

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

14-09-2011 Final 13-09-2011 to 14-09-2011

(DURIP-10) HELIX PROJECT TESTBED- TOWARDS THE
SELF-REGENERATIVE INCORRUPTIBLE ENTERPRISE FA9550-10-1-0292

Frederic Chong

UCSB
Santa Barbara CA 93111

Robert Herklotz
robert.herklotz@afosr.af.mil
Air Force Office of Scientific Research
875 North Randolph St.
Arlington, VA 22203

AFOSR

AFRL-OSR-VA-TR-2012-0786

Distribution A - Approved for Public Release

Information flow is an important security property that must be incorporated from the ground up, including at hardware
design time, to provide a formal basis for a system’s root of trust. We incorporate insights and techniques from
designing information-flow secure programming languages to provide a new perspective on designing secure hardware.
An important result of our DURIP is a new hardware description language, Caisson, that combines domain-specific
abstractions common to hardware design with insights from type-based techniques used in secure programming
languages. The proper combination of these elements allows for an expressive, provably-secure HDL that operates at a
familiar level of abstraction to the target audience of the language, hardware architects.
Additional work in this DURIP was to construct a minimal but configurable secure architectural skeleton. This skeleton
couples a critical slice of the low level hardware implementation with a microkernel in a way that allows information flow
properties of the entire construction to be statically verified all the way down to its gate-level implementation.

Secure hardware, hardware description language, information flow tracking, security policies

U U U
UU 6

Frederic Chong

805-310-7931

Information flow is an important security property that must be incorporated from the
ground up, including at hardware design time, to provide a formal basis for a system’s
root of trust. We incorporate insights and techniques from designing information-flow
secure programming languages to provide a new perspective on designing secure
hardware. An important result of our DURIP is a new hardware description language,
Caisson, that combines domain-specific abstractions common to hardware design with
insights from type-based techniques used in secure programming languages. The
proper combination of these elements allows for an expressive, provably-secure HDL
that operates at a familiar level of abstraction to the target audience of the language,
hardware architects.

We have implemented a compiler for Caisson that translates designs into Verilog and
then synthesizes the designs using existing tools. As an example of Caisson’s
usefulness we have addressed an open problem in secure hardware by creating the
first-ever provably information-flow secure processor with micro-architectural features
including pipelining and cache. We synthesize the secure processor and empirically
compare it in terms of chip area, power consumption, and clock frequency with both a
standard (insecure) commercial processor and also a processor augmented at the gate
level to dynamically track information flow. Our processor is competitive with the
insecure processor and significantly better than dynamic tracking.

Our DURIP infrastructure has allowed us to simulate and emulate our designs. We
evaluate a processor design with the following structure:

To quantify the hardware design overhead introduced by our approach we compare our
processor design (Caisson) with a non-secured, simplified version of the commercial
Nios Processor (Base) and the same Nios processor augmented to dynamically track
information flow using GLIFT (GLIFT), previous work under our associated MURI.

GLIFT implements full system information flow tracking at the logic gate level: it
associates each bit in the system with a taint bit indicating its security level, and
augments each gate in the hardware design with additional gates that compute taint
propagation.
All CPUs have identical functionality and configuration. However both Caisson and
GLIFT can only utilize half of the cache and memory capacity effectively although they
have identical configuration as the Base processor. The reason is that in our Caisson
design the memory and cache have to be partitioned into two parts with different
security levels, while GLIFT needs to associate a one-bit tag for each bit in the memory
and cache. We implemented the Base processor (from the Nios design) in Verilog with
no additional security features. To get the Caisson implementation we remodeled the
Base implementation using security widgets provided by the Caisson language and
statically partitioned all registers, caches, and memories into Trusted and Untrusted. To
get the GLIFT implementation, we first synthesized the Base design into a gate level
netlist and then augmented the netlist with shadow logic to track information flow. We
passed the Base and Caisson designs through Altera’s QuartusII v8.0 tool
to synthesize the designs onto a Stratix II FPGA for functional testing and verification.
We then obtain the area, timing and power results using the Synopsis Design Compiler
and the SAED 90nm technology library assuming a switching activity factor of 50% for
the circuit.

Almost as important as the quantitative performance results are the qualitative results of
how easy each design was to implement— this is an important test for the usability of a
language. We find anecdotally that Caisson is easily usable by a programmer trained in
Verilog. The original Base design required 709 lines of Verilog—the corresponding
Caisson design required only 724 lines and took little additional time to implement. By
contrast, GLIFT required
us to make a hard choice: we could either (1) manually design the gate-level netlist at a
structural level (i.e., manually place the logic gates to create the design), which in our
experience is infeasible for such a complex design; or (2) generate a gate-level netlist
from the behavioral Verilog design using an existing tool, then automatically generate
the GLIFT shadow logic using the resulting netlist. We used the latter option, and while
it simplifies the process for the programmer the resulting design is intractably difficult to
debug and optimize.

The table above gives the performance figures for each design. We give the concrete
numbers for all three designs as well as normalized numbers for Caisson and GLIFT
(using Base as a baseline). The area numbers do not include the memory hierarchy

since all three designs use an identical memory configuration. The power numbers
include both dynamic and leakage power. The GLIFT design comes with a large
overhead in all four performance categories due to the shadow logic that GLIFT
introduces to the processor. This shadow logic takes a long time to synthesize, requires
a large chip area, consumes a great deal of power, and drastically slows the processor
cycle frequency.

Caisson, in contrast, has a much lower overhead, though it is certainly not free. This
overhead mainly comes from two sources: the duplicated state (i.e., registers) and the
additional encoders and decoders used to multiplex the partitioned state onto the same
logic circuits. We note that the overhead generated by the Caisson de- sign does not
grow with CPU complexity (e.g., number of functional units)—a more powerful and
complex CPU would not require any additional overhead, while the GLIFT design’s
overhead would proportionately with the CPU complexity. For perhaps the most
important performance metric, power, Caisson’s overhead is almost negligible. The
synthesis time for the Caisson design includes type-checking, which is sufficient to
verify the design’s security. The GLIFT synthesis time does not include verification
GLIFT only detect security violations at runtime.

Additional work in this DURIP was to construct a minimal but configurable secure
architectural skeleton. This skeleton couples a critical slice of the low level hardware
implementation with a microkernel in a way that allows information flow properties of the
entire construction to be statically verified all the way down to its gate-level
implementation. This strict structure is then made usable by a runtime system that
delivers more traditional services (e.g. communication interfaces and long-living
contexts) in a way that is decoupled from the information flow properties of the skeleton.
To test the viability of this approach we design, test, and statically verify the information-
flow security of a hardware/software system complete with support for unbounded
operation, inter-process communication, pipelined operation, and I/O with traditional
devices. The resulting system is provably sound even when adversaries are allowed to
execute arbitrary code on the machine, yet is flexible enough to allow caching,
pipelining, and other common case optimizations.

Above is the proposed architectural skeleton (shaded black in the CPU) that allows
explicit software control over the entire processor state. The processor includes
dynamic micro-architectural features such as caches and pipelining. This hardware
skeleton is used by a separation kernel to manage execution time, memory, and I/O
devices among multiple security partitions. We also introduce trusted adapters for
secure I/O. Here, an I2C master controller on the CPU manages a shared bus among
off-the-shelf I2C devices with different trust levels. In the end, we verify that the
hardware and kernel together enforce a desired information flow policy such as non-
interference.

Our DURIP allowed us to evaluate our CPU design (Star-CPU) in detail and compare its
functionality and area-delay with our prior work MURI work. The Star-CPU
pipeline is single-issue, executes in-order, and has 4 stages (fetch, decode, execute,
and commit/write-back). It has 8 general purpose registers, a mode bit to indicate
kernel/user mode, and a partition ID register to record the current security context. The
memory hierarchy includes a 2kB direct-mapped data cache, and 64kB each of
instruction and data memory. The data cache is implemented on the FPGA using
comparator logic and registers and requires one cycle if a memory access is a hit, while
the memory is implemented using on-chip block RAMs that take two cycles to service

a memory request. To emulate memory access latency in an ASIC implementation of
the system, the memory controller is implemented to introduce an additional delay of
100 cycles. Without micro-architectural features such as branch predictors, TLBs, and
Out-of-Order execution, the Star-CPU pipeline stalls on each cache miss and requires
the compiler to ensure that a register used in a conditional jump instruction has the
desired value at least 4 instructions before it is used.

The above graph quantifies the size and performance advantages of the Star-CPU
against the Execution Lease CPU and against the Star-CPU with dynamic GLIFT logic
(Star-GLIFT). The Star-CPU provides caches, pipelining, and kernel support beyond the
Lease CPU in equivalent area and clock-frequency, and provides static security
guarantees compared to Star-GLIFT in almost 1/4 the logic, 1/2 the memory, and 2X the
clock-frequency.

The Star-CPU’s base functionality is implemented in 5756 ALUTs (Adaptive Look-Up
Tables in an Altera FPGA, where 1 ALUT corresponds very approximately to 9-12
gates), and while the base functionality in the Lease CPU requires only 1511 ALUTs, it
requires 5040 ALUTs when the dynamic analysis logic is factored in. Thus the Star-CPU
replaces analysis logic overhead with a cache and pipeline logic. In terms of
performance, the Star-CPU and Lease CPU have similar frequencies (99 MHz vs.
104MHz), but the unpipelined Lease CPU only commits one instruction every 5 cycles.
Further, without a cache, every memory access in the Lease CPU goes to main
memory.

Comparing the verified Star-CPU to Star-GLIFT, we observe that the Star-GLIFT CPU
requires 23,956 ALUTs for logic and 2×133kB for state and state labels, whereas the

Star-CPU only requires 5756 ALUTs and 133kB for state. Adding dynamic tracking logic
for the complex control logic of the CPU introduces substantial delays and reduces the
maximum operating frequency of the Star-GLIFT CPU to 55MHz (from 99MHz for the
verified Star-CPU). In summary, the verified Star-CPU provides better functionality than
the Lease CPU, and static verification in comparison to Star-GLIFT CPU with much
lesser area and delay.

	SF298 FA9550-10-1-0292
	FA9550-10-1-0292 - finalreport

