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Fast Optical Ray Tracing Using Multiple DSPs
Charles B. Cameron, Senior Member, IEEE, Rosa Nívea Rodríguez, Member, IEEE, Nathan Padgett,

Eugene Waluschka, Semion Kizhner, Gabriel Colón, and Colleen Weeks

Abstract—Optical ray tracing is a computationally intensive
operation that is central both to the design of optical systems
and to analyzing their performance once built. The authors have
previously reported on the use of parallel digital signal processors
(DSPs) to reduce the time required to perform ray tracing in
analyzing the performance of the moderate resolution imaging
spectroradiometer (MODIS), which is presently in orbit on multi-
ple spacecraft. The earlier work was incomplete, providing only a
conservative estimate of the performance improvement that could
be achieved with one to four DSPs. This paper reports on the
completed project and extends the earlier work to eight DSPs. As
predicted in the earlier paper, not all rays make it through the
entire optical system. Many are lost along the way. This is one
factor that led to reduced processing time. Another is the use of
an optimizing compiler. In this paper, the authors present results
showing the separate effect of each of these two independent
factors on the overall processing time. The most significant finding
is the extraordinarily linear relationship between the number of
DSPs available and the speed of the ray tracing. By using eight
DSPs, the processing time is reduced from two weeks to less than
one and a half days, an improvement of nearly a whole order of
magnitude. Low-cost high-speed ray tracing is now feasible using
off-the-shelf plug-in processor boards.

Index Terms—Digital signal processor (DSP), moderate reso-
lution imaging spectroradiometer (MODIS), optical ray tracing,
optics, parallel processing, reconfigurable computing, resistance–
capacitance (RC).

I. INTRODUCTION

RAY-TRACING simulations are an essential part of the
design of optical systems as well as analyzing their

performance after their construction [1], [2]. Unfortunately,
the time required for tracing substantial numbers of rays can
be staggering. In an earlier article [3], we reported on pre-
liminary results entailing the use of from one to four digital
signal processors (DSP) to perform such simulations for the
moderate resolution imaging spectroradiometer (MODIS): an
earth-sensing instrument currently in orbit on NASA’s Terra
and Aqua satellites [4]. We summarized the essentials of optical
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ray tracing in that article and described the MODIS instrument,
whose performance we simulated. In this paper, we explain
how we tested the completed system, give measurements of
the time taken to complete the simulations, and analyze the
relationship between the number of DSPs available and the
speed of the system.

A characteristic of the MODIS is that a calibration is per-
formed once in each orbit. Although the MODIS ordinarily
takes images of the earth’s surface, during calibration it takes
an image of the sun (not directly but as projected onto a diffuse
surface). This provides a more-or-less uniform illumination of
all the picture elements on the image plane’s detectors. Because
the sun’s radiance is so great, its light is attenuated before
being projected onto the diffuser. Instead of using neutral-
density filters, MODIS uses a screen perforated with numerous
pinholes. It reduces the irradiance by 91.5%. Some aspects of
the diffuser are discussed in Waluschka et al. [5].

After the plane of the entrance aperture, the attenuation
screen, and the diffuser, there follow a further 25 optical sur-
faces starting with a mirror and ending with an image plane
containing an array of optical sensors.

II. PREVIOUS RESULTS

Generally speaking, only a subset of the optical rays im-
pinging on an optical system ever reaches the image plane.
Many rays are lost along the way because they pass outside
one or another of the apertures encountered within the optical
instrument. In our earlier work [3], we were very conservative
in estimating the time required to complete a simulation. We
had not then completed the ray-tracing program: It did not yet
trace all the rays of interest. We instead repeatedly traced a
single ray, one known to reach the image plane, as it proceeded
from the diffuser to the image plane.1

We measured the time it took to trace 349 932 instances
of this single ray and extrapolated from those measurements
the time it would take to trace the 6.24 × 109 rays of a com-
plete simulation. These results appear in Table I. A key result
is the number of rays traced each second for each parallel
processor available: 2848 rays · (s · processor)−1. An earlier
simulation done using a program written in FORTRAN and ex-
ecuted on a single Digital Equipment Corporation (DEC) Alpha
3000 series model 800 computer achieved a rate of roughly
5160 rays · s−1.

1More recently, once we had completed the program, we confirmed our
earlier certainty that many simulated rays never reached the image plane. Every
such abandoned ray reduced the overall simulation time, giving apparently
better performance than our earlier estimates suggested we should expect.

0018-9456/$20.00 © 2006 IEEE
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TABLE I
PREVIOUSLY REPORTED TIME TO TRACE 349932 RAYS

Fig. 1. MODIS optical system.

III. EXPERIMENTAL SETUP

A. Implementation

We implemented the system on a Dell Precision WorkStation
530 MT based on an Intel Xeon CPU operating at a frequency
of 1.70 GHz. This system used a 400-MHz system bus, an
8-kB L1 cache, and a 256-MB L2 cache. It also employed
two Bittware Hammerhead 66-MHz PCI boards, each con-
taining four Analog Devices ADSP21160 DSPs operating at
80 MHz.2 Our approach was to use the PC to direct and
coordinate the operation of the eight DSPs.3 The PC could have
been used to perform some of the ray tracing from the diffuser
to the image plane. This was not done, however, because we
wanted to make it easy to determine the relationship between
the number of DSPs available and the number of rays traced
each second. In practice, it would be desirable to let the PC
perform ray tracing whenever it was otherwise idle.

B. Simulation

The MODIS optical system is shown schematically in Fig. 1.
The attenuator screen has 1951 pinholes. We traced rays from
485 of these, the same ones used in the original FORTRAN
simulation program. From the center of each pinhole, we simu-
lated launching a rectangular array of 21 rows × 21 rays/row =
441 rays. The central ray of this grouping was based on the
direction of the sun from the entrance pupil, and the transverse
extent of the grouping was based on the sun’s angular extent
(semidiameter), roughly 0.25◦.

We used the host PC to trace each ray from a pinhole to the
diffuser. Some of the rays that departed the pinholes missed the
diffuser; these were discarded. Of those that struck the diffuser,
each ray was then used to generate a second rectangular array of

2In our earlier work [3], we used only a single Hammerhead board.
3The programs running in the PC as well as all eight DSPs were written in

the C programming language.

Fig. 2. Synchronization of the PC and one DSP. This is a full handshaking
scheme using polling. The same arrangement exists for each DSP in the system.

241 rows × 121 rays/row = 29 161 rays. This collection of rays
was traced by an assigned DSP, which discarded any rays that
did not reach the image plane. Of the rays that did reach it, the
DSP tallied the number of rays that struck each cell in the image
plane. These cells were arranged in 12 rows × 10 cells/row =
120 cells. Upon completing its assigned task, the DSP notified
the PC that it was ready for a new assignment.

When the PC discovered a waiting DSP, it retrieved its
120-element tally and gave it a new point on the diffuser from
which to trace a further 29 161 rays. The PC could have accu-
mulated these results. In fact, we chose not to do this, instead
saving a subset of the results for inspection and verification.
Comparison of numerous 120-element tallies with those from
the earlier FORTRAN program showed no difference at all,
even though the FORTRAN program used double-precision
floating-point arithmetic, whereas the PC and the DSPs only
used single-precision floating-point arithmetic.

To synchronize the PC and the DSP, we took advantage of
the fact that the Hammerhead board allows two-port access to
the memory of the DSP. We implemented a full handshaking
scheme, as illustrated in Fig. 2. To do this, we set up a pair of
mailboxes in each DSP’s memory, one for the DSP and one for
the PC. When the DSP was ready for the PC to service it, the
DSP set its flag (point A in the figure). The PC polled this flag
from time to time and set its own flag once it discovered the
DSP had set its flag (B). At this point the DSP reset its flag (C).
The PC now retrieved the results of the DSP’s latest ray-tracing
simulation and gave the DSP the new coordinates in the diffuser
plane corresponding to its next assignment. Then, the PC reset
its flag, leaving the DSP to start its next task (D).

We performed eight complete simulations. Each simulation
entailed tracing all

485 pinholes × 441 pinhole rays
pinhole

× 29 161 diffuser rays
pinhole ray

= 6237 100 485 diffuser rays

and each was performed using a different number of DSPs,
from one to eight. The measured simulation times and corre-
sponding rates of tracing rays are shown in Table II. Two factors
are responsible for the increase in the ray-tracing rate from that
shown in Table I.

1) The completed program was compiled with optimization
enabled, leading to a more efficient code in the PC and,
more importantly, in each DSP.
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TABLE II
RUNNING THE SIMULATION ON DIFFERENT NUMBERS OF PROCESSORS

Fig. 3. Comparison of ray-tracing rates.

2) Many rays in the complete simulation never reached
the image plane. Being abandoned part way through the
entire system, they took less time to trace.

IV. COMPARISON

Fig. 3 provides plots of three different measurements.

1) Rate of ray tracing achieved by the FORTRAN program
executing on a DEC Alpha computer. This program could
only be executed on a single processor. The rate is marked
by a black dot (•).

2) Rates of ray tracing estimated from partial simulations
with nonoptimized code. These are from the data pre-
sented in Table I. The rates are marked by black squares
(�).

3) Rates of ray tracing estimated from full simulations with
optimized code. These are from the data presented in
Table II. The rates are marked by black diamonds (�).

Additionally, the plot shows least square linear fits for
the data from the two C programs. Equations for these two
lines are

rate of tracing rays under full simulation

= ((6 091.6695 ± 0.0074)n + 0.024 ± 0.038) rays · s−1 (1)

TABLE III
RESIDUAL ANALYSIS

and

rate of tracing rays under partial simulation

= ((2 848.0 ± 1.1)n + 0.2 ± 3.1) rays · s−1 (2)

where n is the number of processors assigned.
The stated uncertainties are ±1 standard deviation. We

believe that the uncertainties are smaller in (1) than in (2)
because (1) stemmed from tracing 6.24 × 109 rays while (2)
stemmed from tracing only 3.5 × 105 rays. It seems unlikely
that switching from nonoptimized to optimized compilation
would significantly affect the uncertainties.

The fact that the standard deviations associated with the coef-
ficients in these equations are so small shows that there is a very
highly linear relationship between the number of processors
assigned and the rate at which the work can be performed. In
turn, this implies that the administrative overhead associated
with managing up to eight processors is negligible. As a result,
we should be able to add many more processors to the system
before the administrative overhead becomes significant.

Another approach to gauging the suitability of a linear least
squares fit is to compare the observed measurements to the
values predicted by the fit. One way to do this is to take their
differences, square them, add them up, take the square root
of this sum, and divide by the number of terms in the sum.
Doing this yields 0.01476391 rays · s−1, as shown in Table III.
Comparing this to any of the tabulated observations makes it
clear that this is a negligible quantity and supports our view
that the least squares fit is suitable.

The effect of the master processor (the Dell computer) on the
rate of ray tracing has been deliberately ignored. The master
processor traces 29 161 rays from the pinhole attenuator to
the diffuser. Compared to the 6 237 100 485 rays traced by the
DSPs from the diffuser to the image plane, the time taken to
trace these early rays is negligible.

V. EFFECTS OF OPTIMIZATION

The graph in Fig. 3 shows a marked improvement in
the rate of ray tracing from 2848 rays · (s · processor)−1 to
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TABLE IV
COMPARISON OF NONOPTIMIZED AND OPTIMIZED VERSIONS OF THE

PROGRAM WITH FOUR PROCESSORS AVAILABLE

6092 rays · (s · processor)−1. As remarked above, this improve-
ment can be attributed in part to the fact that not all rays traverse
every optical surface within the instrument, and in part to our
having used an optimizing compiler for the faster program.

In order to distinguish between these two effects, we per-
formed a full simulation using four DSPs with a nonoptimized
version of the compiled program and compared the time that
version took to the time required by the optimized version of
the program using the same number of DSPs.

To analyze the results, we define the following quantities.

1) n, as before, is the number of processors assigned.
2) N = 6237 100 485 is the number of rays traced in a full

simulation.
3) NP = 349 932 is the number of rays traced in a partial

simulation.
4) ρ ≤ 1 is the average fraction of all rays that make it to the

image plane. Tracing ρN rays to the image plane would
take the same time as tracing all N rays and discarding
a ray as soon as it is discovered not to reach the image
plane. At this point, we still consider it an unknown, but
we want to determine its value.

5) r1 is the rate of tracing those rays that do reach the image
plane using the optimized program, and it is measured in
rays · (s · processor)−1. At this point, we still consider it
an unknown, but we want to determine its value.

6) r2, likewise, is the rate of tracing those rays that do
reach the image plane using the nonoptimized program,
also measured in rays · (s · processor)−1. This is given in
(2) as r2 = (2848.0 ± 1.1) rays · (s · processor)−1, if we
ignore the small fixed offset.

7) τ1,F = 255 967.797 s ± 290 µs is the time to execute
the full simulation using the optimized program with four
assigned processors, assuming the timing measurements
are accurate to within ±0.5 ms over the full duration
of the measurement. The clock routines provided in the
C runtime library offer the current time to the nearest
1.0 ms. If we assume the round-off error is uniformly
distributed in the range [−0.5 ms, 0.5 ms], then the
standard deviation of the error is 290 µs [6].4

8) τ2,F = 439 985.516 s ± 290 µs is the time to execute the
full simulation using the nonoptimized program with four
assigned processors, assuming the same clock accuracy
(Table IV).

4We use this method of estimating the standard deviation of the error in all
clock measurements throughout this paper. The method neglects any error due
to clock drift.

9) τ2,P = 30.721 s ± 290 µs is the time to execute the par-
tial simulation using the nonoptimized program with four
assigned processors, assuming the same clock accuracy.

Equations (1) and (2) show that the rate of ray tracing is very
nearly proportional to the number of processors assigned. Our
objective is to find ρ and r1 given all the other quantities. We
can do this by first writing down several relationships:

τ1,F =
ρN

4r1
τ2,F =

ρN

4r2
τ2,P =

NP

4r2
. (3)

The 4 in each denominator is due to our having used n =
4 processors when measuring τ1,F, τ2,F, and τ2,P.

Dividing τ1,F by τ2,F, we have

τ1,F

τ2,F
=

ρN

4r1

4r2

ρN
=

r2

r1
(4)

therefore

r1 = r2
τ2,F

τ1,F
=

(
(2848.0 ± 1.1) rays · (s · processor)−1

)

×
(

439 985.516 s ± 290 µs
255 967.797s ± 290 µs

)
.

Optimized ray-tracing rate

r1 = (4895.5 ± 1.9) rays · (s · processor)−1. (5)

This is the rate of ray tracing with an optimized program
when every ray is traced all the way to the image plane.5 A
fair comparison with other systems that do ray tracing can be
obtained by multiplying this by the number of surfaces traced
within the DSPs, which is 25:

ray-tracing rate for fair comparison

= (122 386 ± 47) rays · surfaces · (s · processor)−1. (6)

In our experiments, then, using eight processors, we achieved

Ray-tracing rate for fair comparison with eight processors

= (979 090 ± 380) rays · surfaces · s−1. (7)

Now, we turn to the determination of the average fraction ρ
of rays that make it to the image plane in our system. Dividing
τ2,F by τ2,P, we get

τ2,F

τ2,P
=

ρN

4r2

4r2

NP
=

ρN

NP
.

5Methods of estimating error propagation are given by Bevington [7].
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Solving for ρ, we get

ρ =
NP

N

τ2,F

τ2,P

=
(

349 932
6 237 100 485

)(
439 985.516 s ± 290 µs

30.721 s ± 290 µs

)
.

Effective fraction of rays reaching the image plane

ρ = 0.8035334 ± 0.0000076. (8)

Therefore, in our full simulation of the MODIS instrument, we
traced N rays, discarding any that went astray; the time taken
was roughly equivalent to that needed to trace 80% N rays all
the way to the image plane. We can use this result to adjust (1),
again ignoring the small fixed offset:

rate of tracing rays under full simulation

= (6 091.669 5 ± 0.007 4)

× (0.8035334 ± 0.0000076) rays · (s · processor)−1

= (4 894.860 ± 0.046) rays · (s · processor)−1. (9)

Note how consistent this is with the value of r1 already given in
(5). The reason for the difference is that the value in (5) was
calculated from τ1,F and τ2,F, whereas the value in (9) was
calculated from τ2,F and τ2,P.

We could also calculate ρ in another way using (3) and (5):

ρ =
4r1τ1,F

N

=
4

(
(4895.5 ± 1.9) rays · s−1

)
(255 967.797 s ± 290 µs)

6 237 100 485 rays

ρ =0.80363 ± 0.00031. (10)

Comparing this to (8), we see that both methods yield values
of ρ that are very close to one another. The uncertainty from
the second method of estimating ρ is larger because it used the
shorter execution time associated with a partial simulation, with
its correspondingly larger relative error. The close agreement
shows persuasively that our simulation was equivalent to trac-
ing just 80% of all the rays we actually traced but following this
lesser number of rays all the way to the image plane.

We can calculate the (fractional) speedup in the program due
to optimization by using a formula widely used in computer
architecture [8]. Here, we compare the tracing rate of the
optimized program to that of the nonoptimized program:

speedup =
r1 − r2

r2

=
(4895.5 ± 1.9) rays · (s · processor)−1

(2848.0 ± 1.1) rays · (s · processor)−1
− 1

speedup from optimization = (71.891 ± 0.094)%. (11)

We can also calculate the apparent speedup due to the fact
that, in the full simulation, not all rays reach the image plane.
Here, we compare the apparent rate of ray tracing using the

optimized program to the rate that would apply if all traced rays
indeed reached the image plane:

speedup =
r1
ρ − r1

r1

=
1
ρ
−1

=
1

0.8035334 ± 0.0000076
−1.

Apparent speedup due to rays going astray

= (24.45033 ± 0.00034)%. (12)

The speedup given in (11) is real and is due to using an
optimized program. That given in (12) is illusory caused by a
simulation that traces a large number of rays that do not actu-
ally reach the image plane. Quoting this artificial percentage
speedup could be highly misleading since it depends on the
choice of traced rays and not on the processor speed or the ray-
tracing program itself.

The speedup in (11) applies if a single processor is used.
We can finally calculate the speedup due to using n processors
running an optimized program rather than a single one running
a nonoptimized program:

speedup =
nr1 − r2

r2
=

nr1

r2
− 1

=
n(4895.5 ± 1.9) rays · (s · processor)−1

(2848.0 ± 1.1) rays · (s · processor)−1
− 1

speedup using n processors with optimized code

= (1.71891 ± 0.00094)n − 1. (13)

Although we used DSPs for our slave processors, these
are not ideally suited to the ray-tracing problem because ray
tracing requires extensive use of division and square roots.6

The Analog Devices ADSP21160 DSPs we used do not fully
support either of these floating-point operations in hardware.
Rather, software is used to perform them with an attendant
penalty in performance. It would be far more efficient to use
slave processors with hardware that fully supports floating-
point arithmetic such as that defined by ANSI/IEEE Std
754-1985, which is the IEEE standard for binary floating-point
arithmetic. We used ADSP21160 DSPs for two primary rea-
sons: We had them on hand and they provide a simple interface
to a standard host personal computer.

The original FORTRAN program executing on a single DEC
Alpha 3000 series model 800 computer took two weeks to
perform a full simulation. We reduced this to 35.55 h using two
Hammerhead boards with eight ADSP21160 DSPs, which is an
improvement of nearly one order of magnitude.

6As explained in our earlier paper [3], the need for sine and cosine calcu-
lations can be confined to the initialization phase of the program’s execution,
where the functions that require them are computed exactly once. During the
repetitive phase that calculates ray trajectories, trigonometric functions are
calculated without using expensive (that is, time consuming) sine or cosine
functions.
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Comparing the speeds of different processors is often done
using the published benchmarks. Getting a comparison between
a general-purpose microprocessor such as the DEC Alpha 3000
and a digital signal processor such as the ADSP21160 is diffi-
cult because they address different markets and so are evaluated
using different benchmarks. A rough comparison can be made
by linking together the results of several unrelated benchmarks
and treating the processors compared as being fairly repre-
sented by all of them. A further assumption in this method is
that benchmark scores are linearly related to performance.

Longbottom [9] gives the results of Whetstone benchmarks
showing single-precision and double-precision floating-point
arithmetic performance of various processors. The Intel Pen-
tium III with a clock frequency of 1.4 GHz received scores of
972 and 1006, with an average of 989. The DEC Alpha series
3000 Model 800 with a clock frequency of 200 MHz received
scores of 155 and 129, with an average of 142. A comparison
of these two averages permits us to estimate that the Pentium
III is 7.0 times faster than the Alpha.

Berkeley Design Technology, Inc. (BDTI) has developed a
benchmark for signal-processing speeds [10] with benchmark
results published on the Internet [11]. The Analog Devices
ADSP-2126x with a clock frequency of 200 MHz received a
score of 1090. The Intel Pentium III with a clock frequency of
1.4 GHz received a score of 3130. A comparison of these two
scores permits us to estimate that the Pentium III is 2.8 times
faster than the 2126x.

Analog Devices publishes comparisons of their 32-bit DSP
microprocessors on the Internet [12]. The Analog Devices
ADSP-21262 with a clock frequency of 200 MHz can ex-
ecute up to 1.2 × 109 floating-point instructions per second
(1.2 GFLOPS). The Analog Devices ADSP-21160 with a clock
frequency of 80 MHz can execute up to 480 × 106 floating-
point instructions per second (480 MFLOPS). A comparison of
these two scores permits us to estimate that the ADSP-21262
is 2.5 times faster than the ADSP-21160. Combining these
factors, we have

speedADSP−21160

speedAlpha

=
(

speedADSP−21160

speedADSP−21262

)

×
(

speedADSP−21262

speedPentium III

) (
speedPentium III

speedAlpha

)

=
(

1
2.5

)(
1

2.8

)
(7.0)

= 0.97 ≈ 1.

Such a comparison is crude, at best, and neglects the impor-
tant fact that Alpha has floating-point hardware to support
division [13], whereas the ADSP-21160 does not. Even so, it
suggests a roughly comparable level of performance between
the two processors. Note, though, that the ADSP-21160 can
only achieve the rated speed when processing two sets of
data with the same instruction simultaneously. We did not use

this mode, so the performance should only be half that of an
Alpha 3000.

In fact, the optimized program with one ADSP-21160
assigned took 1023.877625 ks, as shown in Table II, or
11.9 days, compared with roughly 14 days on the Alpha 3000
series model 800. The DSP processor appears to be a little more
efficient, therefore, even though it was not running two sets of
data simultaneously. This can more likely be ascribed to the
differences in the program than in the underlying hardware. A
further improvement in the software to take advantage of the
DSP’s ability to process two sets of data at a time might yield a
significant improvement in the ray-tracing rate.

Bittware now offers an improved product, the Danube 6-PaC
PCI (D6PC) board with six Analog Devices ADSP-TS201S
TigerSHARC DSPs. These operate at 300 MHz, which is a
factor of 3.75 higher than that of the Bittware Hammerhead
boards we used, operating at just 80 MHz. If we assume that
the increased clock rate corresponds to an increased perfor-
mance rate, then, we can multiply this factor by the value of
122 388 rays · surfaces · (s · processor)−1 given in (6) to get an
estimate of the performance that a system using Danube boards
should be able to obtain:

3.75 × 122 388 rays · surfaces · (s · processor)−1

≈ 459 000 rays · surfaces · (s · processor)−1.

According to Abbott [14], using a typical PCI bus, we
can connect six boards directly to a motherboard. We could
therefore envisage using six Danube boards with a total of
36 processors. This would yield

36 processors × 459 000 rays · surfaces · (s · processor)−1

= 16.5 × 106 rays · surfaces · s−1.

We can also consider the effect using six Danube boards
would have on the observed apparent ray-tracing rate in (1),
using the fastest apparent rate of ray tracing observed in our
experiments, as shown in Table II

48 733 rays · s−1 × 3.75 × 36
8

= 822 × 103 rays · s−1

and calculate from it the amount of time we could expect it
to take to perform a full simulation of the MODIS instrument
using six Danube boards with a total of 36 processors:

Total time =
6237 100 485 rays

822 × 103 rays · s−1

≈ 2.1 h.

The difference would represent a 16.9-fold increase in the rate,
corresponding to a speedup of 15.9, or 1590%, and would
amount to 2.2 orders of magnitude less than the time required
by the original FORTRAN program on a single DEC Alpha
computer.
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VI. CONCLUSION

The number r1 in (5) is a parameter of the ray-tracing system,
not of the optical system. It gives the rate of tracing rays
through a single surface of an optical system. In our analysis,
however, we have ignored the fact that the time to calculate
the interaction of light rays with planar surfaces, ellipsoidal
surfaces, and nonellipsoidal curved surfaces varies substan-
tially. We have instead tacitly assumed that the mix of such
surfaces in the MODIS instrument is representative of most
instruments. A more careful analysis would report different val-
ues of r1 for each kind of surface. In comparing two candidate
ray-tracing systems, the parameter r1 is an important one to
consider.

The number ρ in (8), on the other hand, is a parameter of the
optical system and of the choice of rays used in the simulation,
not of the ray-tracing system per se. To the extent that ρ is
lower than one, the simulations entail tracing some rays part
way through the optical system before discarding them. These
rays are ill chosen, insofar as it is undesirable to spend any time
tracing rays that get discarded. Ideally, we would choose no
such rays to simulate.

We could cause ρ to be identically one by, say, tracing a
single ray known to traverse the whole system successfully, as
we did in our earlier work [3], but then we would be neglecting
many rays that give a more complete picture of the performance
of the optical system. Simulations could be regarded as most
productive when ρ is close to, but still less than, the value one.
In comparing two ray-tracing systems, values of ρ should be
equal for a fair comparison of any particular simulation.

This paper has made it clear that the ray-tracing problem
is very amenable to parallel processing. Since each ray is
independent of all others, we can assign any arbitrary subset of
rays to available processors for them to trace. An administrative
program (executing on the PC in our implementation) can easily
gather the results and assign new ray bundles to large numbers
of processors without falling behind or unduly delaying the
number crunching in the slave processors.
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