REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
May 1990

2. REPORT TYPE
Conference paper

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
See report.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
See report.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

See report.

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

See report.

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A - Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Presented at the IEEE 1990 National Aerospace and Electronics Conference (NAECON 1990) held in Dayton, Ohio, on 21-25 May 1990.

14. ABSTRACT
See report.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT

c. THIS PAGE

Unclassified | Unclassified | Unclassified

17. LIMITATION
OF ABSTRACT

uu

18. NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

The JIAWG input/Output System (JIOS)

John Newport, Ph.D.
Naval Avionic Center

indianapolis,

indiana 46219-21B

Chuck Roark, Ph.D.
Texas instruments Defense Systems & Electronlcs Group
Plano, Texas 75086

ABSTRACT: The JIAWG Input/Output System (JiOS)
provides the software/hardware interface for
Built-In-Test and 1/0 provided via the PI-Bus and
TM-Bus for the JiAWG i6-bit Common Modules. This
paper describes the need for Ji0S, the
functionality of the JI0S, concerns related to
the use of the JI0S, and a planned Ji0S
demonstration.

1.0 Overview

The Joint Integrated Avionics Working Group
(JIAWG) is a Congressionally mandated tri-service
organization founded to establish design standards
and specifications for the three service’s next
generation aircraft. A subset of these documents
is concerned with the development of
interchangeable hardware modules. Two hardware
modules are considered interchangeable if

* the two modules will work electrically
to specifications within the same slot
* operational software will execute on both
modules without modification.
These common modules are to be usable by all three
services and are to be built under the philosophy
of form-fit-function-and-interface (as compared
to built-to-print). The JiAWG produced documents

Table 1.

1TEM

will be referenced contractually in the next
generation aircraft procurements.

Two J1AWG documents are responsibie for
defining the standard 16-bit processing module.
Specifically, these documents are the 16-Bit
Common Avionics Processor (CAP-16) specification
and the Common Avionics Processor i6-Bit
Instruction Set Architecture (I1SA) specification.
Together, these documents define the standard
16-bit processing module to be a MiL-STD-1750A,
Notice 1 Instruction Set Architecture (1SA),
together with the module hardware and software
interfaces and functions. Two of the most
difficult issues to solve regarding the iSA have
been the input/Output (i/0) implementation and
a standard approach to module level Buiit-1n-Test
(BIT).

The type of 1/0 required for CAP-16 is
associated with the backplane bus hardware. The
primary intermodule communication channel is a

dual redundant, single controller, Very Hlgh Speed

integrated Circuit (VHSiC), Phase i, Pi-Bus, as
specified in the JiAWG Pi-Bus specification. A
dual VHSIC Test and Maintenance (TM) Bus
interface, as defined by the JiAWG TM-Bus

Differences in CAP-16 Vendor Designs

DIFFERENCES

Software interface to
PI1-Bus

Software interface to
TM-Bus

Software Interface to

Built-1n-Test

1074

Different X10 assignments

Difference in Pi-Bus data structures
Difference in interrupt structure
Even though there is much common
functionality, there are some
differences in functionality

Different Xi0 assignments

Difference in TM-Bus data structures
Major differences in overall
commands and functionality
difference in interrupt structure

Different BIT reporting methods,
including amount of and format
of information reported
Difference in BiT functionality
supported and in manner

BiT functionality initiated

CH2881-1/90/0000-1071 $1.00 © 1990 IEEE

specification, is also needed to provide
Intermodule support for fault toierance,
testabllity, and diagnostics. Finally, a
Built-In-Test Interface Is requlred to provide
software access to the moduie diagnostlc hardware.

Four CAP-16 vendors support next generation
aircraft Demonstratlon/Valldatlon and Fuii Scale
Development programs of the three services.
However, each of the ongoing programs began prior
to estabilshment of the JIAWG. As a consequence,
the great flexibility that MIL-STD-1750 allows
regarding 1/0 allowed the four JiAWG CAP-16
vendors’ designs to be quite different. A summary
of these differences is presented in Table 1. Thls
Is a major commonaiity problem that required an
unconventional solution, the JIAWG input/Output
System (JIOS). In order to understand the problem
more fully, though, an examination of the {/0
requirements of MIL-STD-1750A is needed.

2.0 MIL-STD-1750 INPUT/OUTPUT

Within the MIL-STD-1750A Instruction Set
Architecture all 1/0 is required to occur through
eXecute Input/Output (XI0) instructions. There are
three types of XiO instructions: mandatory,
optional, and user deflned. The user defined XIO
Instructions are used to allow MiL-STD-1750A
processors to interface to i/0 hardware which Is
not deflned in MIL-STD-1750A. These user deflned
XI0 instructions are associated with "spare"
channel codes. The standard reserves 21,140 read
channel codes and an equal number of write codes
for user defined XIOs.

Once a hardware interface controiler, such as
a Pl-Bus Interface Unit (PBIU) is defined, X10s
can be deflned to permit communication between the
processor and the controiler. As a consequence,
the X10s reflect the underlying bus Interface
logic, especialiy with respect to register and
memory control. Thus, different [/0 hardware
implementations may have not oniy different XIO
mnemonics and channel code assignments, but
different XI0 functlons.

Three of the four vendors associated with the
CAP-16 directly control input/output with user
defined X10 commands. That Is, XI0 commands are
used to communicate with the [/0 controller
register structure, polnt to transfer blocks in
memory, and update channel control data structures
in memory. Unfortunately, a thorough Investlgation
of these Xi0 commands showed that, whiie there
is some commonality in overall PBIU functionality,
there is almost no commonaiity among XiO
implementations in the designs. This 1s a
consequence of the hardware differences among the
1/0 controllers. Therefore, it became ciear that
either one particular design must be selected or a
new XI0 design developed, in order to have common

CAP-16 XI0Os. The cost and schedule impact of the
redesigns was so large that the JIAWG began to
Investigate alternatives.

The fourth JIAWG vendor uses memory mapped
1/0. This invoives providing hardware within the
memory ‘management unlt which controls reads and
writes to dedicated i/0 memory locatlons.
Unfortunately, there are no predeflned
MIL-STD-1750A ISA structures which lend themselves
easliy to such 1/0. As a consequence, this
implementation has no XI0 commonal lty with the
deslgns of the other CAP-16 vendors and, as such,
sefection of this deslgn suffers the same
drawbacks as seiecting one of the three other XIO
designs.

The CAP-16 dllemma, then is to deflne some
common ISA mechanlsm which wili not render all
exlsting deslgns obsolete, wlll support the
form-flt-funct ion-and-interface common moduie
acqulsitlon approach, yet can be used as as a
basellne to grow to a pure hardware, assembiy
fanguage interface. The JI0S concept was
formuiated to answer this need.

3.0 JIOS STRUCTURE

The JIOS 1Is intended to be a generlc software
interface for BIT as well as Pl and TM buses. The
hardware and software which comprise the JIOS are
required to be an Integral part of the module
archltecture so that no operatlonal software
downloads are needed.

The JI0S features are speclfled by the JiAWG
Input /Output Built-In-Test Interface Definitlon
Speciflcatlon (iOBiDS). IOBIDS contalns a complete
definition of the user Interface Including
functions provided, calllng sequences, parameter
type deflnitlons, and speclal user requlrements.
These deflnitions are provided as an Ada package
speciflcatlon with no package body, for each
functionai area. The package body 1s not provided
since this would be vendor specific and, as
such, followlng Ada package body vislbility rules,
is not visible to operational software or the
Runtime System (RTS). Linkage conventions are
also established so that operational software
and Runtime Systems can be linked to the JIOS
facilities.

Figure | depicts the refatlonship between the
J10S, CAP-16 moduie hardware, and operatlonai and
RTS software. The JI0S provides a software layer
which interfaces with operational software or
RTS. This layer then implements the desired
functionallty using a comblnatlon of software and
cails to module hardware.

Four 1/0 designs exist upon which to base the
J10S designs. Hence, the development of the I10BIDS
has been, in effect, a top-down functlonal design

1072

OPERATIONAL SW AND RTS

VO AND BIT
ACCESSES

IGS rowmeEy

i
..... i

DIRECTLY ACCESSABLE
HARDWARE FUNCTIONS

1750A UNDEFINED XIOS,
REGISTERS, AND DATA

STRUCTURES:

-PI-BUS XIOs
-PI-BUS REGISTERS

-TM-BUS XIOs
-TM-BUS REGISTERS

$T mrcoox

Figure 1.

instead of more traditional XI0 definitions which
are targeted to specific hardware controliers.
However, the 1inkage conventions established in
I0BIDS are intended to offer a natural path to a
compiete hardware impiementation. it is noted,
though, that if there are to be no modiflcations
to existing operationai or RTS software, then a
small part of the Ji0OS wiii aiways be present to
provide a transiation from the assembiy ianguage
subprogram call to the hardware/XiQO interface.

The linkage conventions wiil be used to
establish vector tables and other data structures
needed for a pure hardware impiementation. The
final step of the Ji0OS definition, then, is to
define, in effect, an entirely new set of user
defined X10s which can be implemented
conventionaily. The flexibility that 10B1DS
offers, though, allows existing designs to be
compiiant with JIAWG interface standards by
providing ISA patches for non-compliant hardware.

At the time this paper was written, the
Pi-Bus and BiT portions of the Ji0S were defined
in the i0OBIDS. However. the JIAWG TM-Bus Backplane
Specification was not well-defined, so the
TM-Bus interface wili not be described in this
paper. The remainder of this section gives an
overview of the BIT and PI-Bus requirements of

-PI-BUS DATA STRUCTURES

-TM-BUS DATA STRUCTURES

XIOs HEGISTERS AND
DATASTRUCTURES '
DEFINED BY 1750A STD:

--TIMERS A AND B XIOs
-1750A STATUS REGISTER .
-PAGE REGISTER DEFINITIONS
-PAGE REGISTER XIOs '

soe

Ji0S, Hardware, and Software Relationships

the JI0S as documented in the 10BIDS.
3.1 BiT Structure

The CAP-i6 BIT implementations are as diverse
as the backplane bus designs, and deriving common
functions from this diversity is difficult.
Therefore, the JI0S provides a functionaiiy simpie
interface, with reiativeiy uncomplicated reporting
mechanisms. Only memory systems, CPU, and
backplane systems are inciuded in the JI0S BIT
interface, Other vendor unique hardware cannot
invoked from the JiOS.

CAP-16 systems offer power-up, initiated, and
periodic BIT. The JIOS provides an interface oniy
for periodic BiT, as that is the primary resource
needed by the appiication software. However, a
primitive initiated BIT can be constructed from
the appiicatlon software using J10S procedures.
These procedures aliow the software to start
and stop periodic BiT, recall the periodic test
resuits, and test the CPU, memory, or backplane
system individualiy.

Three types of tests can be called through
the JI10S: CPU, memory, and backplane. Each of
these procedures has an input parameter whose
value is either destructive or non-destructive,

1073

which allows the application program to save the
current data or context prior to invocation. Each
procedure can be called individually, thus
providing a simple initlated BIT. Periodic BIT
executes all three types of tests continuously.
Results from periodic BIT can be sampled by
calling the procedure ACCESS_BIT_STATUS_WORDS.

The test results include a summary word,
Indlvidual words for the separate procedures, and
interfaces to the MIL-STD-1750 Fault Register (FT)
and Memory Fault Status Register (MFSR). The
summary word simply identifies what type of
hardware failed, such as the CPU, PI-Bus A or B,
discretes, memory, or others. The individual
words for the procedures offer more detail as to
the failure, such as the page of the memory which
failed. The FT and MFSR interfaces are needed
because the spare blts allowed by MIL-STD-1750 for
these registers have been implemented differently
by the various vendors.

The J10S BIT package is Intended to provide
common test functions for access by applicatlion
software. Given the diversity of implementations,
the J10S defines a conceptual set of primitives
for which detailed software interfaces are
described. Only this approach allows application
software to be transportable and capable of
rendering consistent results.

3.2 P1-Bus Structure

The J10S categorizes the P1-Bus routines as
follows:

* Master PI-Bus Interface - routines and data
structure definitlons used for transmitting
messages over the Pl-Bus.

* Slave Pl-Bus Interface - routines and data
structure definlitlons used for receiving
messages from the Pl-Bus.

* Pl-Bus Interrupt Interface -~ routines
which describes routines, data structures,
and protocol for servicing PlI-Bus interrupts.

* Error P1-Bus Interface - routines and data
structure definitions for Pl-Bus related
error handling.

* Configuration and Control Interface -
routines and data structure deflnitions for
P1-Bus related configuratlon and control
processing.

The remalnder of this paragraph gives a further
description of each category.

3.2.1 Master P1-Bus Interface.

The basic data structure for transmitting
messages is the Communication Control Block (CCB).
The CCB is a concept used by all the JIAWG PI-Bus
vendors. A CCB contains the Pl-Bus header words
for the message to be sent, identifies the data to
be sent, denotes whether an interrupt should be

1074

generated upon transmission of the message
associated with the CCB, and denotes if there is
another CCB "chained" to it. PIl1-Bus messages
with/without extended headers are supported.

The interface also defines a data structure
called the logical priority. The logical priority
is be used for the interface when a message is
transmitted over the PI-Bus.

This category includes routlines to build
CCBs, modify CCBs, execute CCBs, abort a CCB,
allow a CCB chain to supercede a currently
executing CCB chain, and set the logical priority
to be used for P1-Bus transmissions.

3.2.2 Slave Pl-Bus Interface

There are two basic data structures deflned
in the Slave P1-Bus Interface: label table and
message report.

The label table is a concept used by all the
JIAWG PI-Bus vendors - even though the label table
entry definitions are not identical. A label
table entry denotes whether the label is active,
whether an interrupt should occur upon successful
reception of a message to the label, where the
message being received should be written to in
memory, whether the buffer is busy, whether double
buffering is enabled and if so, the address of the
alternate buffer, and the maximum size message
allowed to be received by the label.

The message report is returned to the PI-Bus
interrupt handler when a recelved message is
"popped" from the received message queue. Most
JIAWG vendors refer to the received message queue
as the Slave Receive LIst. The message report
contains the P1-Bus header words (including
extended header words for messages with extended
headers) and a copy of the associated label table
entry for label messages.

This category contains routines to set the
max imum label value for the label table, to
initialize the label table, and to read and write
label table entries.

3.2.3 P1-Bus Interrupt Interface

The basic data structure defined by the
P1-Bus Interrupt Interface is the interrupt queue.
The interrupt queue loglcally contains a record
for each P1-Bus interrupt that has not been
"popped" by appllcation code. Each interrupt
queue record contalns the cause of the Interrupt:
no service required, master error, slave error,
message received, transfer complete, or self-test
complete. Based on the cause, the record contains
pertinent information needed by the application

software to service the interrupt:
* no service - ignore
master error - master error report
slave error - slave error report
message received - message report
transfer complete - polnter to CCB processed
self-test complete - status of self-test.

®x x ®x & %

This category contains routines to determine
the current PI-Bus status (as deflned in the
Conflguration and Control Interface category), and
to pop entries from the interrupt queue. In
additlon, there is a routine which is always
called by the PI-Bus interrupt handler to allow
the JIOS to perform any special activities that It
may need to perform.

3.2.4 Error P1-Bus Interface

The Error Pi-Bus Interface defines the Master
and Slave Error Report data structures and
includes a routine to invoke JIOS self-test of Its
PiI-Bus features.

3.2.5 Configuration and Control Interface

The basic data structure defined by the
Conflguration and Control Interface category is
the P1-Bus status word.

This category contains routines for reading
the PI-Bus status, denoting whether the module
wlll be suspendable when it is a PI-Bus Slave,
setting and resetting the module as busy with
respect to the Pl-Bus, enabling and disabilng the
Pi-Bus loglcal identifiers, reading the
configuration image, reading the multicast
acknowiedge reglsters, writing vie interval A and
B timers, writing the vie prlority reglster,
enabling and disabling the PI-Bus transceivers,
resetting the module’s PI-Bus Interface, switching
the active PI-Bus channel, and reading and setting
the Pl1-Bus system time.

4.0 The 10B1DS DEMONSTRATION

Despite the path to commonality that JIOS
offers, this approach is both unconventional and,
admlittedly for reasons that will follow, not the
best technical path. As a consequence, at least
three important questlons remaln about the
feasibll1ty of the JIOS.

The flrst area of concern 1s performance.
Adding an addlitional software layer wlll cost
executlon speed, but there Is no simple way to
estimate thls loss. Some argue, In support of
J10S, that since current bus driver software is
written In Ada and provides simlliar functionallty
as the J10S, the loss will be minimal.

1075

Another area of concern 1s program size. The
requirement that the JI0S be an Integral part of
the module archltecture means, in practice, that
any software the vendor must use for JIOS wlll be
stored in on-the-module’s Start-Up Read-Only
Memory (SUROM). Since data processor module real
estate Is very limited, a smali SUROM is
preferred. CAP-16 currently requires a 32 thousand
16-bit word SUROM, but thils must contain the
bootloader, parts of the executive, dlagnostic
code, and perhaps other vendor code, as well as
the JI0S.

A third area of concern is information
security. The interaction of the Input/output
software with the operational software raises
security Issues.

A demonstration program has been established to
answer these questions. The demonstration wlll use
the CAP-16 gate level simulatlon models produced
as part of the ZyCad-Air Force program,
Demonstratlon of Avionic Module Exchangeablllty
via Simulation (DAMES). The CAP-16 subcontractors
involved are IBM, Texas Instruments, and Unisys.

As part of the demonstration program, a subset
of P1-Bus functionality of the JI0S will be
Implemented, as a prototype, for the IBM and TI
Cap-16 models simulated in the DAMES program. An
IOBIDS executive wlll be developed which makes
calls to P1-Bus support routines. Two versions of
the PI-Bus routines will be Impiemented. One
makes calls to the J10S. The other uses a
conventlonal approach based on existing Pl-Bus
driver software. Based on the JI10S prototypes,
both performance and program size estimates will
be made. By comparing the timings of the JIOS
and conventlonal Implementation, any performance
degradation incurred by using the JI0S will be
estimated. The slzes for the demonstratlon JIOS
will be used to estimate the memory size for a
complete JIOS Implementation. The securlty

question will not be addressed in the
demonstration. Based on these estimates a declsion
wlll be made as to whether the JIOS is an

acceptable approach for the JIAWG.
5.0 JIOS DRAWBACKS

As alluded to above, one of the origlnal
goals of JI0OS was to provide a software interface
that could eventually be implemented entirely in
hardware. However, as already noted, to avold
software changes for systems already using JI10S, a
small part of JIOS must always be present. This
part wiil be the entry point to JIOS calls, which
translates a call to the appropriate XI10 call.
There are two other areas whlch have been
dlscovered In deflining the JIOS which should not

be considered candidates for hardware
implementation. First, there are many data
structures assumed by the JIOS (e.g., PI-Bus Label
Table) which must be allocated from the JIOS user
memory, but must be initialized through J10S
calls. Thus, these calls do not lend themselves
to a direct hardware implementation. This is
required since the same logical data structure has
different bit-by-bit definitions for the various
vendor implementations. Clearly, a hardware
implementation would allow user direct access to
these data structures.

Another JIOS drawback is that the details of
the vendor interrupt structures had to be hidden
because of grossly dissimilar implementations.
is not obvious that the current JIOS design, a
ltogical queue, leads in a natural way to a
hardware implementation. For the PI-Bus, for
example, there are several reasons an interrupt
can occur (e.g., message received, message
transferred, self-test complete, error). In order
to accommodate the existing designs, the J10S
interface logically queues all unserviced
interrupts. When the JI0S user "pops" an
unserviced interrupt, the user has no control over
which interrupt is popped. A hardware
implementation would allow this capability.
Beyond, these two concerns, the JI10S interface
appears to be a good baseline for future XIO
definitions.

It

1076

6.0 SUMMARY AND CONCLUSIONS

The I0BIDS, and the JIOS it defines, is the
product of three Government services, five prime
contractors, and four computer subcontractors. The
goal of the JIOS is to offer current MIL-STD-1750A
data processor designer, despite [/0 policies
inconsistent with CAP~I16 requirements, a method of
compliance which wiii not cause substantial
hardware redesigns. The JI0S standard will
eventually msture so that most of the JIOS
will become a pure 1SA-level hardware standard,
effectively defining a new set of user defined
X10s.

The JI10S is a unique approach which carries
with it technical risk associated with performance
and program size. The demonstration will provide
data on these areas before the [0BIDS approach is
imposed contractually.

Tri-service hardware commonality has proven
to be a technically challenging goal to pursue.
The cost and schedule benefits of achieving this
goal, though, are so potentially large that the
chal ienge should prove to be worth the time and
dollars spent in meeting it. IOBIDS is one of many
components needed to achieve this commonality.

