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Abstract—Programmers search for code frequently utilizing
syntactic queries. The effectiveness of this type of search depends
on the ability of a programmer to specify a query that captures
how the desired code may have been implemented, and the results
often include many irrelevant matches that must be filtered man-
ually. More semantic search approaches could address these limi-
tations, yet the existing approaches either do not scale or require
for the programmer to define complex queries. Instead, our ap-
proach to semantic search requires for the programmer to write
lightweight, incomplete specifications, such as an example input
and expected output of a desired function. Unlike existing ap-
proaches to semantic search, we use an SMT solver to identify
programs in a repository, encoded as constraints, that match the
programmer-provided specification. We instantiate the approach
on subsets of the Java string library, Yahoo! Pipes mashup lan-
guage, and SQL select statements, and begin to assess its effective-
ness and efficiency through evaluations in each domain.

I. INTRODUCTION

Today, searching for code is a regular activity for most pro-
grammers [21]. Yet, the mechanisms to support this activity
have barely evolved in the last decade, and the limitations are
becoming more apparent as code repositories get richer and
programmers’ expertise and needs more diverse.

Consider a novice Java programmer who is trying to find a
snippet of code that extracts an alias from an e-mail address.
The programmer turns to Google (like many others [21]) and
issues a search query with the following keywords: extract alias
from e-mail address in Java. As expected, the query returns
millions of results. None of the top ten results (a typical IR
measure to assess the precision of search engine results [5]),
even provide a method for decomposing an e-mail address into
parts, which is the first step towards extracting the alias. Now, if
the programmer is knowledgable enough about the domain to
refine the query with the term substring, then the top ten results
include two relevant solutions. This illustrates what occurs in
practice, where programmers must sift through many irrelevant
results, especially when the desired behavior cannot be tied to
source code syntax or documentation.

Our work targets this limitation. The general idea is that pro-
grammers provide concrete behavioral specifications as inputs
and outputs and an SMT solver identifies available source code,
encoded as constraints, that matches the specifications.

For example, when searching for a program that extracts
the alias from an e-mail address, the input could be the string
“susie@mail.com” and the output the string “susie”. This form
of query, while more costly than a keyword query, lets the pro-
grammer specify the desired behavior, without the need to know
how to achieve a certain outcome, just what that outcome is.

Just like any search engine, our approach indexes a repository
of information offline, independently of the user. Our indexing
is unique in that it requires an engine that maps a program’s
semantics onto constraints that summarize the program behavior.
For example, the indexing process would map the Java snippet:
output=input.substring(0, input.indexOf(‘@’))

into the following constraints (roughly):
c1. (assert (input.charAt(end) == ‘@’))
c2. (assert (for (0 <= i < end)

output.charAt(i) == input.charAt(i))
c3. (assert (for (0 <= i < end)

input.charAt(i) != ‘@’)

Constraint c1 defines end as the location of ‘@’ in input and
c2 asserts that the output matches input within bounds. Con-
straint c3 asserts end is the first index of ‘@’ in input. The
substring operation is achieved by the conjunction of (c1 ∧
c2 ∧ c3). This is the basic process by which our approach
indexes programs: mapping program semantics to constraints.

With an input/output query and an encoded repository of
programs, the search can now find results. The first step in this
phase consists of transforming the provided input/output into
additional constraints. For the previous example, that would be:
c4. (assert (input == "susie@mail.com"))

c5. (assert (output == "susie"))

The second step consists of pairing the input/output constraints
with each of the programs indexed in the repository, and us-
ing an SMT solver to identify which pairs are satisfiable and
hence constitute a match. For our email alias example, an SMT
solver would return sat for the snippet encoded through con-
straints (c1,c2,c3) and the input/output encoded through con-
straints (c4,c5), indicating that the code indeed matches the
specification. Contrastingly, if the specified output was instead
“mail.com” (the programmer meant to identify the e-mail do-
main instead of the alias), the SMT solver would return unsat
indicating that the code does not match the specification.

The previous example illustrates the essence and novelty of
the approach, but it does not address some critical issues such as
handling richer queries and repositories, refining the set of po-
tential matches, and instantiating the approach in other domains.
In this work we begin to explore those issues. More specifically,
in terms of applicability to other domains, we instantiate and
assess the approach in three domains: the Java string library, the
Yahoo! Pipes mashups, and SQL select statements (Section V).
These domains were selected in part to illustrate the generality
of the approach by utilizing three diverse forms of input/output
specification (Section II), and in part because of their relative
simple and common underlying semantics and the availability
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of repositories that could be searched in the evaluation (Sec-
tion VI). In terms of result refinement, we describe how the
approach supports incremental weakening and strengthening of
the specifications (queries), and weakening of the encodings to
either enrich the results set with approximate matches or prune
the result set of coincidental matches (Section IV). Last, we
show how our approach performs when searching repositories,
how it is impacted by queries of various sizes and complexities,
and how it can be used to complement existing syntactic search
engines (Section VI). The contributions of this work are:
• Definition of an approach that uses an SMT solver to iden-

tify matches given lightweight specifications and programs
encoded as constraints

• Implementation of the approach in three domains: Java
String library, Yahoo! Pipes, and SQL.

• Assessment of the generality, effectiveness, and efficiency
of the approach in various settings.

Specifically, we explore 1) how our search results compare to
syntactic search results and illustrate how our technique can im-
prove the results from a syntactic search engine, 2) how changes
in solving time and abstraction of the program encodings affect
potential matches, and 3) how changes in the size and com-
plexity of the search queries impacts the search performance.
Our previous work in this area presented a brief and prelimi-
nary instantiation of our approach on the Yahoo! Pipes mashup
language [22]. This work defines the approach and its implemen-
tation in more detail, provides a more comprehensive assessment
by adding additional independent variables, and instantiates and
assesses the approach on two additional domains (Java string
library and SQL select statements).

II. APPROACH MOTIVATION AND ILLUSTRATION

In this section we briefly describe how search is performed in
three domains, how our approach could be instantiated in those
domains, and when it would be valuable to do so.

String Manipulations in Java. The alias extraction example in
Section I illustrates when a syntactic search may return many
irrelevant matches and how our approach would operate, and
hints at scenarios when it could be beneficial. Depending on the
setting, these benefits can be obtained by using our approach on
its own or by complementing a syntactic search.

Our approach requires a query consisting not of keywords,
but of input and expected output pairs. In this domain, those
inputs take the form of strings and outputs could be one of sev-
eral datatypes; integers, characters, strings, and booleans are
supported by our implementation (Section V). This query for-
mat is not uncommon among programmers, especially when
explaining a problem to a peer. Among the 67 string manipula-
tion questions we evaluated from stackoverflow (Section VI), we
observed that 40 (60%) already provide concrete input/output
examples to describe their problem.

Yet, finding relevant code depends on more than an in-
put/output query. It also needs a large and diverse repository
to capture a range of program behaviors and an efficient search
engine to find code quickly. Our implementation and assess-
ment of the approach for Java aims to meet these objectives

(Section V). To illustrate, with the alias extraction example,
our search returned 51 matches in less than one second from
a repository with hundreds of encoded programs. Some of
the results were coincidental matches. For example, string

scheme = uri.substring(0, 5);, only matches because
the alias “susie” has five characters, yet many others match the
intention of the problem: username = to.substring(0,

to.indexOf(‘@’));.

On their own, neither of these snippets forms a complete pro-
gram. If we were to execute this code (as would be done in
semantic search engines that utilize test cases [15], [19], [20]),
each of the variables in the expression statement on the right-
hand side would need to be instantiated. By encoding the be-
havior of the snippets as constraints, the uninitialized variables
remain uninitialized, and we make no assumptions about the
values they hold. These are called symbolic variables. In the
above snippets, the variables scheme, uri, username, and to

are symbolic as those do not have assigned values. The other
variables have assigned values (i.e., 0, 5, and ‘@’), so those
are concrete in the encoding. Part of the refinement process in
our approach allows for concrete variables to be relaxed, which
removes their concrete values making them symbolic, hence
increasing the space of specifications that the snippet satisfies.

Nearly as important as finding relevant code is the ability to
quickly discard irrelevant code. When applied on the results
returned by a syntactic search, our approach was able to discard
over a third of matches as they were irrelevant, effectively reduc-
ing the space that the programmer needs to sift through to find
useful results (Section VI).

Yahoo! Pipes Mashups. Yahoo! Pipes is a mashup language
with over 90,000 users [11], and a public repository of over
100,000 artifacts [18]. These programs combine, filter, sort, an-
notate, and manipulate RSS feeds. To write them, programmers
use the Pipes Editor, dragging and dropping predefined modules
and connecting them with wires to define the data and control
flow. Figure 1 shows a sample pipe mashup to join and filter the
content of two RSS feeds based on the word “tennis”.

Currently, programmers can syntactically search the repos-
itory by URLs accessed, tags, or keyword. To illustrate the
challenges programmers face with these search mechanisms, we
performed five searches (see Section VI) by URL. The number
of matches can be in the thousands which is not surprising as
many mashups include common URLs. The average number of
relevant matches among the top ten results is 0.9. Using other
built-in search capabilities does not fare much better. Searching
by components retrieves even more results and would require
for the programmer to know how the pipe would be built. The
effectiveness of searching with tags was highly dependent on the
community’s ability to systematically categorize their artifacts.

In our approach instantiation targeting pipes, the programmer
provides the URLs for RSS feed(s) as input, and the list of
expected records as output. The encoding process is briefly
illustrated with the sample pipe and its approximate encoding
in Figure 1. Constraints c1, c2, and c11 ensure that the right
data is set as input and output. Constraints c3, c4, c6 and c10



Module Encoding as Constraints
Fetch1 c1 : Fetch1o = URL1

Fetch2 c2 : Fetch2o = URL2

link1 c3 : Fetch1o = Unioni1

link2 c4 : Fetch2o = Unioni2

Union c5 : Uniono = union(Unioni1, Unioni2)
link3 c6 : Uniono = Filteri

Filter
c7 : hasRec(Filteri, r) ∧ contains(field(r, “descr”),

“tennis”) → hasRec(Filtero, r)
c8 : hasRec(Filtero, r) → hasRec(Filteri, r)
c9 : . . .

link4 c10 : Filtero = Outputi
Output c11 : Pipeo = Outputo

Fig. 1. Mapping Pipes into Constraints

represent links that ensure proper routing of the items from the
source module to the destination module. Constraint c5 ensures
that the output of the Union module is the concatenation of the
two inputs. Constraint c7 ensures that if a record r is in the
input to the filter module and it contains the substring “tennis” in
the description field (field(r, “descr”)), then r is in the output
from the filter module. Constraint c8 ensures that if a record r is
included in the output of the filter module, then r in the input.

For some search queries, this level of encoding might
be too strict. Say a programmer wants to filter based
on “volleyball” rather than “tennis”. The filter module
in Figure 1 encoded concretely would result in the con-
straint contains(field(r, “descr”), “tennis”) = true, which
would not satisfy the constraints associated with “volleyball”.
However, with a weaker encoding consisting of constraint
contains(field(r, “descr”), s) = true for some string s, an
SMT solver could determine that for s = “volleyball”, this pro-
gram is a match. We implement and evaluate two abstraction
levels within the pipes domain (Section VI).

SQL Select Statements. SQL select statements have been used
for decades to support data retrieval, operating on their own
or being embedded into other programming languages. Given
the simplicity of the SQL syntax and its popularity, even well
conceived syntactic queries will return many irrelevant results.
Still, we observe that SQL programmers have many questions
and they often turn to peer communities like stackoverflow,
which has over 91,000 questions related to SQL, to find an
answer. We aim to support those programmers in answering
questions such as: “I have table with records ’user’ and ’balance’.
How to show 10 usernames with highest balance? ... How to
show but only when they have more than 1.000.000$?”1 Here,
the programmer knows the desired behavior and can describe it
through a concrete example table:
id | user | balance

-----+-----------+------------
145 | rekin76 | 469370.44
705 | shantee | 149160.09

5725 | terro | 93004.45
... | ... | ...

When instantiating our approach for SQL, the input and output
take the form of database table(s). The indexed SQL select
statements are encoded as constraints, similarly to what was

1http://stackoverflow.com/questions/11599636

done for strings and pipes (in fact the semantics for the pipe’s
filter module, for example, are almost identical to that of
the where clause in SQL). Given tables as input and output, the
SMT solver determines, for each encoded SQL program, if it will
achieve the output table from the input table(s). For the previous
example, our approach would match the recommendation of
three positively voted responses in stackoverflow:
SELECT user, balance FROM table WHERE balance

>= 1000000 ORDER BY balance DESC LIMIT 10

In SQL, the input/output tables can be large, since they may
come from live databases, so it becomes important to understand
the impact of large specifications on solver time. As we explore
in Section VI, it is not just the size of tables that matters but also
the complexity of behavior exhibited in the specification.

At this point, we have illustrated several interesting aspects
of the approach in three domains, more specifically the forms
of inputs and outputs, how the encoding is performed, and the
potential to find relevant matches. In the next sections we will
proceed to formalize those aspects, describe the implementation
details for each domain, and assess their performance.

III. RELATED WORK

Our approach is related to recent work in code search, code
reuse, automatic program generation and program synthesis, and
verification that leverages SMT solvers.
Code Search. Recent studies have revealed that programmers
typically use general search engines to find code for reuse [21].
More specialized code search engines (e.g., Koders, Krugle,
ohloh) incorporate various filtering capabilities (e.g., language,
domain, scores) and program syntax into the query to better
guide the matching process [21]. Other approaches add natu-
ral language processing to increase the potential matches [8],
[16]. Our work is different in that we perform a more seman-
tic search, but as we show (Section VI), both approaches are
complementary and can be easily combined.

Early work in semantic search required developers to write
complex specifications of the desired behavior using first-order
logic or specialized languages (e.g., [7], [17], [26]), which can
be expensive to develop and error-prone. The cost of writing
specifications can be reduced by using incomplete behavioral
specifications, such as those provided by test cases (a form of
input/output) [15], [19], [20], but these approaches require that
the code be executed to find matches. Further, executing test



cases against the code will only return exact matches, missing
many relevant matches that may simply have a slightly different
signature (e.g., extra parameter).
Code Reuse. In the code reuse process, there are two primary
activities: finding and integrating. Our approach focuses on the
first part, finding, but has potential to be useful with integration.
Some recent work assists programmers with integrating new
code by matching it with the their development context based on
structural properties (e.g., method signature, return types) [4],
[10]. These approaches guarantee structural matching, but the
behavior of the integrated code may not be well understood, and
is something our approach could guarantee given a specification.
Automated Program Generation and Program Synthesis.
Previous work in the area of automated program generation [1]
relates to our work in that the high level specifications are used
as the basis to derive programs. Closer to our work is that in
the area of program synthesis, more specifically, that which
makes use of solvers to derive a function that maps an input to
an output (e.g., [9]). The key difference is that our approach uses
the solver to find a match against real programs that have been
encoded, while these synthesis efforts have to define a domain
specific grammar that can be traversed exhaustively to generate
a program that matches the programmers’ constraints.
Verification. Constraint solvers and SMT solvers have been
used extensively for test case generation. Toward the goal of
database generation for testing, reverse query processing takes a
query and a result table as inputs and using a constraint solver,
produces a database instance that could have produced the re-
sult [2]. Other work in test case generation for SQL queries has
used SMT solvers to generate tables based on queries [24]. In
our work, we do not generate database tables, but rather deter-
mine if a given query could have produced a specified result set
(output) from specified input table(s).

IV. APPROACH

Our general approach is illustrated in Figure 2. The gray boxes
indicate the key components and technical challenges: defining
lightweight specifications as input/output, encoding programs
and specifications as constraints, and refining program encodings
and specifications when too few or too many matches are found.
The crawling and program encoding processes happen offline,
whereas the search for relevant code happens online.

A. Specifying Behavior

Instead of textual queries to find syntactic matches, our ap-
proach takes lightweight specifications that characterize the de-
sired behavior of the code (Lightweight Specifications in Fig-
ure 2). These specifications, LS, consist of concrete input/output
pairs that exemplify part of the desired system behavior, like
“susie@mail.com” and “susie” from Section I. To more com-
pletely specify the desired behavior, multiple input/output pairs
can be defined: LS = {(i1, o1), . . . , (ik, ok)}, for k pairs. The
inputs and outputs take different forms depending on the domain.
In the Java string library, the input is a string and the output could
be a string, integer, boolean, or character. In Yahoo! Pipes, the
inputs are URLs (from which the RSS feeds are retrieved) and

Fig. 2. General Approach

the output is a list of items. For SQL select statements, the input
is one or more tables and the output is a table.

The size of k defines, in part, the strength of the specifications
and hence the number of potential matches. A programmer
can provide specifications incrementally, starting with a small
number of pairs and adding more to further constrain the search.

The last step of this process is the automated encoding of
LS into constraints, LSenc, for the solver to consume when the
search starts (recall c4 and c5 from Section I).

B. Encoding

In our approach, encoding and solving are analogous to crawl-
ing and indexing performed by search engines [14]. Offline, a
repository (Code Repository in Figure 2) is crawled to collect
programs. These programs are encoded as constraints (Encoding,
analogous to indexing), and stored in a Constraint Repository.

More formally, given a collected set of programs, the en-
coding process Encodes : Pi → CPi

, where CPi
= c1 ∧

c2 ∧ · · · ∧ cm is a conjunction of m constraints that describe
a program Pi.2 To illustrate using the alias extraction ex-
ample in Section I, Pi = output=input.substring(0,

input.indexOf(‘@’)), and is encoded using m = 3 con-
straints, so CP = c1 ∧ c2 ∧ c3. In the end, the encoding
process maps every program to a set of constraints such that
RepPenc = {CP1 , CP2 , . . . , CPn}.

In the initial encoding, the variables are encoded as concretely
as possible. If a variable is instantiated, the encoding assigns a
concrete value. If it is not instantiated, then the encoding assigns
a symbolic value. The one exception to this is the input and
output; for a program to be solvable for any arbitrary LS, the
input and output of the program are encoded symbolically.

Weaker encodings can approximate program behavior and
be useful when searching over small repositories or in the pres-
ence of strong specifications. If the program snippet consists
of output=input.substring(0, varA), then varA is en-
coded as symbolic and 0 concretely. A weaker encoding simply
defines some concrete variables to be symbolic. For the previ-
ous example, we could encode the first parameter as symbolic,
output=input.substring(varB, varA), to obtain a more
general version of that program snippet.

2This constraint language is sufficient to encode the domains we consider. It
is likely, however, that generalizing the approach further may require a more
flexible constraint system involving disjunctions to accommodate, for example,
branching. This is something that we leave as future work.



TABLE I
BASIC OPERATIONS FOR CURRENT IMPLEMENTATION

Term Description Java Strings Yahoo! Pipes SQL Select

Accessor
returns an object at a location, charAt: S x I 7→ C
or identifies an object location. indexOf : S x S x I 7→ I field: R x S 7→ I | S getCol: T x S 7→ Col
does not modify any object. lastindexOf : S x S x I 7→ I recordOf: L x I 7→ R

Join conjoins two objects concat: S x S 7→ S union: L x L 7→ L join: T x T 7→ T

Filtering modifies object based on criteria substring: S x I x I 7→ S
truncate: L x I 7→ L limit: T x I 7→ T
tail: L x I 7→ L where: T x Col x Op 7→ T
filter: L x S x Op 7→ L distinct: T x Col 7→ T

Copy duplicates an object split: L 7→ L x L
Permute re-orders a list of objects sort: L 7→ L order by: T 7→ T

Size returns the size of an object length: S 7→ I height: T 7→ Isize: L 7→ I

Operators (Op) compare two objects

<, ≤, >, ≥: I x I 7→ B equals: I x I 7→ B equals: B x B 7→ B
contains: S x S 7→ B equals: C x C 7→ B

equals: T x T 7→ Bequals: S x S 7→ B
startsWith: S x S 7→ B equals: L x L 7→ B
endsWith: S x S 7→ B hasRec: L x R 7→ B

C = Character, I = Integer, B = Boolean, S = String, R = Record (map with names as strings), L = List, T = Table, Col = Column (in Table)
Functions in italics indicate actual names of language constructs (and are located in the appropriate column).

Critical to the efficiency of the approach is the granularity of
the encoding. The finest granularity corresponds to encoding the
whole program behavior in CPi

. At the coarsest granularity the
encoding would capture none of the program behavior so CPi

=
true. These extremes correspond to the least and the greatest
number of matches and the worst and the best search speeds
respectively, but there is a spectrum of choices in between. We
explore several in Section V, such as encoding at the component
level (Yahoo! Pipes), query level (SQL), or library level (Java).

C. Solving

The constraint repository, RepPenc, is used by the solver, in
conjunction with the encoded specifications LSenc, to deter-
mine matches (SMT Solver in Figure 2). Given LSenc, for each
CP ∈ RepPenc, the approach invokes Solve(CP ∧ LSenc) =
(sat, unsat, unknown). Solve returns sat when a satisfiable
model is found or unsat when no model is possible. When the
solver is stopped before it reaches a conclusion or it cannot han-
dle a set of constraints, unknown might be returned. The set of
matches, or SatP, consists of all programs that return sat.

D. Refinement

If the specifications or the encoded program constraints are too
weak, many matches may be returned (too many in Figure 2); if
they are too strong, the solver may not yield any results (too few).
Refinement is a process that helps to address these situations by
tuning the lightweight specifications (LS′) and by using different
program encodings (Abstraction Selector) to find solutions that
are close enough when no exact solutions exist.
Tuning Lightweight Specifications. When SatP has too many
coincidental matches, a programmer may strengthen the specifi-
cations by providing additional (i, o) that further demonstrate
the desired behavior, similar to query reformulation [6]. The
programmer can also replace an input/output pair with one that
captures a more distinguishable aspect of the desired behavior.

Conversely, a programmer may weaken the specifications
when a match is not found or when the search takes too long to
provide a response. An example of this last case occurs when the

tables provided as input for SQL have hundreds of rows causing
the solving time to take minutes; in this case it may useful if
possible to select the subset of the table that still captures the
key desired behavior. We explore the impact of input size on
search efficiency for SQL in Section VI.
Changing Program Encodings. When SatP has too few re-
sults, refinement can direct the solver to use a more relaxed
encoding through the Abstraction Selector. We exploit the
fact that most languages contain constraints over multiple data
types (e.g., strings, characters, integers, booleans) for which
the variable values can be relaxed and encoded as symbolic.
Weakening : CPi

→ CPi

′ means that (Solve(CPi
∧LSenc) =

unsat) ∧ (Solve(CPi

′ ∧ LSenc) = sat) for some relaxation
of CPi that yields C ′Pi

. Encoding weakening is performed by
systematically making the constraints on a particular datatype
symbolic, similar to the pre/postcondition lattices in previous
work on specification matching [17], [26].

V. IMPLEMENTATION

We now highlight some aspects of instantiating the approach
on three languages and variations across implementations.

To make the specifications usable by an SMT solver, our
implementation takes the programmer’s input/output in textual
form and performs a transformation into constraints as illustrated
in Section I. Since the specifications are given concretely, the
encodings retain the information provided in the specifications
(i.e., no variables are symbolic).

For each program in the repository, we first identify its input
and output, which will be encoded symbolically. For Java as-
signment statements, the LHS constitutes the program output
and the receiving object on the expression of the RHS is the
input (assuming there is just one input). For pipes, specific mod-
ules are associated with inputs (e.g., Fetch module) and with
producing the output (Output module). For SQL, the program
inputs are the tables and fields that are referenced by the query,
and the output is a table.

Our encoding implementations take as input a repository of
programs, and can encode assignment or return statements of



Java that contain string manipulation functions (i.e., charAt,
concat, contains, endsWith, equals, indexOf,

lastIndexOf, length, startsWith, and substring),
Yahoo! Pipes mashup programs containing the fetch,

filter, output, sort, split, tail, truncate, and
union modules, and SQL select statements with count,

distinct, limit, order by, and where clauses.
Mapping from programs to constraints in the three target

domains is performed similarly, so instead of describing each
encoding implementation, we provide an abstracted version
of the key data types and operations supported, and how the
particular domain constructs map to each. This overview is
presented in Table I. We support three primitive types (characters
(C), integers (I), booleans (B)) and one composite type (list (L)).
These basic types are sufficient to represent all the constructs we
support across the three domains. For example, a string (S) is
a shorthand given as a list of characters, a Yahoo! Pipes record
(R) is a map of strings to objects with names modeled as strings,
SQL tables (T) are lists of lists, and a column (Col) is a named
list where the name is modeled as a string. Four of the datatypes
that can hold concrete or symbolic values: integers, characters,
booleans, and strings. The Java implementation uses all the
data types. Yahoo! Pipes uses strings and integers, and our SQL
implementation supports only integers.

Using these basic data types, there are seven basic operations
to capture the core semantics of the programs we analyze.
These operations are listed in the Term column of Table I,
followed by a description and the operation mapping to the
language subsets supported by our implementation. For
example, filtering is supported in all three languages, by the
substring function in Java (returning only a subset of a
string), the filter module in Yahoo! Pipes, and the where

clause in SQL select statements. The charAt accessor function
is part of the Java language, but also used by Yahoo! Pipes.
Each encoded program consists of a composition of the basic op-
erations. For example, a SQL query SELECT name, salary

FROM employee, payroll WHERE employee.id =

payroll.id ORDER BY salary contains an implicit join of
two tables, employee and payroll, achieved using: output

= permute(filtering(join(employee, payroll))).
To invoke the SMT solver for a given specification and en-

coded program, some additional information is needed, which
we call search parameters. The first parameter is the abstraction
level of the encoded programs. We begin with the strictest (most
concrete) level, but it may be relaxed as the search process iter-
ates in the presence of tight or complex constraints. The second
parameter is the solver time, which defines how long the solver
is allowed to run on a particular constraint system. In some
cases, as shown in Section VI, it can take several minutes for the
solver to return sat or unsat, so setting a maximum solver time
can lead to an efficient search, though it can miss some matches.

As part of our implementation efforts, we have also proto-
typed several enhancements on individual domains that may be
worth generalizing. In the context of encoding Yahoo! Pipes we
observed that many had clones with slightly different syntax that
were not worth encoding. So, to reduce the encoding effort (and

consequently the search time), we refactor all pipes to obtain a
more uniform representation, remove the duplicates, and then
proceed with the encoding. Similarly, encoding the language
fragments requires evaluating substring and equality relations
over strings, and enumeration over all elements in a list. To effi-
ciently support these operations, we consider bounded strings
and list, where the bounds are configurable (in line with recent
work on string constraints [3], [12]). In Java, the results are
returned to the programmer ordered according to the density of
concrete variables in the program, as these are more likely to fit
the programmer’s query as is and without modification (such as
instantiating symbolic variables with values from the satisfiable
model). In SQL, ANTLR is used to validate the SQL queries.
Solving is performed by Z3 v.4.1 [25] for all languages.

VI. EVALUATION

The study is designed to provide a preliminary assessment
of the approach effectiveness across multiple dimensions while
highlighting some the key aspects through the three supported
domains: Java, Yahoo! Pipes, and SQL.

To show how our search approach compares to traditional
keyword searches, we focus on Java and compare the effective-
ness of finding relevant code using our approach versus using
Google. Our search approach is designed to be flexible and
allow for close matches to be found when exact ones do no exist;
on the Yahoo! Pipes domain, we show how tweaking the search
parameters can affect the effectiveness of the search. To better
understand the impact of specification complexity on search
time, we manipulate the size and content of the queries in SQL,
measuring the impact on search time.

Next, we state the specific research questions, describing
for each how the repositories were built, the queries selected,
the metrics used, and the results. All of the study artifacts are
available online.3 For all studies, our data were collected under
Linux on 2.4GHz Opteron 250s with 16GB of RAM.

RQ1: How Does Our Search Compare to Syntactic Searches?

RQ1 aims to compare an existing and popular search tool,
Google, against our approach. First, we perform this comparison
on a local repository that we created and control. Second, we
perform a Google search on the web and explore how the results
could be filtered by also using our search approach.
Artifacts. We built a local repository by issuing searches on
Koders.com [13] for each of the Java string library functions
supported by our encoding. We then scraped all lines of Java
source code that contained a call to at least one of the supported
functions, totaling 5192 lines. We pruned out duplicates, lines
that contained functions we do not support, and those that are not
assignment or return statements. This left 713 unique snippets of
code that form the Java code repository used in this evaluation.

Comparing our search technique to Google requires two dif-
ferent query models, keyword for Google and input/output for
our approach. So that the queries are representative of what
programmers use, we derived them from questions asked on

3http://cse.unl.edu/∼kstolee/semsearch/



TABLE II
JAVA ARTIFACTS

Our Approach Google Local
Q Title Input Output # P@10 # P@10

1 Just copy a substring in java “Animal.dog” “Animal” 4 4 99 1“World.game” “World”
2 extract string including whitespaces within string (java) “23 14 this is random” “this is random” 24 10 34 3
3 How to get a 1.2 formatted string from String? “1.500000154” “1.5” 48 10 37 2
4 How to pull out sub-string from string (Android)? “<TD>TextText</TD>” “TextText” 13 *10 100 *2
5 Trim last 4 characters of Object “Breakfast($10)” “Breakfast” 48 10 5 0

6 Removing a substring between two characters (java) “I <str>really</str>
want ...”

“I really want ...” 0 0 99 0

7 Splitting up a string in Java “i i i block of text” “block of text” 21 10 42 3
8 How to find substring of a string with whitespaces in Java? “c not in(5,6)” true 20 10 99 0
9 “124891,” “1248”

49 *10 41 *3Limiting the number of characters in a string, “difference,” “diff”
and chopping off the rest “22.348,” “22.3”

“montreal” “mont”

10 Trim String in Java while preserve full word “The quick brown fox
jumps”

“The quick brown...” 0 0 40 0

11 How to return everything after x characters in a string “This is a looong string” “is a looong string” 23 *10 70 3
12 Slice a string in groovy “nnYYYYYYnnnnnnn” “YYYYYY” 13 *10 38 2
13 How to replace case-insensitive “FooBar” “Bar” 24 10 2 0literal substrings in Java “fooBar” “Bar”
14 Removing first character of a string “Jamaica” “amaica” 22 *10 38 3
15 How to find nth occurrence of character in a string? “/folder1/folder2/folder3/” “folder3” 13 10 42 2
16 Java finding substring “**tok=zHVVMHy...” “zHVVMHy” 14 10 2 0
17 Finding a string within a string “...MN=5,DTM=DIS...” “DTM=DISABLED” 13 10 34 2

Average 20.5 8.5 48.4 1.5
#: The number of results from the search
P@10: The relevant results from the search (* indicates some results match Stackoverflow responses)

stackoverflow.com, where the posting title was used as the key-
word query and the input/output example was encoded for our
semantic search. Of the 67 questions tagged with java, string,
and substring, 40 (60%) contain some form of explicit ex-
ample. For 17 of those cases, our current Java implementation
supports encoding the example. The remaining 23 involve con-
structs not currently supported by our implementation, such as
regular expressions or arrays. The titles and input/output for the
17 questions are shown in Table II.
Metrics. To compare the results across the search techniques
on the local repository, we use the number of results and P@10.
Since the search results on the web may return pages with mul-
tiple snippets of code, we define a new metric, S@10, which
represents the number of code snippets returned in the top ten
results, and its complement S’@10. To capture S@10, we issue
Google queries, then scrape and count the one-line Java code
snippets from the top 10 page results. Next, we run our search
technique using the scraped snippets as a repository to discard
snippets that are irrelevant.
Results: Local Repository. For each of the 17 stackoverflow
questions, we encoded the input/output as LSenc and searched
our local repository for matches. On average, 20.5 matches were
found for each query, ranging from zero (in two cases, ques-
tions 6 and 10) to 49 results.4 As an example, for the second
question in Table II, given the input “23 14 this is random” and
output “this is random”, our search approach finds 24 matches in-
cluding: string message = name.substring(6);. The
results from the search were ordered by the number of symbolic

4For those questions that have multiple input/output, we ensure that the models
returned can satisfy all input/output pairs.

variables in the snippet, in decreasing order (with the idea that
the concrete results are more directly transferrable to the pro-
grammer’s context). Regardless of the ordering, by the design of
our semantics search, all the results are relevant as they match
the input/output specifications, and so the P@10 metric is ten
or the number of returned results, whichever is smaller (for the
first question, there are only four matches, so P@10 = 4).

Using the Google search engine, on average, 48.5 matches
were found for each query, ranging from two to 100. For the
second query, for example, we see that Google returns 34 results.
Checking the top ten results against the input/output specifica-
tions reveals that only three of the top ten results were relevant.
For example, string = string.substring(0, end); is
irrelevant because it grabs the first part of a string, rather than
the last part as illustrated in the example. On average, 1.5 of the
results are relevant, with a range from zero to three.

Overall, Google returns over twice as many results as our
approach, but among the top ten, our approach is over five times
more effective. For four of the 17 queries (5, 8, 13, 16), our
approach provides matches when Google does not find any as the
syntactic query was not rich enough to identify relevant results.

If we compare the results to the solutions proposed and posi-
tively voted by the stackoverflow community, five of the queries
using our local search also match the proposed solutions from
the community (marked with the *). A match was determined if
all API calls were the same between two snippets.5 When using

5The stackoverflow community often proposed solutions that used regular
expressions, string tokenizers, and arrays, which are not currently supported by
our encoding and thus do not appear in any of the result sets.



TABLE III
GOOGLE + OUR APPROACH (RESULTS REFLECT THOSE RETURNED IN

ENGLISH DURING THE WEEK OF AUGUST 6, 2012. )

Question S@10 Discarded S’@10 % Reduction
1 25 18 7 72%
2 17 0 17 0%
3 0 0 0 –
4 36 12 *24 33%
5 3 0 3 0%
6 37 6 31 16%
7 16 4 12 25%
8 38 7 31 18%
9 0 0 0 –
10 9 2 7 22%
11 6 3 3 50%
12 7 2 *5 29%
13 29 11 17 38%
14 0 0 0 –
15 0 0 0 –
16 26 14 12 54%
17 8 7 1 88%

Avg 15 5 10 34%

S@10 One-line Java snippets from top 10 Google pages
Discarded Snippets from S@10 that we support and are unsat

S’@10 The reduced pool of snippets to evaluate (* indicates
that a sat snippet was found)

Reduction The reduction in snippets that need to be evaluated

the same evaluation criteria for Google we find only two queries
that match the stackoverflow solutions.

In terms of performance, encoding all 713 snippets takes 2.991
seconds (averaged over ten runs), which is approximately 4ms
per snippet. Among all the input/output examples in Table II and
all searches, the average solver time to determine sat is 0.0483
seconds and to determine unsat is 0.0051 seconds.
Results: On the Web. Using the titles from the stackoverflow
questions shown in Table II, we invoke Google to search for
relevant code; we report the S@10 metric in Table III. On
average, 15 snippets were gathered per question, ranging from
zero to 38 (zero occurred when none of the retrieved pages were
in the Java language). By encoding each of these snippets, we
are able to check the input/output pairs from Table II against the
retrieved snippets. The number of snippets for which the SMT
solver returns unsat is shown in the Discarded column. This
number captures the space of results that the programmer would
not have to examine if using our approach on the Google results.
The programmer must then only look at S’@10 snippets. Overall,
the number of snippets returned could be reduced by 34% just
by using our semantic search on top of the Google results. In
two cases, for questions 4 and 12 (marked with *), at least one
snippet returned sat, indicating that it is indeed a match. Since
we do not support the entire Java language, matches were not
as common; for those snippets that we do support, most could
be quickly discarded. Clearly this motivates the need for more
complete coverage of the Java language in our implementation,
which we leave for future work.

RQ2: What is the Impact of Tweaking Search Parameters

RQ2 aims to explore the impact of solver time and the ab-
straction level of program encodings on the precision and recall
of the search. In Yahoo! Pipes, the specifications can be quite

large and complex. Each input and output is a lists of records,
and each record is a map with several long strings. As a result,
returning sat can take up to several minutes. This allows us to
explore how changes in solver time and abstraction impact the
effectiveness of the search.
Artifacts. In a previous study with Yahoo! Pipes [23] we
scraped 32,887 pipes programs from the public repository by
issuing 50 queries against the repository and removing all du-
plicates. To perform the searches for the study, we gathered
specifications from five pipes in the repository. The pipes were
clustered based on their structural similarity, and one pipe was
selected from each of the median five clusters. Pipe-1 has six
modules and two URLs. It filters the records by “10-Day” or
“Current” in the title field, for the purpose of returning weather
information. Pipe-2 has five modules and two URLs. It retains
records that contain “hotel” in the description field, then sorts
the records according to publication date and retains the first
three records. Pipe-3 has nine modules and three URLs. It grabs
the first three records from each URL and sorts them according
to publication date. Pipe-4 has four modules and one URL. It
performs head and tail operations to return the third record in
the input list. Pipe-5 contains six modules and has two URLs.
It aggregates and sorts the items from the input lists, where one
list is filtered by the presence of “au” in the description field.
The specifications for these pipes were generated by executing
each and capturing their inputs and outputs, then transforming
their input/output lists into constraints.
Metrics. We manipulate two search parameters, the abstraction
of the program encodings and the maximum solver time. We
report the number of pipes in the repository that return sat (S),
unsat (U), and unknown (?) at each of four solver times, 1, 10,
100, and 1000 seconds, considering two levels of abstraction
on the program encoding, all concrete and all symbolic, on the
string and integer fields. We also calculate precision and recall,
where precision = relevant∩sat

sat and recall = relevant∩sat
relevant .

The relevant results are defined as those that will eventually
(given infinite time) return sat with a symbolic encoding, which
represents the pipes for which some instantiation of the module
field values can achieve the desired behavior.
Results. We search the repository using the five pipe specifica-
tions, given the solver times and abstraction levels described.
The precision of the search will always be 1.00, as we protect
against spurious results by design. The results of our experi-
ments are shown in Table IV.

We observe that using symbolic constraints usually yields
more results than concrete. For instance, with Pipe-
specification- 4 in Table IV(d) at 1000 seconds, all the programs
have been determined to be sat or unsat for the concrete and
symbolic encodings (? = 0 for both). Yet, the symbolic encoding
yields 89 possible matches while the concrete encoding only
finds one. Here, there is only one pipe in the repository that will
return sat with the concrete encoding, Pipe-4. With the sym-
bolic encoding, the title string in the filter modules are symbolic
so pipes that return all records with a particular title would be
returned as sat by the solver.



TABLE IV
PRECISION AND RECALL FOR YAHOO! PIPES STUDY

(a) Pipe-specification-1
Concrete Symbolic

sec. S U ? Recall S U ? Recall
1000 17 2842 0 0.1650 100 2756 3 0.9709
100 16 2842 1 0.1553 24 2756 79 0.2330

10 0 2836 23 0.0000 0 2723 136 0.0000
1 0 2794 65 0.0000 0 2572 287 0.0000

(b) Pipe-specification-2
Concrete Symbolic

sec. S U ? Recall S U ? Recall
1000 1 2858 0 0.3333 2 2856 1 0.6667
100 0 2858 1 0.0000 0 2853 6 0.0000

10 0 2836 23 0.0000 0 2785 74 0.0000
1 0 2783 76 0.0000 0 2567 292 0.0000

(c) Pipe-specification-3
Concrete Symbolic

sec. S U ? Recall S U ? Recall
1000 3 2856 0 0.1429 18 2838 3 0.8571
100 0 2856 3 0.0000 0 2833 26 0.0000

10 0 2835 24 0.0000 0 2651 208 0.0000
1 0 2798 61 0.0000 0 2554 305 0.0000

(d) Pipe-specification-4
Concrete Symbolic

sec. S U ? Recall S U ? Recall
1000 1 2858 0 0.0112 89 2770 0 1.0000
100 1 2858 0 0.0112 86 2770 3 0.9663

10 1 2858 0 0.0112 3 2770 86 0.0337
1 0 2795 64 0.0000 0 2758 101 0.0000

(e) Pipe-specification-5
Concrete Symbolic

sec. S U ? Recall S U ? Recall
1000 1 2858 0 1.0000 1 2858 0 1.0000
100 1 2858 0 1.0000 0 2857 2 0.0000

10 0 2851 8 0.0000 0 2773 86 0.0000
1 0 2799 60 0.0000 0 2607 252 0.0000

For all examples and abstraction levels, at least one match is
found with the maximum solver time of 1000 seconds, which
is fitting as each specification was derived from a pipe in the
community. Despite the many results that can be found with the
symbolic encoding, the concrete encoding is generally better at
discarding programs that don’t match. For all examples, and all
ranges of solver times, the number of unsat programs for the
concrete encoding is always greater than or equal to the number
of unsat for its symbolic counterpart. This certainly makes sense
for the longer solver times since the symbolic encoding has the
potential to recognize more matches, yet, the trend is also true
for the smaller solver times.

Solver time has a clear impact on the recall. Since cutting the
solver time before it has reached a conclusion returns unknown,
the recall is reduced as only the sat pipes are returned to the
programmer. Treating the unknown pipes as results will increase
recall to 1.00, but at the cost of precision.

RQ3: What is the Impact of Query Complexity on Search Time

RQ3 explores the impact of size and complexity of specifica-
tions on the time for the solver to return sat.
Artifacts. To answer this question we required a careful manip-
ulation of the specification. In order to do that, we selected a pro-

Fig. 3. Row Count Versus Solver Time

gram (SQL select query) from stackoverflow and systematically
decomposed it to generate input/output of different sizes and
complexity. To identify that program, we searched stackoverflow
postings for select statements containing the clauses we support
and input/output, and selected the first one when ranked by num-
ber of votes. The selected program is: SELECT balance FROM

table WHERE balance >= 1000000 ORDER BY balance

DESC; . The decomposition consisted of combinations of its
component clauses, as indicated in the key of Figure 3 (e.g.,
select order maps to SELECT balance FROM table ORDER

BY balance DESC;).
For each decomposed program, we generated input tables with

10 to 100 rows in increments of 10. Each input was generated
to satisfy each SQL query. Since the where clause operates
over the balance column, we generated the input tables using
a normal distribution with µ = 1000000. In this way, the output
size was a function of the input size; when the where clause is
present, the number of rows in the output is approximately half
of the rows in the input. When the where clause is omitted, the
sizes of the input and output tables are equal.
Metrics. For each program, and each input size, we report the
time to return sat, averaged over ten runs (where each of the
runs pulls a new input table from the normal distribution).
Results. Figure 3 shows the results of the experiment, with
solver time on the y-axis in seconds (on a logarithmic scale)
and the input size, in number of rows, on the x-axis. Each of
the four decomposed programs maps to a line on the graph. As
shown, the solving time increases exponentially with the number
of rows for all the specifications. It is more subtle, however,
how the complexity of the specification may impact the solving
time. Specifications that require more clauses to be matched
do not necessarily require more time. For example, the spec-
ification that requires ORDER BY as part of the solution takes
more time than the one requiring WHERE and ORDER BY, as the
expensive sorting constraints from ORDER BY need to operate
on the smaller filtered dataset generated by WHERE. Further study
is needed to tease apart these nuances, but it is clear that the ap-
plication of multiple clauses makes the results harder to predict
and that there is a trend of exponentially increasing solver time
as the input size increases.



VII. DISCUSSION AND THREATS TO VALIDITY

Our evaluation explores different aspects of the approach in
each of the three languages, and each comes with their own lim-
itations and threats to validity. In the Java string study, we show
that our search approach finds more relevant results than Google
when using our local repository. In practice, however, syntactic
searches thrive in large repositories. By applying our technique
on top of snippets gathered from general Google searches, we
are able to quickly discard an average of 34% of the code snip-
pets that are irrelevant, and also identify some matches. We
recognize two primary threats to validity. First, the syntactic
queries were taken from the titles of the stackoverflow questions,
and may differ from queries issued by the programmers. Second,
some queries may require more than a one line solution, and by
our current methodology, those potential solutions are ignored.

In the Yahoo! Pipes study, we found that symbolic encodings
find many more relevant examples, but the concrete encodings
are better at discarding irrelevant results. The relevant results
were identified as those that would return sat eventually for
some instantiation of the pipe. With this domain, the input is
generated from a URL, which is stateful. Gathering the RSS
feeds on a different day or at a different time can yield a different
input/output, which can lead to a different set of relevant results.

With the SQL study, we show that solving time increases
with input size (exponentially in all clause combinations). Our
instantiation of SQL only works on integers, and it is likely that
the time would be much longer in the presence of strings or other
complex datatypes, so further study is needed.

Selection bias and potential implementation errors are two
threats that may have affected the results on the three domains.
We made our selection process explicit and develop extensive
test suites to mitigate these threats.

Although we instantiate our approach on three different lan-
guages, the subsets covered perform relatively similar operations.
Extending this work toward languages and constructs that re-
quire looping or branching has yet to be explored. An additional
threat to validity comes from the fact that we have developed
an approach to code search that is designed to help program-
mers, but we do not evaluate it in the hands of users. To show
the benefits in practice requires an empirical study with actual
programmers, but illustrating the generality, effectiveness, and
efficiency of the approach are the first steps toward the ultimate
goal of building an efficient code search engine for programmers.

VIII. CONCLUSION

We have presented an approach to semantic search that uses
an SMT solver to match lightweight specifications in the form of
input/output pairs against programs whose behavior has been en-
coded as constraints. We describe how to encode search queries
and programs in three languages, the Java string library, Yahoo!
Pipes, and SQL select statements, and explore the effectiveness
of our approach in each of these domains. While the approach
seems promising in these domains, generality remains a goal and
needs to be addressed in the context of richer programs, such as
those contains loops and other complex constructs, and in the
context of programmers using the approach.
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