

HIGH TEMPERATURE (250 °C) SIC POWER MODULE FOR MILITARY HYBRID ELECTRICAL VEHICLE APPLICATIONS

R. M. Schupbach, B. McPherson, T. McNutt, A. B. Lostetter John P. Kajs, and Scott G Castagno

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collecti this burden, to Washington Headqua uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate or ormation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 26 JUL 2011		2. REPORT TYPE Briefing Charts		3. DATES COVE 03-02-2011	red to 02-06-2011
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
HIGH TEMPERATURE (250C) SIC POWER MODULE FOR MILITARY HYBRID ELECTRICAL VEHICLE APPLICATIONS				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) R Schupbach; B McPherson,; T McNutt; A Lostetter; John Kajs				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC,6501 East Eleven Mile Rd,Warren,Mi,48397-5000				8. PERFORMING ORGANIZATION REPORT NUMBER #22146	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000				10. SPONSOR/MONITOR'S ACRONYM(S) TARDEC	
				11. SPONSOR/M NUMBER(S) #22146	ONITOR'S REPORT
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited					
13. SUPPLEMENTARY NOTES					
	oped high performand d efficiency, power d ares	-	-	•	-
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Public Release	23	Table Stable Landon

Report Documentation Page

Form Approved OMB No. 0704-0188

Why High Temperature?

POWER AND MOBILITY

What if temperature was not a limitation?

Cooling Systems

Thermal Shielding

- Efficiency
- Power Density
- Size & Weight

Design

Tradeoffs

- Complexity
- Cost

Extreme Environments

Wide Band Gap Semiconductors

Breakdown Electric Field (MV/cm)

Thermal Conductivity

larger band gaps mean...

Operating
Temperature

Switching Speed

increased thermal cond. allows...

Applications

Motor Drives

Military

Hybrid / Fully Electric Vehicles

Commercial

Aerospace

Power Converters

Grid-Tie Inverters

Geological

Solar / Wind

Down Hole Instrumentation

Aerospace

Power Conversion

Industrial

Modernized Power Grid

Commercial

Fault Current Limiter

Military

Advanced Warships

Industrial

Power Turbine Sensors

Aerospace

Jet Engine / Turbine Sensors

Wireless Telemetry

POWER AND MOBILITY

Design philosophy and processes

Device Neutrality

Use the most suitable device for a given application

JFETs

<u>MOSFETs</u>

BJTs

TranSiC

Diodes

Adaptive CAD Modeling

POWER AND MOBILITY

Technique which allows for rapid configuration of a design with minimal user input

Reference Sketches

Geometry is driven by relationships, equations, and named variables.

Assembly

Components are defined in context and driven by the referenced design variables.

Configurations

Thousands of variations may be rapidly analyzed with this process.

Adaptive Simulation

Using an adaptive CAD model and FEA simulation software, thousands of configurations may be investigated

Base Plate

material geometry

Power Substrate

ceramic type ceramic thickness metal type metal thickness

Die Attach

material thickness

Spacing

die to die die to edge substrate to base plate substrate etch lines clearances tolerances

Tradeoffs

thermal performance stress & displacement weight vs. performance volume vs. performance plastic reinforcements

Example Base Plate Analysis

Simulation data is extracted and organized into design surfaces. Tradeoffs are identified and visualized

Copper Moly

Example Die Attach Analysis

The thermal conductivity of the die attach exhibits diminishing returns

Die Attach Effects

Example Housing Analysis

Plastic reinforcing features are carefully designed for minimal stress & displacement

Displacement @ 200°C Von Mises Stress @ 200°C 0 mil 0.9 mil 2 MPa 0 MPa (0.023 mm)(0 mm)

POWER AND MOBILITY

HT-2000 design and features

HT-2000 Series

POWER AND MOBILITY

High temperature, high frequency, high power density all SiC half or full-bridge power stage.

Ratings 1200V > 150A

Temperature 250°C peak (packaging)

* pictured: SemiSouth 50mΩ JFET (SJEC120R050)

Multiple Material Choices Based on Application

Each module contains four switch positions. Multiple configurations are possible through external bussing

External Connections

POWER AND MOBILITY

Half Bridge

External Connections

POWER AND MOBILITY

External Connections

POWER AND MOBILITY

Series

HT-2000 modules are available with custom bussing and gate drives for rapid evaluation

High Frequency
Gate Drive

Characterization

The paralleled switch positions exhibit very low on state resistances, even at high temperature

200 A 20 A

160 A 80

Switching Energy MOSFET Module

300 V

600 V

Switching Energy JFET Module

POWER AND MOBILITY

300 V

600 V

These newly developed high performance SiC power modules can provide substantial system benefits, including:

Increased

efficiency power density

Reduced

volume weight

Higher

junction temperatures ambient temperatures

Acknowledgements

This material is based upon work supported by U.S. Army TACOM under Contract Number W56HZV-10-C-0113.

