors to Interface to f/0 hardware which Is
not defined fn MIL-STD-1750A. These user defined
XIO instructions are associated with "spare"
channel codes. The standard reserves 21,140 read
channel codes and an equal number of write codes
for user defined XIOs.

Once a hardware Interface controller, such as
a PI-Bus Interface Unft (PB!Ul fs defined, XIOs
can be defined to permit communication between the
processor and the controller. As a consequence,
the XIOs reflect the underlying bus Interface
logic, especial fy wfth respect to register and
memory control. Thus, different l/0 hardware
implementations may have not only different XIO
mnemonics and channel code assignments, but
different XIO functions.

Three of the four vendors associated wfth the
CAP-16 directly control Input/output wfth user
defined XIO commands. That Is, XIO commands are
used to communicate with the 1/0 controller
register structure, point to transfer blocks in
memory, and update channel control data structures
fn memory. Unfortunately, a thorough Investigation
of these XfO commands showed that, whffe there
fs some commonal fty in overal I PBIU functionality,
there is almost no commonality among XfO
Implementations in the designs. Thfs Is a
consequence of the hardware differences among the
l/0 controllers. Therefore, it became clear that
either one particular design must be selected or a
new XIO design developed, fn order to have common

CAP-16 XIOs. The cost and schedule impact of the
redesigns was so large that the JIAWG began to
Investigate alternatives.

The fourth JIAWG vendor uses memory mapped
l/0. Thfs Involves providing hardware within the
memory·management unit which controls reads and
writes to dedicated f/0 memory locations.
Unfortunately, there are no predefined
MIL-STD-1750A ISA structures which lend themselves
easily to such l/0. As a consequence, thfs
Implementation has no XIO commonality wfth the
designs of the other CAP-16 vendors and, as such,
selection of thfs design suffers the same
drawbacks as selecting one of the three other XIO
designs.

The CAP-16 dilemma, then fs to define some
common ISA mechanism which wllf not render all
existing designs obsolete, wll I support the
form-fit-function-and-Interface common module
acquisition approach, yet can be used as as a
baseline to grow to a pure hardware, assembly
language Interface. The JIOS concept was
formulated to answer thfs need.

3.0 JIOS STRUCTURE

The JIOS Is Intended to be a generic software
Interface for BIT as wei I as PI and TM buses. The
hardware and software which comprise the JIOS are
required to be an Integral part of the module
architecture so that no operational software
downloads are needed.

The JIOS features are specified by the JfAWG
Input/Output Built-In-Test Interface Deffnftlon
Specification (fOBfDS). IOBIDS contains a complete
deffnftfon of the user Interface Including
functions provided, call i ng sequences, parameter
type definitions, and special user requirements.
These definitions are provided as an Ada package
specification wfth no package body, for each
functional area. The package body Is not provided
since thfs would be vendor specific and, as
such, following Ada package body vlslbfl fty rules,
fs not vfsfble to operational software or the
Runtime System (RTS). Linkage conventions are
also established so that operational software
and Runtime Systems can be linked to the JIOS
facf I ftfes.

Figure I depicts the relationship between the
JIOS, CAP-16 module hardware, and operational and
RTS software. The JIOS provides a sqftware layer
which Interfaces with operational software or
RTS. Thfs layer then Implements the desired
functionality using a combination of software and
calls to module hardware.

Four 1/0 designs exist upon which to base the
JIOS designs. Hence, the development of the IOBIDS
has been, fn effect, a top-down functional design

1072

OPERATIONAL SW AND RTS

L'OAND BIT
ACCESSES t

~ 1750A UND~.FI~ED XI~,
D REGISTERS, AN,D DATA .
u STRUCTU~.ES: .
L -PI-BUS XIOs

-PI-BUS REGISTERS
E -PI-BUS DATA STRUCTURES

-TM-BUS X lOs .

H
w

-TM-BUS REGISTERS
-TM-BUS DATA STRUGTURES

DIREClL Y ACCESSABLE
HARDWARE FUNCTIONS

XIOs, REGISTERS, AND
DATA STRUCTURES ·
DEFINED BY 1.750A STD:.

-TIMERS A AND B XIOs
-1750ASTATUS REGISTER
-PAGE REGISTER DEFiNITIONS
-PAGE REGISTER XIOs.

Figure I. JIOS. Hardware, and Software Relationships

instead of more traditional XIO definitions which
are targeted to specific hardware controllers.
However, the linkage conventions established In
IOBIDS are Intended to offer a natural path to a
complete hardware implementation. It Is noted,
though, that If there are to be no modifications
to existing operational or RTS software, then a
smal I part of the JIOS wi ll always be present to
provide a translation from the assembly language
subprogram cal I to the hardware/XIO Interface.

The linkage conventions will be used to
establIsh vector tables and other data structures
needed for a pure hardware Implementation. The
final step of the JIOS definition, then, is to
define, In effect, an entirely new set of user
defined XIOs which can be Implemented
conventionally. The flexibility that IOBIDS
offers, though, allows existing designs to be
compf iant with JIAWG Interface standards by
providing ISA patches for non-compl fant hardware.

At the time this paper was wr itten, the
PI-Bus and BIT portions of the JIOS were defined
In the IOBIDS. However. the JIAWG TM-Bus Backplane
Specification was not wei 1-deffned, so the
TM-Bus Interface wi I I not be described in this
paper. The remainder of this section gives an
overview of the BIT and PI-Bus requirements of

the JIOS as documented In the IOBIDS.

3. I BIT Structure

The CAP-16 BIT Implementations are as diverse
as the backplane bus designs, and deriving common
functions from this diversity Is difficult.
Therefore, the JIOS provides a functionally simple
Interface, with relatively uncomplicated reporting
mechanisms. Only memory systems, CPU, and
backplane systems are Included in the JIOS BIT
Interface. Other vendor unique hardware cannot
Invoked from the JIOS.

CAP-16 systems offer power-up, Initiated, and
periodic BIT. The JIOS provides an Interface only
for periodic BIT, as that Is the primary resource
needed bY the application software. However, a
primitive initiated BIT can be constructed from
the application software using JIOS procedures.
These procedures allow the software to start
and stop periodic BIT, recall the periodic test
results, and test the CPU, memory, or backplane
system Individually .

Three types of tests can be cal led through
the JIOS: CPU, memory, and backplane. Each of
these procedures has an Input parameter whose
value is either destructive or non-destructive,

1073

which allows the appl !cation program to save the
current data or context prior to invocation. Each
procedure can be cal led Individually, thus
providing a simple initiated BIT. Periodic BIT
executes all three types of tests continuously.
Results from periodic BIT can be sampled by
calling the procedure ACCESS_BIT_STATUS_WORDS.

The test results Include a summary word,
Individual words for the separate procedures, and
Interfaces to the MIL-STD-1750 Fault Register (FT)
and Memory Fault Status Register (MFSR). The
summary word simply identifies what type of
hardware failed, such as the CPU, PI-Bus A or B.
dlscretes, memory, or others. The Individual
words for the procedures offer more detail as to
the failure, such as the page of the memory which
failed. TheFT and MFSR Interfaces are needed
because the spare bits allowed by MIL-STD-1750 for
these registers have been Implemented differently
by the various vendors.

The JIOS BIT package Is Intended to provide
common test functions for access by application
software. Given the diversity of Implementations,
the JIOS defines a conceptual set of primitives
for which detailed software Interfaces are
described. Only this approach allows appl !cation
software to be transportable and capable of
rendering consistent results.

3.2 PI-Bus Structure

The JIOS categorizes the PI-Bus routines as
follows:

• Master PI-Bus Interface - routines and data
structure definitions used for transmitting
messages over the PI-Bus.

* Slave PI-Bus Interface - routines and data
structure definitions used for receiving
messages from the PI-Bus.

* PI-Bus Interrupt Interface - routines
which describes routines, data structures,
and protocol for servicing PI-Bus Interrupts.

• Error PI-Bus Interface - routines and data
structure definitions for PI-Bus related
error hand I f ng.

• Configuration and Control Interface -
routines and data structure definitions for
PI-Bus related configuration and control
processing.

The remainder of this paragraph gives a further
description of each category.

3.2. I Master PI-Bus Interface.

The basic data structure for transmitting
messages is the Communication Control Block (CCB).
The CCB is a concept used by alI the JIAWG PI-Bus
vendors. A CCB contains the PI-Bus header words
for the message to be sent, Identifies the data to
be sent, denotes whether an Interrupt should be

1074

generated upon transmission of the message
associated with the CCB, and denotes if there is
another CCB "chained" to it. PI-Bus messages
with/without extended headers are supported.

The Interface also defines a data structure
cal led the logical priority. The logical priority
is be used for the interface when a message fs
transmitted over the PI-Bus.

This category Includes routines to build
CCBs, modify CCBs. execute CCBs. abort a CCB,
allow a CCB chain to supercede a currently
executing CCB chain, and set the logical priority
to be used for PI-Bus transmissions.

3.2.2 Slave PI-Bus Interface

There are two basic data structures defined
In the Slave PI-Bus Interface: label table and
message report.

The label table is a concept used by al 1 the
JIAWG PI-Bus vendors - even though the label table
entry definitions are not identical. A label
table entry denotes whether the label is active,
whether an Interrupt should occur upon successful
reception of a message to the label, where the
message being received should be written to In
memory, whether the buffer fs busy, whether double
buffering fs enabled and If so, the address of the
alternate buffer, and the maximum size message
allowed to be received by the label.

The message report Is returned to the PI-Bus
Interrupt handler when a received message fs
"popped" from the received message queue. Most
JIAWG vendors refer to the received message queue
as the Slave Receive List. The message report
contains the PI-Bus header words (Including
extended header words for messages with extended
headers) and a copy of the associated label table
entry for label messages.

This category contains routines to set the
maximum label value for the label table, to
fnltfalfze the label table, and to read and write
label table entries.

3.2.3 PI-Bus Interrupt Interface

The basic data structure defined by the
PI-Bus Interrupt Interface is the Interrupt queue.
The Interrupt queue logically contains a record
for each PI-Bus Interrupt that has not been
"popped" by application code. Each Interrupt
queue record contains the cause of the Interrupt:
no service required, master error, slave error,
message received, transfer complete, or self-test
complete. Based on the cause, the record contains
pertinent Information needed by the appl !cation

software to service the interrupt:
• no service - Ignore
• master error - master error report
• slave error - slave error report
• message received - message report
• transfer complete - pointer to CCB processed
• self-test complete - status of self-test.

This category contains routines to determine
the current PI-Bus status (as defined in the
Configuration and Control Interface category), and
to pop entries from the Interrupt queue. In
addition, there Is a routine which Is always
cal led by the PI-Bus interrupt handler to allow
the JIOS to perform any special activities that It
may need to perform.

3.2.4 Error PI-Bus Interface

The Error PI-Bus Interface defines the Master
and Slave Error Report data structures and
includes a routine to Invoke JIOS self-test of Its
PI-Bus features.

3.2.5 Configuration and Control Interface

The basic data structure defined by the
Configuration and Control Interface category Is
the PI-Bus status word.

This category contains routines for reading
the PI-Bus status, denoting whether the module
will be suspendable when It Is a PI-Bus Slave,
setting and resetting the module as busy with
respect to the PI-Bus, enabling and disabling the
PI-Bus logical Identifiers, reading the
configuration Image, reading the multicast
acknowledge registers, writing vie interval A and
B timers, writing the vie priority register,
enabling and disabling the PI-Bus transceivers,
resetting the module's PI-Bus Interface, switching
the active PI-Bus channel, and reading and setting
the PI-Bus system time.

4.0 The IOBIDS DEMONSTRATION

Despite the path to commonality that JIOS
offers, this approach Is both unconventional and,
admittedly for reasons that will follow, not the
best technical path. As a consequence, at least
three Important questions remain about the
feasibility of the JIOS.

The first area of concern Is performance.
Adding an additional software layer will cost
execution speed, but there Is no simple way to
estimate this loss. Some argue, In support of
JIOS, that since current bus driver software Is
written In Ada and provides simi Iar functionality
as the JIOS, the loss will be minimal.

Another area of concern Is program size. The
requirement that the JIOS be an Integral part of
the module architecture means, In practice, that
any software the vendor must use for JIOS will be
stored in on-the-module's Start-Up Read-only
Memory (SUROMl. Since data processor module real
estate Is very limited, a smal I SUROM is
preferred. CAP-16 currently requires a 32 thousand
16-bit word SUROM, but this must contain the
bootloader, parts of the executive, diagnostic
code, and perhaps other vendor code, as wei I as
the JIOS.

A third area of concern Is Information
security. The interaction of the Input/output
software with the operational software raises
security Issues.

A demonstration program has been established to
answer these questions. The demonstration wl II use
the CAP-16 gate level simulation models produced
as part of the ZyCad-Air Force program,
Demonstration of Avionic Module Exchangeability
via Simulation (DAMES). The CAP-16 subcontractors
involved are IBM, Texas Instruments, and Unlsys.

As part of the demonstration program, a subset
of PI-Bus functionality of the JIOS wll I be
Implemented, as a prototype, for the IBM and Tl
Cap-16 models simulated In the DAMES program. An
IOBIDS executive wl 11 be developed which makes
calls to PI-Bus support routines. Two versions of
the PI-Bus routines will be Implemented. One
makes calls to the JlOS. The other uses a
conventional approach based on existing PI - Bus
driver software. Based on the JIOS prototypes,
both performance and program size estimates will
be made. By comparing the timings of the JIOS
and conventional Implementation, any performance
degradation Incurred by using the JIOS wil I be
estimated. The sizes for the demonstration JIOS
will be used to estimate the memory size for a
complete JIOS Implementation. The security
question will not be addressed In the
demonstration. Based on these estimates a decision
wlll be made as to whether the JIOS Is an
acceptable approach for the JIAWG.

5.0 JIOS DRAWBACKS

As alluded to above, one of the original
goals of JIOS was to provide a software Interface
that could eventually be Implemented entirely In
hardware. However, as already noted, to avoid
software changes for systems already using JIOS, a
small part of JIOS must always be present. This
part wl II be the entry point to JIOS cal Is, which
translates a cal I to the appropriate XIO call.
There are two other areas which have been
discovered ln defining the JIOS which should not

be considered candidates for hardware
Implementation. First, there are many data
structures assumed by the JIOS (e.g., PI-Bus Label
Table) which must be allocated from the JIOS user
memory, but must be Initialized through JlOS
calls. Thus, these calls do not lend themselves
to a direct hardware Implementation. This Is
required since the same logical data structure has
different blt-by-blt definitions for the various
vendor Implementations. Clearly, a hardware
Implementation would a l low user direct access to
these data structures.

Another JIOS drawback Is that the details of
the vendor Interrupt structures had to be hidden
because of grossly dissimilar Implementations. It
Is not obvious that the current JIOS design, a
logical queue, leads in a natural way to a
hardware Implementation. For the PI-Bus, for
example, there are several reasons an Interrupt
can occur (e.g., message received, message
transferred, self-test complete, error). In order
to accommodate the existing designs, the JlOS
Interface logically queues all unservlced
Interrupts. When the JIOS user "pops" an
unservlced Interrupt, the user has no control over
which Interrupt Is popped. A hardware
Implementation would allow this capability.
Beyond, these two concerns, the JlOS Interface
appears to be a good baseline for future XIO
definitions.

1076

6.0 SUHHARY AND CONCLUSIONS

The IOBIDS, and the JIOS It defines, Is the
product of three Government services, five prime
contractors, and four computer subcontractors. The
goal of the JIOS Is to offer current HIL-STD-1750A
data processor designer, despite l/0 policies
Inconsistent with CAP-16 requirements, a method of
compliance which will not cause substantial
hardware redesigns. The JIOS standard will
eventually mature so that most of the JIOS
will become a pure !SA-level hardware standard,
effectively defining a new set of user defined
X lOs.

The JlOS Is a unique approach which carries
with It technical risk associated with performance
and program size. The demonstration will provide
data on these areas before the IOBIDS approach Is
Imposed contractually.

Trl-servlce hardware commonality has proven
to be a technically challenging goal to pursue.
The cost and schedule benefits of achieving this
goal, though, are so potentially large that the
challenge should prove to be worth the time and
dollars spent In meeting lt. IOBIDS Is one of many
components needed to achieve this commonality.

