
Maritime Threat Detection using Plan Recognition 
 

Bryan Auslander1, Kalyan Moy Gupta1, & David W. Aha2 
1Knexus Research Corp.; 163 Waterfront Street; National Harbor, MD 20745 

2Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514;  
4555 Overlook Ave. SW; Washington, DC 20375 

firstname.lastname@knexusresearch.com | david.aha@nrl.navy.mil 
 
 

    Abstract. Existing algorithms for maritime threat detection 
employ a variety of normalcy models that are probabilistic 
and/or rule-based. Unfortunately, they can be limited in their 
ability to model the subtlety and complexity of multiple vessel 
types and their spatio-temporal events, yet their representation is 
needed to accurately detect anomalies in maritime scenarios.  To 
address these limitations, we apply plan recognition algorithms 
for maritime anomaly detection.  In particular, we examine 
hierarchical task network (HTN) and case-based algorithms for 
plan recognition, which detect anomalies by generating expected 
behaviors for use as a basis for threat detection. We compare 
their performance with a behavior recognition algorithm on 
simulated riverine maritime traffic. On a set of simulated 
maritime scenarios, these plan recognition algorithms 
outperformed the behavior recognition algorithm, except for one 
reactive behavior task in which the inverse occurred. 
Furthermore, our case-based plan recognizer outperformed our 
HTN algorithm.  On the short-term reactive planning scenarios, 
the plan recognition algorithms outperformed the behavior 
recognition algorithm on routine plan following. However, they 
are significantly outperformed on the anomalous scenarios. 
 

I.    INTRODUCTION 
Early detection and neutralization of threats from small boats 
is a critical requirement for the US Navy. Detection of small 
boat threats is particularly challenging in busy ports, harbors 
and riverine areas because they operate in close proximity to 
large but much less maneuverable vessels. Various approaches 
for automated threat and anomaly detection have been 
developed to address this problem. For example, perimeter 
breach detection algorithms (e.g., [1][2]) trigger an alarm 
when a distance threshold is crossed. However, these can lead 
to numerous false alarms and unacceptable operating 
requirements in narrow traffic lanes. To address this problem, 
we recently showed that some behavior-based threat detection 
algorithms, based on probabilistic graphical models, can 
outperform perimeter breach algorithms [3]. However, 
perimeter and behavior-based approaches rely on learning 
normalcy models that predominately focus on low level 
activities, but cannot detect anomalies that require knowledge 
of planned routes and schedules.  

In this paper, we apply plan recognition algorithms to 
continuously monitor activities and identify the plans of 
maritime vessels in advance of any threat occurrence. We 
assume that, given a plan, we can identify its unique goal, and 
conjecture that identifying goals could help to detect 
threatening and anomalous situations earlier and more 
accurately. Also, the alerts that are generated by plan 

recognition algorithms are better suited for explaining threats 
than are opaque and non-intuitive statistical models.   
    Plan recognition algorithms have been used for a variety of 
tasks, such as detection of anomalous situation in an assisted 
care facility [4] and detection of terrorist threats [5]. However, 
they have rarely been applied to maritime threat recognition, 
and not empirically compared with conventional behavior 
recognition algorithms for threat detection. 

We address these issues as follows. We apply two plan 
recognition algorithms; the first uses hierarchical task 
networks (HTNs), while the other uses case-based planning. 
These algorithms apply consistency-based plan recognition 
techniques [6]. We apply them to four simulated maritime 
scenarios and compare their performance versus a Markov 
logic network (MLN) algorithm, a probabilistic behavior 
recognizer that performed well in our prior studies on 
maritime threat detection [3]. Our results show that the plan 
recognition algorithms outperform this probabilistic behavior 
recognizer for scenarios involving longer-term plans. 
However, the results on scenarios with reactive plans 
involving anomaly situations are mixed.  
      We structure the remainder of this paper as follows. We 
provide an overview of plan recognition approaches followed 
by a detailed description of HTN and case-based approaches. 
We then describe our empirical evaluation and results. Finally, 
we conclude with a discussion and issues for future research.  

II. PLAN RECOGNITION OVERVIEW 
Plan recognition is the task of inferring plan(s) of an 
intelligent agent by observing the agent’s actions or the effects 
of those actions. It involves mapping a temporal sequence of 
observed actions to some plan representation that identifies 
the plan’s goal and the relation of actions among the plan’s 
components [7]. Plan recognition algorithms can be 
categorized into consistency-based and probabilistic 
approaches [8]. The former include hypothesize and revise 
algorithms, version space techniques, and other closed-world 
reasoning algorithms, while probabilistic algorithms include 
those that use stochastic grammars and probabilistic relational 
models. The maritime environment is a continuous, non-
deterministic domain, making it challenging to apply any plan 
recognition approach. As a first attempt, we consider only 
consistency-based approaches.  

III. MARITIME PLAN RECOGNITION 
We develop consistency-based plan recognition algorithms for 
the maritime domain as follows (see Figure 1). We assume 
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that an agent controlling a small boat or fer
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Figure 1. Consistency based approach to maritime
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by retrieving and reusing solution
similar to the problem at hand [10].
memory of problem-solution pairs
can be automatically learned fro
engineered, depending on the appl
includes an algorithm for case retr
similarity assessment.  

We adopt CBR for consistency-
follows. We manually engineered 
selected scenarios of interest. The 
Primary Case Base (PCB), covers 
agent. The second case base, called
(SCB), only covers the local variat
to account for collision avoidance
reason for using two case bases 
algorithm, which uses a single rep
CBR algorithm cannot effectively a
deviations from the plan using a sin

TABLE 2. PRIMARY CASE R

Feature  Descript
Vessel-Type Type of ve
Travel-Path 
   <[location, <Map 
      [speed, activity]>]> 

Travel path
Each trave
hashmap o

TABLE 3. SECONDARY CASE

Feature  Descri
Vessels-(Ref, 
Approaching) 

The refe
vessel ty

Relative-bearing Their re
Primary-case-pointer Pointer 
Speed (Ref, Approaching) The spe
Avoidance-Actions Ordered

referenc

Tables 2 and 3 display case repres
SCB.  The vessel type and its trave
above for our HTN plan recognizer
PCB cases. In addition to the vess

nment, it is necessary to 
the face of unexpected 

may temporarily change its 
other oncoming vessel.  To 
, when the observed and 
Recognizer replans in an 
First, it updates the active 
evaluates it for consistency. 
attempts to find a consistent 
orical states. If the updated 
is removed from future 
e, at the start of a plan 
zer experiences its largest 
ans must be evaluated for 
es as inconsistent plans are 
remains consistent then the 

rocess for solving problems 
ns from problems that are 
. A CBR system relies on a 
 called cases. These cases 

om observations or hand-
lication. The CBR process 
rieval, which involves case 

-based plan recognition as 
two case bases that cover 
first case base, called the 

the entire travel path of an 
d the Secondary Case Base 
tions (e.g., path deviations) 
e among two vessels. The 

is that, unlike the HTN 
presentation for plans, the 

account for unforeseen local 
ngle case representation.  
REPRESENTATION 

ion 
essel performing an activity 
h comprising waypoints. 

el segment points to a 
of speed to activity label 

E REPRESENTATION 

ption 
erence and approaching 
ypes 
elative bearing  
to a primary case 
eds of the two vessels 

d list of actions that the 
ce vessel will execute 

sentations for the PCB and 
el path features, as defined 
r, are used to represent the 
sel’s speed and its activity 



label, the case-based algorithm also uses a 
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Figure 2.  Case-based plan recognition al
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as follows: (1) its agents are controlled by our HTN algorithm, 
and (2) it visually displays the behavior of our plan and 
behavior recognition algorithms in the Potomac River map.  
  First, we used an HTN planner, namely SHOP2PDDL+ [12] to 
generate the plans used by all the simulated agents controlling 
the vessels in our scenarios (i.e., motorboats and ferries). 
Among HTN planners, we selected SHOP2PDDL+ because it 
can be used to generate behaviors in our continuous planning 
domain. It uses a wait action to represent durative activities. 
For our scenarios, we encoded a set of SHOP2PDDL+ methods 
(e.g., for ferrying from one dock to another) that allows it to 
generates plans such that, given a scenario’s start state and 
goal state, the resulting plan can be given to and executed by 
the TAO Sandbox. To respond to a dynamic situation (e.g., 
collision avoidance situations), we added an action that can be 
used to perform conditional planning; it allows an agent to 
monitor the TAO Sandbox environment for any specified 
situations and, if matched, triggers a replan. The revised plan’s 
actions are then sent to the TAO Sandbox simulator for 
execution.    
  Second, we used Google Earth to accurately scale (from 
pixels to nautical miles) and depict the Potomac River area, 
including the NH, OT, and RAD ports (see Figure 3). We 
modeled the waypoints for the four scenarios, their associated 
ferry schedules, and boat transit speeds by observing actual 
maritime traffic on the Potomac River. We specified the 
waypoints by considering the upstream and downstream traffic 
lanes that are marked with buoys. We added random 
variations to the scenario instances to simulate realistic 
maritime conditions and path variations. We included up to 
four concurrent agent-controlled vessels in a scenario to 
control for extraneous vessel interactions. Finally, we ran ten 
instances of each scenario and collected our observations. 

D.    Threat Detection Algorithms 
We implemented two plan recognition algorithms for 
comparison with the best-performing behavior recognition 
algorithm from our previous studies [3].  

1. HTN Plan Recognizer (HTN-PR): This implements the 
HTN plan recognition algorithm described in Section 3. 
The Recognizer is connected to and observes the TAO 
Sandbox environment (e.g., the vessels’ activities). It uses 
the same planning model given to SHOP2PDDL+ (see 
Section 4.C). Also, for each of the four scenarios, we 
provide this planner with the set of possible goal states 
(e.g., ferry passengers to a particular dock).  

For dynamic situations, the Recognizer periodically 
replans to mimic the conditional replans that the agent 
might execute. It uses these to detect anomalies by 
noticing when the actual and expected actions deviate 
during a specified time frame (e.g., as in scenario #4, 
where the agent-controlled motorboat deliberately 
disregards collision avoidance regulations).   

2. CB Plan Recognizer (CB-PR): This implements the case-
based plan recognition algorithm described in Section 3. 
We manually populated the PCB with 4 cases (one per 
vessel instance) and the SCB with 2 cases (one per 

motorboat). Also, for dynamic replanning situations, like 
HTN-PR, if the SCB retrieves a case cscb and the agent 
does not take any of cscb’s actions within a prespecified 
time, then the activity is marked as anomalous.  

3. MLN Behavior Recognizer (MLN-BR): This algorithm is 
based on our recent work on probabilistic graphical 
models [3], where we showed that MLNs performed well 
on maritime threat detection tasks. MLNs combine first-
order logic with a probabilistic interpretation to represent 
expert domain knowledge [13]. We used Alchemy [14] to 
implement MLN-BR. It interfaces with the TAO Sandbox 
to obtain a representation of the world state as a set of 
first-order logic clauses. MLN-BR performs MAP 
inference for each agent to recognize its behavior. We 
encoded knowledge for MLN-BR to identify the 
following activities: Debarking, Cruising, Docking, and 
Docked. This knowledge includes five rules that encode 
discretized values of a vessel’s speed, proximity to a 
dock, and its bearing relative to docks. In addition, to 
handle the collision avoidance scenarios, we encoded 
seven more logic rules. These rules involve additional 
features such as the possibility of head-on collision, and 
whether the agent is on its intended path to its next 
waypoint. Finally, the MLN is given a series of rules 
regarding the vessel type (i.e., motorboat or ferry). For 
example, the rule: 

5 !Speed(v,0,t) => !Action(Docked,v,t) 
specifies that, if the speed of a vessel v is not 0 at time t, 
then v is not Docked at time t, and this rule has a weight 
of 5. Here a weight is a measure of the strength of a 
constraint for a given world. A world’s likelihood is lower 
if it violates a constraint with a high weight. 

E.    Metrics 
We used the following measures to compare the algorithms: 
1. Activity Labeling Accuracy: This is the number of 

correctly predicted labels for an event type divided by the 
total number of that type of event. Our scenarios included 
the following event labels: Avoiding Collision, Cruising, 
Debarking, Docked, Docking, and Anomaly. We 
computed the accuracy for each label type and the 
accuracy over all the label types. 

2. Anomaly Labeling Latency: Each time step during the 
course of an activity represents an event, which the 
algorithms label. The ability to label an anomalous 
activity as soon as it starts is desirable for the algorithms. 
Therefore, we measure the time elapsed between the onset 
of an anomaly and the time it takes for an algorithm to 
correctly detect it. Smaller time lags imply a better 
performing algorithm.  

F.    Results 
Table 4 displays the accuracy of three algorithms on our four 
scenarios. In Scenarios 1 and 2, which pertain to longer-term 
behaviors, the plan recognition algorithms significantly 
outperform MLN-BR. For instance, in the Routine Ferry 
Scenario (#1), HTN-PR and CB-PR recorded higher 



accuracies than MLN-BR (0.859, 0.839 vs. 0.776). However, 
the performance difference among the two plan recognition 
algorithms is small. In Scenario #2, concerning non-routine 
ferries, HTN-PR and CB-PR again significantly outperform 
MLN-BR (0.928, 0.938 vs. 0.564), which cannot detect 
anomalies because it has no knowledge of the intended routes. 
Furthermore, CB-PR outperforms HTN-PR overall and on 
anomaly detection for this scenario (0.984 vs. 0.931). 
     Performance on the reactive scenarios is mixed. In 
particular, in Scenario #3, one of the plan recognition 
algorithms (CB-PR) significantly outperforms the behavior 
recognizer (MLN-PR) on the avoidance activity (1.0 vs. 
0.773). However, in Scenario #4, MLN-BR outperforms both 
the plan recognition algorithms on anomaly detection (0.881, 
0.905 vs. 0.971), although the differences were not significant. 
We believe this occurred because MLN rules generalize better 
in a reactive situation, a conjecture that we will explore in our 
future work. CB-PR outperforms HTN-PR in Scenario 4, and 
predicts all avoidance actions correctly on Scenario 3.  

TABLE 4 . AVERAGE ACCURACY PER ACTIVITY (10 RUNS) 

 
 

Therefore, this supports our first conjecture that these plan 
recognizers can recognize some longer-term behaviors more 
accurately than this behavior recognition algorithm.  
   Table 5 displays average anomaly labeling latencies for the 
anomaly recognition scenarios (i.e., #2, and #4). For longer-
term intent violations (Scenario 2), CB-PR substantially 
outperforms HTN-PR (27 vs. 118 seconds). Thus, CB-PR is a 
more accurate activity labeler and is also faster at detecting an 
anomalous situation. In contrast, MLN-BR’s time is infinite 
since it does not detect any anomaly in this scenario. 
However, it performs much better in the reactive Scenario 4. 
For instance, it detects collision avoidance anomalies after an 
average of 10.7 seconds after its onset compared to at least a 
minute (i.e., 64.7 seconds) for the other algorithms. 

 

 

 

TABLE 5. ANOMALY  LABELING LATENCY (SECONDS)  

 

V.   DISCUSSION 
Many methods have been investigated for plan and behavior 
recognition (e.g., [15][16][17]). They differ along many 
dimensions, such as their agent relation (e.g., keyhole, 
intention, adversarial), what they infer (e.g., action, plan, 
goal), model representation type (e.g., decision theoretic, 
probabilistic), whether they are generative or discriminative, 
their model family (e.g., Bayesian, MDP, random field), and 
how they detect anomalies. These have been applied to a 
plethora of tasks, such as adversarial strategy detection, user 
modeling, human activity recognition, and threat detection, 
which is our focus. However, little published research exists 
on applying plan recognition techniques for maritime threat 
recognition, although Nicolescu and her colleagues have 
studied this topic in recent years, including the application of 
hidden Markov models (HMMs) and spreading activation 
techniques for detecting potentially deceptive behavior [18]. 

Our own related work has most recently focused on 
applying probabilistic graphical models to synthetic and real-
world threat recognition scenarios [3]. We found that Markov 
logic networks possess some advantages in comparison with 
HMMs and conditional random fields, though they require 
substantial care to design and time to train. Our experience 
with these and simpler approaches for threat recognition [19] 
led us to consider knowledge-intensive plan recognition 
approaches that can provide additional constraints to the 
prediction task. From our prior work and this investigation, 
our observation is that plan recognition algorithms can be 
preferable to behavior recognition algorithms in scenarios with 
longer-term anomalies that are detectable using background 
knowledge, though the inverse can be true for reactive 
scenarios. This suggests that a hybrid approach may be useful 
for maritime threat detection, which we will investigate as part 
of our future research.  

VI. CONCLUSION 
Existing algorithms for anomaly and threat detection 
predominantly use statistical normalcy models. Although these 
are somewhat successful in thwarting short-term reactive 
changes, they cannot detect subtle but critical violations in 
routine plans. To address this issue, we developed plan 
recognition algorithms to detect longer-term and reactive 
violations of expected vessel behaviors in a simulated 
maritime environment. In particular, we developed two 
consistency-based plan recognition algorithms based on HTN 
and case-based techniques. We evaluated them on a set of four 
scenarios and found evidence that they significantly 
outperform a behavior recognition algorithm on longer-term 
plan recognition tasks.  
     To our knowledge, this is the first published evaluation of 
plan recognition algorithms for maritime threat detection 

Scenario #2 #4
HTN-PR 118.0 90.4
CB-PR 27.0 64.7
MLN-BR * 10.7



tasks. This is an initial study; further research is needed to 
better understand the pros and cons of these algorithms.  For 
example, our evaluation was limited in the types of scenarios 
and the number of concurrent agents active in a scenario. In 
our future work, we will extend our evaluation to scenarios of 
coordinated small boat attacks, denser traffic conditions, and 
schedule violations to investigate the generality of our 
approach. Also, although we considered stochastic variations 
in our scenarios, they were limited and our consistency-based 
approaches were not stochastic. Therefore, we will examine 
probabilistic approaches to plan recognition in our future 
research. Finally, we assumed that a library of HTN plans is 
available to our system at the outset. However, in practice, 
they will need to be acquired from subject matter experts or 
learned from observations. We plan to explore other 
hierarchical and case-based learning algorithms to 
automatically acquire such models (e.g., [20][21]).  
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