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Information flow is an important security property that must be incorporated from the 
ground up, including at hardware design time, to provide a formal basis for a system’s 
root of trust. We incorporate insights and techniques from designing information-flow 
secure programming languages to provide a new perspective on designing secure 
hardware. An important result of our DURIP is a new hardware description language, 
Caisson, that combines domain-specific abstractions common to hardware design with 
insights from type-based techniques used in secure programming languages. The 
proper combination of these elements allows for an expressive, provably-secure HDL 
that operates at a familiar level of abstraction to the target audience of the language, 
hardware architects. 
 
We have implemented a compiler for Caisson that translates designs into Verilog and 
then synthesizes the designs using existing tools. As an example of Caisson’s 
usefulness we have addressed an open problem in secure hardware by creating the 
first-ever provably information-flow secure processor with micro-architectural features 
including pipelining and cache. We synthesize the secure processor and empirically 
compare it in terms of chip area, power consumption, and clock frequency with both a 
standard (insecure) commercial processor and also a processor augmented at the gate 
level to dynamically track information flow. Our processor is competitive with the 
insecure processor and significantly better than dynamic tracking. 
 
Our DURIP infrastructure has allowed us to simulate and emulate our designs.  We 
evaluate a processor design with the following structure: 
 

 
 
 
To quantify the hardware design overhead introduced by our approach we compare our 
processor design (Caisson) with a non-secured, simplified version of the commercial 
Nios Processor (Base) and the same Nios processor augmented to dynamically track 
information flow using GLIFT (GLIFT), previous work under our associated MURI. 



GLIFT implements full system information flow tracking at the logic gate level: it 
associates each bit in the system with a taint bit indicating its security level, and 
augments each gate in the hardware design with additional gates that compute taint 
propagation. 
All CPUs have identical functionality and configuration. However both Caisson and 
GLIFT can only utilize half of the cache and memory capacity effectively although they 
have identical configuration as the Base processor. The reason is that in our Caisson 
design the memory and cache have to be partitioned into two parts with different 
security levels, while GLIFT needs to associate a one-bit tag for each bit in the memory 
and cache. We implemented the Base processor (from the Nios design) in Verilog with 
no additional security features. To get the Caisson implementation we remodeled the 
Base implementation using security widgets provided by the Caisson language and 
statically partitioned all registers, caches, and memories into Trusted and Untrusted. To 
get the GLIFT implementation, we first synthesized the Base design into a gate level 
netlist and then augmented the netlist with shadow logic to track information flow. We 
passed the Base and Caisson designs through Altera’s QuartusII v8.0 tool 
to synthesize the designs onto a Stratix II FPGA for functional testing and verification. 
We then obtain the area, timing and power results using the Synopsis Design Compiler 
and the SAED 90nm technology library assuming a switching activity factor of 50% for 
the circuit. 
 
Almost as important as the quantitative performance results are the qualitative results of 
how easy each design was to implement— this is an important test for the usability of a 
language. We find anecdotally that Caisson is easily usable by a programmer trained in 
Verilog. The original Base design required 709 lines of Verilog—the corresponding 
Caisson design required only 724 lines and took little additional time to implement. By 
contrast, GLIFT required 
us to make a hard choice: we could either (1) manually design the gate-level netlist at a 
structural level (i.e., manually place the logic gates to create the design), which in our 
experience is infeasible for such a complex design; or (2) generate a gate-level netlist 
from the behavioral Verilog design using an existing tool, then automatically generate 
the GLIFT shadow logic using the resulting netlist. We used the latter option, and while 
it simplifies the process for the programmer the resulting design is intractably difficult to 
debug and optimize. 
 

 
 
The table above gives the performance figures for each design. We give the concrete 
numbers for all three designs as well as normalized numbers for Caisson and GLIFT 
(using Base as a baseline). The area numbers do not include the memory hierarchy 



since all three designs use an identical memory configuration. The power numbers 
include both dynamic and leakage power. The GLIFT design comes with a large 
overhead in all four performance categories due to the shadow logic that GLIFT 
introduces to the processor. This shadow logic takes a long time to synthesize, requires 
a large chip area, consumes a great deal of power, and drastically slows the processor 
cycle frequency. 
 
Caisson, in contrast, has a much lower overhead, though it is certainly not free. This 
overhead mainly comes from two sources: the duplicated state (i.e., registers) and the 
additional encoders and decoders used to multiplex the partitioned state onto the same 
logic circuits. We note that the overhead generated by the Caisson de- sign does not 
grow with CPU complexity (e.g., number of functional units)—a more powerful and 
complex CPU would not require any additional overhead, while the GLIFT design’s 
overhead would proportionately with the CPU complexity. For perhaps the most 
important performance metric, power, Caisson’s overhead is almost negligible. The 
synthesis time for the Caisson design includes type-checking, which is sufficient to 
verify the design’s security. The GLIFT synthesis time does not include verification 
GLIFT only detect security violations at runtime.  
 
Additional work in this DURIP was to construct a minimal but configurable secure 
architectural skeleton. This skeleton couples a critical slice of the low level hardware 
implementation with a microkernel in a way that allows information flow properties of the 
entire construction to be statically verified all the way down to its gate-level 
implementation. This strict structure is then made usable by a runtime system that 
delivers more traditional services (e.g. communication interfaces and long-living 
contexts) in a way that is decoupled from the information flow properties of the skeleton. 
To test the viability of this approach we design, test, and statically verify the information-
flow security of a hardware/software system complete with support for unbounded 
operation, inter-process communication, pipelined operation, and I/O with traditional 
devices. The resulting system is provably sound even when adversaries are allowed to 
execute arbitrary code on the machine, yet is flexible enough to allow caching, 
pipelining, and other common case optimizations. 
 



 
 
Above is the proposed architectural skeleton (shaded black in the CPU) that allows 
explicit software control over the entire processor state. The processor includes 
dynamic micro-architectural features such as caches and pipelining. This hardware 
skeleton is used by a separation kernel to manage execution time, memory, and I/O 
devices among multiple security partitions. We also introduce trusted adapters for 
secure I/O. Here, an I2C master controller on the CPU manages a shared bus among 
off-the-shelf I2C devices with different trust levels. In the end, we verify that the 
hardware and kernel together enforce a desired information flow policy such as non-
interference. 
 
Our DURIP allowed us to evaluate our CPU design (Star-CPU) in detail and compare its 
functionality and area-delay with our prior work MURI work. The Star-CPU 
pipeline is single-issue, executes in-order, and has 4 stages (fetch, decode, execute, 
and commit/write-back). It has 8 general purpose registers, a mode bit to indicate 
kernel/user mode, and a partition ID register to record the current security context. The 
memory hierarchy includes a 2kB direct-mapped data cache, and 64kB each of 
instruction and data memory. The data cache is implemented on the FPGA using 
comparator logic and registers and requires one cycle if a memory access is a hit, while 
the memory is implemented using on-chip block RAMs that take two cycles to service 



a memory request. To emulate memory access latency in an ASIC implementation of 
the system, the memory controller is implemented to introduce an additional delay of 
100 cycles. Without micro-architectural features such as branch predictors, TLBs, and 
Out-of-Order execution, the Star-CPU pipeline stalls on each cache miss and requires 
the compiler to ensure that a register used in a conditional jump instruction has the 
desired value at least 4 instructions before it is used. 
 

 
 
The above graph quantifies the size and performance advantages of the Star-CPU 
against the Execution Lease CPU and against the Star-CPU with dynamic GLIFT logic 
(Star-GLIFT). The Star-CPU provides caches, pipelining, and kernel support beyond the 
Lease CPU in equivalent area and clock-frequency, and provides static security 
guarantees compared to Star-GLIFT in almost 1/4 the logic, 1/2 the memory, and 2X the 
clock-frequency.  
 
The Star-CPU’s base functionality is implemented in 5756 ALUTs (Adaptive Look-Up 
Tables in an Altera FPGA, where 1 ALUT corresponds very approximately to 9-12 
gates), and while the base functionality in the Lease CPU requires only 1511 ALUTs, it 
requires 5040 ALUTs when the dynamic analysis logic is factored in. Thus the Star-CPU 
replaces analysis logic overhead with a cache and pipeline logic. In terms of 
performance, the Star-CPU and Lease CPU have similar frequencies (99 MHz vs. 
104MHz), but the unpipelined Lease CPU only commits one instruction every 5 cycles. 
Further, without a cache, every memory access in the Lease CPU goes to main 
memory. 
 
Comparing the verified Star-CPU to Star-GLIFT, we observe that the Star-GLIFT CPU 
requires 23,956 ALUTs for logic and 2×133kB for state and state labels, whereas the 



Star-CPU only requires 5756 ALUTs and 133kB for state. Adding dynamic tracking logic 
for the complex control logic of the CPU introduces substantial delays and reduces the 
maximum operating frequency of the Star-GLIFT CPU to 55MHz (from 99MHz for the 
verified Star-CPU). In summary, the verified Star-CPU provides better functionality than 
the Lease CPU, and static verification in comparison to Star-GLIFT CPU with much 
lesser area and delay. 
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