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a b s t r a c t

For an imaging spacecraft to provide higher resolution imaging capability, the satellite

will require larger mirrors. Because of the weight and launch constraints for space-

based optics systems, the mirrors will have to be segmented and light-weight, resulting

in increased flexibility and lower structural frequencies. Consequently, achieving

surface accuracy requirements for high resolution imaging with these large aperture

light-weight mirrors become a challenging task. This paper investigates the use of

adaptive optics for wavefront sensing and surface control of large segmented mirrors.

An H1 robust control technique is considered for the control of the adaptive optics

system with the reduced number of inputs and outputs using singular value

decomposition and Zernike polynomials. The robust controller design with the reduced

model is validated with a computer simulation for a full plant in the presence of

disturbances.

Published by Elsevier Ltd.

1. Introduction

For an imaging spacecraft to achieve higher resolution
images, the size of the telescope aperture needs to be
increased without losing accuracy in the mirror surface
figure. For ground telescopes with large aperture mirrors,
employing an adaptive optics system using deformable
mirrors and wavefront sensors is critical to correct
aberrations in the image caused by atmospheric turbu-
lence. For space telescopes, the major source of image
aberration is likely caused from the telescope structure.
Because of the weight and launch constraints for space-
based optics systems, the space mirrors will have to be
segmented and light-weight, resulting in increased flex-
ibility and lower structural frequencies. This structural
vibration and deformation will cause aberrations in
the image and degrade the imaging capabilities.

Consequently, future space telescopes will require adap-
tive optics systems that are capable of segment alignment,
optical jitter control, and surface figure control.

Many ground adaptive optics systems use simple
control laws such as integral controllers based on the
assumption of a static linear relationship between
deformable mirror actuator inputs and wavefront sensor
outputs. A control design for adaptive optics systems with
large flexible mirrors is a challenging problem because of
high order highly coupled system dynamics and the large
number of inputs and outputs. When the dynamics of the
mirror structure are ignored in the controller design, the
control-structure interaction could lead to an instability of
a system. Therefore, adaptive optics control design with-
out considering mirror dynamics may not be valid for
large flexible space mirrors.

Control of large flexible space structures has been a
constant subject of research. Safonov et al. [1] synthesized
the H1 robust controller for a large space telescope
structure model with 58 vibration modes. The paper
addresses various issues in robust controller design such
as pre-conditioning of the plant, model reduction, and
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robustness. H1 robust control design is also studied for
the Advanced Structure/Control Integrated Experiment
(ASCIE) consisting of hexagonal mirror segments for the
primary optic and a lightweight truss support structure
[2,3]. The ASCIE has 18 actuator inputs, 24 sensor outputs,
and only considers the piston, tip, and tilt correction of
each segments. Centralized, decentralized, and overlap-
ping control architectures to handle the complexity of
ASCIE are presented in [2]. Rigorous analysis on modeling
and robust control techniques for ASCIE is presented
in [3].

Robust control design is also considered for adaptive
optics systems with deformable mirror surfaces. Frazier
et al. applied the robust control technique for an adaptive
optics testbed with a 37 channel deformable mirror [4–7].
Other works have begun to apply advanced control
techniques to large ground based telescopes that have
more structural flexibility than previous generation
telescopes, similar to what space-based telescopes will
experience [8–10].

In this paper, we investigate the adaptive optics
system of a large segmented mirror space telescope and
its control design using the H1 robust control technique.
Model reduction is also performed for the robust control
design including the reduction of the number of inputs
and outputs using the singular value decomposition and
Zernike polynomials. Computer simulation results are also
provided for the proposed control design.

2. Adaptive optics for segmented space telescope

The term adaptive optics refers to any optical system
in which some optical component; be it a mirror, lens, or
some other device, undergoes adaptation or modification
to improve the resulting wavefront. The optical wavefront
is a surface formed by a collection of points of a
propagating beam with the same phase. The wavefront
is measured by a wavefront sensing device such as a

Shack Hartmann wavefront sensor. Ideally, the wavefront
from a distant point source travelling through a vacuum
without any interference would be planar, or flat. In
reality, various aberrations cause the wavefront to be
non-planar. As the light propagates though a dynamic
atmosphere, or any other medium, it becomes aberrated
to an observer on the other side of that medium. Other
aberrations arise from imperfections in optical compo-
nents, such as uneven coatings, imperfect shapes, or
impurities in glass, among others. A moving or vibrating
platform can also lead to wavefront aberrations, which is
of particular concern for large space telescopes.

Adaptive optics systems typically consist of a wave-
front sensor, an adaptive optical component, and a control
computer. Fig. 1 shows the simplified schematic of the
adaptive optics system for segmented space telescope
where the deformable primary mirror is used to correct
aberrations. The wavefront sensor requires a reference
beam such as a beacon, a laser source, a bright star next to
the object, or an object itself which contains aberration
information.

The most common wavefront sensor for adaptive
optics systems is the Shack–Hartmann wavefront sensor.
It consists of a camera and a lenslet array at the front
entrance pupil of the camera. Each of these lenslets is
identical and will focus the incoming light on the imaging
chip behind it. For a planar incoming wavefront, the
location of the focused spots on the CCD will be evenly
spaced in the same geometric pattern as the lenslet array.
When the incoming wavefront is not planar, the focused
spots will have displacements on the CCD as shown in
Fig. 2, which is proportional to the local slope of the
incoming wavefront.

Fig. 3 shows the configuration of the actuators and
sensors of the segmented telescope model considered in
this paper. The primary optic of the telescope consists of
six hexagonal segments. Each segment has 156 facesheet
actuators physically integrated into the mirror segment
structure for a total of 936 actuators. There are 61 lenslets

Fig. 1. Adaptive optics system of a segmented telescope.
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in each of the six Shack Hartmann sensors, for a total of
366 lenslets. Each Shack Hartmann sensor is optically
mapped to each segment as shown in Fig. 3. The Shack
Hartmann sensor outputs are given as groups of x-slopes
and y-slopes for each segment.

For an adaptive optics control design, the system plant
can be simply modeled as a static linear relation between
input and output,

y¼Uu ð1Þ

where y is the Shack Hartmann sensor output, u is the
actuator control input, and U is the influence matrix,
which is also called the poke matrix since U can be
determined experimentally by poking each actuator and
observing the sensor output. For this simple plant, the
integral controller in discrete time becomes

uðkÞ ¼ uðk�1Þ�mUyyðkÞ ð2Þ

where Uy represents pseudo-inverse of the poke matrix, m
is the adaptation gain, and k is the time index. When the
number of sensor measurements is larger than the
number of actuator inputs, the pseudo-inverse provides
the least squares solution of the control input required.
When the number of actuator inputs is larger than the

number of sensor measurement, the pseudo-inverse
provides the minimum-norm solution. This simple inte-
gral controller ignores the structural dynamics of a system
and therefore it has a limited performance. A robust
controller for adaptive optics system is attractive when
the dynamics of the system are accounted for since it can
handle MIMO systems in the presence of external
disturbances and unmodeled dynamics.

3. H1 robust control design

3.1. Modeling of segmented mirror telescope

The segmented mirror telescope model was generated
using a finite element program by Lockheed Martin. Only
the first 166 vibration modes with frequencies ranging
from 29.1 to 767.6 Hz were retained in the model
represented in modal coordinates. The damping ratio is
0.3 for all the frequency modes. In addition to the 936
facesheet actuators and 732 Shack–Hartmann sensor
outputs, the simulation model also includes additional
sensors and actuators for optical jitter control and
segment alignments. It is assumed that the controller for
optical jitter and segment alignment can be designed
separately from the adaptive optics controller with
facesheet actuators and Shack Hartmann sensors. This is
a reasonable assumption since the targeting control
bandwidth is significantly different for each control
design. The plant of the adaptive optics system can be
represented in state space form.

_x ¼AxþBu

y¼ CxþDu ð3Þ

where A 2 R332�332, B 2 R332�936, C 2 R732�332,
D 2 R732�936, x is the state variable, y is the measured
output, and u is the control input. In the frequency
domain, the output of the system is

YðsÞ ¼ ½CðsI�AÞ�1BþD�UðsÞ ð4Þ

Fig. 2. Shack Hartmann wavefront sensor.

Fig. 3. Locations of actuators and Shack–Hartmann lenslets of a mirror

segment.
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When the system approaches to steady-state ðs-0Þ, the
DC gain of the output becomes

y¼ ½�CA�1BþD�u ð5Þ

The poke matrix in Eq. (1) can be written as

U¼�CA�1BþD ð6Þ

which is a steady-state approximation of the dynamic
plant.

3.2. Model reduction

Robust control design for the plant in Eq. (3) is
inhibitive due to the size of the plant. The system states
can be reduced by observing Hankel singular values based
on the observability and controllability grammians of the
plant model. The Hankel singular values of the Segmented
Mirror Telescope are plotted in Fig. 4.

Although there are 332 states present in the system,
Fig. 4 shows that the number of states can be reduced to
about 240 without losing significant information in the
system, since the Hankel singular values have close to
zero influence on the system above 240. This reduced
state model is used for controller synthesis.

3.3. Input/output reduction

Input/output reduction reduces the number of inputs
and outputs to the system, but does not change the
internal dynamics of the system. There are two different
bases for model reduction used in this paper: singular
value decomposition and Zernike polynomials. Using the
singular value decomposition, the poke matrix can be
written as

U¼URVT
ð7Þ

where U and V are unitary matrices and R is a diagonal
matrix with singular values on the diagonal. The columns
u1,y,um of U and v1,y,vm of V can provide orthonormal

basis for the linear transformation y¼Uu. This transfor-
mation maps the ith basis vector ui to the ith basis vector
vi with the magnitude of the ith singular value si. For the
segmented mirror telescope model, first 21 terms are
retained in the reduced model. The input/output reduced
model is written as

_x ¼ AxþBMu

y ¼ PCxþPDMu ð8Þ

where

u¼Mu y ¼ Py

M¼ ½v1 � � � v21�, P¼ ½u1 � � �u21�
T ð9Þ

Fig. 5 shows the open loop bode plot of the reduced plant
model represented in Eq. (8).

Another method for input/output reduction is using
Zernike polynomials. Zernike polynomials are sequence of
orthogonal polynomials defined over a unit circle to
represent wavefront phase.

jðr,yÞ ¼ A00þ
1ffiffiffi
2
p

X1
n ¼ 2

An0R0
n

r

R

� �

þ
X1
n ¼ 1

Xn

m ¼ 1

ðAnmcosðmyÞþBnmsinðmyÞÞRm
n

r

R

� �
ð10Þ

where jðr,yÞ is a wavefront phase represented in polar
coordinates system, R is the maximum radius of the beam
for normalization, A and B are coefficients, and

Rm
n

r

R

� �
¼

Xðn�mÞ=2

s ¼ 0

ð�1Þs
ðn�sÞ!

s!
nþm

2
�s

� �
!

n�m

2
�s

� �
!

r

R

� �n�2s

ð11Þ

There is an inverse relationship between the coefficients
of the Zernike polynomials and the amount of influence
that they have on the wavefront. The lower the order of
polynomial coefficients, the more influence the particular
coefficient has over the wavefront. Zernike polynomials in
the polar coordinates can be transformed into Cartesian
coordinates using r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
and y¼ tan�1ðx=yÞ. The 21

most influential Zernike polynomial terms were retained
in the reduced model. The Shack Hartmann wavefront
sensor measures local slopes of a wavefront and the
piston term (n=m=0) which the Shack Hartmann sensor
cannot measure is not included in the 21 terms.
The wavefront slopes in Cartesian coordinates can be
written as

@jðx,yÞ

@x
¼

@z1ðx,yÞ

@x
� � �

@z21ðx,yÞ

@x

� �
a

@jðx,yÞ

@y
¼

@z1ðx,yÞ

@y
� � �

@z21ðx,yÞ

@y

� �
a ð12Þ

where zi(x,y) is the ith Zernike polynomial term and a is a
vector of 21 Zernike polynomial coefficients. The output of
the system can be written as

y¼ Zua ð13Þ
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where

Zu¼
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which is determined by evaluating x and y gradients of
Zernike polynomials for all 366 lenslets. Using Eq. (13),
the equation of motion can be reduced to

_x ¼AxþBu

a¼ ZuyCxþZuyDu ð15Þ

when s-0, the transfer function of the system becomes

Uu¼�ZuyCABþZuyD ð16Þ

The system equation of motion is further reduced using
the singular value decomposition, Uu¼UuRuVu

T.

_x ¼AxþBMuuu

yu¼ ZuyCxþZuyDMuuu ð17Þ

where

u¼Muuu, Mu¼ ½vu1 � � �vu21� ð18Þ

Fig. 6 shows the open loop Bode plot of the reduced plant
model represented in Eq. (17).

3.4. Control design

Fig. 7 is the block diagram of the control system where
G(s) represents the transfer function of the full plant, K(s)
represents the transfer function of the controller, n
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Fig. 6. Open-loop Bode plot of reduced model using Zernike polynomials

and SVD.

Fig. 7. Block diagram of control system.

Fig. 8. Augmented plant and H1 controller for robust control design.
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Fig. 9. Loop shape of H1 control system using SVD reduced model.
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represents the sensor noise, di represents input
disturbance, and do represents output disturbance. The
control design is based on the mixed-sensitivity H1
approach of robust control.

Let us define the sensitivity transfer function as S(s) =
(I+G(s)K(s))�1, and the complimentary sensitivity transfer
function as T(s)= I�S(s). The effects on the output by
disturbance can be reduced by minimizing the sensitivity
function S(s), but that of the effect from sensor noise n can
be reduced by minimizing the complementary sensitivity
function T(s). Since S(s)+T(s)= I, both minimizations
cannot be done simultaneously. In order to do this, we
can design a desired loop shape by choosing proper
weighting function W1(s) and W2(s) for sensitivity and
complementary sensitivity functions. For the control
design, the plant is augmented with the weights W1(s)
and W2(s) as shown in Fig. 8. The transfer function from u1

to y1 in Fig. 8 becomes

T ¼
W1ðsÞSðsÞ

W2ðsÞTðsÞ

" #
ð19Þ

The controller transfer function is determined by the
following minimization problem

min
KðsÞ

gW1ðsÞSðsÞ

W2ðsÞTðsÞ

�����
�����
1

ð20Þ

where g is a design parameter. For the controller design,
reduced plant models with the singular value
decomposition defined as GðsÞ and Zernike polynomials
defined as GuðsÞ are used. Robust control toolbox in Matlab
is used for synthesis of the controller. Fig. 9 shows the
resulting control design with weights W1(s) and 1/W2(s)
using the reduced model with the singular value
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decomposition, GðsÞ, where L(s) represent the resulting
open-loop shape. Fig. 10 is the resulting control design
using the reduced model with the Zernike polynomials,
GuðsÞ.

3.5. Simulation results

Computer simulation is performed on the full plant
model using two H1 controllers with GðsÞ and GuðsÞ. Fig. 11
shows the output results using the controller designed for
GðsÞ when the two disturbance sources are considered.
The figures on the left column are simulation results with
a constant input disturbance of d=0.001 for all control
inputs. The figures on the right column shows simulation
results with a constant output disturbance directly of
d=0.001 directly added to all the Shack Hartmann sensor

measurements. As expected, the reduced output, y , is
converged towards zero for both cases. With the
controller designed with the reduced model, the actual
Shack Hartman sensor output converges to non-zero
values. The root-mean-square value of the full sensor
output is also shown in Fig. 11.

The more results are obtained when the full Shack–
Hartmann sensor output is converted to wavefront using
Zernike polynomials. The coefficients of the first 21 Zernike
terms shown in Fig. 11 converges to non-zero values.
Although the input/output reduction is performed with the
basis that has most influence based on singular value
decomposition of the poke matrix, the resulting controller
based on GðsÞ did not impact the Zernike modes especially
when the constant output disturbance is applied.

Fig. 12 shows the simulation results using the
controller designed for GuðsÞ. It can be seen that the
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reduced output, yu, which is coefficients of first 21 Zernike
polynomials, converges towards zero as expected. Since
the lower order Zernike terms has more influence on the
wavefront of a beam, it is anticipated that the controller
designed with GuðsÞ results in a better imaging resolution
than the controller designed with GðsÞ.

With the classical integral controller shown in Eq. (2),
the targeted control bandwidth of 10 Hz cannot be easily
met without adding additional structural filters or low-
pass filters. Increasing the classical controller gain with-
out structural filters would eventually make the system
unstable. The classical controller design also requires
input/output reduction due to the dimension of the
problem. The singular value bode diagrams of the H1
closed loop systems with the reduced plant models, GðsÞ

and GuðsÞ, are shown in Fig. 13, and the required 10 Hz
control bandwidth can be easily attained with the H1
robust control design for the reduced outputs.

4. Conclusion

In this paper, an H1 robust control design of the space
telescope adaptive optics system is presented. Due to the
overall dimension of the plant, model reduction including
input/output reduction is performed using the singular
value decomposition and Zernike polynomials. The simu-
lation results show that the H1 controllers using both
reduction methods yields good performance for reduced
outputs. Therefore, it is critical to choose a good basis for
model reduction such that the reduced output faithfully
represents the actual system output which will influence
the overall system performance. Zernike polynomials

form a good basis for model reduction since they are of
the same form as the types of wavefront aberrations often
observed in optical systems.
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Fig. 13. Singular value Bode plots for closed loop system with GðsÞ ðleftÞ and GuðsÞ ðrightÞ.
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