

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

Final Report

Grant/Contract Title: Helix Project Testbed: Towards the Self-Regenerative Incorruptible Enterprise
Grant/Contract Number: FA9550-10-1-0316
Principal Investigator: Hao Chen
Date: June 15, 2010 --- June 14, 2011

1 Introduction

As part of an AFOSR-sponsored MURI Initiative (BAA 06-028, Topic: Self-Regenerative Incorruptible
Enterprise, Program Manager: Dr. Herklotz, 2007-2012), our team is realizing and refining the Helix vision
of a self-regenerative architecture to protect enterprise-wide networked information systems.

2 Helix testbed

The funds were used to purchase and set up a Helix distributed testbed (HDT) consisting of servers,
desktops, laptops, and mobile devices.

The two primary and complementary goals of the HDT are: (1) to provide an enabling infrastructure to
directly support our research and educational activities, and (2), to provide a realistic live testbed on which
to prototype and evaluate the novel capabilities developed by the various research thrusts.

We have purchased three rack-mounted multicore systems. Together with similar systems hosted at the
other three teams on the same MURI project, they were aggregated to form the computational and stor-
age backbone of the HDT—the data center or cloud concept—and provide services to the enterprise. In
addition, we have purchased several lightweight mobile Internet devices (tablets, cell phones, smartphones,
consumer-grade Internet devices) and projection devices to model the various access and presentationmodal-
ities by which enterprise-wide information will be accessed and manipulated. We anticipate that web-based
technology, e.g., mashups, browsers and other clients, web and application servers, will become prevalent
throughout the enterprise.

We have set up the testbed so that researchers that participate in Helix-related research activities have
access to the resources across four sites, and have the ability to reserve a large fraction of the testbed for
controlled at-scale experiments.

In summary, we have set up a flexible testbed in which the following representative types of activities
and experiments can be carried out:

• Experiments that take advantage of the nature of the resources requested, e.g. understanding the per-
formance implications of variousmulticore configurations, usingmulticore systems for security and/or
program analysis.

• Experiments that require vast computational power, e.g. parameter space studies, large scale genetic
algorithms for program repair.

• Experimental setup that mimics the operating conditions of large-scale enterprises, e.g., with critical
services such as mail, file, database, and web servers.

• Honeypots and other monitoring services to gain an in-depth understanding of services under normal
and anomalous conditions.

1

• Experimentation with mobile internet devices. This class of devices provides access point to various
enterprise services. However, their relative small form factor and limited computational power present
both challenges and opportunities for security research.

• Prototyping and evaluation of the Helix architecture at scale, including setting up fine-grained sensors
and actuators across the enterprise, and/or performing live experiments in which servers are continu-
ously monitored and repaired automatically.

3 Research accomplishments

3.1 Using randomization to defend against cross-site scripting attacks

As the Web evolves into a general purpose computing platform and becomes prevalent in consumer
and DoD enterprise applications, attacks on Web applications will be even more widespread than today.
Compared to traditional desktop applications, Web applications are much more difcult to secure because
they involve both the server and the client. The server creates Web content that usually contains untrusted
user input, and the client renders the content and executes the code in the content. Without protection,
malicious user content could disclose condential information andmodify critical information of other victim
users. In the context of a DoD enterprise system this could easily jeopardize the integrity of the overall
mission.

Cross-site scripting (XSS) attack is a typical example of a web attack. To defend against these attacks,
untrusted user content must be sanitized. Currently, most approaches try to sanitize untrusted user content
at the server side. However, different browsers may parse the same Web content differently, partly in an
attempt to tolerate or auto-correct malformed Web pages. Therefore, it is difcult, if not impossible, for the
server to sanitize untrusted Web content so that it would be safe for any Web browsers. We need to rely on
the client to enforce a security policy on the content (e.g., to deny or sanitize malicious content).

Our approach, Noncespaces [3, 2], lets the Web server and client collaborate to secure Web content. The
Web server tracks the ow of untrusted user input and annotates such input in the generatedWeb content. The
client, upon receiving the annotatedWeb content, enforces an appropriate security policy on the content. This
approach, however, raises two challenges: First, how does the server track untrusted user content? Second,
how does the server annotate untrusted user content in the Web page securely (i.e., how to prevent untrusted
content from embedding fake annotations)?

The Helix Distributed Testbed was used for developing randomization in Web applications and infor-
mation ow tracking in databases, and for evaluating their performance on a realistic environment. The
mobile Internet devices was used to develop Web page sanitization and other policy enforcement in Web
browsers and to evaluate their performance. Since mobile devices are becoming increasingly popular and
more Web transactions are moving to mobile devices, it is imperative to protect mobile Web browsers from
untrusted-data attacks.

3.2 Information ow tracking in databases

Previous research has addressed how to track information ow within a single application, e.g., by as-
signing a taint bit to every byte in the application. This approach, however, is insufcient for our purpose.
This is because most Web services consist of multiple applications. For example, a typical Web service con-
sists of a Web application for creating Web content and a database application for storing data. Currently,
no major database supports information ow tracking, so the Web application has to assume that all data

2

coming from the database are either all trusted or all untrusted. In other words, as soon as a data enters the
database, its trustworthiness is lost for ever. As a result, this causes high false negative or false positive in
identifying untrusted data.

One might try to solve this problem by using system-wide information ow tracking. However, that
would be overkill, because we only need to track information ow within a few applications. System-
wide information ow tracking has severe performance penalty, partly because it fails to take advantage of
application semantics. By contrast, since we know the semantics of database operations, we could implement
information ow much more efciently.

We have developed information ow tracking in databases, called DBTaint [1]. DBTaint three parts:

• Expand the database such that each piece of data is tagged with a trust bit. The trust bits propagate
through database operations.

• Design an interface for the database client to set and get the trust bits of data.

• Design a database client library that sets the gets the trust bits of data automatically. This allows
the programmer to get the benet of information ow tracking across databases without extra work
(except for substituting our library for the default database interface). Using randomization to annotate
untrusted content and to enforce security policies

4 Evaluation

To evaluate the effectiveness and overhead of Noncespaces we conducted several experiments. We
evaluated the security of Noncespaces to ensure that it is able to prevent a wide variety of XSS attacks. Our
performance evaluation measures the costs of Noncespaces from both the client's and server's points of view.

4.1 Security

4.1.1 TikiWiki Case Study

We tested Noncespaces against six XSS exploits targeting two vulnerable applications. The exploits were
crafted to exhibit the various forms that an XSS attack may take [3]. The applications used in this evaluation
were a version of TikiWiki with a number of XSS vulnerabilities and Trustify, a custom web application that
we developed to cover all the major XSS vectors.

We began by developing policies for each application. Because TikiWiki was developed before Non-
cespaces existed, it illustrates the applicability of Noncespaces to existing applications. We implemented a
straightforward 37-rule, static-dynamic policy that allows unconstrained static content but restricts the ca-
pabilities of dynamic content to that of BBCode. We also had to add exceptions for trusted content that
TikiWiki generates dynamically by design, such as names and values of form elements, certain JavaScript
links implementing collapsible menus, and custom style sheets based on user preferences.

For Trustify, our custom web application, we implemented a policy that does not take advantage of the
static-dynamic model. Instead, the policy takes advantage of Noncespaces's ability to thwart node splitting
attacks to implement an ancestry-based sandbox policy similar to the noexecute policy described in BEEP.

For each of the exploits we first verified that each exploit succeeded without Noncespaces enabled. We
then enabled Noncespaces and verified that all exploits were blocked as policy violations.

3

4.1.2 LifeType Case Study

To gain more insight into the work involved in porting existing applications to Noncespaces, we ported
LifeType, a popular blog application, to work with Noncespaces. LifeType is a mature, full-featured blog
application consisting of 155K lines of PHP and XHTML code. Enabling Noncespaces required changes to
only 180 lines of code. The majority of code changes occurred in LifeType's HTTP header handling. These
changes were necessary because Noncespaces needs to include its own headers before any content is sent to
the client.

We developed a static-dynamic policy for LifeType that attempts to restrict untrusted content to aminimal
set of capabilities. Using our proxy's training mode, it took approximately 4 hours to exercise a significant
portion of LifeType's functionality and to manually refine generated rules that were overly general. We then
went through our functionality exercise again to ensure that we did not prohibit any legitimate behavior.

To test the effectiveness of our LifeType policy, we introduced XSS vulnerabilities into the applica-
tion. We used the XSS Cheat Sheet to craft 100 XSS exploits. We then tested each exploit in Opera 9.27.
Before applying Noncespaces, 50 of the exploits were successful. The remaining 50 exploits were unsuc-
cessful against Opera because they exploit functionality unique to some other browser (such as executing
JavaScript by invoking the mocha: protocol scheme present in older Netscape versions). After we applied
Noncespaces, Noncespaces blocked 98 of the 100 exploits as either policy violations or XHTML parsing
errors. These results give us confidence in our policy's ability to recognize exploits while allowing intended
behavior and in Noncespaces's ability to block exploits that target multiple browsers. Since Noncespaces
processes exploitable web pages before the browser renders them, many exploits that would have been in-
compatible with the browser were blocked by Noncespaces before they reached the browser. Neither of the
two exploits that were not blocked resulted in a successful XSS attack: one was rendered as text, the other
as a comment. That neither exploit caused a policy violation does not indicate a limitation of our approach.
Our browser-agnostic prototype proxy implementation targets XHTML compliant browsers, as discussed
previously. Neither exploit was valid XHTML.

4.2 Performance

Our performance evaluation seeks to measure the overhead of Noncespaces in terms of response latency
and server throughput. Our test infrastructure consisted of the applications that we used for our security
evaluation running in a VMware virtual machine with 512 MB RAM running Fedora Core 3, Apache 2.0.52,
and mod_php 5.2.6. The virtual machine ran on an Intel Pentium 4 3.2 GHz machine with 1 GB RAM
running Ubuntu 7.10. Our client machine was an Intel Pentium 4 2GHzmachine with 256MBRAM running
Ubuntu 8.10 Server. These results represent an upper bound on performance penalty as we have spent no
effort optimizing our Noncespaces prototype. In each test we used ab to retrieve an application page 1000
times. We varied the number of concurrent requests between 1, 5, 10, and 15, and the configuration of the
client and server between the following:

• Baseline: measures original web application performance before applying Noncespaces.

• Randomization Only: measures impact of Noncespaces randomization on server without policy vali-
dation on client-side.

• Full Enforcement: measures the end-to-end impact of Noncespaces.

We ran three trials with each test configuration against both the TikiWiki and Lifetype applications. We
report the mean, median, and standard deviation of results over all trials. The server virtual machine was

4

1 5 10 15

Response Times for Lifetype

of concurrent requests

T
im

e
(s

)

0.
0

6.
2

12
.4

18
.6

24
.8

31
.0

 0
.0

9
 0

.0
7

 0
.1

3

 5
.8

9 6
.5

4
 3

.4
8

10
.8

1
12

.1
9

10
.3

1

12
.8

9
16

.5
3

16
.9

9

1 5 10 15

Response Times for TikiWiki

of concurrent requests

T
im

e
(s

)

0.
0

6.
2

12
.4

18
.6

24
.8

31
.0

0.
17

0.
18 0.
19

0.
88 0.

88
0.

93

1.
69 1.
76 1.
78

2.
70

2.
60

2.
30

1 5 10 15

Server Throughput for Lifetype

of concurrent requests

R
eq

ue
st

s
se

rv
ed

 p
er

 s
ec

on
d

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
50

0.
40

0.
42

0.
75

0.
85

1.
17 0.
86

0.
93

1.
30

1.
01

1.
00

1.
45

1 5 10 15

Server Throughput for TikiWiki

of concurrent requests

R
eq

ue
st

s
se

rv
ed

 p
er

 s
ec

on
d

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
45

0.
47

0.
50

0.
76

0.
78 0.

90

0.
78

0.
79 0.

90 0.
83

0.
83

0.
95

Baseline Randomization Only Full Enforcement

Figure 1: Performance of Noncespaces

rebooted between tests. The target page was prefetched once before the test to warm up the systems' caches
to prevent any one-time costs (such as compiling the NSmarty templates) from skewing our results. Our
results are shown in Figure 1.

The graphs of response latency show that enabling Noncespaces randomization on the server increased
response time by (at most) 14% for TikiWiki and 20% for LifeType. Enabling the policy checking proxy
resulted in response times that were (at most) 32% higher than the baseline response time for TikiWiki and
80% higher for LifeType. Though the overhead may appear significant at first glance, during interactive use
latency typically increased by no more than 0.6 seconds.

We also examine the effect of Noncespaces on server throughput. With randomization enabled through-
put is reduced by about 10% for TikiWiki and 20% for LifeType. After enabling policy checking, the through-
put of both TikiWiki and LifeType decreases by an additional 3% for higher numbers of concurrent requests.
Because policy checking is performed on the client side the effect of policy checking on server throughput
is minimized when multiple clients make requests simultaneously.

Publications

[1] Benjamin Davis and Hao Chen. ``DBTaint: Cross-Application Information Flow Tracking via Data
bases''. In: USENIX Conference on Web Application. Boston, MA, 0623-24, 2010.

[2] Matthew Van Gundy and Hao Chen. ``Noncespaces: Using Randomization to Defeat Cross-Site Script-
ing Attacks''. In: Computer and Security (2012).

[3] Matthew Van Gundy and Hao Chen. ``Noncespaces: Using Randomization to Enforce Information
Flow Tracking and Thwart Cross-Site Scripting Attacks''. In: Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS). San Diego, CA, Feb. 2009, pp. 55–67.

5

	SF298 FA9550-10-1-0316
	FA9550-10-1-0316 - finalreport
	Introduction
	Helix testbed
	Research accomplishments
	Using randomization to defend against cross-site scripting attacks
	Information ﬂow tracking in databases

	Evaluation
	Security
	TikiWiki Case Study
	LifeType Case Study

	Performance

	1 REPORT DATE DDMMYYYY: 01/09/2011
	2 REPORT TYPE: Final report
	3 DATES COVERED From To: 6/15/2010-6/14/2011
	4 TITLE AND SUBTITLE: Helix Project Testbed: Towards the Self-Regenerative Incorruptible Enterprise
	5a CONTRACT NUMBER:
	5b GRANT NUMBER: FA9550-10-1-0316
	5c PROGRAM ELEMENT NUMBER:
	6 AUTHORS: Hao Chen
	5d PROJECT NUMBER:
	5e TASK NUMBER:
	5f WORK UNIT NUMBER:
	7 PERFORMING ORGANIZATION NAMES AND ADDRESSES: University of California, DavisOne Shields AvenueDavis, California 95616
	8 PERFORMING ORGANIZATION REPORT NUMBER:
	9 SPONSORING MONITORING AGENCY NAMES AND ADDRESSES: Air Force Office of Scientific Research875 North Randolph St.Arlington, VA 22203
	10 SPONSORMONITORS ACRONYMS: AFOSR
	11 SPONSORMONITORS REPORT NUMBERS: AFRL-OSR-VA-TR-2012-0789
	12 DISTRIBUTION AVAILABILITY STATEMENT: Public Unlimited
	13 SUPPLEMENTARY NOTES:
	14 ABSTRACT: As part of an AFOSR-sponsored MURI Initiative (BAA 06-028, Topic: Self-Regenerative Incorruptible Enterprise, Program Manager: Dr. Herklotz, 2007-2012), our team is realizing and refining the Helix vision of a self-regenerative architecture to protect enterprise-wide networked information systems. The funds were used to purchase and set up a Helix distributed testbed (HDT) consisting of servers, desktops, laptops, and mobile devices. The two primary and complementary goals of the HDT are: (1) to provide an enabling infrastructure to directly support our research and educational activities, and (2), to provide a realistic live testbed on which to prototype and evaluate the novel capabilities developed by the various research thrusts. We have purchased three rack-mounted multicore systems. Together with similar systems hosted at the other three teams on the same MURI project, they were aggregated to form the computational and storage backbone of the HDT—the data center or cloud concept—and provide services to the enterprise. Using the testbed, we have evaluated the security and performance of Noncespaces and DBTaint, techniques for protecting web services from cross-site scripting attacks.
	15 SUBJECT TERMS: Testbed, Security, servers.
	16 SECURITY CLASSIFICATION OF:
	a REPORT:
	b ABSTRACT:
	c THIS PAGE:
	17 LIMITATION OF ABSTRACT:
	18 NUMBER OF PAGES:
	19a NAME OF RESPONSIBLE PERSON:
	19b TELEPHONE NUMBER include area code:

