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1.0 Executive Summary

The University of Memphis conducted basic research into techniques for advancing
network-centric sensors for eventual deployment in Department of Defense (DoD)
applications. This basic research included the following focus sub-areas: 1) feature
fusion/feature-based sensor system design techniques; ii) sensor ontologies for problem-
solving architectures; ii1) profiling sensor improvement through the use of innovative
classification algorithms and data visualization techniques; i1v) alternative sensing
modalities; v) turbulence mitigation techniques; and vi) development of a feature sensing
laboratory.

Under the topic of feature fusion/feature-based sensor system design, techniques known
as Lasso, Group Lasso, and Sparse Multiple Kernel Leaming were applied to break beam
profiling sensor design. The results indicate that the Group Lasso technique 1s effective
for feature quality maximizing sensor design because of its ability to provide both inter-
group and intra-group feature sparsity.

Under the topic of sensor ontologies for problem-solving architectures, a framework that
matches sensors to compatible algorithms to form synthesized systems was developed
and applied to improved forms of the beam-break profiling sensor. This work resulted in
several publications.

Under the topic of profiling sensor improvement, various algorithms for improving the
classification performance of a pyro-electric based profiling sensor were investigated and
tested using data from field collections. Results indicated that Logistic regression with a
simple height to width ratio provide good performance.

Under the topic of alternative sensing modalities, a model for micro-resonator based
sensors was developed, research toward the improvement and refinement of a novel
technique for forming terahertz images was performed, and the use of compressive
sensing in a profile type detector was investigated. This work resulted in several
publications.

Under the topic of turbulence mitigation techniques, lucky imaging, blind deconvolution,
spectral techniques, and frame averaging were examined using turbulence simulation
against their ability to perform in a wide varety of tactical situations. The strengths and
weaknesses of each were discussed in a publication. In addition, the applicability of
turbulence mitigation techniques to sparse array sensors such as profiling sensors was
investigated.

Under the topic of a feature sensing laboratory, the design and implementation of an
infrastructure to support long-term sensor network emplacements in a laboratory like
environment was pursued. To date, key features of the design have been implemented
with final integration of the initial deployment likely to happen in September 2012.




The execution of this contract has resulted in some significant scientific and technical
progress in support of intelligent, network-centric, sensors. We believe that this work has
been of immediate benefit to the Army and will continue to pay dividends in technical
achievement into the near future. Further publications will result directly and indirectly
from this work.




2.0 Introduction

The University of Memphis conducted basic research on the subject of Intelligent
Network Sensors in support of US Army basic research needs in the areas of penmeter
security and force protection. This research covered a broad range of research topics and
has resulted in several conference and journal publications.

The topics of research pursued under this effort were: i) feature fusion/feature-based
sensor system design techniques; ii) sensor ontologies for problem-solving architectures;
11) profiling sensor improvement through the use of innovative classification algorithms
and data visualization techniques; iv) alternative sensing modalities; v) turbulence
mutigation techniques; and vi) development of a feature sensing laboratory. A detailed
description of each research topic pursued in this effort i1s given below. Further details
and copies of published papers may be found in the Appendices.

3.0 Feature Fusion/Feature Based Sensor Design

Task 3.1: Demonstrate sensor optimization based on enhancement of
feature quality.

Task 3.2: Develop a feature fusion quality metric to serve as a cost function
for optimizing sensor design.

To demonstrate the procedure to accomplish the above stated objectives, the design of a
sparse trip wire sensor for human versus animal classification is used as a case study. The
sensor consists of two poles that can be placed on either side of a bottleneck along a trail.
One pole 1s lined with NIR transmitters and receivers, while the other pole is lined with
reflectors. As an object passes between the two poles, it blocks the path between the
trans-receiver (Tx-Rx) and reflector (Rr). The shape of the moving object is thus traced at
the output of the sensor system. The choice of number of sensors and their positions on
the poles are important design parameters. This effort investigates techniques to optimize
these parameters with the objective of enhancing the quality of shape features that
distinguish humans from animals. Each Tx-Rx and Rr pair generates ‘0’ based on the
amount of time they have been blocked by the moving object. The count of the number of
‘0’s generated by a pair can be used one feature. The sensor system used in this research
has 16 such pairs, generating 16 features for each object (hence forth a Tx-Rx and Rr pair
will be referred to as a detector in this report). This means a feature fusion technique that
assigns weights to features based on their importance also assigns weights to the
corresponding detector. This means that a detector with negligible weights can be
removed from the sensor during subsequent design iterations. Three feature fusion
techniques, namely Lasso [Tibshirani1996], Group Lasso[Friedman2010] and Sparse




Multiple Kemel Learning[Subramanhya2010] are investigated for feature quality based
sensor design.

Sparse Multiple Kernel Learning (SMKL)

In many cases, two classes, not separable linearly in their native dimensions, can be made
linearly separable in higher dimensions. In algorithms such as Support Vector Machines
(SVM), the inner product operation on the data is an important step. This process
becomes computationally challenging in higher dimensions. The Kemel trick allows the
dot product to be implemented in the lower dimensions itself, but gives the effect of a dot
product in the higher dimension. Let ¢(x) represent the mapping or projection of x on to

a higher dimension. The Kemel trick allows for the inner product (q)(x)(o(x')) in the

higher dimensional feature space to be represented by a Kernel in the input (low
dimension) space K (x,x'). For example the radial basis function Kernel given by
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SMKL is a-non-linear group selection technique that weights groups of features. In the
context of this report, the technique assigns weights to groups of detectors. SMKL
consists of a composite K(x,x”) kemnel generated by the weighted sum of primitive kemels

k(x,x").
G
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where G is the total number of group and f, are the kemnel weights. If different groups of
features are assignment to different kemels then the kemel weights become weights for
the groups. The process of estimation of the weights follows the technique described in
[Subramanhya2010]

Lasso

Least Absolute Selection and Shrinkage Operator, known more by its acronym Lasso is a
linear technique for solving a sparse regression problem. Lasso minimizes objective

function | Xf3- y”i + A 8], to find the optimum weighting parameters § for the features X

given the corresponding class predictions y. A is the regularization parameter that can be
varied to change the sparsity of the solution.

Group Lasso




Group Lasso as proposed by Friedman et al. is regression technique that introduces
sparsity at both the group level and at the individual feature level. The sparsity is
achieved by minimizing the cost function given by:
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G is the number of groups, N, is the number of features in the gth group, X; corresponds
to the features of the gth group,ﬁz[ﬁ]ﬁz...ﬁo] and f3, =[ﬁ,ﬁ2...ﬁN‘]. The process of

solving the optimization problem is described in [Friedman2010] The second term in the
cost function can cause very few weights in fg to be non-zero introducing sparsity within
a group. A combination of the second and third term in the cost function can cause all the
weight in a particular fg to be set to zero. This results in discarding an entire group,
leading to sparsity at the group level. In summary, Group Lasso provides both inter-group
and intra-group sparsity. It should be noted that the SMKL technique only provides group
level sparsity and not intra-group sparsity. .

Results

The algorithms were applied to a version of the trip
wire sensor, which has 16 detectors. In the case of
Group Lasso, three groups were formed with
detectors 1 through 5 forming group 1, detectors 6
to 11 forming group 2 and detectors 12 through 16 |
forming group 3. A total of 135 human profiles and |
96 animal profiles collected through various data
collections were used for the analysis.

Figure 3.1. Weights assigned to
detectors through Lasso

The graphs shown in Figures 3.1 and 3.2 show the weights assigned to detectors of the
trip wire sensor using Lasso and Group Lasso respectively.

The results indicate Lasso and Group Lasso assigns
non-zero weights to only 7 out of the total of 16
detectors.  In this particular case, it can be = °
hypothesized that Group Lasso does not provide '#
group level sparsity since at least one detector in (¥ .
each group is essential to minimizing the first term L& & :
in the cost function. SMKL provides weights of | s H i ’
0.3804, 0.305 and 0.3.144 respectively for groups 1, - '
2 and 3. This confirms with the results of Lasso and
Group Lasso, since every group has detectors that
contribute toward minimizing the error.
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Figure 3.2. Weights assigned to
detectors using group Lasso




The investigation indicates that the Group Lasso technique is an effective for feature
quality maximizing sensor design because of its ability to provide both inter-group and
intra-group feature sparsity. Future effort will entail research into mutli-modal sensor
network design using the techniques described above.
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4.0 Sensor Ontologies

Task 4.1: Conduct basic research to a) advance sensor ontologies for
problem-solving architecture; and b) advance profiling sensors through the
use of innovative classification algorithms and data-visualization
techniques

The deployment of ubiquitous sensor systems and algorithms has led to many challenges,
such as matching sensor systems to compatible algorithms which are capable of
satisfying a task. Compounding the challenges 1s the lack of the requisite knowledge
models needed to discover sensors and algonthms and to subsequently integrate their
capabilities to satisfy a specific task. Basic principles for an ontological problem-solving
framework have been researched and a proof-of-concept framework was implemented in
support of Task 4.1.

The proof-of-concept framework matches sensors to compatible algonthms to form
synthesized systems, which are capable of satisfying a task and then assigning the
synthesized systems to high-level missions. The approach designed for the ontological
problem-solving framework has been instantiated in the context of a persistence
surveillance prototype environment, which includes profiling sensor systems and
algorithms to demonstrate proof-of-concept prninciples. Even though the problem-solving
approach was instantiated with profiling sensor systems and algonthms, the ontological
framework may be useful with other heterogeneous sensing-system environments. Work
in support of Task 4.1 was published in J. Qualls and D.J. Russomanno (2011)
“Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems




and Algonthms,” Sensors, Volume 11, Number 3, 3177-3204. This paper 1s provided as a
supplement to this report.

The work of the previous paragraph was extended, also in support of Task 4.1. This work
leverages knowledge models describing sensors, algorithms, and high-level missions to
facilitate automated inference of assigning systems to subtasks that may satisfy a given
mission specification. To demonstrate the efficacy of the ontological problem-solving
architecture, a family of persistence surveillance sensor systems and algorithms has been
instantiated in a prototype environment to demonstrate the assignment of systems to
subtasks of high-level mussions. This work extends the results of the previously cited
joumal paper and was published as J. Qualls and D.J. Russomanno (2011) “Ontological
Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-
Level Missions™ Sensors, Volume 11, Number 9, 8370-8394. This paper is provided as a
supplement to this report.

To advance profiling sensors through the use of innovative data-visualization techniques
work was completed in support of Task 4.1 to port existing data visualization software
for creating silhouettes from data obtained from the vertical array detector version of a
profiling sensor to a platform-independent architecture. The silhouette viewer was
subsequently integrated into the ontology problem-solving framework where it can be
described using the web ontology language (OWL) and subsequently discovered and
tasked. The integration of the silhouette viewer into the ontology-based framework is
described in the context of data fusion in the paper C. Kothari, J. Qualls and D.J.
Russomanno (2012) “An Ontology-Based Data Fusion Framework for Profiling
Sensors,” IEEE International Conference on Electro/Information Technology, IEEE
Press, Indianapolis, Indiana. The research in this paper was also in direct support of Task
1 and is provided as a supplement to this report.

Additional work was completed in support of Task 4.1 in classification algorithm
development. A back-propagation neural network was created to classify data from a
novel, wireless profiling sensor developed in support of Task 4.3. The wireless version of
the profiling sensor allows the detectors to be placed in custom configurations, versus the
traditional vertical detector array. The results of the classification algorithm were
published in the paper: A. Galvis, D.J. Russomanno and C. Kothan (2012) “A Wireless
Near-IR Retro-Reflective Profiling Sensor,” Proceedings SPIE: Ground/Air Multi-Sensor
Interoperability, Integration and Networking for Persistent ISR III, Volume 8389,
Baltimore, Maryland. This paper is also provided as a supplement to this report.

Task 4.2: Conduct research to help define a means by which sensor
specifications, capabilities, and properties can be published and
discovered in a computer-readable format

The ontology work described in support of Task 4.1 also directly supports Task 4.2 by
using ontologies to define and make available in a computer-readable format sensor
specifications, capabilities, and properties. In addition to the two Sensors journal papers




previously listed, additional research was conducted in support of Task 2 to provide a
proof-of-concept illustration about how sensor specifications, capabilities, and properties
can be published in an ontology and used to support ontology-based fusion. The paper
published as C. Kothari, J. Qualls and D.J. Russomanno (2012) “An Ontology-Based
Data Fusion Framework for Profiling Sensors,” IEEE International Conference on
Electro/Information Technology, IEEE Press, Indianapolis, Indiana, which was first cited
above in support of the visualization subtasks of Task 4.1, describes the details of this
work in support of Task 4.2.

Additional activity and accomplishments in support of Task 4.2 include a concept paper
researching the role of an ontology to support data-to-decision sensing environments that
assess human intent from external stimuli. The paper published as C. Kothan, D.J.
Russomanno, R.B. Sartain and R. Frankel (2012) “Toward Data-to-Decision Sensing
Environments to Assess Human Intent from Responses to Stimul,” Proceedings SPIE:
Ground/Air Multi-Sensor Interoperability, Integration and Networking for Persistent ISR
III, Volume 8389, Baltimore, Maryland, is also provided as a supplement to this report.




Task 4.3: Assess research theories and concepts through the construction
of laboratory sensors, algorithm development and implementation,
implementation of novel visualization software, and hardware and software
architectural considerations that could ultimately be integrated into
network-centric architecture

Profiling sensors were advanced in support of Task 4.3 through the construction of novel
laboratory sensors, algonthms, and visualization tools. Three laboratory profiling sensors
were created in support of Task 4.3, including a traditional vertical array (and wired)
profiling sensor, a wired profiling sensor with offset detectors, and a novel, wireless
profiling sensor in which each detector comprises a node in a wireless sensor network.
The wireless sensor network approach allows the detectors of a profiling sensor to be
deployed in custom configurations. Software to classify and visualize data acquired from
the novel, wireless profiling sensor was also developed in support of Task 4.3,

The notion of a profiling sensor was first implemented as a near-IR, retro-reflective
prototype consisting of a vertical column of sparse detectors by a team led by Dr.
Russomanno at the U. of Memphis in support of cooperative agreement W911NF-05-2-
0019 between the University of Memphis and the U.S. Army’s Research Laboratory
(ARL). Alternative arrangements of detectors were researched and implemented in
support of Task 4.3 in which a subset of the detectors were offset from the vertical
column and placed at arbitrary locations along the anticipated path of the objects of
interest. The paper published by R K. Reynolds, S. Chan and D.J. Russomanno (2011)
“Embedded Real-Time Classifier for Profiling Sensors and Custom Detector
Configuration,”  Proceedings SPIE: Ground/Air Multi-Sensor  Interoperability,
Integration and Networking for Persistent ISR, Volume 8047, Orlando, Flonda, pp.
80470E-1-80470E-9, is also provided as a supplement to this report and describes
accomplishments in support of Task 4.3.

All prior work with the near-IR, retro-reflective profiling sensors has consisted of wired
detectors, including the work cited in the previous paragraph. Research was conducted in
support of Task 4.3 to advance this prior work by designing and implementing a wireless
prototype version of a near-IR, retro-reflective profiling sensor in which each detector is
a wireless sensor node. In this architecture, a base station is responsible for collecting all
data from the detector sensor nodes and coordinating all pre-processing of data collected
from the sensor nodes, including data re-alignment, before subsequent classification
algorithms are executed. Such a wireless detector configuration advances deployment
options for near-IR, retro-reflective profiling sensors. This work, which was 1n support of
Task 4.3, is detailed in the paper: A. Galvis, D.J. Russomanno and C. Kothari (2012) “A
Wireless Near-IR Retro-Reflective Profiling Sensor,” Proceedings SPIE: Ground/Air
Multi-Sensor Interoperability, Integration and Networking for Persistent ISR III, Volume
8389, Baltimore, Maryland. This paper is also provided as a supplement to this report.




Task 4.4: Undertake field data collection with profiling sensors and
emulators to build an extensive signature library to support algorithm

development

In support of Task 4.4, field data collections were limited to expanding the profiling
sensor library with data captured from the new profiling sensors that were developed in
support of Task 4.3. The data was used to support the classification algorithm and
visualization algorithm development referenced in support of Tasks 4.1 through 4.3.
Additional field data collections would improve the robustness of the various classifiers.

Papers Published in Support of Project (Copies provided in
Appendix X)
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5.0 Profiling Sensors: classifiers, visualization
techniques, and network-centric integration

Background

Conventional electro-optical systems have been used extensively in Intelligence
Surveillance and Reconnaissance (ISR) applications. These systems have typically been




based on using two dimensional focal plane arrays. The disadvantage of such systems for
applications of interest, namely deployment in inaccessible terrains for border security, is
power consumption and cost. If the discrimination task is narrowed down to specific
classes such as distinguishing between humans, animals and vehicles at ranges not
exceeding few tens of meters, high resolution, high bit depth imaging systems may not be
requred. This scenario is true especially in the terrains in which objects can only travel
through specific routes consisting of narrow trails. In this research, object recognition
algorithms are developed for a pyroelectric detector based linear array to classify humans
and animals. Initial testing on a smaller set of data point showed promising results
[White2010] . The current report presents findings based on a more extensive data
collection effort and new algorithmic approaches.

Sensor Description

A schematic of the pyroelectnic linear array (PLA) sensor is shown in Figure 5.1 and a
photo of the sensor package is shown in Figure 5.2. The PLA sensor uses a Dias 128
element linear array of pyroelectric detectors along with a F/0.86 germanium lens. The
size of each detector is 90um x 100pm with a pitch of 10um. With a focal length of 50
mm, the detector instantaneous FOV (IFOV) is 1.8mrads x 2mrads. The extent of the
spatial sample at range of 30 meters is 5.4cm x 6¢m, providing about 17 samples over the
height of a 2m tall human. A 18F4550 pic microcontroller is used for A/D conversion and
communication. The sensor system operates at a sampling rate of 20Hz.

Object space Lens Linear array of detectors

Figure 5.1. Schematic of PLA sensor.

e S el

Figure 5.2. Photo of PLA sensor

Data collection effort




Data collection using the PLA sensor was performed in two geographically distinct
locations. One location was near the US-Mexico border which is typically has an arid
terrain with thorn bushes forming significant portions of the vegetation. The other
location was at a petting zoo near Memphis, Tennessee where the terrain was covered
with grass and trees. The human category was represented by males and females of with
varying physical bult. Large, medium and small horses, cows, lamas, donkeys and dogs
formed the animal class. The humans and animals moved in the field of view of the
system at vanous speeds at ranges varying from 10 meters to 20 meters. Animals had
handlers directing their movements during the data collection. Figure 5.3 shows the
output of the PLA sensor with three horses, Figure 5.4 shows six humans and Figure 5.5
shows a human followed by a miniature cow.

Figure 5.4. Image of six humans generated by PLA sensor
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Figure 5.5. Image of a human followed by a miniature cow generated by PLA sensor




Object Recognition algorithms

A statistical threshold was estimated for each detector output for segmenting the targets
from background. The AC couple nature of the pyroelectric detector suppresses static
objects in the background and only responds to the moving targets. If a target does not
show variations in sections of its body, then the detectors do not respond. This can lead to
fragmentation of an object. When a hot object enters and leaves the FOV of the sensor,
the step response properties of the pyroelectric detector generate large output up swings
and down swings at the instants of entry and exit of the object respectively. Fragmented
objects can be regrouped by tracking these bipolar swings. The statistical threshold used
for segmentation was also used to binarize objects with object set to 1 and background set
to O for extracting geometrical features such as height to width. On the other hand, the
segmented objects were retained 1n gray scale form for extracting texture based features
using Log-Gabor filter bank. These features are then classified using one of three
different classification algorithms, namely Mahalanobis distance classifier, Gaussian
mixture classifier and Logistic Regression.

Results

A total of 315 human profiles and 182 animal signatures were collected using the
pyroelectric sensor at two locations at the US Mexico border in Arizona (ArzData) and at
a petting zoo near Memphis (PzData). The number of samples of at each location for the
three data collection sites is shown in Table 5.1. The data was separated into testing and
tramning data using in two ways as shown in Table 5.2. The training and testing choices
described in Table 5.2 were made because PzData has too few samples to form a training
set in itself. On the other hand, including PzData in the test set increased the variance of
the test set, making the test robust. This 1s because the animal samples in ArzData were
horses but the petting zoo data, apart from horses, also contained cows, lamas, donkeys.

Table 5.1: Number of data points collected using PLA sensor

ArzData location 1 ArzData location 2 PzData

human signatures 140 145 41

animal signatures 73 84 41

Table 5.2: Training and testing data

Data set Training data Test data

1 ArzData location 1 ArzData location 2 +
PzData

2 ArzData location 2 ArzData locattion 1 +




PzData

Classification rates are shown in Tables 5.3 and 5.4. It is observed that Logistic
regression using height and width features achieves the highest classification rate of over
89% for data set 1 and classification rate of over 90% classification rate for data set 2.
The GMM classifier using height to width ratio also performs well coming with
classification rates over 85% in both cases. The main cause of error was the incorrect
grouping of fragments of objects during the object detection phase. Another cause of
error was animals running at high speeds. The profile height and width feature of a
galloping horse is similar to that of a tall human walking slowly. The Gabor features
performed poorly and using dimensionality reduction techniques such as linear
disciminant analysis only provided marginal improvement in the classification accuracy.
Though results of the classification rates are not reported here for wavelet packet based
features, their classification performance was significantly lower.

Table 5.3. Classification rates for data set 1

Feature extraction Classifier _ Classification rate
Gabor features Mahalanobis distance 75.3%
Height and width Logistic Regression 89.6%
Height to width ratio GMM 85.7%

Table 5.4. Classification rates for data set 2

Feature extraction Classifier Classiﬁ_cation rate
Gabor features Mahalanobis distance 73.6%

Height and width Logistic Regression 90.8 %

Height to width ratio GMM 86.4%

Future Work

The results from this research effort will be submitted to the IEEE Sensors Journal in
August 2011.

Several tasks are foreseen in future efforts to further refine and improve the sensor
system. The first one includes implementing the software on low resource computing
platforms for real time performance. The second task is incorporating this system into a
multi-modal sensor network. It is hypothesized that fusion of features from the PLA
sensor with sensors such as acoustic and seismic sensors will further increase the
discnmination rates. Another goal is to overcome misclassification of galloping animals
as humans. For this a two columns array is currently being developed. The time of




appearance of an object in each of the columns can be used to estimate speed of objects,
which can be used to address the above-mentioned errors. Further, a more sensitive
detector array is being used for the development of a long range PLA with ability to
discriminate well beyond the 30-meter range limit of the current PLA system. This long
range PLA system will provide greater sensor to object standoff distance and thus
expanding the utility of the sensor beyond trail monitoring into other tactical and military
applications. The higher sensitivity detector system can reduce the fragmentation effect at
the sensor output that has also been a source of classification errors.

Papers Published in Support of Project (Copies provided in
Appendix X)

[White2010] W. E. White III, J. B. Brown, S. Chari, and E. L. Jacobs, “Real-time
assessment of a linear pyroelectric sensor array for object classication,” D. A. Huckridge
and R. R. Ebert, Eds., vol. 7834, no. 1. SPIE, 2010, p.783403. [Online]. Available:
http:/Nlink.aip.org/link/?7PS1/7834/783403/1

6.0 Alternative Sensing Modalities

Task 6.1: Develop alternate modalities of operation for beam break profiling
sensors.

An alternative to beam-break sensors for border and perimeter security i1s the use of
micro-mechanical resonators. These types of sensors could be used to produce seismic or
acoustic versions of profiling sensors. A detailed analysis of this mode of sensing was
conducted and 1s presented in Appendix X.

Task 6.2: Map the feature space of an “atomic” sensor and relate the
features to profile classification performance.

Sensor atoms are fundamental units of sensing. This concept was explored as part of the
overall effort of this contract. Some basic properties of a particular type of sensor atom,
the Bemoulli sensor atom, were derived. A brief paper (unpublished) on the concept of
sensor atoms and the Bemoulli sensor atom was produced and 1s provided in Appendix
X. Publication of this work will require implementation and refinement of the concept of
atoms in groups, which is an ongoing area of research.




Task 6.3: Further research into a University of Memphis concept for
terahertz and  sub-millimeter  wave imaging for concealed
weapons/contraband detection.

Task 6.4: Investigate the use of compressive sensing techniques in
improving profile classification.

THz/sub-millimeter wave sensing provides a “see through” capability without the use of
lonizing radiation. This capability is important in many types of security problems where
the potential threat posed by an individual must be assessed prior to entry into a secured
area. Sensors of this type have been under development for some time and low cost
solutions remain elusive. Several sub-millimeter wave active and passive imaging
systems for detection of hidden threats have been demonstrated but they all suffer from
the low frame rate (i.e. active imagers) or high size and power consumption associated
with cooled detection (i.e. passive imagers). Our effort 1s focused toward a solution to
these problems using image plane coded aperture imaging techniques in active
configurations with single pixel detectors. Different aspects of the work have been
published in peer reviewed conferences and journals. Invited talks on this approach have
been presented at IEEE and OSA conferences.

At the beginning of the effort sub-millimeter wave imaging using a single pixel detector
and an image plane coded aperture had been demonstrated by our group. The image plane
coded aperture was implemented using a spinning disk with holes separated in a pseudo-
random fashion on a perimeter line. The proof of concept device could reconstruct line
images of a masked source placed ten meters away from the aperture of a reflective optic.
These simple images consisted of two point sources. The work was published in the
paper O. Furxhi and E. L. Jacobs (2010) “A Sub-Millimeter Wave Line Imaging Device,”
Proceedings of SPIE, Volume 7670, Orlando, Florida, USA. This paper is provided as a
supplement to this report.

In continuation of the effort described in the previous paragraph, a scanning line imager
was built and imaging of an extended metallic object was demonstrated. Each line of the
image was acquired in 300ms as the target was scanned across the field of view. The
1mages were reconstructed offline using linear measurement techniques. The linear
measurement techniques are computationally efficient and the image reconstruction
reduces to a simple matrix vector multiplications. This work was published in the paper
O. Furxhi and E. L. Jacobs (2010) “A sub-millimeter wave line scanning imager,”
Proceedings of SPIE, Volume 7837, Toulouse, France. This paper is provided as a
supplement to this report.

The image plane coded aperture used in the previous work is suitable for bulding a
compressive sensing (CS) imager. CS 1magers make linear measurements on the image of
the scene. The number of measurements 1s usually smaller than the desired number of
pixels in the image and therefore the image reconstruction is realized using non-linear
iterative algorithms. We used the CS algorithms on measurements collected with the
image plane coded aperture line imager and were able to reconstruct line images with half
the number of measurements used with linear measurement techniques. The line imager




configuration of this sensor is in essence a THz profiling sensor. This work was
summarized in the paper Imama Noor, Orges Fumhi and Eddie L. Jacobs (2011)
"Compressive sensing for a sub-mullimeter-wave single pixel imager”, Proceedings of
SPIE, Volume 8022, Orlando, Florida, USA. This paper 1s provided as a supplement to
this report.

In continuation of the effort, a two-dimensional version of the image plane coded
aperture imager was built and demonstrated. The image plane coded aperture was
implemented using a spinning disk with holes placed pseudo randomly across the surface
of the disk. A square aperture was placed in front of the disk to indicate an image
window. This device could scan a two-dimensional image of the scene every 20ms
(50Hz). The images that were reconstructed consisted of 64x64 pixels and were
reconstructed in real time as the data was collected. Initially the two-dimensional coded
aperture was used to form images at visible light wave lengths. For this purpose an N-
type silicon PIN photodetector was used instead of the sub-mullimeter wave detector. And
a collimated red laser was used as an illumination source instead of the sub-millimeter
wave source. The reason for visible light implementation was two-fold. First, 1t helped
with the debugging of the issues related to the spinning disk coded aperture (elimination
issues with the sub-millimeter wave optics) and second, it demonstrated the wavelength
independence of the spinning disk coded aperture. This work was published in the paper
O. Funhi and E. Jacobs, "Spatially Selective Mask for Single Pixel Video Rate
Imaging," in Imaging Systems and Applications, OSA Technical Digest (CD) (Optical
Society of America, 2011), paper ITuA3, in Toronto, Ontario, Canada. This paper is
provided as a supplement to this report.

The spinning disk coded aperture device was then used to implement a two-dimensional,
real-time, sub-millimeter wave imager. This device could scan a two-dimensional
reflection mode image of a metallic target positioned 10 meters away, every 20ms
(50Hz). The target was illuminated with sub-millimeter waves and its reflection was
imaged on the coded aperture. The images that were reconstructed consisted of 64x64
pixels and were reconstructed in real time as the data was collected. Imaging was also
demonstrated in transmission mode (imaging the transmission of a sample/target). This
work was published in Orges Furxhi, Eddie L. Jacobs and Robert Hewitt (2011), "Two-
dimensional, real-time, sub-millimeter-wave imaging using a spatially selective mask”,
Proceedings of SPIE, Volume 8022, Orlando, Florida, USA. This paper is provided as a
supplement to this report.

An analysis comparing various modes of active imaging in terms of signal to noise ratio
(SNR), including the image plane coded aperture approach, was conducted. The purpose
of the analysis was the identification of advantages and disadvantages of the image plane
coded aperture approach compared to more traditional ways of forming images in active
configurations. The analysis concluded that the measurement SNR performance of the
1mage plane coded aperture approach rests between the conjugate point imager
configurations (best SNR) and focal plane array configurations (worst SNR) provided
equal 1llumination power. The SNR approached the best SNR case when compressive
sensing reconstruction techniques could be realized. However, the image SNR for the




coded aperture approach 1s also related to the reconstruction method. The analysis
identified the need for further analysis with regards to methods for the generation of hole
patterns on the spinning disk that lead to independent codes (independent codes lead to
better reconstructions). Another approach that could be pursued is the identification of
other implementation of the coded aperture different from the spinning disk. This work
was published in Orges Furxhi and Eddie L. Jacobs (2011), "Comparison of schemes for
active sub-millimeter wave imaging”, Proceedings of SPIE, Volume 8188, Prague, Czech
Republic. This paper is provided as a supplement to this report.

Further analysis conceming the image reconstruction technique that is utilized by the two
dimensional sub-millimeter wave imager was conducted and a joumal paper was
published in the Journal of Optical Engineering summarizing the imager and the
mathematical . analysis associated with the reconstruction techniques. The publication
Orges Furxhi, Eddie L. Jacobs and Chrysanthe Preza, "Image plane coded aperture for
terahertz imaging", Opt. Eng. 51, 091612 (Jun 15, 2012), is provided as a supplement to
this report.

Other approaches of implementing an image plane coded aperture imager were
investigated and an effort was put forward to formalize the concept of image plane coded
aperture (IPCA) detectors. IPCA detectors are used as substitutes for focal plane arrays in
frequency regimes where focal plane arrays are impractical, expensive, or non-existent.
IPCA detectors are composed of a single element detector sensitive to the radiation
frequency of interest, a reconfigurable spatial light modulator (SLM), and a mechanism
such as a lens or a hom that is used to collect the radiation past the SLM and focus it on
the sensing element. The IPCA detector is placed in the image plane of an imager and is
used to make linear measurements on the image by modulating the information on the
image plane spatially and/or temporally in amplitude, frequency, phase, or polarization.
The 1mage 1s then reconstructed computationally using inverse imaging techniques. In
this work the spinning disk IPCA detector for sub-millimeter waves was used to illustrate
the concept. Also, an IPCA detector with a phase modulating SLM was proposed as an
alternative. This work was published in O. Furxhi, E. L. Jacobs (2012), “Image Plane
Coded Aperture Detectors for THz Imaging™ 2012 IEEE MTT-S International
Microwave Symposium Digest, Montreal, Quebec, Canada. This paper is provided as a
supplement to this report.

Another effort was also put forward to further understand and model the behavior of the
spinning disk IPCA with respect to the codes that 1t generates. The generation of a
procedure for producing hole pattems that lead to independent codes are of interest as
independent codes improve the image quality. Initial work in this regard was published in
E. Jacobs and O. Furxhi, "Image Plane Coding for Terahertz Imaging," in Optical
Sensors, OSA Technical Digest (online) (Optical Society of America, 2012), paper
SW3C.3, Monterey, CA, USA. This paper 1s provided as a supplement to this report.

In summary, the research effort has advanced the terahertz/sub-millimeter wave 1imaging
device from a line imager with offline image reconstructions to a two-dimensional, real-
time imager with 50Hz image scan rates and real-time reconstructions. The effort has also




generated further analysis on this imaging approach and has identified aspects of the
approach that need improvement.
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7.0 Turbulence Mitigation

Task 7.1: Investigate the functional applicability and limitations of current
turbulence mitigation techniques and algorithms.

In support of Task 7.1 a thorough review of the most common mitigation techniques was
completed, their respective algorithms implemented, and the results compared. The
comparison resulted in the discovery of a number of advantages and disadvantages
related to the implementation of each. They may be summarized as follows.
Lucky/synthetic imaging is based on the finite probability that an uncorrupted frame and
will eventually propagate through the turbulent atmosphere. It has of the advantage of
automatically handling 1soplanatic restriction that plagues most of the other turbulent
mitigation techniques and enables diffraction limited imaging. The disadvantages of the
algorithm lie 1n that it depends on short exposure imagery, calculation of image quality
metrics, and dependence on a mosaic procedure for best results even though isoplanatism
1s handled inherently in the algorithm. Blind deconvolution has the advantage that it can
be implemented for correction of a wide variety of turbulent atmospheres even when little




detail of the intervening atmosphere is provided. The disadvantages include the enormous
computational complexity, no guarantee of convergence to the optimal solution, and
dependence on isoplanatic patch size. Higher order spectral techniques have the
advantage of being spectrally intuitive, resistant to corruption from white Gaussian noise,
capable of identifying nonlinear relationships between phase components and therefore
enabling a better representation of the degraded object. The drawbacks to 1its
umplementation are the significant data storage requirement, trial and error determination
of the intervening atmosphere’s spectral amplitude, the dependence on isoplanatic patch
size, and the inherent fundamental frequency linear phase corruption. Finally, frame
averaging was the final mitigation technique investigated. It has the advantage of being
simple, computationally efficient, and effective in the removal of the jitter associated
with a turbulent atmosphere. The drawbacks to its implementation are that 1t.effectively
prevents diffraction limited imaging and is not suitable for targets traveling with
considerable speed. These results appear as an unpublished paper and further details
related to the implementation can be found in Appendix X.

Task 7.2: Examine the turbulent effects as a function of range, atmospheric
effects, imaging band, optical design, and detector type.

In support of Task 7.2, an efficient turbulence simulation algorithm was developed to
reproduce the turbulent atmosphere effects on a pristine image or video of an applicable
target. The algorithm is based on visible wavelength statistics captured from various
turbulent atmospheres. This effort extended those results to include infrared wavelengths.
Additionally, the simulation tool allows the user to input range, strength of turbulence,
1maging band, short or long exposure detector integration times, and other optical design
characteristics. The result is a simulated image or image sequence representing the effects
of the atmosphere, the optics, and the detector. The degraded imagery is suitable for most
types of turbulence mitigation algorithm development. It should be noted that the
simulation algorithm has not undergone strenuous comparison to real collected data. That
effort 1s currently underway. The details of the implementation and the result results from
this effort have been published and can be found in Appendix X.

Task 7.3: Explore the effects of turbulence on hyper-spectral data, fusion
and metric development and the effects of mitigation on feature

discrimination.

The following efforts were undertaken to determine the effects of turbulence on feature
extraction techniques applied to a sparse detector sensor arrays. Video data of humans
and animals was captured using a long wave infrared imaging sensor array. That data was
subsequently processed to extract profile data, determune applicable height to width
ratios, and classified based on the extracted features. The turbulence simulation algorithm
developed in support of Task 7.2 was then used to corrupt the same imagery. The height
to width ratio of the resultant imagery was examined to determine the quantitative
differences when compared to the uncorrupted sequences. The results show that for
coarse-grained classifications such as human versus animal determination, even the
strongest levels of turbulence only mummally affect the height to width ratios. Thus, we




can conclude that for human versus animal classification, turbulence should not be much
of an issue. However, as noted above, the turbulence simulation algorithm is not
undergone strenuous data verification and thus the application of these results should be
limited until such time that venfication has been completed. These results appear as an
unpublished paper and further details related to the implementation can be found in
Appendix X,

Task 7.4: Consider the effects of the extension of current turbulence
mitigation techniques to sparse detector sensor arrays.

The efforts in support of Task 7.4 include the consideration of current turbulence
mitigation techniques and their application to the profile extraction system.
Implementation of a turbulence mitigation algorithm cannot be considered apart from the
processing platform. Therefore, the recommendations derived under this section reflect
the fact that a low power sparse detector array makes up our sensing platform. Given
these constraints lucky/synthetic imaging and single frame or multi-frame de-convolution
cannot be considered due to their dependence on short exposure imaging and high
computational complexity. Higher order spectral techniques must also be excluded due to
the large amount of data storage require for their implementation and their heavy
computational complexity as well. Therefore we are left with only frame averaging as
applicable mitigation technique for the sensing platform. Frame averaging represents a
simple and straightforward method of improving the captured imagery for human
consumption and can be implemented quite easily on most low power platforms.

Papers Published in Support of Project (Copies provided in
Appendix X)
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8.0 Feature Sensing Laboratory

Task 8.1: Characterize the existing campus sensor system including a
formal knowledge model captured in an ontology. This will involve learning
what is currently present on campus with regard to sensing systems,
instrumenting them so that they produce data instead of just pictures, and
establish a means for archiving this data.

Task 8.2: Supplementing the existing campus sensor system. These
sensors will either be sensors operating in non-visible wavebands or
sensors designed to provide new sensing capabilities such as profiling
sensors.

Task 8.3: Experiment design. We will design multi-use experiments in
which scenarios are created to stimulate events of interest.

An important question in the development of unmanned ground sensors (UGS) is what
the field performance will be long term and under different environmental conditions. It
would be desirable to have a long-term emplacement of sensors that could be monitored
24/7 m order to gain data on real world performance of these systems. As part of an
Army sponsored program on Intelligent Network- ‘
Centric Sensors, we have begun building an UGS field
test laboratory. When fully bult, studies as outlined in
the tasks above could be carried out.

Although nitially planned as an on-campus facility, 1t
was decided, in consultation with the government
technical POC, to implement this laboratory in an
environment more typical for border and perimeter
security applications. The site we have chosen is a
biological field station owned by the University. The
site chosen 1s the Umversity of Memphis Meeman
Biological Field Station. The site covers 623 acres and
1s located approximately twenty five miles northwest
form the main university campus. The University of
Memphis operates an earthquake monitoring station
which includes a microwave link back to the campus
(see Figure 8.1).

Our design allows the status and information collected
by sensors to be reviewed at the monitoring station in
near real time. The data collected 1s moved through
routing hardware and piped through a local network to
a the microwave link. This RF link consists of a 300 ft Figure 8.1. RF antenna - Meeman forest
antenna and a robust 4.2 GHz Freewave link direct to

the campus network. The antenna and RF equpment are located approximately 900 ft

from the test site. Once the information arrives at the main campus it is routed to the
appropriate destination via secure links.




The laboratory is configured to allow deployment of static and mesh sensor networks.
This configuration is centered on a base station
that 1s in charge of routing stand alone and

Meeman-2teiliy Foryst

mesh-network data to the RF link. The base @ i WA

stations can also act as sensor test point. The f S R }

implemented architecture also has the flexibility ““"’“"

to accommodate multiple base stations if i o
{91 p AR

necessary. This means that any desired
combination of sensor network can be easily
implemented and deployed. A diagram of the
network layout 1s shown in Figure 8.2,
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Mesh networks based on XBee ZigBee modules
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and static nodes using XBee Wi-Fi modules O T

were tested. These modules were chosen S
because they offer a simple standard interface

and their low power usage (see Figure 8.3). The ;- S
drawback is the speed limitation imposed by the 55

serial interface. A maximum speed of M (i

240Kbaud limits the amount of usable
information that can be transmitted. On average,
a 1.2MB data file will take 1 minute to transfer.
This makes this configuration ill suited for video but highly efficient to monitor low data
rate sensors, such as profiling sensors. The network can be
configured to use standard Wi-Fi in order to achieve higher
speeds. This change however, requires that additional steps be
taken to maximize power efficiency of deployed sensor modules
in order to extend their up-time.

Figure 8.2. Network layout

Several types of local hardware configurations for sensor control
were evaluated. They range from the simplest “sensor atom” Figure 8.3. Xbee
composed of an Arduino microcontroller, a pyroelectric detector module

and an XBee radio to a base station. The basic base station 1s

single board computer. This computer is typically based on and Atom processor and runs
Linux. This provides the flexibility and power of a full fledged PC computer but drawing
a maximum power of 40Watts. If higher power efficiency is required this can be scaled
down to an Arm processor computer such as a beagle board.

Preliminary test indicate that with line of sight or near line of site placement of sensor
nodes communications at over 1500ft can be easily maintained. This suggests that for
practical deployment inter sensor node spacing of 300 to 500 feet is sustainable. The
clear implication is that a substantial amount of terrain can be monitored with relatively
few sensor nodes. On the other hand base stations deployed as direct gateways to the RF
link must be deployed within line of site of it to maintain reliable communications.




Our initial deployment of the systems is shown in this diagram. We have chosen to use an
open source Gentoo based platform for the sensor base station. This will provide control
of most of the Meeman based communications. To this will be connected high bandwidth
sensors such as forward-looking infrared camera and a low bandwidth sensor network.
For this project, two FLIR Photon 640 sensors were obtained for configuration in the
sensor network. The low bandwidth network will be a ZigBee sensor network consisting
of MICAz motes with attached pyroelectric motion sensors deployed along a trail to
monitor movement of animals and people. The MICAz motes allow for basic processing
and present the possibility of just transferring the results of classifications. A distributed
array of motion detecting sensors has been shown in some of our research to be highly
effective in classifying humans and animals. We will deploy a PIR based version of this
array along the trail. The initial array will consist of only three sensors but can be
expanded. Studies have shown that very limit classification can be made with a single
sensor. Our hope is to develop a three-sensor system with better performance.

Many of the stated tasks for this portion of the research were not achieved due to delays
and complications in implementing the network involved. Significant time was spent
tracking down communication interference between our network router and the
earthquake sensors. This interference was resulting in false reports of earthquake activity.
A significant effort at providing additional shielding for our router seems to have solved
the problem and we have made significant progress this summer.

We expect to have our initial version of the network up and running by the first of
September 2012. Over time we expect to expand the number, variety, and coverage of
sensors in the network. This ultimately may require a dedicated landline or additional
microwave link to support the bandwidth necessary. We plan to use this facility to
perform testing of new sensors and algorithms, energy harvesting research, and smart
tasking of sensors via intelligent networks.

9.0 Conclusions

The execution of this contract has resulted in some significant scientific and technical
progress in support of intelligent, network-centric, sensors. We believe that this work has
been of immediate benefit to the Army and will continue to pay dividends in technical
achievement into the near future. Further publications will result directly and indirectly
from this work.




Appendix A. Published papers in support of this
contract.

Copies of all published papers completed as part of this cooperative agreement are
provided following this page.




A Wireless Near-IR Retro-Reflective Profiling Sensor
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ABSTRACT

The notion of a profiling sensor was first realized by a near-IR, retro-reflective prototype consisting of a vertical
column of sparse detectors. Alternative arrangements of detectors have been implemented in which a subset of the
detectors have been offset from the vertical column and placed at arbitrary locations along the anticipated path
of the objects of interest. All prior work with the near-IR, retro-reflective profiling sensors has consisted of wired
detectors. This paper advances this prior work by designing and implementing a wireless prototype version of a
near-IR, retro-reflective profiling sensor in which each detector is a wireless sensor node. In this novel architecture,
a base station is responsible for collecting all data from the detector sensor nodes and coordinating all pre-
processing of data collected from the sensor nodes, including data re-alignment, before subsequent classification
algorithms are executed. Such a wireless detector configuration advances deployment options for near-IR, retro-
reflective profiling sensors.

Keywords: Wireless profiling sensor, wireless sensor, neural network, object classification.

1. INTRODUCTION

The original notion of a profiling sensor was proposed by Ronnie Sartain of the U.S. Army Research Laboratory,
in which objects traversing the field of view of a crude imaging sensor, consisting of a collection of sparse detectors,
could be classified by examining their silhouettes.! A vertical array, consisting of sixteen pairs of transmitters
and reflectors, was first developed to produce sixteen parallel near-IR beams (Figure 1). A silhouette was then
generated if the object traversing the specified trail would break the beams'™® (Figure 2). It was proposed that
a low-cost sensing device of this form would be useful for providing security surveillance for several applications,
including the U.S.-Mexican border, to detect illegal activity and in other areas where the classification of objects
is highly relevant.® Because of the extent of the U.S.-Mexican border, using low-cost surveillance equipment
would make it economically feasible to cover more areas than using traditional imaging sensing devices.

The first profiling sensor involved a vertical array of sixteen near-IR retro-reflective sensors that generated a
crude image.” Each sensing element produced a near-IR retro-reflective beam perpendicular to a pairing reflecting
surface mounted on an opposing pole.®%9 A classification algorithm would then take the raw data (broken or
unbroken beam) generated by the profiling sensor to produce and classify an object’s silhouette into one of three
categories of interest (i.e. human, animal, or vehicle).®:® As a next step to improve this prototype’s versatility,
a low-resource microcontroller was interfaced with this profiling sensor. The Digi International BL4S200 single-
board-computer was used to store and classify data of the profiling sensor.}® Other hardware improvements, such
as an interface handheld I/O box, were added later on to facilitate data access to the microcontroller without
the need of a computer.® Furthermore, an additional improvement included the arrangement of sensing elements
into a custom arrangement? (Figure 3) while still generating similar raw data that could be discriminated among
the three classifications groups of interest.!! This new offset arrangement of detectors may provide a means by
which the sensor could be more easily concealed.

*Further author information:
E-mail: agalvis@iupui.edu, Telephone: 1 317 274 9726
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Figure 1. Object passing through the parallel beams of a vertical array of a near-IR retro-reflective profiling sensor.

Figure 2. Generated silhouette of a human after traversing through the profiling sensor.

This paper focuses on a wireless near-IR retro-reflective profiling sensor that can be thought of as a set of
sixteen wireless sensing nodes that comprise the overall profiling sensor. Previous profiling sensor prototypes have
used CX-RVM5!? active near-IR detectors that depend on their own paring reflector. Each node in the wireless
profiling sensor uses a Sharp GP2YOD02YKOF??® (Figure 4) as the sensing element with a similar field of view
to the CX-RVMS5 but does not require a reflector to sense a change-of-state event. The Sharp GP2Y0D02YKOF
sensing element can thus be thought as a touch-less switch that turns on (digital high) if an object obstructs
the path of its infrared beam and turns off (digital low) if there is no obstruction. Additionally, to make the
sensing node wireless, each sensing element has been hardwired to its own wireless transmitter: an OEM Radio
Frequency (RF) board!¢ (Figure 5). A sensing node sends one packet containing the state and node identification
data to a USB gateway receiver only if a change of state occurs (high-to-low or low-to-high) as an object passes
through its field of view. The computer recording the data can then assign a binary value to each state and
generate a silhouette representation of the object or process it by the classification algorithm described in the
subsequent sections.

The focus of this paper is to present the architecture and the interaction of a wireless profiling sensor with
a computer. The computer software developed for this work integrates useful tools, such as object classification
and object silhouette previews, which can be provided in a test scenario immediately after each passing object is
detected. A trained classifier implemented by a back-propagation neural network is also introduced and shown
to provide classification results of 94% accuracy in testing to date.
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Figure 3. Object passing through the beams of a custom array near-IR retro-reflective profiling sensor.

Figure 4. Sharp GP2YOD02YKOF distance measuring sensor unit.

Figure 5. OEM RF board (Left) and USB gateway receiver (Right).

2. DATA LIBRARY

In previous work done by Russomanno et al. at the University of Memphis, a near-IR profiling sensor was used
to capture profiles of over 1000 objects in the field, including humans, animals, and vehicles.’> Each sample
was captured at approximately 1 kHz and stored as a matrix of 16 binary strings corresponding to each of the
16 sensing elements in the array.!® The length of each binary string depended upon the velocity at which the




object traveled through the specified field of view.% 1617 In other words, a vehicle traveling at a higher velocity
would correlate to shorter binary strings, while a vehicle traveling at a lower velocity would yield longer strings.

Since the profiling sensor generates outputs comprised of zeroes and ones, it is especially convenient to use
a back-propagation neural network as it preferably processes data that has been normalized. However, the
architecture of the back-propagation neural network requires a fixed number of input arguments; therefore, it is
necessary to compress all data into a fixed column dimension size. Thus, for this approach, an algorithm has
"been used to achieve this defined length without significantly altering the data in the sample library. Figure 6
shows silhouette images before and after the compression algorithm has been applied. After analyzing the same
compression results in the remainder of the library samples, it was determined that no major resolution loss
occurs if these are compressed to 256 columns. Therefore, a new database of silhouettes was generated with the
compressed samples to use as the training and testing data set of the back-propagation neural network.

(e (®)
Figure 6. Silhouettes before compression and after compression: (a) Human silhouette before compression, (b) Human
silhouette after compression, (¢} Vehicle silhouette before compression, (d) Vehicle silhouette after compression, (e} Animal
silhouette before compression, (f) Animal silhouette after compression

In the original near-IR retro-reflective profiling sensor, each sensor recorded one bit per sampling cycle, 1617

This generated a real-time recording of the obstruction and restoration of each sensor beam. In the wireless near-
IR retro-reflective profiling sensor, individual transmitters send one packet for each change of state in a sensing
node (object or no object obstruction) instead of frequently sampling the current state of each sensing element.
This method reduces power consumption!® compared to the current model, which extends the useful life of the
device. A wireless sensor node only sends a packet at each change of state: one packet for obstruction and one




packet for restoration of the beam. Using the time difference between changes of states, a computer algorithm
generates the zeros and ones correlating to the obstruction and restoration, forming the 16 binary strings by a
previously defined length (256 bits). Though the recording method is different than the original sensor in this
new prototype, each of the sensing nodes has a comparable field of view as the original wired prototype, which
does not affect the resolution of the recording and results in similar silhouette data as presented in Figure 7.

Figure 7. Human silhouette generated by the wireless near-IR retro-reflective profiling sensor.

3. WIRELESS SENSING NODE HARDWARE

In an effort to make the new profiling sensor independent from a pairing reflective surface, a near-IR distance
sensing device was used to detect objects along the path of each sensing element. This sensing element is a single
point distance module, which measures the distance from the emitting infrared diode to the reflecting surface of
the object. Furthermore, the design of the sensing element used in this prototype is not considerably affected
by environmental light or the reflective properties of the object up to a guaranteed distance of 80cm.!® The
near-IR distance sensor module utilizes the triangulation principle: the laser path is initiated at the near-IR
beam emitter, reflects off of the object, and is captured by the imager. When this event occurs, the output line
of the sensor is set to a logical high, otherwise is set to low. The relationship between the emitter, object, and
imager is shown in Figure 8. The horizontal distance from the emitter to the object relies on the following: 1)
the angle created between the emitted laser path to the object and the reflected laser path to the imager; and 2)
the distance between the IR beam and the imager. The horizontal distance can be easily calculated by Equation
1, while Equation 2 utilizes the sine of the angle alpha to determine the horizontal distance.®

IR Beam

Figure 8. Relative distances and angle between object and individual elements in the distance sensor.
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To support wireless data transmission, each of the 16 distance sensing elements has been interfaced to their
own OEM wireless transmitter. The OEM wireless transmitter has been programmed to send a packet of data
when a change of logic state is received by the distance sensing element. A base station then gathers the data
packets from the 16 wireless near-IR retro-reflective sensing nodes and processes them for object classification
and silhouette image generation. Figure 9 shows the wireless near-IR retro-reflective profiling sensor system
made up of 16 near-IR wireless sensing nodes and one base station that receives the packets from each node.
However, specific I/O requirements between the OEM wireless transmitters and the near-IR distance sensing
device required additional hardware that would not only need to regulate the voltage to each device, but the
signal going from the sensing element to the transmitter. Figure 10 shows a block diagram representation of one
near-IR wireless sensing node.
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Figure 9. Wireless near-IR retro-reflective profiling sensor made up of 16 near-IR sensor nodes. A base station collects
the packets from each change of state event as an object crosses through the IR beams.

The OEM wireless transmitters have been used in this wireless profiling sensor because they can be easily
interfaced with external digital and analog devices. Finally, each transmitter supports multiple transmission
frequencies options:!4 the ISM Band 902-928MHz has been used in the complete wireless near-IR retro-reflective
profiling sensor.

4. DATA ACQUISITION

To gain adequate data to identify a passing object, the status of each node must only be known at two stages:
when the object first obstructs the beam and when the beam is restored. Previous profiling sensor prototypes
utilize a constant collection of data at a set frequency for its method of data acquisition.!®!” As previously
mentioned in section 2, a similar data acquisition method would quickly drain the battery of the wireless pro-
filing sensor since the transmitter needs to pull current for every packet transmission.!* Therefore, we have
implemented a data acquisition method that not only uses the battery more efficiently, but only uses one data
packet per change of state from each sensing element to generate the necessary raw data.
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Figure 10. Wireless near-IR retro-reflective sensor node block diagram.

In the wireless profiling sensor, there is a designated trigger node that alerts the base station to the presence
of an object. When this node detects an obstruction, the base station will begin recording data from all sensing
nodes for a period of time specified in sensor’s configuration setup. This packet contains the state of the node
and the source node identification number. The state of the node is a binary code in which zero (0) indicates
an unbroken beam and one (1) indicates an obstructed beam. As the base station gathers data packets, it will
also record the time in milliseconds of when each packet is received. After the specified recording time expires,
the base station ceases to record data. The recording of one object during this period of time is denoted as
one recorded event. The base station sorts the collected transmission records of the recorded event by source
node identification numbers. Then an algorithm determines the time length of the recorded event by calculating
the difference between the time stamp of the final packet received and the time stamp of the initial packet
received. In previous prototypes, time stamps were unnecessary because of the continuous data recording, but
since this new prototype collects data only when a change of state occurs, we must generate the frequency of
data acquisition for our non-constant rate to develop a binary matrix representation of this data.

The resulting binary matrix is a 16 X m matrix in which every entry corresponds to a low or a high bit reading
at a point in the sampling. To generate this matrix with the collection of time samples received, the total time
length of the recording At is calculated by subtracting the time of the first packet received ¢y from the time the
last packet is received, ty. Equation 3 is then used to find the length of a time segment that will eventually be
replaced by a binary value corresponding to the node state in that time interval. Additionally, ¢, — £, is the time
difference from a change of state within A¢. As shown in Equation 4, ¢, — 2, is divided by the result in Equation
3 so that this time interval can be interpreted as a sequence of bits describing the constant state of the (¢,,%)
interval. Figure 11 is a visual representation of this procedure. Repeating this procedure for each sensing node
generates the 16 necessary binary rows making up the entire binary matrix of the silhouette. Finally, this matrix
is then used to generate a silhouette image of the passing object, as well as input data to a back-propagation
neural network for its classification.
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Figure 11. Populating a binary row by using a change-of-state-time-segmentation method.

5. CLASSIFICATION AND RESULTS

Although the original raw data had varying column dimensions, it has been shown that compressed data with
a fixed number of columns produces virtually no alterations in the silhouette resolution in the analyzed library.
Since a back-propagation neural network is used to classify the data, a fixed number of inputs were required to
obtain a classification result. After normalizing the data to 256 columns, the back-propagation neural network was
trained with half the data set within the compressed library. This neural network is comprised of 256 x 16 = 4096
processing elements in the input layer, 20 processing elements in the hidden layer, and 3 processing elements in
the output layer. This configuration was observed to provide the best classification results compared with other
back-propagation neural networks with differing numbers of processing elements within the hidden layer. The
method used to train the neural network was from Ebehart and Shi.!®

Figure 12. Matrix vectorization: all rows from a two-dimensional matrix are put sequentially into a linear array.

To make the matrix easier to handle by the neural network, the binary matrix has been vectorized, a process
in which all rows are combined sequentially (Figure 12). Each processing element in the input layer uses each
bit entry in the vector matrix as the argument to a sigmoid function (Equation 5), which will generate a real
value between 0 and 1. The output values from each processing element in the previous layer become the input
values for each of the processing elements in the subsequent layer. The edges connecting the processing elements
from one layer to its subsequent layer have a weight value which is generated during the training process of the
neural network. The weight of the edge is then multiplied by the input for each processing element in the hidden
layer. The sum of these 4096 products becomes the argument for the sigmoid function of the hidden layer. This
process is repeated from the hidden layer to the output layer to generate 3 output values. A schematic of this
neural network is shown in Figure 13. Equations 6 and 7 are used to calculate the input values to the processing
elements in the hidden and output layer. The values v;), and w;; denote the weight values from the input to the
hidden layer and from the hidden to the output layer, respectively, all which are generated during the training
of the neural network. Furthermore, notice that the sum of products begin from h = 0 and 7 = 0, the bias
processing elements, which take an input value of 1.
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Figure 13. Back-propagation neural network with 4096 input processing elements, 20 hidden processing elements, and 3
output processing elements. Bias processing elements are denoted by b and these take an input value of 1.
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The - output values in the output layer are positive real numbers between 0 and 1; the output processing
element with the highest value indicates the classification of the input. A total of 577 test samples from three
classes were classified by the back-propagation neural network. The distribution of the test samples from each
class is shown in Figure 14. When the neural network assesses the entire set of testing data, 94% of the data
is properly sorted into the correct classification groups (Figure 15). All of this data was previously collected by
the vertical sparse array profiling sensor.
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Figure 14. Distribution of number of samples per class within the testing data set.

Unlike the vertical sparse array profiling sensor, the new wireless prototype allows for a small horizontal offset
of approximately 5-10 inches. This offset is achieved without significantly diminishing the classification accuracy.




However, to maintain this high level of accuracy, passing objects must have an approximately constant velocity.®
When a passing object changes its velocity in the horizontal space between each sensing node, the silhouette will
be significantly distorted and classification results can be affected. Therefore, increasing the horizontal spacing
between these nodes increases the risk of incorrectly classifying the passing object. It was determined that keeping
horizontal distances within 5 inches will correctly classify the data close to 94% accuracy. For convenience, the
existing data library, comprised of data collected using a vertical sparse array profiling sensor, was used to train
the back-propagation neural network in this experiment. However, for any configuration of sensing nodes, a new
data library can be populated and used to retrain the neural network to evaluate its classification performance.
Finally, the confusion matrix that shows the performance of the classification algorithm in this test is shown in

Table 1.
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Figure 15. Classification results (a) Overall combined percent of correct and incorrect classification results, (b) Correct
and incorrect classification results by object classes.

Table 1. Confusion matrix of classification results.

Predicted Class
Human | Animal | Vehicle
Human 306 20 7
Actual Class | Animal 4 77 0
Vehicle 0 0 163




6. CONCLUSION

By combining the Sharp GP2Y0DO02YKOF with an OEM RF board, a wireless profiling sensor prototype was
designed and tested with highly accurate results in classifying passing objects at close range. As shown in these
experiments, the Sharp GP2YODO02YKOF proximity sensor can be used to collect data in a similar way to the
CX-RVMS5 IR based profiling sensor. The data collected by the proximity sensors is generated by using only
two packets of data, one for a broken beam and one when the beam is restored. There is no significant loss of
silhouette resolution when the normalized binary matrix is generated. Furthermore, this input into the back-
propagation neural network is used to train and classify data, producing correct classifications with up to 94%
accuracy. In addition to the increasing processing capabilities, the flexibility to deploy these sensors in the field
is increased by allowing each sensing node to have a horizontal offset. Overall, this new design of the profiling
sensor is an incremental improvement as compared to the original, wired profiling sensor prototype.

In continuing this work, we plan to collect data using the wireless profiling sensor using several different
sensing node placement configurations. This information will be used to retrain the back-propagation neural
network and test the classification performance of different arrangements of sensing nodes. Additionally, we will
modify the OEM wireless transmitter software to allow each sensing node to calculate the relative position of all
of the other sensing nodes; thus eliminating the need to train the neural network for each new configuration of
elements. This will ideally allow for completely randomized configurations, rather than positioning the nodes in
set and tested patterns.
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Abstract--Data-to-decision systems must fuse information from
heterogencous sources to infer a high-level understanding of a
situation. A high degree of confidence in the inferred knowledge is
necessary for appropriate actions to be taken based upon the
assessment of a situation. This paper presents an extensible
Semantic Web compatible framework that uses rich ontological
descriptions for the autonomous and human-aided fusion of
heterogeneous sensors and algorithms to create evidence-based
hypotheses of a situation under persistent surveillance. Raw data
acquired from profiling sensors is combined with the output of
visualization and classification algorithuns, yielding information
with a higher degree of confidence than what would be obtained
without the fusion process. The framework can readily
accommodate other data sources and algorithms into the fusion
process.

KEYWORDS: Semantic Web, Ontology, Sensor Network, Data
Fusion, Situation Awareness, Data to Decision Framework,
Autonomous Decision Systems

I.  INTRODUCTION

The fusion of data from heterogeneous sources, such as
sensors and intelligence reports, is integral to the inference of
highly reliable, evidence-based knowledge of a situation. The
degree of confidence in the inferred knowledge improves with
further acquired evidence, that is, fusion of data from more
sources. This paper describes an extensible Semantic Web
compatible framework for the autonomous fusion of data from
heterogeneous sensors and algorithms, allowing a human
operator receiving the fused data to assess a situation with an
increased confidence in the context of persistent surveillance.

Situation awareness has been defined by Endsley [1] as
follows: “the perception of elements in the environment within
a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future.”
Situation awareness is critical to decision making in many
applications, such as, patient monitoring, emergency response,
military command control, and border surveillance,

Systems for situation awareness require the fusion of a
myriad of data and knowledge sources, including disparate
sensor systems, algorithums, and intelligence reports. Semi-
automated and automated inference using fused data may lead
to an enhanced knowledge about the entities of interest in a
situation, as well as an increased confidence in
interrelationships, enabling situation awareness. End user

confidence in the inferred knowledge is critical to timely and
appropriate actions.

Integration of sensor data with algorithmic processes and
human-controlled information systems poses a significant
challenge for network-centric sensor frameworks. Fig. 1 is a
summary of the classical Joint Director of Laboratories (JDL)
fusion levels [2], augmented with a knowledge management
component [3]. These six fusion levels cover both automated
and “human in the loop™ processing of data and knowledge.
The model supports the concept of autonomous algorithms and
human users contributing to an evolving solution state in which
fused information may enable the identification and assessment
of strategies and tactics for counterintelligence [3-5]. The JDL
model is useful for describing the conceptual framework within
which a particular fusion process occurs and it also provides a
reference for .describing the level of fusion in an overall
process.

Fig. 1. Six levels of the data fusion model augmented with a data and
knowledge management system.

Multi-sensor data integration has been limited primarily by
the lack of standards for data exchange and for describing
sensor capabilities and specifications, which would enable their
automated discovery, invocation, and composition with other
sensors as part of process workflows [6-7]. The XML-based



data formats and standards, such as SensorML (Sensor Markup
Langua%e)l and the Observations and Measurements (O&M)
Schema® have been adopted by the Sensor Web Enablement
(SWE) (8] initiative of the Open Geospatial Consortium
(OGC)® to mitigate these deficiencies. The SWE initiative aims
to bring together Web connected sensors of all types in a
common framework for discovery, invocation, and tasking.
The advent of the Semantic Web initiative [9] and its
associated representational standards, such as the Web
Ontology Language (OWL)‘ and the Resource Description
Framework (RDF)’, has led to the development of sensor
specific ontologies, such as OntoSensor [10] and the Sensor
Data Ontology [11]. These ontologies contain computable
descriptions (definitions) of sensors and sensor data, their
properties, capabilities, and relationships.

In this paper, we present an ontology-based framework
that is capable of fusing raw data with the output of machine
learning algorithms that process the given raw data; yielding
further knowledge about a monitored situation. The framework
is robust and flexible to accommodate a variety of algorithms
and heterogeneous sensors by providing ontological
descriptions of their input and output capabilities. Descriptions
of these components, which use ontologically defined terms,
allow capability-based matching of sensors and algorithms
creating a plug-and-play architecture while eliminating the
hurdles to their interoperability.

II.  PROFILING SENSORS FOR SURVEILLANCE

Persistance surveillance environments can contain a wide
variety of sensor systems and algorithms. One such family
includes profiling sensors, which are denoted by the
nomenclature PFx. The PFx sensors are often regarded as
crude ‘imaging’ devices and typically use a sparse detector
array, as compared to a large focal plane array found in
traditional cameras [12]. PFx sensors may be active or passive
sensors that capture data about objects that pass through their
field of view. For example, Fig. 2-a shows an active near-
infrared version of a profiling sensor (PF;) with a sparse array
of detectors in a vertical geo-location placement.

Fig. 2. PF, sensor system comprising (a) ncar infrared detectors in a vertical
geo-looation placement (b) sensor output formatted using run-length encoding
and (c) output of an algorithm that produced a silhouette of the object.
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One algorithm that operates on PFx data has the objective
of visualizing the raw data as a crude profile or silhouette for
human-aided classification. In addition, other algorithms
operate on the PFx raw data and attempt to classify the data
autonomously. For example, one approach is to attempt to
classify the data into one of three classes: human, animal, or
vehicle. Extensions of such algorithms may attempt a more
refined classification, such as, human with backpack, light
truck, ete. The PFx algorithms may use a variety of
classification techniques, such as the naive Bayesian classifier
[13], naive Bayesian with Linear Discriminant Analysis (NB-
LDA) for dimensionality reduction [14], K-Nearest Neighbor
(K-NN) classifier [15]), Soft Linear Vector Quantization
(SLVQ) [16], and Support Vector Machines (SVM) [17] for
autonomous classification. A comprehensive set of papers on
profiling sensors appears in [18-24].

A. Application Scenario

Consider a border patrol agent remotely monitoring an
area for activity of interest. The agent may be interested in
detecting humans attempting to cross a border with or without
weapons and drugs using deployed PFx sensor systems. In
many scenarios, there is a low tolerance for false positives,
given the remoteness of a location under surveillance or the
possible hostile environment. The raw data output of the sensor
as seen in Fig. 2b contains very little information about the
sensed entity to an end user. The silhouette generated from this
data, shown in Fig. 2¢, provides more information to an end
user as to the outline of the detected entity. The agent is likely
to recognize the silhouette in Fig. 2-c as that of a human.
However, some silhouettes are much less informative to an end
user as in Fig. 3. In such cases, the silhouette needs to be
supplemented with other information to increase the agent’s
confidence that the object is indeed human or a truck, animal,
etc. A classification algorithm capable of processing the raw
data or the silhouettes may yield such supplemental
information. As a rudimentary fusion scenario, the agent could
be provided with the silhouette in addition to the output of the
classification algorithm. In many instances, the combined
information may increase the agent’s confidence in a given
hypothesis.
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Fig. 3. Examples of less informative silhouettes to end users

nI.  FUSION FRAMEWORK

The ontology-based framework facilitates the integration
of raw data from sensor systems and the output of algonthms
that process either the raw data or other intermediary data
formats to create high-level knowledge of the sensed
environment. The current fusion framework described in this
paper is an extension to previous work of the authors that
focused on autonomous matching of sensor systems to
algorithms which in turn were assigned to missions [25-26].




A. Ontology and Rule Framework

The framework was implemented using Description Logic
(DL) ontologies in preference to conventional relational
databases because of the machine interpretable formal logic
based semantics and the inference capabilities of the former.
The ontology (excerpt as an UML diagram in Fig. 4) was
created using TopBraid Composer®.

The DataFusion instance has been defined as an aggregate
of exactly one or more DataFusionComponent instances which
may be either an Image instance or an AlgorithmOutput
instance. The Image instance 1is the product of a
SimpleSensorSystem instance, which comprises a Sensor
instance and an Algorithm instance. The AlgorithmOutput
instance is the product of an Algorithm instance. Both the
Sensor and Algorithm classes are the root of an extended
hierarchy (not shown here, refer to [25) and [26]) that covers
many different sensor system types, such as electromagnetic,
chemical, and radar, as well as algorithmic processes, such as
profile generators, visualizers, classifiers and neural networks.

DetaFusionComponent

Produced By l
Agortthm
4 hasinputData
4 hasQuiputData -

e

Fig. 4. Core ontology for sensar data fusion represented in UML

The philosophy behind the class diagram is explained in
Figs. 5-8, by the object diagrams adjoining each of the outputs.
Fig. 5 shows a simple silhouette that has been generated by a
sensor system comprising a PF, sensor and a visualizing
algorithm. A human user may be able to recognize this image
as that of a human. In comparison, Fig. 6 shows the silhouette
in addition to the output of a simple classifier algorithm,
implemented by a Support Vector Machine, which classifies
the image as a human with 90% certainty. Fig. 7 shows the
silhouette supplemented by the output of a Bayesian classifier,
which categorizes the silhouette as that of a human with 93%
certainty. Lastly, Fig. 8 illustrates the fusion of the outputs of
both classifiers and presents all the results together with the
sithouette. The image and the classifier(s) outputs are modeled
as components of the Data Fusion instance.
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Fig. 5. An image from a sensor system
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Fig. 6. Fusion of the image with the output from another component, an SVM
classifier algorithm
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Fig. 8. Fusion of the image with the output from multiple classifiers

B. PFx Example

We have developed an application in a persistence
surveillance context to demonstrate the utility of the ontology-
based framework for the fusion of data from sensor systems
and algorithms. The purpose of the mission is to provide raw
surveillance data with algorithmically derived profiles and
classifications to a human observer in a remote location. Given
the ontological definitions of the components shown in Fig. 9,
the framework generated a DataFusion instance to detect
human activity in an area under surveillance.

Sansor. PF1 aparse detector

Propartiss:

hasSensorOutputDataFormat ® toxt®

Algorithm. AP1 Autonomous human classifier

Propertias:

hasAlgorithminputDataFormat “image®
hasAlgorithmOutputDataFormat “human"
Algorithm: AP2 Sihouetie Viewer
Properties:
hasAlgorithminputDataFormat “text®
hazAlgorithmOutputDetaFormat “image*

Fig. 9. Components with assooiated propertics to be used in a surveillanoce
mission

Fusion of data from a profiling sensor and a classifier
algorithm is accomplished with a SPARQL’ query. The
algorithms (Java functions) are invoked using a feature, which
1s part of the SPARQL library, called the SPARQL Inferencing
Notation (SPIN)® developed by TopQuadrant Inc. Fig. 10
shows an example of the SPARQL query that is used to
generate the DataFusion instance that combines a profiling
sensor data output to the output of a visualizer. The adjoining
object diagram illustrates the ontology instantiation in the
CONSTRUCT query.
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Fig. 10. SPARQL query for invoking an algorithm

In the query, the BIND clause in the last highlighted line
contains the invocation to a Java class, which is wrapped as
http://ksl.engr.iupui. edwiresource# Silhouette Viewer (aliased as
ksliures:Silhouette Viewer), an RDF resource.

The coupling between sensor system output and algorithm
inputs is based upon compatible data formats. Datatype
properties such as hasAlgorithminputDataFormat and
hasSensorOutputDataFormat map the specific component to
an enumeration of string literals such as “Text_Data” or
“Static_Image.” To combine this output with the output from a
classifier algorithm, the query in Fig. 10 can be extended to
add an invocation to a classifier algorithm as shown in Fig. 11.
The new invocation has been highlighted in grey in the figure.
Note the new component that has been added to the
DataFusion instance in the object diagram.
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Fig. 11. Extending the SPARQL query in Fig. 11.




IV. DiIsCUSSION

We have presented a simple ontology-based framework
which fuses data from multiple sources enabling situation
awareness for a human operator. There are two important
points to emphasize. First, the ontological framework may
facilitate resource control. By having a human operator verify
the human activity detected by the sensor systems and
algorithmic processes, appropriate decisions can be made in
response to the sensed event. The human operator helps the
framework avoid false positives from the autonomous
algorithmic process, thus managing critical resources
optimally, such as deploying unmanned aerial vehicles for
further reconnaissance. Second, the ontological framework
produces sensor fusion by fusing the two pieces of information
from the profile visualizer and the autonomous classifier,
which is more valuable to a human operator making decisions
than just having access to one piece of information. Therefore,
the presented framework is essentially a data-to-decision
framework. The framework can also be extended to
accommodate heterogeneous sensors, such as vibration and
acoustic sensors in addition to the profiling sensors. Fig. 12
shows an extension of the data fusion concept introduced in
Figs. 5-8 to include outputs from heterogeneous sensors, such
as profiling sensors and vibration sensors, in combination with
different classification algorithms to provide much more
information about the situation. Outputs from other sensors,
such as cameras and acoustic sensors (not shown here) can also
be combined in this manner.
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Fig. 12. Data fusion from heterogeneous sensors results in more evidenee being
presented to a human agent

In terms of the JDL sensor fusion model, the ontological
framework performs level 1 object refinement when the
DataFusion instance fuses the generated profiles to
autonomous classifications. Level 5 cognitive refinement (user
refinement) also takes place when the synthesized DataFusion
instance fuses with a human operator’s decision to verify the
autonomous classification via the visualized profile.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The ontology-based framework presented in this paper
can be used to present fused information obtained from various

sources to a human observer so as to improve confidence in the
perceived situation. Sensor systems can be tasked, algorithms
can be dynamically invoked from this framework, and the
output data can be assimilated and presented to a human agent
enabling situation awareness and appropriate decision making.

A shortcoming of the current framework is the necessity to
explicitly specify the matching criteria for the sensor systems
in the SPARQL query. Note the SPARQL query example in
Fig. 10 invoking the silhouette viewer algorithm. If a classifier
algonthm needed to be integrated and invoked as well, an extra
constraint would have to be added in the WHERE clause and at
least two other unmatched variables would need to be specified
in the query. Given the inherent nesting of the sensor systems
i the generated systemn, we are working on an interface for
dynamically generating the SPARQL query from the
specifications of the selected components. This interface would
be the backend for a GUI- based application where each of the
components would be displayed on a selection panel.

We are also investigating the use of REST services [27-28]
to encapsulate the sensor systems and algorithms in a service-
oriented architecture (SOA). Each component would be
exposed as an endpoint interface with a specific URI. The
specifications of each component would be encoded in a
Semantic Web compatible format to enable discovery,
invocation, and dynamic composition on an intranet or even
the secure Internet.

In the future, the fusion architecture is to be expanded to
accommodate multiple profiling sensors in a given area. For
example, there may be M profiling sensors along a path and N
different classification algorithms. The fusion architecture
could be tasked to produce an output that combines and
appropriately summarizes the outputs of all these components
for an end user, as shown in Fig. 13. The next logical step
would be to use heterogeneous sensors, such as acoustic and
vibration sensors and their corresponding classifying
algorithms, to enable situation awareness.

Algorithms

Sensors

Vibration Sensor

Intrared sensor

Fig. 13. Data fusion combining output from heterogencous sensors with
multiple algorithms
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ABSTRACT

A profiling sensor has been realized using a vertical column of sparse detectors with the sensor’s optical axis configured
perpendicular to the plane of the vertical column of detectors. Traditionally, detectors of the profiling sensor are placed
in a sparse vertical column configuration. A subset of the detectors may be removed from the vertical column and placed
at arbitrary locations along the anticipated path of the objects of interest, forming a custom detector array configuration.
Objects passing through the profiling sensor’s field of view have traditionally been classified via algorithms processed
off-line. However, reconstruction of the object profile is impossible unless the detectors are placed at a known location
relative to each other. Measuring these detector locations relative to each other can be particularly time consuming,
making this process impractical for custom detector configuration in the field. This paper describes a method that can be
used to determine a detector’s relative location to other detectors by passing a known profile through the sensor’s field of
view as part of the configuration process. Real-time classification results produced by the embedded controller for a
variety of objects of interest are also described in the paper.

Keywords: Persistent surveillance sensor, profiling sensors, embedded controller, classification, object detection,
customizable sensor arrangement

1. INTRODUCTION

Profiling sensors encompass a family of sensor devices and configurations that are used to acquire profiles or silhouette
data of objects of interest for classification purposes’. Variations include employing an array of active near-IR trip
sensors, a passive pyroelectric approach®, as well as extracting a subset of pixels from the image of conventional
imagers to emulate a sparse detector array*®, Deployment scenarios for such profile sensors include border monitoring
over open terrain for persistent surveillance. Profiling sensors must be able to automatically distinguish between humans
and non-human objects, such as deer, rabbits, horses and other animals that reside in the area of interest. Objects are
desired to be classified as either human, vehicle, or animal.

The profile sensor considered for implementation in this paper utilizes a vertically oriented column of sixteen near-IR
optical trip wires (OTWs). These detectors are arranged approximately 5 inches apart from one another, forming a
sparse array with their optical axes configured perpendicular to the plane of the vertical column as shown in Figure 1 (a).
Each detector is coupled with its own reflector mounted on an opposing platform”™®’. Objects that pass through the
beams record the ‘on’ or “off” state for each detector for a particular time sample, which is then recorded. The object
profile is generated by collecting the collection of time samples in which a detector break-beam triggering event
occurred, fonming a silhouette of the object that passed through the beams of the array as shown in Figure 1 (b). The
active IR sensing elements require that a subject pass through the beams to be detected. This requirement limits the
OTW to deployments in which objects of interest must pass through a very constricted area.

*rkrynlds@memphis.edu; phone 1 901 678-2175; fax 1 901 678-5469; www.cece.memphis.edu




Detectors of the profiling sensor are traditionally placed in a sparse vertical column configuration. Since no horizontal
spacing exists between the sensing elements, profiles generated by the vertical column are constructed by placing the

recorded time samples next to each other.
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(b)
Figure | (a) Traditional profile sensor with vertically oriented detectors and (b) example profile of a horse generated by a
profile sensor with vertically oriented detectors

Requiring a subject to pass through the sensor to obtain its profile presents a limitation that is easy to counter. Ifa
person recognizes the sensor that is being used to monitor him/her, he/she merely needs to walk around the sensor to
avoid detection. Good concealment is therefore essential. Part of the concealment may be done by breaking the vertical
array apart, and distributing the detectors along an anticipated path of objects of interest; thereby, reducing the obtrusive
size of the single array pole and its reflector® '°. An alternative profiling sensor prototype design is shown in Figure 2.
Note that this particular configuration is a prototype with horizontal distances of approximately 15-35 cm between
detectors. Actual field implementation would place individual detectors where maximum concealment can be achieved,

possibly with significantly greater horizontal separation.




Acquiring a profile from the detector elements that are not in the same plane requires that the precise locations of the
detector elements be known to synchronize timing between them. Measuring these distances by conventional techniques
1s particularly tune-consuming, especially if the detectors are to be placed at significant horizontal distances from each
other. Long setup/measurement time makes the custom configurations impractical for deployment in the field, especially
when deployment tine is minimal. A quick method of measuring the distance between the detectors is therefore

warranted.

2. SIMPLE CLASSIFICATION TECHINQUE USING CUSTOM ARRAY

A simple classifier can be implemented using the custom array by summing the ‘on’ and ‘off” states of the detector along
each row as an object passes through the sensor. The summation data along each row is treated as an independent
feature and compared to training data sets of human, vehicle, or animal. The object is subsequently classified using
Naive Bayesian classifier. A leave-one-out classification study against the profile sensor’s acquired sample library'®
revealed that this technique can obtain a 92% classification rate using Mahalanobis distance. Its ease of implementation
makes it particularly appealing for a low-resource microcontroller. However, the technique fails to calculate the object’s
velocity or its direction of travel, both of which may provide valuable information on a passing subject. Higher-yielding
classification algorithms have been developed for profiles generated by the sensor with vertically oriented detectors ',
However, to utilize these algorithms, the profile must be reconstructed to appear as if it were generated by the sensor
with vertically oriented detectors.

3. CUSTOM ARRAY PROFILE RECONSTRUCTION TECHNIQUE

Detector timing for the vertical column configuration is synchronized by the placement of the detectors along the same
column, as illustrated by Figure 3. Most subjects passing through the sensor’s field of view do not have a flat leading
edge; therefore, their profiles will illustrate a non-straight edge. Passing a straight, vertical object through the array will
cause all 16 detectors to trip simultaneously, as illustrated by Figure 4.
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Figure 3: Subject passing through a vertical column sensor Figure 4: Vertically straight object passiﬁg through vertical array

Removing these detectors from the same column destroys the synchronization between them. Passing the straight
vertical object through an array in which the detectors are not vertically co-located will create a profile in which the
detector elements ‘on’ and ‘off” times are modified by the placement of the detectors. Figure 5 illustrates the passing of
a vertically straight object through a modified array. Passing this rectangular ‘calibration rectangle’ through the sensor is
done as part of a calibration routine to define the distances between each detector pair. Since it is known that the leading
edge of this rectangular object is vertically straight, the physical location of the detectors can be determined by counting
the number of time samples between a detector pair’s first transition state. For example, if there are X time samples




between detectors on row i and row j, then it can be assumed that the physical distance between detectors on rows i and j
for subsequent samples should be offset by the same X number of time samples. The number of samples between rows
is found by searching for the first transition state of each row from ‘on’ to ‘off’, corresponding to the leading edge of the
passing rectangle. Similarly, the trailing edge may also be used if the calibrating vertical object has a vertical rear edge.
Note that the vertical calibration rectangle must be passed through the array at a relatively constant speed to trip the
detectors at their correct physical locations.
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Figure S: Vcniﬁally stmigﬁt .o.bject passing thfou.glh custom array

These time differences (corresponding to the positions of the individual detectors) are then subtracted from the raw
timing profile of each subsequent subject passing through the array to rebuild the proper profile. Figure 6 illustrates a
subject passing through the prototype custom array, raw profile generation and the subsequent reconstruction of the raw

profile data to form a properly oriented profile.
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Figure 6: Subject profile reconstruction after passing through custom array

4. IMPLEMENTATION

Experimentation for the custom array was realized by placing the detector locations at specified heights and random
locations. Detectors are placed at random horizontal locations on rows that are vertically separated 5” from each other,
consistent with the 5 separation between detectors of the vertical columnn array profile sensor. This implementation was
realized by modifying the single-column array. The single-column array is constructed of PVC pipe sections and 1s




designed for rapid field data collection deployment. Detectors of the single column array are paired into two-element
sections for ease of alignment and to minimize the number of necessary electrical connections. The eight detector pairs
are removed from the column array and placed on a section of PVC pipe to set them at their original vertical heights.
Horizontal spacing is random.

Figure 7: Custom scnsor array rototype realized on PVC pipe.

Note that the detector arrangement in Figure 7 shows the detectors in a roughly diagonal pattern. Detector placements do
not necessarily require such an arrangement, but may be arranged in any fashion. This particular configuration was
merely chosen as an illustration for this paper and to construct the prototype in Figure 7. Also note that the element pairs
do not necessarily have to lie on the same vertical plane. Detectors in Figure 7 were left paired together, due to their
construction. Figure 8 (a) illustrates a human carrying a 2x4 vertically through the sensor (moving from left to right
through the sensor in Figure 7) as part of a calibration routine. The calibration routine determines the first transition state
of each detector and finds the time difference between the profile’s first detector’s trigger event and the first trigger event
along each row. The profile is ‘straightened’ by subtracting these time differences along their respective rows, as shown
in Figure 8. Note that the same 2x4 beam is shown again in Figure 8 (b) in a more recognizable format.

(a) (b)
Figure 8: Person carrying a vertical object through the custom sensor array of Figure 7; (a) uncorrected and (b) corrected.
Vertical beam is shown in oval.
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Subsequent data acquisitions have this same row shifting routine performed on them. Figure 9 shows the corrected
profile of a person passing through the array without the 2x4 used for detector timing calibration. This technique of
shifting the start position of each of the rows appears to account for the random horizontal placement of detectors.
Although the array may be placed in any customized configuration, the specific detector locations must remain fixed
after the calibration routine is executed. If the array is modified, the calibration routine must be performed again to find
the detectors’ positions relative to one another.

Note that data collected from the vertical column array profile sensor consists of timing samples. A slowly travelling
subject will generate a profile of greater width than if it were to pass through the sensor quickly. Thus, the number of
time samples used to generate a profile alone is not an accurate measurement tool to indicate the physical width of the
passing subject. Merely applying the time sample shifting to each of the rows is not an entirely accurate method of
realigning a profile since subjects may pass through the array at speeds other than which the detector distances were
calibrated. Since ¢ = d/v, the amount of shift ¢ applied to each row is a function of the detector element distances d and
the velocity v of the travelling subject, not merely a count of the number of time samples between rows. Subjects with a
speed v, which may be different than that of objects used in the calibration, will, therefore, have malformed rebuild
profiles. Furthermore, correcting the profiles due to time only does not account for the direction of travel that a subject
may take through the sensor. Travelling in the direction opposite from what the array was calibrated causes the row data
to be shifted in the opposite direction as shown in Figure 10 (b). Although this technique of profile rebuilding may work
appropriately if we make the assumption that subjects will always pass at the same speed, it fails when the assumption is
violated. Therefore, a more robust calculation technique is required.

R
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Figure 10: Incorrect ‘corrected’ arrays caused by (a) speed other than calibration speed and (b) travelling opposite direction -
from calibration route.




S. VELOCITY CALCULATION AND INCORPORATION

A more accurate method of correctly rebuilding the profiles requires that the physical distances between detectors and
the actual velocity of the passing subject be determined. Using these parameters, a more accurate time shifting value
may be calculated for each detector state. Timing differences between the detectors are directly proportional to the
horizontal distances between them and are determined by passing a vertically oriented object through the array as
described earlier. However, the distance between any one pair of detector elements must be known. Ratios of the
numbers of time samples recorded between element pairs are computed. Assuming that the calibration rectangle is
passed through the sensor at a relatively constant speed, the physical distances are a product of the time ratios between
the detectors and the known horizontal distance between the two designated detectors. These distances are calculated
several times as part of the calibration routine and averaged along each row.

A subject’s velocity through the profile sensor is calculated by averaging the individual velocities v;; generated between
every possible detector pair along the leading and trailing edges of the profile, given by the expression

2 M=-1 M
mean velocity = ———— z Z v
g M(M - 1) i=lowermost ={+4+1 Y (1)

detector trigger event

where i # j, and M = the uppermost detector trigger event’. Velocity between each detector pair is defined as

vy = dy / ty where dy is the physical distance between detectors i and j, and #; is the number of samples between the
detectors i and j to the leading or trailing edge of the profile. Although seemingly computationally intense, the number
of detector pair velocity calculations is limited to M*(M-1) / 2, where the maximum value of M is the number of
detectors in the array;, a maximum of only 120 possible calculations along each edge is possible for a 16 detector array.
Combinations where t=0 cause division by zero and are not considered. The implementation of the vertically paired
sensor detectors causes horizontal pairings to have a time difference of zero, thereby eliminating those particular detector
pair velocity calculations from consideration and further reducing the computational requirements of the microcontroller.

A rectangular-shaped object passing through the sensor would generate constant detector pair velocities. Upright,
walking humans are mostly rectangular in shape, generating similar velocities along the horizontal detector pairings for
the front and rear edges of the profile. However, not all profiles share this rectangular pattern. The overhanging head of
an animal, sloped vehicle windshields, swinging arms, etc., caused by premature detector triggering, can generate
abnormal detector pair velocity calculations. These particular velocities are eliminated by setting a threshold of a
maximum reasonable velocity for individual calculated velocity values v

Once an overall subject velocity is calculated, the amount of time required to shift each row #; is calculated in samples by
1y = dy/ v, where dij is the physical distance between the detector elements i and j found from the calibration routine.
Note that this velocity calculation is capable of generating both positive and negative values; with this data a direction of
travel through the gates can be determined. Figure 11 illustrates the more properly reconstructed data of the same
profiles found in Figure 10 by this more accurate technique.
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Figure 11: more accurately reconstructed profiles of Figure 10 generated by velocity incorporation.




6. RESULTS

The low resource microcontroller has proven to be effective at rebuilding profiles from a custom array when utilizing the
passing object’s velocity. Figure 12 illustrates the raw and reconstructed profiles for several objects passing through the

custom array.

Two Humans Large horse and human leader | SUV, front windows down
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Figure 12: Raw and reconstructed profiles collected by custom array

Incorporation of velocity allows a more accurate profile width to be determined from data acquired from profiling
sensors’. Classification algorithms, such as the height/width ratio and six-feature technique, are based strongly on the
width of the sample*!'!. Improving the determination of the width of an object will improve the overall classification of
objects by profiling sensors. However, to date, there are few samples within our library of profiles'® that have the
physical width derived based on the subject’s velocity. This “distance™ library is composed of profiles of 30 humans, 32
animals, and 29 vehicles. Comparison of a distance-based width profile to the timing-based width of profiles acquired
by the vertical array profile sensor is likely to lead to fallacious results. Take-one-out classification studies were
performed on the data within our library utilizing the height-width ratio and six-feature techniques with 54% and 85%
results, respectively. Classification confusion matrices for the two classification techniques are displayed in Tables 1a
and 1b. Incorporation of a larger training set is hypothesized to increase these classification results.

Table 1b: Six-Feature Classification Confusion Matrix

Table 1a: Height/Width Feature Confustion Matrix

True Classification True Classification

. : Human | Animal | Vehicle Human | Animal | Vehicle
Hefiﬁédm Human | 25 4 1 Six-Feature Human | 26 4 0
Classificati Animal 4 5 23 Classification Animal 2 28 2
assification ;= 3 3 20 Vehicle 1 3 25

The simple technique of summing the detector ‘off” states is currently utilized as a classification tool on the
microcontroller until future data collection events can be performed with the custom array. Detector state events are
summed and normalized by the highest number of detector events of the sixteen row features, making this technique

particularly appealing: the “timing” library may be compared against the raw timing features of a subject test case. The
microcontroller has yielded a real-time 85% classification rate using this feature for a wide variety of humans, vehicles,
and animals during field data collection events. Classifications are made by comparing the normalized energy features
along each row with a Naive Bayesian classifier trained against the ‘timing’ library. These real-time classification
results are displayed in the confusion matrix of Table 2:




Table 2: Real-time Row Energy Feature Classification Confusion Matnix

True Classification
Human (30) | Animal (32) | Vehicle (29)
Real-time Row Energy | Human 25 5 0
Feature Classification | Animal 0 32 0
Vehicle 1 7 21

Implementation of the calibration routine, data collection, velocity calculation, profile reconstruction, and classification
algorithm has been completed on a Rabbit BL4S200 microcontroller. Thus far, the microcontroller has shown promising
results when coupled to the near-IR profiling sensor array in both vertical and custom detector configurations.

7. CONCLUSIONS

Previous work has shown the feasibility of employing the family of profiling sensors to detect objects of interest for wide
area surveillance. The focus of this paper is to demonstrate the feasibility of implementing a custom array of random
detector placements with minimal setup effort. Efforts show that the system is capable of an 85% classification rate
using mutually exclusive features on a sample data set. Future work involves the collection of additional samples and
more rigorous testing of the custom array configuration against a more dynamic test subject set.
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Abstract: The deployment of ubiquitous sensor systems and algonithms has led to many
challenges, such as matching sensor systems to compatible algorithms which are capable of
satisfying a task. Compounding the challenges is the lack of the requisite knowledge
models needed to discover sensors and algorithms and to subsequently integrate their
capabilities to satisfy a specific task. A novel ontological problem-solving framework has
been designed to match sensors to compatible algorithms to form synthesized systems,
which are capable of satisfying a task and then assigning the synthesized systems to
high-level missions. The approach designed for the ontological problem-solving
framework has been instantiated in the context of a persistence surveillance prototype
environment, which includes profiling sensor systems and algonthms to demonstrate
proof-of-concept principles. Even though the problem-solving approach was instantiated
with profiling sensor systems and algorithms, the ontological framework may be useful

with other heterogeneous sensing-system environments.
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1. Introduction

Dynamically matching sensor systems to algorithms to satisfy a task poses a significant challenge in
sensor networks. The challenge is made even more difficult because sensor systems and algorithms are
not typically designed independently, which often limits their reuse in tasks that may not have been
anticipated when the sensors and algorithms were first deployed. Compounding the challenge is the
lack of knowledge and data models, which describe sensor and algorithm capabilities, properties, and
relationships [1-6]. The focus of this paper is on the reasoning process used in a novel ontological
problem-solving framework, which can be leveraged by software agents on sensor networks, to
opportunistically match sensor systems to independently designed algorithms to form synthesized
systems capable of satisfying a task.

1.1. Ontological Problem-Solving Framework

The ontological problem-solving framework (Figure 1) has the overall goal to discover and match
sensor systems to compatible algorithms to form a synthesized system, which is capable of satisfying a
given subtask. The synthesized systems and other algonthms may then be matched to form more
complex synthesized systems, which may then be assigned to tasks of high-level missions (Figure 2).
The ontological problem-solving framework will then coordinate all matched and synthesized sensor
systems and algorithms to complete the missions. The problem-solving approach could have been
developed with standard database technologies and SQL queries. However, one of the issues that
makes discovering and matching sensors to algorithms problematic is the lack of knowledge models

used to describe those systems.

Figure 1. Overview of ontological problem-solving framework.
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Figure 2. Creation of synthesized systems which are then assigned to subtasks of
high-level missions via the ontological problem-solving framework.
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The knowledge models also need to leverage well-defined semantics in a machine-interpretable
format so other agents may interact with the described systems. The requirement to opportunistically
match sensors to algorithms increased the need to use ontologies (which specify the semantics) and
rules based on description logic to infer which components may be used to form synthesized systems.
The knowledge models used by the ontological problem-solving framework may then be leveraged by
other systems for more complex inference if needed. The ontological problem-solving framework was
developed using the TopBraid Maestro software by TopQuardrant [7], which uses the web ontology
language (OWL) [1-6] for knowledge capture, SPARQL [8] for specifying rules, and the TopSpin
inference engine for interpreting the rules. Other systems, such as Protégé, which uses JESS and
SWRL [1-6], could have also been used to develop the ontological problem-solving framework. The
main focus of this paper is to detail the reasoning process the ontological problem-solving framework
uses to match sensor systems to compatible algorithms to form synthesized systems, which are capable

of satisfying a given task.
1.2. Matching Sensors to Algorithms

Engineers often design an algonthm for a specific sensor system. This dependence makes the
algorithm difficult to use with other sensors opportunistically based on ever-changing persistence
surveillance goals. If sensors and algorithms are designed independently, then, a problem-solving
approach must enable the matching of a sensor to a compatible algonthm to achieve a task, such as
formatting the sensor data for a specific purpose or extracting pixels from an imaging sensor for
subsequent processing. The composition of matched sensor systems and compatible algonthms to
achieve a task can be made even more difficult if an algorithm requires multiple data sources
(Figure 3(a)), or if a chain of multiple sensors and algonthms must be composed to achieve subtasks
supporting an overall task (Figure 3(b)). The problem-solving approach must describe the relationship
between the preconditions and post conditions of the algonithms, as well as descriptions of the raw

data, and possibly features generated by the sensor systems [9-12].
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Figure 3. (a) Algorithm, which requires data from two sensor systems, matched to two
compatible sensor systems. (b) Algorithm matched to a compatible algorithm, which is

also matched to a compatible sensor system.
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1.3. Related Work

There have been several approaches and tools developed to address in part the challenge of
matching sensors to compatible algorithms. These techniques and tools include, but are not limited to,
Sensor Fabric [9,13-15], Sensor OASi1S [16], Agilla [17-19], Semantic Streams and SONGS [20,21],
and CIEDETS [22,23]. Other research efforts focused on the development of ontologies that describe
sensors and their respective capabilities, such as OntoSensor [2-6], Sensor Network Data Ontology [24],
Sensor and Data Wrapping Ontology [25], Stimulus-Sensor-Observation Ontology [26], Sensor
Observation and Measurement Ontology [27], Semantic Sensor Network Ontology [28], Disaster
Management Sensor Ontology [29], and a survey of sensor ontologies [30] are also efforts relevant to
our work. Other work promotes a logical model to follow while developing a problem-solving
approach. For example, Sensor Modeling Language (SensorML) [31] describes high-level conceptual
models using Unified Modeling Language (UML) of sensors, algorithms, and supporting notions to
facihitate interoperability. The Open Geospatial Consortium (OGC) specify draft interoperability
interface standards and metadata encodings that integrate sensor systems into information
infrastructures, such as Observations and Measurements (O&M) [32,33], SensorML [34], Transducer
Model Language (TML) [35], Sensor Observation Service (SOS) [36], Sensor Planning Service
(SPS) [37], Sensor Alert Service (SAS) [38], and Web Notification Services (WNS) [39]. Semantic
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Streams and OntoSensor are two important efforts because of their use of semantics and ontologies.
Semantic Streams and the follow up SONGS effort were developed by Microsoft to facilitate queries
to determine capabilities and subsequent tasking of sensors and algorithms. Semantic Streams uses
event streams, which are collected raw data from sensor systems with meta information attached, and
inference units, which operate on event streams by creating semantic information about the event
streams. Queries posted to Semantic Streams are broken down into one or more of the inference units
(Figure 4). SONGS adds the use of an ontology to describe the inference units. Instead of queries being
directly mapped to inference units, the approach can infer which inference units may satisfy a given
query [20,21]. OntoSensor is a semantic-web-compatible ontology that captures knowledge about
sensor systems (Figure 5(a)). OntoSensor can be used to create relationships to other sensor instances
and to derive properties about sensor systems. Software agents can query the sensor instance data to
determine the capabilities of connected sensor systems. Once the capabilities of the sensor systems
have been determined, other agents may task the sensor systems, for example, retrieving humidity data
for a specified time period (Figure 5(b)) [2-6].

Figure 4. Semantic Streams query.
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Figure 5. (a) Excerpt of the OntoSensor ontology. (b) Problem-solving for discovering and
tasking sensor systems using OntoSensor.
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1 4. Profiling Sensor Systems and Algorithms

To show how an ontological problem-solving framework can address the challenge of matching
sensor systems to compatible algorithms for a specific task, a family of unattended ground profiling
sensors (denoted as PFx, in which PF;, PF,, ..., PF, are different types of profiling sensors) and
algorithms were deployed in a prototype environment. PFx sensor systems' provide unique
opportunities for dynamic feature extraction through extendable algonithms and subsequent tasking.
The main purpose of PFx sensors 1s to capture profiles of objects, which can be subsequently classified
by algonthms using a variety of techniques, such as Naive Bayes algorithms, neural networks, or
support vector machines. A common theme of all PFx sensors is that they are intended to be low cost
and provide a profile that can be reliably classified. There are many different types of PFx sensors,
which exploit various technologies, including a family of PFx imaging sensors, which use a sparse
detector array. PFx sensors include, but are not limited to, novel imaging sensors in the visible, near
infrared, short-wave infrared, mid-wave infrared, and long-wave infrared bands. One of the initial and
simplest approaches to a PFx sensor was a prototype that used a sparse, vertical array of detectors. One
configuration was on a vertical pole, as shown in Figure 6(a), while other configurations may include a
horizontal displacement among the detectors as shown in Figures 7(a) and 8. Other algorithms may
format or compress the raw sensor data produced by PFx sensors, as shown in Figure 6(b), or generate
profiles into formats such that other algorithms can subsequently process the data, as shown in
Figure 7(b). One example is a visualization algorithm, which may generate a silhouette of an object for
presentation to a human evaluator for classification. Other algorithms that process PFx data may
classify silhouettes as humans, animals, or vehicles [12,40-46].

Figure 6. (a) Near-IR PFx sensor with detectors vertically deployed. (b) Output from an
algorithm that formats PFx sensor data. (¢) Output from an algorithm that produces a
silhouette from formatted PFx data.
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Figure 7. (a) PFx sensor with detectors deployed vertically with a horizontal displacement.
(b) PFx raw data formatted by an algorithm as a profile.
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Figure 8. (a) PFx sensor with detectors deployed vertically with a specific horizontal
displacement. (b) PFx sparse detector with random detector displacement. (c¢) PFx sparse
detector with only horizontal displacement.
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The PFx systems, with their various capabilities and relationships, represented a unique opportunity
for integration onto the ontological problem-solving framework (Figure 9). The following section
describes in detail the novel ontological problem-solving framework using PFx sensors and algorithms
to illustrate the matching of sensor systems to independently designed algorithms for a task. The
problem-solving approach will illustrate how PFx sensors are matched to compatible algorithms for
pixel extraction, profile generation, visualization, and various other tasks. Even though the PFx sensors
and algorithms are used for proof-of-principle aspects of the ontological problem-solving framework,
the same approach may be extended for use by other types of sensors and algorithms to achieve

different tasks.
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Figure 9. (a) Representative algonithm types, including classifiers, visualizers, and silhouette
generators. (b) Representative PFx sensor types, including sparse detectors and imagers.
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2. Reasoning Process to Match Sensor Systems to Algorithms

The ontological problem-solving framework uses a reasoning process that leverages knowledge
management techniques, such as semantic data modeling with ontologies, to address the challenge of
matching sensors to compatible algorithms to form synthesized systems capable of satisfying a task.
For this paper, the following definitions are used to describe sensors and algorithms. A sensor is a
device that produces raw data while an algorithm uses the raw data for further processing These
definitions are similar to ones put forth by the Open Geospatial Consortium, such as defining sensors
as processes and defining sensors and algorithms as services in SensorML [34]. Of note is that
low-level algorithms, which may reside on the sensor hardware, are now considered as algorithms,
which are not part of the physical sensor. The low-level algonithms may be device drivers or software
to process the raw sensor data into a specific format. Separating the low-level algorithms from the
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specific sensor systems facilitates a more flexible knowledge representation of the sensor systems and
algonithms. With these definitions, meta-data, such as sensor and algorithm properties, network
communications, data formats, efc., must be captured to explicitly represent the relationships among
sensors and algorithms. The use of models to capture knowledge about sensors and algorithms
facilitates inference with rules based on description logic. The knowledge models, rules, and inference
engine may then allow other agents using the reasoning process of the ontological problem-solving
framework to determine the capabilities of sensors and algorithms to opportunistically discover and
form synthesized systems capable of satisfying a task.

2.1. Ontological Relationship Structure

In this work, the descriptions of algorithms and sensors are represented in an ontology similar to the
approach taken with OntoSensor and CIEDETS, which were developed by knowledge engineers with
input from subject sensor matter experts. Using OntoSensor and CIEDETS ontologies as a baseline for
the ontological reasoning process, the ontology needed to be extended to allow for the matching of
sensors to algonthms to form synthesized systems capable of satisfying a task. The baseline ontology
was extended with the following: (1) a class hierarchy for describing algorithms with descriptive
properties; (2) additional properties in the sensor class for describing PFx sensors; (3) an additional
class hierarchy for matching sensors to compatible algorithms; and (4) additional declarative rules.

The challenge is to match sensor systems to algorithms to form synthesized systems capable of
satisfying a task and then reusing those systems for other tasks. The baseline ontologies already
describe sensor systems and various properties of those systems. Since the focus of the ontological
problem-solving framework was to use a persistence surveillance sensing environment, properties
were added to the sensor classes that describe PFx sensor systems. Generally these systems have
properties, such as image resolution, geo-locations of detectors that make up a sparse detector array,
and network communications. In order for a PFx sensor system to be described and represented by the
ontology, these properties and others were added to various subclasses of the Sensor class. Algorithms
were not represented by the baseline ontologies so a complete class hierarchy was added along with
various attributes, such as data input/output requirements, process capabilities and purposes,
descriptions of data, and network communications mapped into many different properties.

If sensor systems and algorithms are matched to perform a task, the ontology must have a way to
describe this possible interoperability. This combination is not merely just a sensor and a compatible
algorithm, but a combination of systems that may satisfy a given task. To describe this possible
combination of systems, the concept of a synthesized system was developed and integrated into the
ontology. A synthesized system is a possible combination of a sensor and compatible algorithm that
may satisfy a task. When looking at various types of sensor and algorithm combinations in a
persistence surveillance environment, generally, a sensor creates raw data of a passing object, a profile
of the passing object is created from the raw data, and then the profile has a process applied to it, such
as a classification or visualization. This is a two-step process of first generating a profile and second to
process this profile. This two-step process can be represented by two different synthesized systems,
The first synthesized system matches a sensor to an algonthm for the task of generating profiles, while
the second syntl&esized system is a matching of the first synthesized system to another algonthm,

.
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which has the task of processing the profile for some purpose. To represent the two types of
synthesized systems in the ontology, two new classes were created that have object type properties that
establish relationships back to established classes and properties. Figure 10 shows the core ontology for
matching sensors to compatible algonthms to form synthesized systems, which are capable of satisfying
a task, which is made up of four main classes: Matched_Sensor_System, Profiling_Sensor_System,
Sensor and Algorithm. A bottom-up approach will be used to explain the purpose of each of the
classes, their corresponding relationships, and the following section will describe the rules used to
query the ontology instance data for possible synthesized systems.

Figure 10. Core ontology of the ontological problem-solving framework that describes
the relations of the classes: Matched _Sensor_System, Profiling_Sensor_System, Sensor

and Algorithm.
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The Sensor class describes a sensing device, which generates raw data. The Algorithm class
describes a process, which requires raw sensor data or data provided by another algorithm as input and
then generates output. The Algorithm class can include, but is not limited to, PFx data formatters, PFx
classifiers, and PFx visualizers. The Profiling_Sensor_System class is the first synthesized system
concept that describes a possible combination of a Sensor instance and Algorithm instance, which
produces a profile of an object in the sensor’s field of view. The Sensor and Algorithm instances are
linked to a Profiling_Sensor_System instance through the two object type properties called has_Sensor
and has_Algorithm. A Profiling_Sensor_System may have many Algorithm mstances processing the
sensor data. For example, one algonthm may extract specific pixels from a raw image while another
algorithm generates a profile of the extracted pixels, thus, a chain of algorithms and sensors may be
matched in a Profiling_Sensor_System. The Matched_Sensor_System class is the second synthesized
system concept that describes a possible combination of a Profiling_Sensor_System instance and
Algorithm instance, which produces a result, such as a visualization or classification of the profile. The
instances Profiling_Sensor_System and Algorithm are linked to a Matched_Sensor_System instance
through the object type property has Profiling Sensor System and has_Algorithm. A
Matched_Sensor_System may have many algorithms processing the profile from the
Profiling_Sensor_System instance. For example, one algonthm may convert the profile to a new
format, while another algonithm operates on the new profile to generate a classification.
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Figure 11. Extended class hierarchy of the ontological problem-solving framework for the

Sensor and Algorithm classes.
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Figure 12. Excerpt of the properties for representative classes and subclasses for the
reasoning process in the ontological problem-solving framework.
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Figure 11 shows the class hierarchy of the Sensor and Algorithm classes. Each of these classes may
have many properties, which are used to describe the instances. Figure 12 shows several of the
properties used to describe some of the classes within the ontology. For example, the subclass
Photo_Conductive of the Sensor class has specific properties describing a sensor's pixel resolution:
has Horizontal Pixel Resolution and has_Vertical_Pixel_Resolution while also inheriting the Sensor
class property has_Network_Communication. The subclass Pixel_Extractor of class Algorithm has
properties describing the resolution of a generated profile: has_Input Horizontal Resolution and
has_Input Vertical Resolution while also inheriting the property has_Network_Communication from
the Algorithm class. Similar in nature is the subclass Naive_Bayes_Classifier which inherits from the
same Algorithm class but also adds its own unique properties such as has_Classification_Target. The
Profiling_Sensor_System and Matched_Sensor_System classes also have properties, which are derived
from the Sensor and Algorithm classes through rules executed during the inference process. These
object and data type properties are only a few of the many describe in the ontology.
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2.2. Oniological Rules

The graph-matching query language SPARQL (8] was used to create declarative rules for the
ontological problem-solving framework. The SPARQL query language has internal functions that will
allow for the querying of possible synthesized systems through an inference engine. Once the
synthesized systems are returned back from the inference engine the systems can be formed into new
instance data to be leveraged by other systems on the ontological problem-solving framework. The
rules contain statements that consist of logical constraints among instance data and properties that must
be true for subsequent instances and properties to be derived and retumned as results back to the
ontology. The rules are made up of two components, referred to as the WHERE and CONSTRUCT
clauses. The CONSTRUCT (Figure 13(a)) clause is used to retum possible object instances and
properties based on instance data and properties that satisfy the WHERE clause of the SPARQL rule.
The returned instances may include links to established instances (Figure 13(b,c)), as well as links to
derived attributes of the retumed instances. The WHERE clause contains the logical constramnt
statements that queried existing instances must satisfy before the CONSTRUCT clause retums the
possible instances and establishes links to the pre-existing instances and properties (Figure 14). The
WHERE clause constraint statements include preconditions (properties that must exist), and the other
descriptive logical constraints, such as FILTER and OPTIONAL statements, that existing queried
instances must satisfy before possible instances and properties are returned by the CONSTRUCT
clause. Each rule can be regarded as a Hom clause in that each condition is specified in the rule via
logical conjunction (logical AND). If all the properties hold true then the specified instance is returned
by the rule. Logical disjunction (i.e., logical OR) can be regarded as a collection of rules that create a
similar instance, for example, a collection of rules that each bind on different properties which return

instances of a Profiling_Sensor_System.

Figure 13. SPARQL CONSTRUCT clause (a) Retumed Matched_Sensor_System
instance, Instance_Matched_Sensor_System, linked to Sensor and Algorithm instances.
(b) Instance_Sensor and (c) Instance Algorithm variables instantiated to specific Sensor
and Algorithm instances m the WHERE clause, thereby establishing a link between a
matched Sensor instance and an Algorithm instance. (d) Instance diagram.

CONSTRUCT{

Instance_Matched_Sensor_System a Matched_Sensor_System (a)
Instance_Matched_Sensor_System has_Sensor ?Instance_Sensor (b)
instance_Matched_Sensor_System has_Algorithm  ?Instance_Algorithm (c)

)

(d)

< (a) Instance_Matched_Sensor_System )

has_iV Na:_Ngorlthm
< (b) Instance_Sensor > < (c) Instance_Algorithm >
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Figure 14. SPARQL WHERE clause (a) The variable Instance_Sensor instantiated to an
instance of the class Sensor with the data property (b) has_Type established to the vanable
Type_Sensor. (c) The variable Instance_Algorithm instantiated to an instance of the class
Algorithm with the data property (d) has_Type established to the variable Type_Algorithm.
(e) FILTER command comparing Type Sensor and Type Algorithm variables for
compatibility. (f) Instance diagram.

WHERE(

?Instance_Sensor a Sensor (a}
?Instance_Sensor has_Type  ?Type_Sensor (b)
?Instance_Algorithm  a Algorithm (c}
?Instance_Algorithm  has_Type  ?Type_Algorithm  (d}
FILTER(

?Type_Sensor == ?Type_Algorithm (e}
)
}

)

( (a} Instance_Sensor >< (c} Instance_Algorithm )

has_Type has_Type

<< {b) ?Type_Sensor ’( (d) ?Type_Algorithm >>

(e} Types are compatible

The inference engine will process the SPARQL rules for all combinations of pre-existing instances.
For example, in Figure 14(a,c), these two statements result in the WHERE clause cycling through all
Sensor and Algorithm instances. The statements in Figure 14(b,d) bind the property has_Type value for
the instances. The FILTER statement in Figure 14(e) compares the value of has_Type for the Sensor
and Algorithm instances. If the FILTER statement is satisfied, then, the CONSTRUCT clause 1s
subsequently executed to return the specified instance and associated properties. For a simple example,
the instance data in Figure 15 will be queried with a complete SPARQL rule with the CONSTRUCT
and WHERE clauses in Figures 13 and 14. The Photo_Conductive sensor instance and Pixel_Extractor
algorithm instance each have the property has Type with a value of “Image” (Figure 15(a)). When the
complete SPARQL rule of Figures 13 and 14 is executed by the inference engine the WHERE clause
will query for a possible Sensor and Algorithm instances whose property has_Type are the same
(Figure 15(b)). Once a possible combination has been found (Photo_Conductive and Pixel_Extractor
in this case), the CONSTRUCT clause will be execute by the inference engine to return the possible
Matiched_Sensor_System instance with links back to the onginal Photo_Conductive and
Pixel_Extractor instances (Figure 15(c)). The retumed Matched_Sensor_System instance will then be
placed into the ontology for further inference and use by other systems. Even though this is a simple
example with SPARQL, with additional constructs, such as the FILTER or OPTIONAL commands,

far more complex rules may be built.
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Figure 15. Instance diagram of a SPARQL query binding on specific instance data and
retumning possible instances (a) Existing Sensor and Algorithm instances that have
has_Type values equal to “Image” (b) WHERE clause binding and checking the has_Type
property (¢) CONSTRUCT clause retumning a possible Matched_Sensor_System with
established links to the found Sensor and Algorithm instances.

Sensor
r N\ has_Sensor
Class: Photo_Conduclive
(
Properties: Class: Malched_Sensor_System
has_Horizontal_Pixel_Resolution: 640 .
has_Vertical_Pixel_Resolution: 480 Properties:
has_Type: Image has_Sensor. Photo_Conductive
__ has_Algorithm:  Plxel_Extractor
. WHERE
Algorithm Queried
e \ Bind ' CONSTRUCT
Class: Pixel_Extractor and. Returned instance
Properties: Checked
has_Type: Image
has_input_Horizontal_Resolution; 640
has_Input_Vertical_Resolution: 480 L has_Algorithm
\. J

@) (b) (c)

The rules in the ontological problem-solving framework bind on all combinations of Sensor and
Algorithm instances. Their respective properties are then compared in the FILTER statements of the
WHERE clause to determine which instances need to be retumed and when to establish links between
other instances. Figure 16 through Figure 19 each show one of many rules used to retum possible
Profiling_Sensor_System instances and Matched_Sensor_System instances. The WHERE clause in the
Profiling_Sensor_System rules in Figures 16 and 17 bind on the properties of Sensor and Algorithm
instances, such as pixel resolution in Figure 16, number of detectors in Figure 17, and type for both
Figures 16 and 17. Further, in the WHERE clause, the FILTER statement now compares specific
Sensor instance properties to the Algorithin instance properties. For example, in Figure 16, the FILTER
statement compares the network communication type and pixel resolutions. Once a set of instances for
a Sensor and Algorithm have been queried, which satisfy the constraints of the WHERE clause, the
CONSTRUCT clause will then retum a Profiling_Sensor_System instance and establish links to the
compatible Sensor and Algorithm instances. The same process occurs in the WHERE clause in
Figure 17, but instead of comparing pixel resolutions, detector properties are compared for
compatibility. The rules for Maiched_Sensor_System in Figures 18 and 19 follow a similar logical
process as the Profiling_Sensor_System rule. The only difference between the rules, other than the
specific properties of the instances, is in the FILTER statement where an additional statement
constrains the WHERE clause to a specific type of Algorithm, in this case a “Classifier”. The rules
shown in Figures 14 and 19 both return Maitched_Sensor_System instances, which will classify the
generated profiles of Profiling_Sensor_System instances.
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Figure 16. Sample rule and instance diagram. The rule retums an instance of a
Profiling_Sensor_System if the Algorithin instance and Sensor instance are type compatible
with respect to the network communication and pixel resolutions properties.

CONSTRUCT{
Instance_Profiling_Sensor_System a Profiling_Sensor_System
Instance_Profiling_Sensor_System has_Sensor ?Instance_Sensor
Instance_Profiling_Sensor_System has_Algorithm  ?Instance_Algorithm
}
WHERE({
?instance_Sensor a Sensor
?Instance_Sensor has_Type ?Sensor_Type
?Instance_Sensor has_Network_Communication ?Sensor_Network
?Instance_Sensor has_Vertical_Pixe|_Resolution ?8ensor_Vertical_Pixel_Resolution
?lnstance_Sensor has_Horizontal_Pixel_Resoiution ?Sensor_Horizontal_Pixel_Resolution
?Instance_Algorithm a Algorithm
?Instance_Algorithm has_Type ?Algorithm_Type
?Instance_Algorithm has_Network_Communication 7Algorithm_Network
?instance_Algorithm has_Input_Vertical_Pixe|_Resolution ?Algorithm_Vertical_Pixel_Resolution
?Instance_Algorithm has_Input_Horizontal_Pixel_Resolution ?Algorithm_Horizontal_Pixel_Resolution
FILTER(
?Sensor_Network == ?Algorithm_Network
?8ensor_Type == ?Algorithm_Type
?Sensor_Vertical_Pixel_Resolution == ?Algorithm_Vertical_Pixel_Resolution
?Sensor_Horizontal_Pixel_Resolution == ?Aigorithm_Horizontal_Pixel_Resolution
)
}

C Instance_Profiling_Sensor_System )
has_Algorithm
< Instance_Algorithm )

has_Network_Communication has_Network_Communication

has_Sensor

Instance_Sensor

Sensor_Network < Algorithm_Network

i

has_Type has_Type

Sensor_Type Algorithm_Type

)
]

has_Vertical_Pixel_Resolution has_Input_Vertical_Pixel Resolution

Sensor_Vettical_Pixe|_Resolution > < Algorithm_Vertical_Pixe|_Resolution

=
bl

has_Horizontal_Pixel_Resolution has_Input_Horizontal_Pixel_Resolution

h

Sensor_Horizontal_Pixel_Resolution > < Algorithm_Horizontal_Pixel Resolution

A
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Figure 17. Sample Profiling_Sensor_System rule and instance diagram. The rule retums an
instance if the Algorithm instance and Sensor instance properties: type, network
communication, number of detectors, and displacement properties are compatible.

CONSTRUCT{
Instance_Profiling_Sensor_System a Profiling_Sensor_System
Instance_Profiling_Sensor_System has_Sensor ?Instance_Sensor
Instance_Profiling_Sensor_System has_Algorithm  ?Instance_Algorithm
}WHERE({
?Instance_Sensor a Sensor
7?lnstance_Sensor has_Type ?Sensor_Type
?Instance_Sensor has_Network_Communication ?Sensor_Network
?Instance_Sensor has_Number_Vertical_Detectors 7Sensor_Number_Vertical_Detectors
?Instance_Sensor has_Number_Horizontal_Detectors ?7Sensor_Number_Horizontal_Detectors
?Instance_Sensor has_Vertical_Detector_Displacement  ?Sensor_Vertical_Detector_Displacement
?Instance_Sensor has_Horizonta|_Detector_Displacement ?Sensor_Horizontal_Detector_Displacement
?Instance_Algorthm a Algorithm
7Instance_Algorithm has_Type ?Algorithm_Type
?Instance_Algorithm has_Network_Communication TAlgorithm_Network
?Instance_Algorithm has_Input_Number_Vertical_Detectors ?Algorithm_Number_Vertical_Detectors
7Instance_Algorithm has_Input_Number_Honzontal_Detectors ?Algorithm_Number_Horizontal_Detectors
?Instance_Algorithm has_Input_Vertical_Detector_Displacement ?Algorithm_Vertical_Detector_Displacement
?nstance_Algorithm has_|nput_Horizontal_Detector_Displacement 7?Algorithm_Horizontal Detector_Displacement
FILTER(
7Sensor_Network == ?Algorithm_Network
?Sensor_Type == 7Algorthm_Type
7Sensor_Number_Vertical_Detectors == ?Algorithm_Number_Vertica|_Detectors
?Sensor_Number_Horizontal_Detectors == ?Algorithm_Number_Horizontal_Detectors
?Sensor_Vertical_Detector_Displacement == ?Algorithm_Vertical_Detector_Displacement
?Sensor_Horizontal_Detector_Displacement == ?Algorithm_Horzontal_Detector_Displacement
)
}

has_Sensor < Instance_Profiling_Sensor_System )

< Instance_Sensor

has_Network_Communication has_Network_Communication

has_Algorithm

Instance_Algorithm

g
i

Sensor_Network Algorithm_Network

i
!

has_Type has_Type

Sensor_Type Algorithm_Type

)
Y

has_Number_Vertical Detectors has_Input_Number_Vertical_Detectors

i

Sensor_Number_Vertical_Detectors ) ( Algorithm_Number_Vertical_Detectors

~

has_Number_Horizontal_Detectors has_Input_Number_Honzontal_Detectors

Sensor_Number_Horizontal_Detectors ) (Algorithm_Number_HorizontaI_Detectors

P
¥

has_Vertical_Detector_Displacement has_nput_Vertica| Detector_Displacement

Sensor_Vertical_Detector_Dlsp(acemenD (Alporithm_VemcaI_Derector_Displacemerl

A
il

has_Horizontal_Detector_Displacement has_Input_Horizontal_Detector_Displacement

Sensor_HorizontaI_Detector_DisplacemenD ( Atgorithm_Horzontal_Detector_Displacement

e
N
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Figure 18. Sample Maiched_Sensor_System rule and instance diagram. The rule retums an
instance if the Profiling_Sensor_System instance and Algorithm instance properties: network
communication, types, encoding, classification, and pixel resolutions are compatible.

CONSTRUCT{

}WHERE{

?Instance_Algorithm
?Instance_Algorithm
?Instance_Algorithm
?Instance_Algorithm
?Instance_Algorithm
?Instance_Algorithm
?Instance_Algorithm
?Instance_Algorithm
FILTER(

Instance_Matched_Sensor_System a
Instance_Matched_Sensor_System
Instance_Matched_Sensor_System

has_Profiling_Sensor_System
has_Algorithm

?Instance_Profiling_Sensor_System a
?Instance_Profiling_Sensor_System
?Instance_Profiling_Algorithm
?lnstance_Profiling_Algorithm
?Instance_Profiling_Algorithm
7Instance_Profiling_Algorithm
?Instance_Profiling_Algorithm
?Instance_Profiling_Algorithm

has_Algorithm
has_Type
has_Profile_Type
has_Encoding
has_Network_Communication
has_Vertical_Pixel_Resolution
has_Horizontal_Pixel_Resolution
a
has_Type
has_Network_Communication
has_Operation_Ability
has_Input_Profile_Type
has_Input_E ncoding
has_Input_Vertical_Pixel Resolution
has_lnput_Horizontal_Pixel_Resolution

?Profiling_Algorithm_Network == ?Algorithm_Network
?Algorithm_Operation_Ability == “Classifier”
?Profiling_Algorithm_Type == ?Algorithm_Type
?Profiling_Algorithm_Profile_Type == ?Algorithm_Profile_Type
?Profiling_Algorithm_Encoding == ?Algorithm_Encoding
?Profiling_Algorithm_Vertical_Pixel_Resolution == ?Algorithm_Vertical_Pixel_Resolution
?Profiling_Algorithm_Horizortal Pixel Resolution == ?Algorithm_Horizontal_Pixe|_Resolution

Matched_Sensor_System
?nstance_Profiling_Sensor_System
?Instance_Algorithm

Profiling_Sensor_System
?Instance_Profile_Algorithm
?Profiling_Algorithm_Type
?Profiling_Algorithm_Profile_Type
?Profiling_Algorithm_Encoding
?Profiling_Algorithm_Network

?Profiling_Algorithm_Vertical_Pixel_Resolution
?Proflling_Algorithm_Horizontal_Pixel Resolution

Algorithm

?Algorithm_Type
?Algorithm_Network
?Algorithm_Operation_Ability
?Algorithm_Profile_Type

?Algorithm_Encoding

?Algorithm_Vertical_Pixel_Resolution
?Algorithm_Horizontal_Pixe!_Resolution

has_Profiling_Sensor_System

(

Instance_Profiling_Sensor_System )

( Instance_Sensor ) e Semar

has_Network_Communicalion

has_Algorithm
25 _Alg Instance_Algorithm

(lnsance_Mached_Sensor_Sys!am >

Instance_Algorithm

( Algorithm _N etwork

has_Network_Communication

)

Algorithm _Network

has_Type

)

Algorithm_Type

¢

has_Type

)

Algorithm_Type

has_Vertical_Pixel_Resolution

46 _Verlical_Pixel_Resoltion ) < (" A_Vertical_Pixel_Resokilion )=

<
has_lnput_Vertical_Pixel_Resoktion

~(

Algorithm_Vertical_Pixel_R

_has_Out Vertical_Pixel_Resoli

T

D)

has_Horizonlal_Pixel_R esoluion

) <( A_Horzonial_Pixel_Resolution )=~

-Ig S_Horizontal_Pixel_Resolution

has_Oupul_Horizontal_Pixel_R esokution
h;s_lr\pu_Horizomal_Ph(d_R esolution

b= Algorithm_Horz ontal_Pixel_R esolution )>

p has_Outpul_Profie_Type
( (_ Algorithm_Profile_Type )t has_kpu_Profie_Type b= Algorthm_Profile Type ) >
( ( Aigoritm_Encoding “;:s-"k‘ﬂ’:}‘-é"c”;‘."m’? (" Agodtm Encoding ) >

(

has_Operalion_Ablity

)

Algorithm_Operation_Abiity )

~(
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Figure 19. Sample Matched_Sensor_System rule and instance diagram, which returns an
instance if the Profiling_Sensor_System instance and Algorithm instance properties:
network communication, types, encoding, classification, data rows, and columns properties

are compatible.

CONSTRUCT{
Instance_Matched_Sensor_System
Instance_Matched_Sensor_System
Instance_Matched_Sensor_System

JWHERE({
?Instance_Profiling_Sensor_System

Matched_Sensor_System
?nstance_Profiling_Sensor_System
?Instance_Algorithm

a
has_Profiling_Sensor_System
has_Algorithm

Profiing_Sensor_System

3195

a
?Instance_Profiling_Sensor_System has_Algorithm

?Instance_Profiling_Algorithm has_Type ?Prefiting_Algorithm_Type
?lnstance_Profiling_Algorithm has_Profile_Type ?Profiling_Algorithm_Profile_Type
?lnstance_Prafiling_Algorithm has_Encoding ?Prefiling_Algorithm_Encoding

?nstance_Profiling_Algorithm
?Instance_Profiling_Algorithm
?Instance_Profiling_Algorithm

has_Network_Communication
has_Number_Data_Rows
has_Number_Data_Columns

?Instance_Profiling_Algorithm

?Prefiling_Algorthm_Network

?Profiling_Algorithm_Number_Data_Rows
?Profiling_Algorithm_Number_Data_Columns

Algorithm

?Algorithm_Type
?Algorithm_Network
?Algorithm_Operation_Ability
?Algorithm_Profie_Type
?Algotithm_Encoding
?Algorithm_Number_Data_Rows
?Algorithm_Number_Data_Columns

?Instance_Algorithm a
?Instance_Algorithm has_Type
?Instance_Algorithm has_Network_Communication
?Instance_Algorithm has_Operation_Abllity
?lnstance_Algorithm has_lnput_Profile_Type
?nstance_Algorithm has_Input_Encoding
?instance_Algorithm has_Input_Number_Data_Rows
?lnstance_Algorithm has_input_Number_Data_Columns
FILTER(
?Proflling_Algorithm_Network == ?Algorithm_Network
?Algorithm_Operation_Abiity == "Classifier”
7P rofiling_Algorithm_Type == 7Algorithm_Type
P rofiling_Algorithm_Profile_Type == 7Algorithm_P rofile_Type
7P rofiling_Algorithm_Encoding == ?Algorthm_Encoding
7P rofiling_Algorithm_Number_Data_Rows == ?Algorithm_Number_Data_Rows
?Profiling_Algorithm_Number_Data_Columns == ?Algorithm_Number_Data_Columns

)
Instance_Matched_Sensor_S
has_Profiling_Sensor_System ( o Sy )
L has_Algoriti "
P (___instance_Profiing_Sensor_System ) - s_Algorithm (_instance_Aigoithm )
Inslance_Sensor Instance_Algorkhm

has_Network_Communication

has_Type

( Algorithm_Network
( i e
has_Number_Vertical_Deleclors

-@S_ Number_Verical Delectors ) { (( A_Number Vertical Delectors )9-

has_Number_Horizonlal_Delectors
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has_Vedical_Delector_Displacement
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Ve
-€S Horlz Detector_Disp XA + Deteclor Dlsplacement}
AN
Algorithm _Profile_Type
Agorthm_Encoding
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2.3. Instances of Profiling Sensor Systems and Algorithms on Ontological Problem-Solving Framework

To illustrate a simple case, Figure 20 shows five sensor instances, including three PFx sensors and
two conventional imagers, and six algornithms, including two profile generators and four different
classifiers, with different property specifications and requirements. When the inference cycle begins,
the rules from Figure 16 through Figure 19 will execute. On the first pass of the inference cycle, five
new Profiling_Sensor_System instances were created, as shown in Figure 21. The two algonthms
Profile Image Generator and Profile Matrix Data Generator were matched to multiple sensors based on
constraints of the algonthms and specifications of the sensors. For example, the Algorithm instance
Profile Image Generator was matched to the Sensor instance PFs Conventional Visible Imager because
the constraint of requiring image data for the Profile Image Generator was satisfied.

Figure 20. Example instances: (a) Three PFx sensors and two conventional imaging
sensors. (b) Two profile generators and four classifiers.

A) Sensor Instance Data B) Algorithm Instance Data
Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches ﬁl;?u?mhm: ll:nrgf‘;ls Image Generator

Output: Profile Image

Sensor: PF, Sparse Detector with 16 NIR detector spaced 20 inches
Algorithm: Profile Matrix Data Generator

Input:  Vertical Column Data
Output: Profile Text Data

Sensor: PF, Sparse Detector with 8 Thermopile detectors

. ’ . § ’ Algorithm: Classifier Human
Sensor: PF, Conventional Visible Imager with 640 x 480 resolution Input:  Profile Text Data

Sensor: PF, Conventional MWIR Imager with 640 x 480 resolution

Algorithm: Classifier Human
Input;  Profile Image

Algorithm: Classifier Vehicle
input: Profile Image or Text Data

Algorithm: Classifier Animal
Input:  Profile Text Data

Figure 21. Five new Profiling_Sensor_System instances retumed, with derived relationships,
after the first pass of the inference cycle.

[ Sensor: PF, Sparse Detector with 16 NIR detector spaced 12inches | | Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data
[ Sensor: PF, Sparse Detector with 1% NIR detector spaced 20inches | | Algorithm: Profile I\Zatrix Data Generator

Input : Vertical Column Data
Output: Profile Text Data
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Figure 21. Cont.

| Sensor: PF, Sparse Detector With 8 Thermopile detectors | [ Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data

[ Sensor: PF, Conventional MWIR Imager with 640 x 480 resolution | | Algerlthm: Proﬁr;. Image Generator
Input : Image
Output. Profile Image

i ProfileSensor. System: PEimatched Profile Image Geherator s

[ Sensor: PF. Conventional Visible Imager with 640 x 480 resolution | | Algerlthm: Proﬁl?e Image Generator
Input : Image
Output: Profile Image

During the second pass of the inference cycle, thirteen new Matched_Sensor_System instances were
created, as shown in Figure 22. The four different classifiers were matched to multiple
Profiling_Sensor_System instances based on the type of profile generated and the requirements of the
classifiers. For example, the Profiling_Sensor_System instance PF; matched Profile Data Generator
was matched to the Algorithm instance Human Classifier because the constraint of requiring text data
was satisfied for the Human Classifier. On the third pass of the inference cycle, no new instances were
created; therefore, the inference cycle halts and retumns all matches.

Figure 22. Thirteen new Matched_Sensor_System instances retumed, with derived
relationships, after the second pass of the inference cycle.

Algorithm: CI;ssiﬁer Human
Input: Profile Text Data

[ Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches | [ Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data

Algorithm: Classifier Vehicle
Input : Profile Image or Text Data

[ Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches || Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data

Algorithm: Clgssifier Animal
Input: Profile Text Data

[ Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches | [ Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data




Sensors 2011, 11

Figure 22. Cont.

d<Matched Sensor:System?RFProfile Da
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ensratoramatchedClassifisrunan 'ty

Algorithm: Cl;ssiﬂer Human
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data

ssifier Vehicle

Algorithm: Classifier Vehicle
Input . Profile Image or Text Data

i

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data

matchedClassifiarAnimal

Algorithm: Classifier Animal
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data
Output: Profile Text Data

Algorithm: Classifier Human
Input _: Profile Text Data

Algorithm: Profile Matrix Data Generator
Input
Output: Profile Text Data

Vertical Column Data

Hrolile e (.

Algorithm; Classifier Vehicle
Input ¢ Profile Image or Text Data

Al

Input :
Output: Profile Text Data

gorithm: Profile Matrix Data Generator
Vertical Column Data

Profile.SensorSystem: PF.

Algorithm: CI;ssifierAnimaI
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input :
Output: Profile Text Data

Vertical Column Data

warotie BRSOl Syste 1A ad oHigymageisenta

Algorithm: Classifier Human
Input : Profile Image

Algorithm: Profile Image Generator
Input Image
Qutput:  Profile Image

A s L

enera

rofilsinageis

tors

Algorithm: Classifier Vehicle
Input Profile Image or Text Data

[ Sensor: PF, Conventional MWIR Imager with 640 x 480 resolution

J

Algorlthm: Profile Image Generator
Input : Image
Qutput:  Profile Image
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Figure 22. Cont.

Algorithm: C‘Iassifier Human
Input Profile Image

| Sensor: PF. Conventional Visible Imager with 640 x 480 resolution | [ Algorithm: Profile Image Generator
Input  : Image
Output:  Profile Image

Profile (Senso 3 (= PP atched Profile ageLsBneratd Algorithm:CIassifierVehicIe
Input _Profile Image or Text Data
[ Sensor: PF Conventional Visible Imager with 640 x 480 resolution | | Algorithm: Profile Image Generator
Input : Image

Output:  Profile Image

3. Discussion

The challenge was to match sensor systems to compatible algorithms to form synthesized systems,
which are capable of satisfying a task and matching those systems to new systems for other tasks. The
sample rules described in this paper specified relatively simple compatibility constraints among
sensors and algorithms. However, even with these simple rules, it is noteworthy that the Algorithm
instances were matched to multiple Sensor and Profiling_Sensor_System instances thus achieving the
ability to reuse those systems for tasks that may have not been anticipated at the time the sensors and
algorithms were first deployed. For example, of the five synthesized system concept
Profiling_Sensor_System instances that were retumed, the algorithm Profile Matrix Generator was
matched to three different sensor systems and the algonthm Profile Image Generator was matched to
two sensor systems. If not for the matching and retumn of the Profiling_Sensor_System synthesized
systems, each one of the matched systems would have had to be individually designed.

The same results can be seen in the synthesized system Matched_Sensor_System, which reused the
five Profiling_Sensor_System synthesized systems in thirteen systems with different tasks, such as
visualizing or classifying the profiles. If the oniginal algorithms represented by the Algorithm instances
had been designed for specific Sensor instances, the reasoning process of the ontological
problem-solving framework would not have matched the algonthms to new sensors, thus the sensor
systems and algorithms would have had to be re-engineered specifically for one another to satisfy a
task. It is important to note that the synthesized system concepts Profiling_Sensor_System and
Matched_Sensor_System capture more than just a Sensor matched to an Algorithm. The concept
synthesized systems, represent new systems which are capable of performing a task. Other rules in the
ontological problem-solving framework may operate on far more than just two attributes for
establishing interoperability via matching constraints. The rules may determine that multiple matched
Profiling_Sensor_System and Matched_Sensor_System instances may be formed into new more
complex synthesized systems, which may be capable of satisfying more complex tasks, which may
include statistical analysis on multiple profiles. With the formation of the synthesized system by the
reasoning process, the ontological problem-solving framework may create more complex synthesized
systems. These more complex systems may then be assigned to subtasks of high-level missions by
other systems on the network coordinating and executing the mission. Without the use of the ontology,
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rules, and inference engine these sensors and algorithms would have had to be designed a priori as a
synthesized system for every new task. However, many of these new tasks are not known at the time
the systems are deployed; therefore, opportunistically discovering compatible systems and dynamically
creating matched synthesized systems which are capable of satisfying a new task through inference
1S important.

Currently, the reasoning process of the ontological problem-solving framework is still in a
prototype stage so scale-up performance analysis is limited. The problem-solving framework can scale
to large numbers of sensors and algorithms, but the time to compute all combinations of sensors and
algonthms is based on the computational complexity of the inference engine, which is influenced in
part by the reasoning strategy and the expressiveness of the knowledge representation formalism. For
the performance to increase, the inference engine must check multiple algorithms in parallel or the
ontological problem-solving framework must invoke the inference engine multiple times in parallel
with different algorithms and keep track of which instances are being checked to stop redundant
bindings. Even though the ontological problem-solving framework is still in the prototype stage,
performance issues and solutions are being studied; however, the logical framework is the priority at

this stage of research.

4. Conclusions

Challenges, such as matching sensors to compatible algorithms that may satisfy a task, will become
even more difficult with the continued development and deployment of new sensor systems and
algorithms. Compounding the challenge is the lack of knowledge models used to explicitly capture the
design and capabilities of sensor systems and algorithms. By leveraging knowledge models, sensor
systems and algorithms can be matched together in real-time without the need to design those matched
systems specifically for one another a priori, thus facilitating the use of these assets in new and
innovative ways not originally anticipated on deployment. To exploit the power of knowledge models,
algorithms must become less dependent on any given sensor data source, thus sensor systems and
algorithms must describe their respective attributes and capabilities in a machine-interpretable format
to allow the reasoning process to infer which systems may be matched together into more complex
synthesized systems. The reasoning process of the ontological problem-solving framework discussed
in this paper is the first step to achieving this goal and addressing the challenge of matching systems
that are capable of satisfying a task. Even though the reasoning process of the ontological
problem-solving framework was described in the context of profiling sensor systems and algorithms,
the overall approach may be used for other types of sensor systems and algonithms to form different
types of synthesized systems capable of satisfying new tasks.
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Abstract: The lack of knowledge models to represent sensor systems, algorithms, and
missions makes opportunistically discovering a synthesis of systems and algorithms that
can satisfy high-level mission specifications impractical. A novel ontological problem-solving
framework has been designed that leverages knowledge models describing sensors,
algorithms, and high-level missions to facilitate automated inference of assigning systems
to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the
ontological problem-solving architecture, a family of persistence surveillance sensor
systems and algorithms has been instantiated in a prototype environment to demonstrate the
assignment of systems to subtasks of high-level missions.

Keywords: sensor networks; Sensor Ontology; profiling sensors; mission tasking

1. Introduction

Dynamically discovering, matching, and integrating sensors and compatible algorithms to form a
synthesis of systems that are capable of satisfying subtasks of high-level missions poses a significant
challenge for network-centric architectures. Compounding the challenge is the lack of knowledge and
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data models used to describe the relationships among sensors, algorithms, and missions. Most
algorithms are designed for specific sensor systems in anticipation of performing a specific task.
Designing and deploying tightly integrated systems limits their potential reuse for new, unanticipated
tasks without re-engineering the systems [1-6]. This paper will review the authors’ prior work 7],
which addresses the issue of autonomously matching sensor systems to compatible algorithms. Section 2
of the paper will review the challenges of assigning the matched systems to subtasks of missions.
Section 3 will review related work of systems and frameworks that assign systems to missions. The
remainder of the paper will focus on the authors’ extension of their previous work to now include
assignment of the synthesis of systems to subtasks of missions in the context of a persistence
surveillance sensing environment. Section 4 discusses the operation of the persistence surveillance
environment and Sections 5, 6, and 7 discuss the extended ontological problem-solving framework

laboratory prototype for mission assignment and execution.
Previous Work by Qualls and Russomanno

Matching sensor systems to compatible algorithms to form a synthesis of systems poses a
significant challenge to problem-solving frameworks. Frameworks must be able to match the systems
together and then reuse the same systems in new matches as depicted in Figure 1. In prior work, Qualls
and Russomanno {7] focused on the reasoning process of matching sensor systems and algorithms to

form a synthesis of systems capable of satisfying a task.

Figure 1. Process for matching sensor systems to compatible algorithms to form a synthesis
of systems capable of satisfying a task.
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The prior work by the authors included developing a laboratory prototype ontological
problem-solving framework that leveraged knowledge engineering techniques to opportunistically
infer the discovery and matching of sensor systems to compatible algonthms. The knowledge
engineering techniques included an ontology, rules, and inference engine to autonomously form the
synthesis of systems. Standard database technologies and SQL queries could have been used for the
prototype development, but one of the main shortcomings limiting the matching of systems together is
the lack of knowledge models to describe and represent the systems. The knowledge models
themselves must leverage well-defined semantics in a machine-interpretable format for autonomous
matching. The use of knowledge models also provides the added benefit of more readily transferring
the knowledge to other systems as compared to other techniques.

To autonomously form the synthesis of systems, the prototype framework used ontologies to
descnbe properties and relationships among sensor systems, algorithms, and possible synthesis of
systems. The ontologies have two parts: (1) the class hierarchy for describing relations among different
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types of sensor systems; and (ii) algorithms and properties for describing specific properties of each
class. Data-type properties, which may be regarded as attributes, are used to describe sensor system
and algorithm parameters, such as pixel resolutions, field of view, data format, algorithmic process,
and network connections. Object-type properties, which may be regarded as associations, were used to
link specific sensor systems and algorithms together during the inference process for the synthesis of
systems. With the properties in the ontology, instance data may then be created to represent actual
sensor systems and algorithms.

Figure 2 shows a small excerpt of the ontology including four main classes for synthesis:
Matched_Sensor_System, Profiling_Sensor_System, Sensor, and Algorithm. The Sensor class describes
a sensing device and the Algorithm class describes an algorithmic process. The process can either
operate on data generated by the sensing device or data generated by other processes. The
Profiling Sensor_System class represents a synthesis of systems that describes possible combinations
of Sensor and Algorithm instances which produce formatted signal profiles of objects as they pass
through a sensor system’s field of view. The class Matched_Sensor_System describes a synthesized
system that contains possible combinations of Profiling Sensor System, Algorithm, and Sensor
instances, which produce results, such as visualizations or classifications of the generated signal
profiles. Not shown is the class hierarchy for the Target class, which contains further subclasses of
Human, Animal and Vehicle. These subclasses are further refined and include subclasses, such as of
Bird, Large Animal, and Bear for Animal and subclasses of Car, Light_Truck, and Heavy Truck, for
Vehicle, and so on. Also not shown is a class hierarchy of the Object Of Interest, which includes
subclasses and properties describing accessories, such as backpacks and an extensive description of
weapons, which include bladed, non-bladed weapons, and projectile weapons, such as small and heavy
arms including pistols, machine guns, and rocket-propelled grenades. Each of the further subclasses
has its own respective data-type properties describing those classes. Rules in the form of queries with
conditional actions were developed to be processed by an inference engine to search the instance data
for possible synthesis of systems. For further information on the development of the ontology in
Figure 2, class hierarchy, and rule design please refer to Qualls and Russomanno [7].

Figure 2. Excerpt of the ontology in the ontological problem-solving framework for
matching sensors to algorithms to form a synthesis of systems.
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The ontological problem-solving framework with the knowledge engineering techniques discussed
above was developed with the TopBraid Composer Maestro software environment by TopQuadrant [8].
TopBraid uses the Web Ontology Language (OWL) [9] for authoring ontologies; rules with logical
conditions were developed with SPARQL [10]; and the TopSPIN inference engine was used for
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processing the SPARQL rules. The authors chose TopBraid Composer Maestro due to their familiarity
with this platform from other research projects. OWL is based upon one specific description logic
(DL) with the main difference being the naming nomenclature. For example, in OWL a class is a
concept in DL, an OWL property is a role in DL, and an OWL object is an individual in DL. The rules
developed by the authors in the ontological problem-solving framework are expressed as SPARQL
queries with additional constraints on RDF triples. In addition, some of the rules include actions
implemented by invoking Java functions via procedural attachment [11]. Other ontological development
environments could have been used for the prototype development, such as Protégé with JESS and
SWRL [1-7]. Figure 3 shows the overall framework of the ontological problem-solving system.

Figure 3. Overview of the laboratory prototype ontological problem-solving framework.
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2. Assigning Systems to Missions

The prior prototype ontological problem-solving framework developed by the authors only matched
sensors and algorithms to form a synthesis of systems [7]. The next logical step was to extend the
framework to allow for missions to be instantiated on the framework and then autonomously assign the
synthesis of systems to the missions. Before an extension could be made, the concept of a mission
must be developed. Knowledge acquired from subject matter experts (SMEs) in the fields of sensor
system design, algorithm development, and concept of operations (CONOPS) contributed to the
development of the concept of missions. The authors elicited knowledge from the SMEs to first
develop missions associated with typical persistence surveillance applications as illustrated in Figure 4.

Figure 4. Typical missions for persistence surveillance.
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The authors and SMEs then analyzed the typical missions to yield a set of specifications that could
be used to describe the missions. The specifications included a farger that must be detected, such as a
human or vehicle, and a mission task for describing a subtask that describes a process and condition
which takes place on the farget. A process describes what must happen on the detected target, such as
“classification”, “visualization”, or “signal profile generation”. The process may have ancillary
conditions, such as target is carrying a “weapon” or “backpack” or even a condition of target has
“weight greater than six tons”. A specification is shown in Figure 5 via an instance diagram.

Figure 5. Mission decomposed into a specification via an instance diagram.,
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Figure 6. (a) Decompose missions to separate subtasks, (b) Discover sensors and
compatible algorithms, which can complete subtasks; (c) Subtask assigned to a chain of
algonthms operating on raw data produced by a sensor, (d) Subtask assigned to an
algorithm operating on raw sensor data from two different sensors; and (e) Subtask
assigned to an algorithm operating on raw data produced by a sensor.
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With the high-level missions decomposed into a set of mission specifications, a problem-solving
approach must then assign matched sensor systems and algorithms to the subtasks which satisfy the
mission specification as indicated in Figure 6. The problem-solving approach must discover which
systems can satisfy the given subtasks as illustrated in Figure 6(b). Once systems have been
discovered, the interoperation of multiple sensors and algorithms must be coordinated to perform a
subtask as indicated in Figure 6(c—¢). To perform these operations, the ontological framework must
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describe relationships among the sensors, algorithms, and missions in terms of how the subtasks relate
to the mission, relationships among subtasks and compatible sensors and algorithins, and the
relationships between the sensors and algorithms. Section 5 details how the developed concept of a

mission was integrated into the authors’ previous work.

3. Related Work

Various approaches have been designed and engineered to assign sensors and algorithms to
missions or task specifications, such as Semantic sensor mission assignment [12], Ontological sensor
mission assignment [13], Knowledge base for sensors to missions [14], GloServ [15], Ontology
Centric sensor mission assignment [16], Resource management [17], Sensor Mission Matching [18],
Semantic-aware cooperative agents [19], Query Processing for sensor networks [20], Agilla [21-23],
Geographic Information System Framework [24,25], Semantic Streams [26,27], and Sensor OASIS [28].
Relevant to our work is the development of ontologies that represent and describe sensor systems such
OntoSensor [2-6], Sensor Network Data Ontology [29], Sensor and Data Wrapping Ontology [30],
Stimulus-Sensor-Observation Ontology [31], Sensor Observation and Measurement Ontology [32],
Semantic Sensor Network Ontology [33], and Disaster Management Sensor Ontology [34]. Also of
importance to the authors’ work are other examples of relevant sensor ontologies [35]. There are many
logical models and standards to follow and adapt, such as the Sensor Modeling Language
(SensorML) [36], that leverage the Unified Modeling Language (UML) to conceptualize sensor
systems and algorithms to facilitate interoperability. Also, the Open Geospatial Consortium (OGC) [37]
drafts standards that may be used to define metadata encodings and interoperability interface standards
to facilitate problem-solving frameworks that can integrate sensor systems and algorithms into
information infrastructures. The OGC includes many standards, such as Observations and
Measurements (O&M) [38,39], SensorML [40], Transducer Model Language (TML) [41], Sensor
Observation Service (SOS) [42], Sensor Planning Service (SPS) [43], Sensor Alert Service (SAS) [44],
and Web Notification Services (WNS) [45].

One example system, Agilla [21-23], is a framework used to monitor sensor systems connected to a
sensor network. Agilla uses protocols with specific conditions that, when met, will perform a specific
action or actions. For example, the actions and conditions may be to activate other protocols when a
sensor reports a temperature above a specific threshold. The newly activated protocols may then
coordinate other sensors to collect data, invoke algorithms for further analysis, or even activate more
protocols to perform a specific action or actions. Figure 7(a) shows an Agilla network with a fire
detection protocol on one sensor node. The fire detection protocol has the task of detecting a
temperature above a specific threshold. Once the temperature threshold is reached, the protocol will
activate other fire detection protocols on more sensors nodes, Figure 7(b). As the protocols activate on
the other sensor nodes, the protocols will determine the perimeter of the fire and then send the
perimeter data to a new protocol, Figure 7(c), which then activates fire services [21-23]. Another
example system, Geographical Information System Framework [24,25], leverages several different
frameworks in the overall management of sensor systems and algorithms on a sensor network as
depicted in Figure 8. The framework includes knowledge models, such as ontologies, for describing
sensors, algorithms, and tasks. Service-oriented architectures are used to handle communications
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among all systems, and geographic information system placement logic is used for tasking. The
different frameworks operating together allow end users or autonomous systems to query the
framework for available sensor systems and then task the sensor systems to retrieve data or to perform

specific actions based on sensor data [24,25].

Figure 7. (a) Fire detection protocol on a node in an Agilla sensor network that detects a
fire; (b) Protocol activates other protocols on different nodes to determine the perimeter of
the fire and then activates other protocols for fire services; and (c¢) Activation of fire services.

Figure 8. Geographical Information System Framework displaying interconnections among
the geographic information system, service-oriented architecture, ontologies and end user

software applications.

4, Persistence Surveillance Sensing Environment

To demonstrate the efficacy of the extended ontological problem-solving framework, a persistence
surveillance sensing environment was constructed from a family of emulated unattended ground
profiling sensor systems and algorithms. The profiling sensors provide a means for capturing signals of
objects which pass through a profiling sensor's field of view. The signals are then passed to algorithms
which create profiles of the signals, which are then sent to other algorithms for further processing, such
as object classification or visualization. The profiling sensors have a common theme in that they are
low cost and provide a signal that can be classified. The profiling sensors are denoted by the
nomenclature PFx [46]. The PFx sensors may use a variety of sensing bands, including visible, near
infrared, short-wave infrared, mid-wave infrared, and long-wave infrared bands. They typically share

a common design principle of using a sparse detector array.




Sensors 2011, 11 8377

Figure 9(a) shows a sparse detector PFx sensor consisting of sixteen near-infrared detectors in a
vertical deployment with no relative horizontal displacement and a reflector pole. When an object
passes between the two poles, which is the field of view of the sensors, the resulting signal will be
recorded. An algorithm then processes the signal by formatting the raw sensor data using run-length
encoding. The formatted sensor data may be used by other algorithms to visualize the acquired data as
a silhouette shown in Figure 9(b). Other possible configurations of a vertical near infrared sparse
detector may include a horizontal displacement, which may be used to determine the velocity of an
object [46-53]. The chain of creating raw sensor data, generating profiles, and then processing the
profiles for visualization or classification provides a unique opportunity to show how the prototype
ontological framework can autonomously assign the PFx sensors and algorithms to the subtasks of

various missions based on their relationships and capabilities.

Figure 9. (a) PFx sensor system using sixteen near-infrared detectors deployed vertically
with no horizontal displacement; and (b) Silhouette generated by an algorithm operating on

the sensor data.

{b)

Near IR
Transmitters

Reflectors

Rabbit RCM
4310
Embedded
Controller

5. Reasoning Process for Assigning Sensor Systems and Algorithms to Missions
5.1. Problem-Solving Framework for Assigning a Synthesis of Systems to Mission Specifications

To address the challenge of assigning sensor systems and algorithms to high-level missions the
previous work by Qualls and Russomanno [7] was extended with the concept of a mission developed
from eliciting knowledge from SMEs. Figure 10 shows the original ontology of the problem
solving-framework, as seen in Figure 3, extended with an ontology for describing mission specifications.
The extended ontology is shown here with two additional classes: Mission_Sensor_System in gray, and
Mission in red. The Mission class has five supporting classes, also in red, to describe mission
specifications: Target, Mission_Task, Action_Process, Action_Condition, and Action_Object_Of Interest.
The primary goal of the ontology in the prototype ontological framework is to support the synthesis of
the Mission_Sensor_System, which is a synthesis of systems assigned to a mission.
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Figure 10. Extension of the prototype ontological problem-solving framework for
matching sensor systems to algorithms to form a synthesis of systems that may now be
assigned to subtasks of missions.

has_Matched_Sensor_System 1.

has_Target 1 ..*

has_Algorithm 1 ..*

has_Action_Condition 1 .. *

A Mission_Sensor_System class describes a possible combination of Marched Sensor System
instances and a Mission instance through the two object type properties has_Matched_Sensor_System
and has_Mission. A Mission_Sensor_System may have many Matched Sensor_System instances but
one only Mission instance. The Mission class describes the various specifications of a mission. The
Mission class leverages two other classes, Target and Mission_Task, to define mission specifications,
The Target class describes the object that the mission needs to detect, such as human or animal. The
Mission_Task class describes the process and condition which must take place on the Target instance.
To define the process specification, the Mission_Task leverages two other classes: Action_Process and
Action_Condition. The Action_Process class describes a specification process, such as “classify” or
“visualize” for the detected Target instance. The Action Condition class describes further
specifications that the Action_Process might require. Last, the class Action_Object Of Interest
describes objects that a Targer instance may be associated with, for example, objects that may be
carried by a human or animal. .

5.2. Ontological Framework Rules

The original prototype ontological problem-solving framework used SPARQL [10], a graph-matching
query language to implement the rules to query the instance data and return possible synthesis of
systems. SPARQL rules can be regarded as Horn clauses with addition logical constraints, The rules
contain the following two components; CONSTRUCT and WHERE clauses. First, the CONSTRUCT
clause returns possible object instances, which contain new properties, derived properties, and links to
other class instances and their corresponding attributes. Second, the WHERE clause contains statements
that specify constraints. The constraints include the properties that must exist and the logical
constraints that properties of a class instance must satisfy before the rule will execute. Each of the
constraints in a single rule are connected via a logical conjunction (logical AND), whereas a collection
of rules of a common theme are connected via a logical disjunction (logical OR). Once all properties
and logical constraints of the WHERE clause are satisfied, the corresponding CONSTRUCT clause
will return the possible object instance or instances.
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Figure 11. (a) Example SPARQL rule with CONSTRUCT and WHERE clauses, which
retums a possible Mission_Sensor_System instance; (b) Instance diagram of CONSTRUCT
clause; and (c) Instance diagram of WHERE clause.

CONSTRUCT{
Instance_Mission_Sensor_System a Mission_Sensor_System
Instance_Mission_Sensor_System has_Mission ?Instance_Mission
Instance_Mission_Sensor_System has_Matched_Sensor_System  ?Instance_Matched_Sensor_System
}

WHERE(

?lnstance_Matched_Sensor_System a Matched_Sensor_System
?lnstance_Matched_Sensor_System  has_Process_Type  7?Matched_Process_Type
?instance_Mission E Mission

?nstance_Mission has_Process_Type Mission_Process_Type

FILTER( (a)

?Matched_Process_Type == ?Mission_Process_Type
y )
}

(b)

( instance_Mission_Sensor_System )

has_Misson ___——" ———_ has Matched_Sensor_System

( Instance_Mission ) ( Instance_Matched_Sensor_System )

()
(_ Instance_Mission ) ((_instance_Matched_Sensor_System )
has_Process_Type | | has_Process_Type

Y Y
@ “?Misslon_Process_Type ) C “?Matched_Process_Type D

Process types are compatibie

New rules were developed for assigning the synthesis of systems to missions, thus returning
possible Mission_Sensor_System instances. Figure 11 shows an example SPARQL rule that queres the
existing instance data and retumns a Mission_Sensor_System instance in the CONSTRUCT clause when
the properties and logical constraints are satisfied in the WHERE clause. The CONSTRUCT clause
in Figure 11(a) contains three statements. The first statement declares the object instance
Instance_Mission_Sensor_System to be of class type Mission_Sensor System. The second two
statements establish links to the possible existing instances through the two properties: has Mission
and has_Matched_Sensor_System. To establish these two links, the two properties are linked to two
vanables Instance_Mission and Instance_Matched_Sensor_System, respectively. The WHERE clause
in Figure 11(b) contains five statements. In the first two statements, the object variable
Instance_Matched_Sensor_System is instantiated with an instance of class type Matched Sensor System
and the variable Matched_Process_Type is instantiated with the value from the data type property
has_Process_Type from the same Matched_Sensor_System instance. In the second two statements, the
object variable Instance_Mission is instantiated with an instance of class type Mission and the variable
Mission_Process_Type is instantiated with the value from the data type property has_Process_Type
from the same Mission instance. The final statement in the WHERE clause contains the FILTER
command which appears as a simple logical constraint that compares two varables. This
particular FILTER command compares the two data type variables Matched Process Type and
Mission_Process_Type for equality. When the inference engine processes this rule, the CONSTRUCT
clause will return a possible Mission_Sensor_System instance with links to a Matched _Sensor_System
instance and links to an assigned Mission instance if the two instances and properties exist and if the
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two properties are equal in the WHERE clause. Once a Mission_Sensor _System instance has been
returned by the rules, the ontological framework can then execute the mission by coordinating all
synthesized systems, sensors, and algorithms assigned to that mission and retuming the results of the
mission via a procedural attachment statement.

One note of interest is the subsumption qualities of the logical constraint for the FILTER command.
For example, if the Matched Process_Type variable is set to a subclass of the Process_Type and the
Mission_Process_Type variable is set to a superclass of the Process_Type, the rule will need to retum
true or false depending on a set threshold for the semantic distance between the variables. To set this
threshold the authors decided to set the mission as a priority. The reason for this selection is based on
feedback from the SMEs in tenms of CONOPs. For example, a mission may be created for a specific
target but no synthesis of systems can complete that exact mission. Forcing the framework to assign
systems only to exact matches of missions would severely limit the capabilities of the framework. So
the authors decided to allow the framework to return possible best matches between a synthesis and a
mission. For the ontological framework the semantic distance threshold has been set as follows for the
prototype. There are two basic conditions: if the property of the mission is a subclass of the matched
system or if the property of the mission is a superclass of the match system. First, if a mission property
such as has_Action_Object_Of Interest is set to a value that is a subclass of the same property of the
matched systems, the framework will assign the matched system to the mission up to the top-level
superclass that property may have. For example, if the mission has_Action_Object Of Interest
variable is set to pistol, the framework would assign matched systems up to highest class domain of the
property in this case has_Action_Object_Of Interest, which 1s the class Object_Of Interest. Second, if
the has_Action_Object_Of Interest variable of the matched system is set to a value that is a subclass
of the same property of the mission then an assignment will take place. For example, if the mission
has_Action_Object_Of Interest property is set to pistol, the framework would assign matched systems
that are subclasses of pistol.

The rules in the ontological problem-solving framework all follow a similar structure outlined in
Figure 11. The rules bind on all combinations of Mission and Matched Sensor System instances and
return possible Mission Sensor_System instances in the CONSTRUCT clause when the corresponding
properties exist and logical constraint statements are met in the WHERE clause. Figures 12 and 13
each show one of many different kinds of rules that retumn possible Mission_Sensor_System instances
and their resulting instance diagrams. These rules bind on properties of the Matched Sensor_System
instance that link back to other instances, such as the type of process the system can accomplish, and
additional properties, such as conditions on the process that may or may not be optional. The rules also
bind on properties of a Mission instance, which, as previously discussed, include Target,
Mission_Task, Action_Process, and Action_Condition. Figure 12 shows a rule which binds on a simple
mission to process a target with no conditions, such as “classify human male”. Figure 13 shows a rule
that binds on more advanced missions that processes a target with conditions, such as “visualize horse
carrying backpack™ or “classify human male with height greater than six feet”, respectively.
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Figure 12. Rule and instance diagram showing how a Mission_Sensor_System 1s retumed
for a simple Mission if a Matched Sensor_System can accomplish the mission based on

Action_Process and Target properties.

CONSTRUCT{
Instance_Mission_Sensor_System a Mission_Sensor_System
instance_Mission_Sensor_System  has_Mission ?lnstance_Mission
Instance_Mission_Sensor_System  has_Matched_Sensor_System ?Instance_Matched_Sensor_System

WHERE(
?Instance_Mission a Mission
?Instance_Mission has_Target ?Instance_Mission_Target

?instance_Mission has_Mission_Task  ?instance_Mission_Task
?lnstance_Mission_Task has_Action_Process ?Instance_Mission_Action_Process

?instance_Matched_Sensor_System a Matched_Sensor_System
?Instance_Matched_Sensor_System has_Process_Type ?Instance_Matched_Process_Type
?Instance_Matched_Sensor_System has_Process_Target ?7Instance_Matched_Process_Target

FILTER{
?Instance_Mission_Target == ?Instance_Matched_Process_Target
?Instance_Mission_Action_Process == ?Instance_Matched_Process_Type

)
}
Instance_Mission_Sens
has_Mission C stance Mission_Sensor, System ) has_Matched_Sensor_System
( Instance_Mission ) ( Instance_Matched_Sensor_System )
has_Target has_Process_Target

Instance_Misslon_Target ) [ostance_Matched_Process_Targe

has_Misslon_Task

—(__Instance_Mission_Task )

has_Action_Process

nstance_Misslon_Action_Process) (nstance_Malched_Process_Typ@%

has_Process_Type

Figure 13. Rule and instance diagram showing how a Mission_Sensor_System is returned
for an advanced Mission if a Matched Sensor_System can accomplish the mission based on

Action_Process, Action_Condition, and Target properties.

CONSTRUCT(
Instance_Mission_Sensor_System a Mission_Sensor_System
Instance_Misslon_Sensor_System  has_Mission ?Instance_Mission
Instance_Mission_Sensor_System  has_Matched_Sensor_System ?Instance_Matched_Sensor_System

}

WHERE{
?Instance_Misslon a Mission
?Instance_Misslon has_Target ?Instance_Mission_Target

?Nnstance_Mission has_Mission_Task  ?Instance_Mission_Task
?Instance_Misslon_Task has_Action_Process 7Instance_Misslon_Action_Process

?Instance_Mission_Task has_Action_Condition 7Instance_Mission_Action_Condition

7Instance_Mission_Action_Condition hes_Condition_Type ?Instance_Mission_Condition_Type

Tinstance_Mission_Action_Condition has_Object_Of_Interest ?Instance_Mission_Object_Of_Interest

. Matched_Sensor_System
?Instance_Matched_Sensor_System has_Process_Type ?Instance_Maiched_Process_Type

?Instance_Matched_Sensor_System has_Process_Target ?Instance_Matched_Process_Target

?Instance_Matched_Sensor_System has_Condition_Type ?Instance_Matched_Condition_Type

7Instance_Matched_Sensor_System has_Object_Of_Interest ?Instance_Matched_Object_Of_Interest

?Instance_Matched_Sensor_System a

FILTER{
7Instance_Mission_Targel == ?Instance_Matched_Process_Target
?Instance_Mission_Action_Process == 7Instance_Matched_Process_Type
Condition_Type == ?Instance_Matched_Condition_Type

?lInstance_Mission, _
?Instance_Mission_Object_Of_Interest == ?Instance_Matched_Object_Of_Interest

) )

8381
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6. Example of Assigning a Synthesis of Systems to Mission Specifications

To show how the prototype ontological problem-solving framework operates, a small example has
been created. Figure 14 shows an overview of all emulated assets instantiated and the resulting
synthesis of systems and assignment to a mission instance. To begin, the ontological framework was
instantiated with: (1) one emulated sensor systems Photo Conductive (Figure 14(a)); (ii) two
algorithms, Pixel Extractor (Figure 14(b)) and Naive_Bayes Classifier (Figure 14(c)); and (iii) and
one muission instance (Figure 14(d)). The following section will detail how the sensor system and
algorithms are matched together to form a synthesis of systems that are assigned to a mission. Each of
the instances has many different data-type properties, but for this example only a few relevant
properties are show in Figure 14,

The Sensor instance Photo_Conductive has four properties; has_Horizontal Pixel Resolution set
to 640 pixels, has_Vertical_Pixel_Resolution set to 480 pixels, has_Horizontal Detector_Displacement,
and has_Vertical_Detector_Displacement both set to none. The Photo_Conductive instance represents
a sensor capable of generating a signal profile of a passing target. The Algorithm instance
Pixel Extractor has three prdperties; has_Input_Horizontal Resolution set to 640 pixels,
has_Input Vertical Resolution set to 480 pixels, and has_Output Data Type set to image. The
Pixel FExtractor instance represents an algorithm capable of loading a raw signal profile data
in 640 x 480 format and then generating a formatted signal profile into an image format. The second
Algorithm instance Naive Bayes Classifier has three properties: (1) has_Input Data_Type set to
image; (ii) has_Classification_Target set to human male; and (i) and has_Process Type set to
classify. The Naive_Bayes Classifier instance describes a classifier that operates on features of an
image and then classifies the umage as a human male or not a human male.

The Mission instance represents a mission that requires the detection of human males, i.e., classify
human male. The Mission instance has two object-type properties, has_Target and has_Mission_Task,
which link to the Target instance and Mission_Task instance. The Target instance describes a human
male instance that has many properties, such as has_Name and not shown has_Height, and has_Weight.
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The instance Mission_Task has two object-type properties has_Action_Process which links to the
instance Action_Process ‘“classify” and the property has Action_Condition which links to the
Action_Condition instance “none”. The Action_Process instance has many data-type properties, such
as has_Process_Type, which can have the values classify, profile_generator, convertor, and visualizer.
For this case, the data-type property is set to classify. The Action Condition instance
“none” has three data-type properties, has_Conciition_Type, has_Condition_Property, and
has_Condition_Value, each set to “none” and one object-type property, has_Condition_Object, which
links to the instance Action_Object Of Interest “none”. The instance Action_Object_Of Interest
“none” is of type Object_Of Interest which describes a possible object the Targetr may be holding or
wearing, but in this example, the mission does not specify if the human male is carrying an object, so
all values are set to none.

Figure 14. Mission_Sensor System instance diagram showing a linked Mission instance
“classify human male” matched to a synthesized system capable of satisfying the
high-level mission. (a) Sensor instance Photo_Conductive; (b) Algorithm instance
Pixel Extractor; (c¢) Algorithm instance Naive_Bayes Classifier; (d) Mission instance
“classify human male”; (e) Profiling_Sensor_System instance; (f) Matched Sensor_System
instance; and (g) Mission_Sensor_System instance.
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With all systems and a mission instantiated on the prototype ontological framework, rules such as
those in Figures 12 and 13 will process the instance data to form a synthesis of systems and assign the
synthesis to the mission. The first synthesis of systems to be retumned is a Profiling_Sensor_System
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instance shown in Figure 14(e). The Profiling Sensor_System instance was retumed because the
properties of Photo_Conductive and Pixel Extractor matched, i.e., the output pixel resolutions of the
Photo_Conductive and input pixel resolutions of the Pixe! Extractor matched to 640 x 480. The
synthesized Profiling Sensor_System instance contains two derived object-type properties that link to
the Sensor instance Photo_Conductive and the Algorithm instance Pixel Extractor, called has_Sensor
and has_Algorithm. The Profiling Sensor_System instance represents a synthesis of systems capable
of formatting a raw signal profile into a formatted "image" profile.

The next pass of the inference cycle will produce the second synthesis of systems; the
Matched Sensor System instance shown in Figure 14(f). The Matched Sensor System instance
contains the two object-type properties has_Profiling Sensor System, which links to the synthesized
Profiling Sensor_System instance, and has_Algorithm, which links to the Naive Bayes Classifier
instance. The algorithm Naive_Bayes_Classifier was matched to the Profiling_Sensor_System instance
because the data-type property has_Output_Data_Type set to “image” matched the data-type property
has_Input Data Type set to “image”, respectively. The new Matched Sensor System instance
represents a synthesized system, which generates raw signal data that can then be classified as a human
male or not a human male.

On the next inference cycle, the rules retumn a possible Mission_Sensor System instance, shown in
Figure 14(g), which assigns the synthesized system Matched Sensor System instance to the simple
Mission instance because of two sets of properties. First, the data-type property
has_Classification_Target value “human male”, which is linked to the Matched Sensor System
through the has_Algorithm object-type property, matches to the data type property has_Name “human
male” in the Target instance, which is linked to the instance Mission through the object-type property
has_Target. Second, the Naive_Bayes Classifier instance has the data-type property has_Process_Type
set to the value “classify”. The Naive_Bayes Classifier instance is linked to the Matched Sensor_
System instance through the object-type property has_Algorithm because the data-type property
has_Process_Type of the instance Action_Process is set to “classify”. Action_Process is linked to the
mstance Mission _Task through the object-type property has_Action_Process, which in tum is linked to
the Mission instance through the object-type property has Mission_Task. The synthesized
Mission_Sensor System instance links to the synthesized Matched Sensor System instance through
the object-type property has_Matched Sensor_System and links to the Mission instance through the
object-type property has_Mission and represent synthesized systems ready to be coordinated to
complete the mission classify human male. The retumed Mission Sensor System system is added as
an instance in the ontology so further inference can leverage the synthesis of systems and mission for
further complex mission tasking or for actual coordination to execute the mission. Although Figure 14
shows relatively simple properties, and the rules in Figure 12 and Figure 13 bind on simple
compatibility constraints, further properties and more complex uses of the SPARQL, FILTER, and
OPTIONAL commands may allow for more complex synthesized systems to be returmed and assigned

to increasingly sophisticated missions.
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7. Instantiated Emulated Profiling Sensor Systems and Algorithms

To show the efficacy of the ontological problem-solving framework, several emulated profiling
sensor systems and algorithms were instantiated as complete Matched Sensor_System instances in the
ontological problem-solving framework as a prototype environment for testing. In the prototype
environment, nine different Mission instances and six different Matched Sensor_System instances
were instantiated, Figure 15. Each of the various Matched Sensor_System instances contained
Profiling_Sensor_System instances made up of matched emulated sensor systems and algorithms, with
some of the emulated systems shared between different Matched Sensor_System instances.

Figure 15. Instantiated examples on the ontological framework: (a) Nine different Mission
instances consisting of detection and classification of targets and visualization
of targets; and (b) Six different Matched Sensor_System instances with links to
Profiling Sensor_System, Sensor and Algorithm instances matched together to form a
synthesized system capable of performing a task.

(a) Mission Instance Data (b) Matched_Sensor_System Instance Data

Mission:

classify human

Mission:

classify human carying backpack

Mission:

classify human carrying sub-machine gun
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Action_Process:
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no conditions

Mission:
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Mission:
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Matched:
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human
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When the ontological problem-solving framework begins, the inference cycle processes the rules
similar to those in Figures 12 and 13. When the inference cycles terminate, sixteen new
Mission_Sensor_System instances were returned as shown in Figure 16. From Figure 16, multiple
Matched _Sensor_System instances were matched to a single Mission instance while in some cases a
single Matched Sensor_System instance was matched to multiple Mission instances. For example, the
Mission instance “classify human carrying sub-machi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>