
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

14. ABSTRACT

15. SUBJECT TERMS

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON
 a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

16. SECURITY CLASSIFICATION OF:

19b. TELEPHONE NUMBER (Include area code)

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

07/31/2011 Final report 05/01/2008 to 07/31/2011

Stochastic Pseudo-Boolean Optimization

FA9550-08-1-0268

 Dr. Oleg Prokopyev

University of Pittsburgh
Office of Research
123 University Place
Pittsburgh, PA 15213-2303

Air Force Office of Scientific Research
875 N. Randolph Street, Room 3112
Arlington, VA 22203

Pseudo-boolean (and general nonlinear integer) functions provide an extremely powerful modeling and solution tool in operations research and
related areas. A large number of practical as well as purely theoretical decision problems can be easily represented and solved as optimization of a
pseudo-boolean or general nonlinear integer function. In the framework of this project we have considered several stochastic extensions of classical
combinatorial optimization problems that involve some type of nonlinearity, typically in the objective function. We have provided respective
theoretical analysis and developed advanced solution approaches. In particular, we have investigated the following topics: (i) exact solution
algorithms for broad classes of two-stage stochastic quadratic binary and general integer programming problems; (ii) approximation algorithms for
solving a class of two-stage stochastic assignment problems; (iii) theoretical analysis of two-stage stochastic minimum s-t cut problems; (iv) exact
solution algorithm for a class of stochastic bilevel knapsack problems; (v) exact solution algorithms for a class multiple-ratio fractional
programming problems; and (vi) integer programming approach for solving a polyomino tiling problem with application in antenna design.

Pseudo-boolean optimization, nonlinear optimization, integer optimization, stochastic optimization, combinatorial optimization

Unclassified Unclassified Unclassified UU 122

Dr. Oleg Prokopyev

412-624-9833

cruzd
Typewritten Text
AFRL-OSR-VA-TR-2012-0871

cruzd
Typewritten Text
Distribution A

Contents

1 Report Summary and Organization 3

2 Two-Stage Stochastic Quadratic Integer Programs 5
2.1 Introduction . 5
2.2 Contribution . 6

3 Two-Stage Stochastic Quadratic Binary Programs 7
3.1 Introduction . 7
3.2 Alternative Dual Decomposition Schemes . 9
3.3 Preliminary Numerical Study . 13
3.4 A Lagrangian Decomposition Approach for QBPs . 14

3.4.1 Introduction . 14
3.4.2 A Lagrangian Decomposition Method . 16
3.4.3 Structure Preserving Decomposition . 26
3.4.4 Computational Considerations in the B&B Framework 29
3.4.5 Computational Experiments . 30

3.5 Concluding Remarks and Future Work . 31

4 Two-Stage Stochastic Minimum s− t Problem 35
4.1 Introduction . 35
4.2 Mathematical Programming Formulation . 36

4.2.1 Total Unimodularity . 39
4.2.2 General Case: Total Unimodularity is Lost 40
4.2.3 Trees: Total Unimodularity is Preserved . 42

4.3 Computational Complexity . 50
4.4 Linear Running Time Algorithm for Trees . 53
4.5 Node-Based Version . 54
4.6 Concluding Remarks . 57

5 Bilevel Knapsack Problems with Stochastic Right-Hand Sides 58

6 Two-Stage Stochastic Assignment Problems 59
6.1 Introduction . 59
6.2 Greedy Approximation Algorithms . 60

6.2.1 Basic Greedy Approach . 60
6.2.2 Greedy Approach of Escoffier et al. 61

6.3 Necessary Optimality Condition . 62
6.4 Enhanced Greedy Approach . 63

6.4.1 Improving the first-stage assignment (EGA-I) 64
6.4.2 Improving the second-stage assignment (EGA-II) 68
6.4.3 Improving EGA with Local Search . 71
6.4.4 Analytical Observations . 73

6.5 Computational Experiments . 75
6.5.1 Setup . 75
6.5.2 Results and Discussion . 77

6.6 Concluding Remarks . 81

1

7 Multiple-Ratio Fractional Programming Problems 84
7.1 Introduction . 84
7.2 A Global Optimization Approach . 86

7.2.1 Description and convergence of the main algorithm 86
7.2.2 Solving the subproblem . 89
7.2.3 Partitioning the feasible region . 91

7.3 Computational Experiments . 93
7.3.1 Setup . 93
7.3.2 Results and Discussion . 93

7.4 Concluding Remarks . 96

8 Irregular Polyomino Tiling via Integer Programming 97
8.1 Introduction . 97
8.2 Information Theoretic Entropy as a Measure of “Irregularity” 98
8.3 Mathematical Programming Formulations . 99

8.3.1 Formal Setup . 99
8.3.2 Nonlinear Set Partitioning Formulation . 101
8.3.3 Linear Set Partitioning Formulation . 101

8.4 Heuristics . 103
8.4.1 Heuristic Procedure: Zoom-in . 103
8.4.2 Heuristic Procedure: Magnify . 104
8.4.3 Heuristic Procedure: Retile . 105
8.4.4 Heuristic Procedure: Smoothen . 106
8.4.5 Heuristic Procedure: Randomize . 106

8.5 Current Work and Concluding Remarks . 110

9 Participants 111

10 Publications 111

11 Presentations 112

2

1 Report Summary and Organization

Nonlinear functions of binary (and general integer) variables naturally arise when modeling selec-
tions and interactions within a unified optimization framework. For example, consider a set of n
objects {1, . . . , n}. For each pair of objects (i, j) we associate a weight qij measuring the interaction
between objects i and j. Let xi = 1 if object i is selected (or xi = k, k ∈ Z

1
++ if several copies of

the object may be selected), and xi = 0, otherwise. If the global interaction is the sum of all inter-
actions between the selected objects, then their global interaction can be formulated as a quadratic
function

∑n
i=1

∑n
j=1 qijxixj .

Pseudo-boolean (and general nonlinear integer) functions provide an extremely powerful mod-
eling and solution tool in operations research and related areas. A large number of practical as well
as purely theoretical decision problems can be easily represented and solved as optimization of a
pseudo-boolean (or general nonlinear integer) function.

Given the recent advances in computational stochastic discrete optimization and continuing pur-
suit of cost-effectiveness when making complex decisions in noticeable stochastic dynamic environ-
ments, we have witnessed many applications of stochastic programming to real-world problems such
as capacity planning, facility location, and production control. Stochastic programming provides a
simple optimization model of decision making under uncertainty to overcome many limitations of
classic deterministic approaches. However, many stochastic combinatorial optimization problems
are notoriously difficult to solve. This fact has greatly hindered the further application of stochastic
programming to many problems where discrete decisions are involved.

We have also seen the increasing number of nonlinear models for combinatorial optimization
problems, e.g, different types of nonlinear assignment problems, application of various quadratic
and fractional binary programming models in medicine, chemistry, computational biology and data
mining, etc. These models are much more suitable for modeling real-world problems full of nonlin-
earity and they are more capable for modeling interactions among involved entities. However, very
little work has been done to extend these wonderful results in stochastic dynamic environments.

Therefore, the major goal of the project was investigating stochastic pseudo-boolean (and general
nonlinear integer) optimization problems. The remainder of this report is organized as follows:

• Section 2 provides a novel solution approach for solving a broad class of two-stage stochastic
quadratic integer programs. The proposed approach is based on the value function refor-
mulation of the original problem. We show that our approach can solve instances whose
extensive forms are hundreds of orders of magnitude larger than the largest quadratic integer
programming instances solved in the literature.

• Section 3 describes new Lagrangian based approaches for solving two-stage stochastic and
deterministic quadratic binary programs.

• Section 4 is focused on two-stage stochastic extensions of the classical minimum s − t cut
problem. The deterministic minimum s− t cut problem has two equivalent formulations that
are motivated by two different interpretations of the problem: (i) linear 0–1 program (arc based
interpretation) and (ii) quadratic 0–1 program (node partitioning based interpretation). We
show that stochastic extensions of these equivalent deterministic models result in two different
stochastic optimization problems. We discuss the corresponding mathematical programming
formulations and related computational complexity issues.

• Section 5 considers a specific stochastic extension of the bilevel knapsack problem. Bilevel
and multilevel optimization is extremely important in military and law enforcement appli-

3

cations since it naturally models the adversarial relationship between the upper- (the at-
tacker/defender) and lower-level (the defender/attacker) decision makers.

• Section 6 describes greedy approximation algorithms for solving a class of two-stage stochastic
assignment problems.

• Section 7 provides a global optimization algorithm for solving a class of multiple-ratio frac-
tional combinatorial optimization problems. Multiple-ratio problems often arise when one
considers stochastic extensions of single-ratio fractional problems.

• Section 8 describes a nonlinear integer optimization model for the irregular polyomino tiling
problem. It is motivated by an antenna design application.

In Section 9 we list the participants of the projects. Sections 10 and 11 summarize the most
important refereed journal publications and research conference presentations, respectively.

We should emphasize that according to the performance report requirements we do not provide
copies of already published articles in this report.

4

2 Two-Stage Stochastic Quadratic Integer Programs

The details of the work in this chapter can be found in:

• O.Y. Ozaltin, O.A. Prokopyev, A.J. Schaefer, “Two-Stage Quadratic Integer Programs with
Stochastic Right-Hand Sides,” Mathematical Programming, accepted for publication, 2010.

2.1 Introduction

We consider the following class of two-stage quadratic integer programs with stochastic right-hand
sides:

(P1) : max
1

2
xTΛx+ cTx+ EωQ(x, ω) (1a)

subject to x ∈ X, (1b)

where X = {x ∈ Z
n1

+ | Ax ≤ b} and,

Q(x, ω) = max
1

2
yTΓy + dT y (2a)

subject to Wy ≤ h(ω)− Tx, (2b)

y ∈ Z
n2

+ . (2c)

The random variable ω from probability space (Ω,F ,P) describes the realizations of uncertain
parameters, known as scenarios. The numbers of constraints and decision variables in stage i are
mi and ni, respectively, for i = 1, 2. The first-stage objective vector c ∈ R

n1 , right-hand side vector
b ∈ R

m1 and the second-stage objective vector d ∈ R
n2 are known column vectors. The first-stage

constraint matrix A ∈ R
m1×n1 , technology matrix T ∈ R

m2×n1 and recourse matrix W ∈ R
m2×n2

are all deterministic. Furthermore, Λ ∈ R
n1×n1 and Γ ∈ R

n2×n2 are known, and possibly indefinite,
symmetric matrices. The stochastic component consists of only h(ω) ∈ R

m2 ∀ω ∈ Ω.
The extensive form formulation of (P1) is given by:

max
1

2
xTΛx+ cTx+ Eω

[
1

2
y(ω)TΓy(ω) + dT y(ω)

]
(3a)

subject to x ∈ X, (3b)

Wy(ω) ≤ h(ω)− Tx ∀ω ∈ Ω, (3c)

y(ω) ∈ Z
n2

+ ∀ω ∈ Ω. (3d)

In this work we make the following assumptions:

A1 The random variable ω follows a discrete distribution with finite support.

A2 The first-stage feasibility set X = {x ∈ Z
n1

+ | Ax ≤ b} is nonempty and bounded.

A3 Q(x, ω) is finite for all x ∈ X and ω ∈ Ω.

A4 The first-stage constraint matrix A, technology matrix T and recourse matrix W are all
integral, i.e. A ∈ Z

m1×n1 , T ∈ Z
m2×n1 , W ∈ Z

m2×n2 .

5

Assumption A1 is justified by Schultz [136], who showed that the optimal solution to any
stochastic program with continuously distributed ω can be approximated within any desired ac-
curacy using a discrete distribution. Assumption A2 and integrality restrictions in the first stage
ensure that X is a finite set. Assumption A3 ensures that Q(x, ω) is feasible for all x ∈ X and
ω ∈ Ω, i.e. relatively complete recourse [148]. Assumption A4 is not too restrictive in a sense,
as any rational matrix can be converted to an integral one. Most of the stochastic programming
studies in the literature make assumptions similar to A1-A3 [7, 34, 89, 137] and A4 [89]. Without
loss of generality, we also assume that b ∈ Z

m1 and h(ω) ∈ Z
m2 ∀ω ∈ Ω, as A,T and W are all

integer matrices. Note that all of the undesirable properties of stochastic integer programs, e.g.
discontinuity and nonconvexity of Q(x, ω), still exist in (P1).

We reformulate (P1) using the value functions of the first- and second-stage quadratic integer
programs. The advantage of this reformulation is that it is relatively insensitive to the number
of variables and scenarios. In the first phase of our solution approach, we construct the value
functions in both stages. In the second phase, we use a global branch-and-bound algorithm or a
level-set approach to optimize (P1) over the set of feasible first-stage right-hand sides.

Our approach can solve very large instances of (P1) as measured by the size of the extensive
form. However, it is sensitive to the number of constraints in each stage and the magnitude of h(ω).
Note that the number of quadratic integer programs that must be solved when constructing the
value function grows exponentially in the number of constraints. A major contribution of this work
is to propose algorithms that can mitigate the effect of this exponential growth to some extent by
exploiting the properties of value functions. Specifically, our approach can handle instances of
(P1) that have up to seven constraints in each stage.

2.2 Contribution

We develop an algorithmic framework for a class of two-stage stochastic quadratic integer programs
where the uncertainty only appears in the second-stage right-hand sides. The main contribution
of the work is twofold. First, we derive some theoretical properties of QIP value functions. These
properties may be useful in sensitivity analysis of quadratic integer programs [43, 73]. Second, we
use these properties as well as superadditivity to develop efficient algorithms for computing value
functions of QIPs. We then apply a dual reformulation and use a generic global branch-and-bound
algorithm and a level-set approach to find an optimal tender.

This work represents an important first step towards more general two-stage stochastic quadratic
integer programs where uncertainty appears in the second-stage objective and constraint matrix,
as well as the right-hand side. We note that our approach is amenable to solve general two-stage
stochastic quadratic integer programs as long as the scenarios may be divided into relatively few
groups that share the same objective functions and constraint matrices. For such instances, the
value function must be found for the first stage and each group of scenarios.

The major limitation of our two-phase solution approach is the explicit storage of value functions
in computer memory. This is why our computations are based on instances that have large number
of columns and scenarios but relatively few rows. One approach to overcome this limitation is to
seek more efficient ways to store value functions, such as using generating functions [96]. Another
approach is to modify the global branch-and-bound algorithm to calculate the solution on a subset
of right-hand sides so that only a portion of the value function needs to be stored at any time.

6

3 Two-Stage Stochastic Quadratic Binary Programs

This chapter is mostly based on the results from:

• Z. Zhu, N. Kong, O.A. Prokopyev, “A New Lagrangian Decomposition Based Approach for
Quadratic Binary Programs,” Technical Report, 2011.

• Z. Zhu, N. Kong, O.A. Prokopyev, “Two-Stage Stochastic Quadratic Binary Program with
Recourse: A Dual Decomposition Approach,” Working paper, 2011.

3.1 Introduction

A two-stage stochastic quadratic binary program with fixed resource (SQBP) can be presented as:

(SQBP) : max
x

cTx+ xTCx+

K∑

k=1

pkQ(x, k)

s.t. Ax ≤ b;

x ∈ {0, 1}n1 ,

and for each k = 1, . . . ,K,

Q(x, k) = max
y

(dk)T y + yTDky

s.t. Wy ≤ hk − T kx;

y ∈ {0, 1}n2 .

In Problem (SQBP), matrices C := {cij} ∈ IR
n2
1 and Dk = {dij} ∈ IR

n2
2 for k = 1, . . . ,K, contain

first-stage and second-stage objective coefficients for the quadratic terms of xixj and yiyj, respec-
tively, and vectors c := {ci} ∈ IR

n1 and dk := {dki } ∈ IR
n2 for k = 1, . . . ,K, contain first-stage

and second-stage objective coefficients for the linear terms xi and yi, respectively. In addition,
matrices A ∈ IR

m1×n1 , W ∈ IR
m2×n2 , T ∈ IR

m2×n1 , for k = 1, . . . ,K, are known real matrices, and
vectors b ∈ IR

m1 , hk ∈ IR
m2 , for k = 1, . . . ,K, are known real vectors. With the problem, a decision

maker takes the first-stage decisions and takes the second-stage recourse decision based on some
realization of the uncertainty, which is not exogenous with respect to first-stage decisions. The
objective is to maximize the sum of the first-stage benefit and the expected second-stage benefit.
To avoid complications when computing the expectation, we assume that we only have a finite
number K of scenarios. Hence, each scenario k = 1, . . . ,K, having probability pk, is represented
by (dk,Dk, hk, T k).

The problem (SQBP) is equivalent to a large, dual block-angular quadratic binary program. For
k = 1, . . . ,K, we define the set

Fk := {(x, yk) : Ax ≤ b, x ∈ IB
n1 , T kx+Wyk ≤ hk, yk ∈ IB

n2}.

Then the deterministic equivalent of (SQBP) can be written as

z = max

{
cTx+ xTCx+

K∑

k=1

pk
(
(dk)T yk + (yk)TDkyk

)
(x, yk) ∈ Fk, k = 1, . . . ,K

}
. (4)

It is important to develop efficient solution methods for SQBPs for the following two reasons.
First, deterministic QBPs have been extensively studied in scheduling [10], computer-aided design

7

[17, 84], computational biology [60], among others. Many graph-theoretic problems can be naturally
formulated with quadratic binary programs (QBPs) [2, 115]. Second, optimization under uncertainty
has been shown critical in many decision problems as stochastic linear binary programs (SLBPs),
the linear counterpart of SQBPs (i.e., C = D = 0), have been applied in many fields such as energy
planning [86], manufacturing [47], logistics [92], etc.

It is not surprise that solving SQBPs is even more computationally prohibitive as SQBPs inherit
computational challenges from both stochastic integer programming and deterministic quadratic
binary optimization. Very little work has been done to develop efficient algorithms for SQBPs.
In this chapter, we adapt dual decomposition (or termed scenario decomposition), an approach
originally developed in Carøe and Schultz [33] for solving SIPs. The idea of scenario decomposition
is to introduce copies x1, . . . , xK of the first-stage variable x and then rewrite Problem (4) in the form

max
x1,...,xK ,y1,...,yK

{
K∑

k=1

pk
(
cTxk + (xk)TCxk + (dk)T yk + (yk)TDkyk

)
(xk, yk) ∈ Fk,

k = 1, . . . ,K, x1 = · · · = xK
}
. (5)

Here the non-anticipativity condition x1 = · · · = xK states that the first-stage decision should not
depend on the scenario that is realized in the second stage. To solve (5), one can apply Lagrangian
relaxation with respect to the non-anticipativity condition and recovery the identity among the
first-stage variables with branch and bound. A major advantage of this solution approach is that it
splits into separate subproblems for different scenarios. Note that the idea of dual decomposition can
be related to existing techniques in both combinatorial optimization (i.e., [74, 83]) and stochastic
programming (i.e., [131, 132]).

For SIP, it is clear that there exist several equivalent representations of the non-anticipativity
condition. In general, it can be represented by the equality

∑K
k=1 Γ

kxk = 0 where Γ = (Γ1, . . . ,ΓK)
is a suitable matrix. One notable representation in SLBP is via the single constraint

(
K∑

k=2

γk

)
x1 = γ2x

2 + . . . + γKxK , (6)

where γ2, . . . , γK are positive weights.
When extending the idea of dual decomposition to SQBP, we enjoy more flexibility on imposing

the non-anticipativity condition. Feasible representations may involve quadratic constraints, i.e.,∑K
k=1Λ

kxk(xk)T = 0 where Λ = (Λ1, . . . ,ΛK) is a matrix. Each feasible representation leads to a
Lagrangian decomposition scheme. It is well known that there exists a tradeoff between the solution
efficiency and bounding quality of Lagrangian duals. In this chapter, we explore a few representa-
tions that involve quadratic constraints and investigate corresponding dual decomposition schemes.
For each deterministic quadratic binary Lagrangian dual subproblem, we propose an innovative
Lagrangian decomposition based branch-and-bound method that is inspired by the idea of variable
splitting. In fact, the proposed Lagrangian decomposition based branch-and-bound method is suitable
to generic quadratic binary programs.

The remainder of the chapter is organized as follows. In Section 3.2, we introduce several
representations of the non-anticipativity condition. We derive the corresponding Lagrangian duals
and compare their tightness analytically. In Section 3.3, we report preliminary computational
experiments on bound tightness and solution efficiency of the SQBPs. In Section 3.4, we present
the innovative Lagrangian decomposition based approach for general quadratic binary programs.
Section 3.5, we draw conclusions and outline future research.

8

3.2 Alternative Dual Decomposition Schemes

In this section, we explore alternative dual decomposition schemes with respect to several rep-
resentations of the non-anticipativity condition. The two key factors are 1) inclusion of quadratic
constraints to represent the non-anticipativity condition and 2) sequence of linearization of quadratic
cross terms and dual decomposition over scenarios.

We present the two generic forms of the Lagrangian relaxation with respect to the non-anticipativity
condition. First, we represent the condition only with linear constraints. The Lagrangian relaxation
is the problem of finding xk, yk, k = 1, . . . ,K, such that

D(µγ) = max

{
K∑

k=1

Lk(x
k, yk, µγ) : (xk, yk) ∈ Fk

}
, (7)

where µγ has proper dimension and Lk(x
k, yk, µγ) = pk

(
cTxk + (xk)TCxk + (dk)T yk + (yk)TDyk

)
+

µγ(Γkxk) for k = 1, . . . ,K. The Lagrangian dual of Problem (7) then becomes the problem

zLD := min
µγ

D(µγ). (8)

Second, we represent the condition with both linear and quadratic constraints. Thus, the Lagrangian
relaxation is

D′(µγ , µλ) = max

{
K∑

k=1

L′
k(x

k, yk, µγ , µλ) : (xk, yk) ∈ Fk

}
, (9)

where µγ and µλ have proper dimensions, and L′
k(x

k, yk, µγ , µλ) = pk
(
cTxk + (xk)TCxk + (dk)T yk

+(yk)TDyk
)
+ µγ(Γkxk) + µλ(Λkxk(xk)T) for k = 1, . . . ,K. The Lagrangian dual of Problem (9)

zLDQ := min
µγ ,µλ

D′(µγ , µλ). (10)

Since there are an enormous amount of possible representations on the non-anticipativity condi-
tion, i.e., enormously many forms of Γ and/or Λ, we consider four commonly used representations.
The first set of two presentation are universally applicable. They use at least one constraint to
force the identity of first-stage variables with respect to each pair of scenarios. For the first repre-
sentation, we impose constraints xk1 = xk2 for all 1 ≤ k1 < k2 ≤ K. For the second representation,
in addition to imposing the above constraints, we impose constraints xk1(xk1)T = xk2(xk2)T for all
1 ≤ k1 < k2 ≤ K. In other words, for any cross term of first-stage variables, we impose constraints
to force the scenario-wise identity. With proper specifications of Γ and Λ, we can further derive (7)
and (9). We denote the corresponding Lagrangian duals by zLD1 and zLD1Q , respectively.

The second set of two representations of the non-anticipativity condition that we consider in
this chapter, are applicable when all first-stage variables are required to be binary, which is the
case in our problem. These two representations use one or two constraints to force the scenario-
wise identity. To distinguish with the two representations described in the previous paragraph, we
call these two representations the third and fourth representations. For the third representation,
we impose constraints (6) for all pairs of scenarios. For the fourth representation, in addition to
imposing constraints (6), we impose constraints

(
K∑

k=2

λk

)
x1(x1)T =

K∑

k=2

λkx
k(xk)T . (11)

9

With the third representation, we further write the Lagrangian relaxation as follows. For k = 1,
the Lagrangian relaxation associated with scenario k = 1 is

D1(µ
γ) =

max
(x1,y1)∈F1

{
p1

(
(cT −

1

p1
(

K∑

k=2

γk)µ
γ)x1 + (x1)TCx1 + (d1)T y1 + (y1)TD1(y1)

)}
. (12)

For k = 2, . . . ,K, the Lagrangian relaxation associated with scenario k is

Dk(µ
γ) = max

(xk ,yk)∈Fk

{
pk
(
(cT +

1

pk
γk)µ

γ)xk + (xk)TCxk + (dk)T yk + (yk)TDk(yk)

)}
. (13)

Then the Lagrangian dual, denoted by zLD2 is as:

zLD2 := min
µγ

{
K∑

k=1

Dk(µ
γ)

}
. (14)

With the fourth representation, we further write the Lagrangian relaxation as follows. For k = 1,
the Lagrangian relaxation associated with scenario k = 1 is

D′
1(µ

γ , µλ) =

max
(x1,y1)∈F1

{
p1

(
(cT −

1

p1
(

K∑

k=2

γk)µ
γ)x1 + (x1)T (C − λ1I)x

1 + (d1)T y1 + (y1)TD1(y1)

)}
. (15)

For k = 2, . . . ,K, the Lagrangian relaxation associated with scenario k is

D′
k(µ

γ , µλ) =

max
(xk,yk)∈Fk

{
pk
(
(cT +

1

pk
γk)µ

γ)xk + (xk)T (C + λkI)x
k + (dk)T yk + (yk)TDk(yk)

)}
. (16)

Then the Lagrangian dual, denoted by zLD2Q is as

zLD2Q := min
µγ ,µλ

{
K∑

k=1

D′
k(µ

γ , µλ)

}
. (17)

Remark 1 Several results follow trivially. They are: 1) zLDQ ≤ zLD; 2) zLD1Q ≤ zLD1 ; and 3)

zLD2Q ≤ zLD2 .

Remark 2 The approach of imposing non-anticipativity constraints on quadratic terms (zLDQ , zLD1Q ,

zLD2Q) is identical to first applying standard linearizaton on first-stage variables and then applying

dual decomposition, i.e., (
∑K

k=2 λ
k)zkij =

∑K
k=2 λ

kzkij with zij = xixj for 1 ≤ i < j ≤ n1.

There is a common feature in the above described dual decomposition schemes. That is, all
Lagrangian duals are derived without linearizing the cross terms of first-stage decision variables.
Next we describe several alternative dual decomposition schemes, which are related to the following
reformulation of Problem (4).

z′ = max





n1∑

i=1

cixi +

n1−1∑

i=1

n1∑

j=2

cijzij

10

+

K∑

k=1

pk




n2∑

i=1

dki y
k
i +

n2−1∑

i=1

n2∑

j=2

dkijy
k
i y

k
j


 zij = xixj, (x, y

k) ∈ Fk



 . (18)

In the above formulation (18), without loss of generality, we assume that cij = cji for i, j = 1, . . . , n1,
i < j, and dij = dji for i, j = 1, . . . , n2, i < j. It is easy to see (18) is equivalent to Problem (4).
We next impose the non-anticipativity condition only on linear terms of first-stage variables. We
rewrite Problem (18) as follows.

max
x1,...,xK ,y1,...,yK ,z

K∑

k=1

pk




n1∑

i=1

cix
k
i +

n2∑

i=1

dki y
k
i +

n2−1∑

i=1

n2∑

j=2

dkijy
k
i y

k
j


+

n1−1∑

i=1

n1∑

j=2

cijzij (19)

subject to (xk, yk) ∈ Fk, k = 1, . . . ,K, (20)

K∑

k=1

Γkxk = 0, (21)

zij ≤ xki , i, j = 1, . . . , n1, j > i, k = 1, . . . ,K, (22)

zij ≤ xkj , i, j = 1, . . . , n1, j > i, k = 1, . . . ,K, (23)

zij ≥ xki + xkj − 1, i, j = 1, . . . , n1, j > i, k = 1, . . . ,K. (24)

zij ∈ [0, 1], i, j = 1, . . . , n1. (25)

Note that to ensure optimality, variables z are only required to be continuous between 0 and 1.
In the following presentation, we fix the presentation of the non-anticipativity condition to be

(6). Therefore, we replace (21) with (6). We apply Lagrangian relaxation with respect to both (21)
and (22) – (24) as follows. For each i, we denote µi to be the Lagrangian multiplier associated
with (21). For each i, j = 1, . . . , n1 with j > i and each k = 1, . . . ,K, we denote θkij and θkji to
be the Lagrangian multiplier associated with each of constraints (22) and each of constraints (23),
respectively. For each i, j = 1, . . . , n1 with j > i and each k = 1, . . . ,K, we denote λk

ij to the
Lagrangian multiplier associated with each (24).

For k = 1, the Lagrangian relaxation associated with scenario 1, is

D′′
1(µ, θ

1, λ1) =

max





n1∑

i=1


p1ci − (

K∑

k=2

γk)µi +
∑

j 6=i

θ1ij −
n1∑

j=i+1

λ1
ij −

i−1∑

j=1

λ1
ji


x1i +

n2∑

i=1

p1d1i y
1
i +

n2−1∑

i=1

n2∑

j=2

p1d1ijy
1
i y

1
j

+

n1−1∑

i=1

n1∑

j=2

(cij − θ1ij − θ1ji + λ1
ij)zij +

n1−1∑

i=1

n1∑

j=2

λ1
ij (x1, y1) ∈ F1, zij ∈ [0, 1]



 . (26)

For k = 2, . . . ,K, the Lagrangian relaxation associated with scenario k, is

D′′
k(µ, θ

k, λk) =

max





n1∑

i=1


pkci + µi +

∑

j 6=i

θkij −
n1∑

j=i+1

λk
ij −

i−1∑

j=1

λk
ji


xki +

n2∑

i=1

pkdki y
k
i +

n2−1∑

i=1

n2∑

j=2

pkdkijy
k
i y

k
j

11

+

n1−1∑

i=1

n1∑

j=2

(cij − θkij − θkji + λk
ij)zij ++

n1−1∑

i=1

n1∑

j=2

λk
ij (xk, yk) ∈ Fk, zij ∈ [0, 1]



 . (27)

Therefore, the corresponding Lagrangian dual, denoted by zLD3 is as

zLD3 = min
µ,θ,λ

K∑

k=1

D′′
k(µ, θ

k, λk) (28)

Note that in each of the above Lagrangian relaxations, variables zij are unconstrained except for
the bounds. Hence, in (26) and (27), for scenario k, k = 1, . . . ,K, the optimal solution z∗ij = 1 if

cij − θkij − θkji + λk
ij ≥ 0, and z∗ij = 0 otherwise.

Remark 3 Since to compute zLD3 , one does not relax the non-anticipativity constraints on variables
zij, we have zLD3 ≤ zLD2Q .

There are a large number of constraints (22) – (24) when K is large, which presents significant
computational challenge in computing zLD3 . Hence, we consider alternative Lagrangian relaxations
that are easier to compute but provide inferior bounds. By the non-anticipativity constraint (21), it
is sufficient to keep the set of constraints (22) – (24) for only one scenario. Let us define zLD3κ to be
the Lagrangian dual if we impose constraints (22) – (24) only for a selected scenario κ. Furthermore,
one can consider replacing (22) – (24) with the following aggregate constraint sets:

(
K∑

k=1

(αk
i + αk

j)

)
· zij ≤

K∑

k=1

(αk
i x

k
i + αk

jx
k
j), i, j = 1, . . . , n1, j > i; (29)

(
K∑

k=1

βk
ij

)
· zij ≥

K∑

k=1

(βk
ijx

k
i + βk

ijx
k
j − 1), i, j = 1, . . . , n1, j > i; (30)

In (29), we introduce coefficients αk
i for i = 1, . . . , n1 and k = 1, . . . ,K, which are associated with

constraints (22) and (23). In (30), we introduce coefficients βk
ij for i, j = 1, . . . , n1, i < j, and

k = 1, . . . ,K, which are associated with constraint (24). However, constraints (25) need to be
replaced by

zij ∈ {0, 1}, i, j = 1, . . . , n1, j > i. (31)

We apply Lagrangian relaxation with respect to alternative non-anticipativity constraints (29) and
(30), and constraints (31), to compute an alternative Lagrangian dual as follows. For each index pair
(i, j) with i < j, we denote θij and λij to be the Lagrangian multipliers associated with constraints
(29) and (30).

For k = 1, the Lagrangian relaxation associated with scenario 1, is

D′′′
1 (µ, θ, λ) = max





n1∑

i=1


p1ci − (

K∑

k=2

γk)µi + α1
i (

n1∑

j=i+1

θij +
i−1∑

j=1

θji)−
n1∑

j=i+1

β1
ijλij −

i−1∑

j=1

β1
jiλji


x1i

+

n2∑

i=1

p1d1i y
1
i +

n2−1∑

i=1

n2∑

j=2

p1d1ijy
1
i y

1
j

+

n1−1∑

i=1

n1∑

j=2

(cij − (α1
i + α1

j)θij + β1
ijλij)zij +

n1−1∑

i=1

n1∑

j=2

λij (x1, y1) ∈ F1, zij ∈ {0, 1}



 . (32)

12

Inst No. zLD3A zLD2Q

1 1863.19 (2.04) 1883.39 (3.00)

2 1989.14 (1.45) 2008.64 (3.67)

3 2010.63 (2.84) 2134.25 (3.74)

4 1899.41 (2.46) 1843.52 (3.30)

5 1855.97 (4.73) 1897.65 (5.43)

Table 1: Computational results on 5 randomly generated SQBP instances. Note that we relaxed
binary restrictions on the second stage

For k = 2, . . . ,K, the Lagrangian relaxation associated with scenario k, is as

D′′′
k (µ, θ, λ) = max





n1∑

i=1


pkci + µi + αk

i (

n1∑

j=i+1

θij +
i−1∑

j=1

θij)−
n1∑

j=i+1

βk
ijλij −

i−1∑

j=1

βk
jiλji


xki

+

n2∑

i=1

pkdki y
k
i +

n2−1∑

i=1

n2∑

j=2

pkdkijy
k
i y

k
j

+

n1−1∑

i=1

n1∑

j=2

(cij − (αk
i + αk

j)θij + βk
ijλij)zij +

n1−1∑

i=1

n1∑

j=2

λij (xk, yk) ∈ Fk, zij ∈ {0, 1}



 . (33)

Therefore, the corresponding Lagrangian dual, denoted by zLD3A , is as

zLD3A = min
µ,θ,λ

K∑

k=1

D′′′
k (µ, θ, λ). (34)

Note that in each of the above Lagrangian relaxations, variables zij are again unconstrained except
for the bounds. Hence, they are easily obtained.

Although it is clear that both zLD3A ≥ zLD3 and zLD2Q ≥ zLD3 , it is unclear the comparison between

zLD3A and zLD2Q . We explore the computational tradeoff between the two bounds with preliminary
numerical studies presented next.

3.3 Preliminary Numerical Study

We conducted preliminary computational experiments to investigate two Lagrangian relaxation
bounds zLD3A and zLD2Q . At the initial stage of computational experimentation, we relaxed the binary
restrictions on the second-stage decision variables to be able to test more and larger instances.
We implemented the test instance generator in Python. To compute zLD3A and zLD2Q , we applied a
standard subgradient method and used Cplex 12.0 when solving the required linear programs.

In Table 1, we present the comparative results for five small test instances, each of which has ten
first-stage decision variables, twenty second-stage decision variables, two first-stage constraints, two
second-stage constraints, twenty scenarios, i.e., n1 = 10, n2 = 20,m1 = 2,m2 = 2,K = 20. In the
table, the numbers in the parentheses are the associated CPU times in seconds. The computational
results suggest that in general, computing zLD3A is less time consuming than computing zLD2Q . But it
is not clear on the superiority between the two bounds. Our conclusions hold for other classes of
test instances.

13

3.4 A Lagrangian Decomposition Approach for QBPs

3.4.1 Introduction

One of the most well-known and studied classes of nonlinear integer optimization problems is the
maximization of a quadratic 0–1 function subject to a set of linear 0–1 constraints:

(P0) : max
x

n∑

i=1

cixi +

n∑

i=1

n∑

j=1,j 6=i

1

2
cijxixj (35)

s.t.

n∑

i=1

akixi ≤ bk, for k = 1, . . . ,m; (36)

xi ∈ {0, 1}, for i = 1, . . . , n,

where ci, cij ∈ R for 1 ≤ i 6= j ≤ n and bk, aki ∈ R for k = 1, . . . ,m and i = 1, . . . , n. Problem (P0)
is typically referred to as a constrained quadratic binary problem (QBP) [25]. Since for each binary
variable x2i = xi, then ciix

2
i can be rewritten as cixi with ci = cii. Without loss of generality, we

also assume that cij = cji for any pair (i, j) with i 6= j.
A quadratic term that represents a pair of binary variables arises naturally in modeling inter-

actions among entities. Furthermore, given the fact that optimization of general pseudo-boolean
functions can be reduced in polynomial time to optimization of a quadratic binary function [25],
QBP is, arguably, the most important class of the general pseudo-boolean optimization problem.
Many important problems in engineering, physics, chemistry, biology, medicine and a variety of
other application domains, can be formulated as QBPs. To name a few, such problems have been
studied in scheduling [10], computer-aided design [17, 84], solid-state physics [15, 17], protein de-
sign [62, 87], computational biology [60], and epileptic seizure prediction [81]. In addition, many
graph-theoretic problems can be naturally formulated with QBPs, including well-studied maximum
clique and maximum independent set problems [2, 115, 120, 121].

There are only a limited number of classes of QBPs known to be polynomially solvable [11, 16,
25, 117, 123]. In general, QBPs are NP -hard combinatorial optimization problems. Even if we
know that the global optimum is unique, QBPs remain NP -hard [118]. In terms of solving general
QBPs, we have witnessed the development of various heuristics [65, 66, 95, 111, 112, 119] and exact
solution methods.

Most of the exact solution methods are focused on efficient linearization techniques [3, 4, 25, 64,
109, 110]. The main concept of the linearization is to reformulate the original QBP as an equivalent
linear mixed 0–1 problem, which can be solved efficiently with off-the-shelf mixed-integer linear
programming solvers such as the CPLEX MIP solver (www.ilog.com/products/cplex). Although the
proposed reformulations in the above references may differ significantly, almost all of them share
the same key idea. That is, replacing the nonlinear terms with auxiliary variables and adding an
additional set of linear constraints. In the most commonly used linearization reformulation (i.e., the
standard linearization as it is termed in this chapter), a new variable zij is introduced to replace
each cross term xixj , which results in the following formulation:

(PSL) : max





n∑

i=1

cixi +
n∑

i=1

∑

j>i

cijzij



 (37)

14

n∑

i=1

akixi ≤ bk, k = 1, . . . ,m; (38)

zij ≥ xi + xj − 1, i, j = 1, . . . , n; i < j; (39)

xi ≥ zij , i, j = 1, . . . , n; i < j; (40)

xj ≥ zij , i, j = 1, . . . , n; i < j; (41)

xi ∈ {0, 1}, zij ≥ 0, i, j = 1, . . . , n, i < j. (42)

Note that in cases of constrained QBPs, additional valid inequalities can be introduced via reformulation-
linearization techniques (RLT) [138], which often improve the performance of the linearization.
Other exact solution methods use approaches based on branch-and-bound and cutting plane [79,
80, 115] techniques.

A relatively less explored class of methods is based on the idea of making copies of decision
variables and introducing additional constraints to ensure the identity between each original decision
variable and its copies. The most notable decomposition method is the one developed by Chardaire
and Sutter [38] for unconstrained QBPs. Subsequently, Billionnet et al. [21, 22] extended their work
to QBPs with knapsack constraints. As a special case of their method, for each decision variable xi,
an auxiliary decision variable yji is introduced for each j = 1, . . . , n, j 6= i. To ensure the equivalent

reformulation, additional linear constraints yji = xi are enforced for all i, j = 1, . . . , n, j 6= i.
Therefore, in the simplest case, their reformulation is given as:

(P1) : max
x,y





n∑

i=1

cixi +
n∑

i=1

n∑

j=1,j 6=i

1

2
cijxiy

i
j



 (43)

s.t.

n∑

i=1

akixi ≤ bk, k = 1, . . . ,m; (44)

yji = xi, i, j = 1, . . . , n, i 6= j; (45)

xi, y
j
i ∈ {0, 1}, i, j = 1, . . . , n, i 6= j.

With decision variables y, each term cijxixj in objective (35) is replaced by cijxiy
i
j in (43). To solve

reformulation (43)–(46), Chardaire and Sutter [38] applied Lagrangian relaxation on constraints
(45). To improve the Lagrangian upper bounding performance, the authors also imposed to (P1)
the following set of nonlinear constraints

xiy
i
j = xjy

j
i , i, j = 1, . . . , n, i < j. (46)

The authors showed that the derived Lagrangian relaxation bound when relaxing both (45) and
(46) is the same as the bound obtained by the LP relaxation of (PSL), denoted by BSL. To solve
the Lagrangian dual problem, the authors proposed a partial enumeration method that fixes the
value of each decision variable x and then solves the resultant linear programs with respect to copy
variables y. Unfortunately, the partial enumeration method is not computationally appealing [124],
especially for constrained problems. The main reason for this is that it does not fully decompose
variables x and y by relaxing the constraint xi = yji for all i, j = 1, . . . , n, i 6= j.

In this chapter, we present a new Lagrangian decomposition based approach, which results in
an alternative Lagrangian dual problem that can be solved more efficiently. In our approach, we
still introduce decision variable yij for each pair (i, j), i 6= j, and replace each cijxixj with cijxiy

i
j

in the objective function. However, instead of using linear constraints, i.e., constraints (45), and

15

quadratic constraints of simple form, i.e., constraints (46), we introduce parameterized quadratic
constraints of a more complex form. We show that we can still establish the formulation equivalence
with certain specification on the parameters of the introduced quadratic constraints even without
imposing linear constraints xi = yji for all i, j = 1, . . . , n, i 6= j. More importantly, when we apply
Lagrangian relaxation on those quadratic constraints, the resultant Lagrangian dual problem can be
decomposed to n linear binary programs that only involves decision variables y and one linear binary
program that only involves decision variables x. In addition, we provide properties to characterize
our Lagrangian relaxation bound. By carefully choosing the parameters of the introduced quadratic
constraints, we can guarantee that our Lagrangian bounds are better than BSL. Our preliminary
computational experiments demonstrate the superiority of a branch-and-bound algorithm with the
proposed Lagrangian relaxation bound.

The remainder of this section is organized as follows. In Section 3.4.2, we describe the new
Lagrangian decomposition method that provides upper bounds for (P0). This subsection includes
introduction and parameter specification of our proposed quadratic constraints, derivation of de-
composable Lagrangian duals, and characterization of the derived upper bounds. In Section 3.4.3,
we illustrate our method with several classic QBPs and discuss the proposed decomposition in more
detail. In Section 3.4.4, we offer some computational considerations on how to integrate our bound-
ing method into a branch-and-bound (B&B) framework. In Section 3.4.5, we report encouraging
results of our preliminary computational experiments on randomly generated test instances from
two classes of QBPs and compare our results with solving two well-known linearization formulations
directly via CPLEX.

3.4.2 A Lagrangian Decomposition Method

In this section, we first present our reformulation of (P0). We then show the equivalence between
(P0) and the reformulation with certain specification on the introduced quadratic constraints. With
the proposed reformulation, we finally introduce a new Lagrangian decomposition method that
allows us to obtain a Lagrangian relaxation bound by solving only linear binary programs.

An Alternative Reformulation of (P0)

Consider the following parameterized quadratic binary problem, which is constructed by including
into (P0) a set of auxiliary decision variables along with additional quadratic constraints.

(P2) : max
(x,y)

n∑

i=1


cixi +

n∑

j=1,j 6=i

1

2
cijxiy

i
j


 (47)

s.t.

n∑

i=1

akixi ≤ bk, k = 1, . . . ,m; (48)

αl
ijxiy

i
j + βl

ijxjy
j
i + θlijxi + γlijxj ≥ ǫlij , i, j = 1, . . . , n, i < j, l = 1, . . . , rij ; (49)

xi, y
j
i ∈ {0, 1}, i, j = 1, . . . , n, i 6= j.

In (P2), a binary decision variable yij variable is introduced for each j 6= i to pair with xi. Hence,

n− 1 auxiliary variables yji are introduced for each xi. Note that we do not introduce to (P2) any
additional linear constraint that links x and y. Instead, we introduce quadratic constraints to link
them. We let rij be the number of quadratic constraints for each index pair (i, j) with i < j and

16

allow this number to differ among index pairs. Also note that objective function (47) is identical to
(43).

Next we show the equivalence between (P1) and (P2) under certain parameter specifications.
Meanwhile, it is easy to see that solving (P1) yields an optimal solution to (P0). Hence, we can
establish the validity of solving (P2). For convenience of the exposition, we use shorthand notation
(x, y) to denote (x1, . . . , xn, y

1
2, . . . , y

1
n, . . . , y

n
1 , . . . , y

n
n−1) in the following results and proofs. We

denote A = {(x, y) ∈ {0, 1}n × {0, 1}n(n−1) (44) − (46)} to be the feasible solution region of (P1)
and B(α, β, θ, γ, ǫ) = {(x, y) ∈ {0, 1}n × {0, 1}n(n−1) (48)− (50)} to be the feasible solution region
of (P2) parameterized on α := (αij), β := (βij), θ := (θij), γ := (γij), and ǫ = (ǫij). For notational
simplicity, we use B instead of B(α, β, θ, γ, ǫ) when referring to a parameterized feasible solution
region of (P2). The parameters are always specified when making such a reference. We also let
C1 = {(1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1),
(0, 0, 0, 0)}, C2 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}, and C3 = {0, 1}4\(C1 ∪
C2). To ensure the equivalence between (P1) and (P2), we essentially need to show that A ⊆ B and
no feasible solution to (P2) is from C3. Therefore, the parameters have to be specified accordingly.

Proposition 1 If for all (i, j), i, j = 1, . . . , n and i < j, the following conditions hold:

αl
ij + βl

ij + θlij + γlij ≥ ǫlij; (50)

θlij ≥ ǫlij; (51)

γlij ≥ ǫlij; (52)

ǫlij ≤ 0, (53)

for all l = 1, . . . , rij , then A ⊆ B.

Proof: Given a (x, y) ∈ A, it is easy to see that (xi, xj , y
j
i , y

i
j) ∈ C1 for every index pair (i, j).

Hence, a sufficient condition for A ⊆ B is to ensure that all four vectors in C1 satisfy constraint (49)
when conditions (50)–(53) hold for all l = 1, . . . , rij . We consider four cases to verify the sufficient
condition and summarize the verification in the following table:

(xi, xj, y
j
i , y

i
j) Constraint (49) Ensured by condition

(1, 1, 1, 1) αl
ij + βl

ij + θlij + γlij ≥ ǫlij (50)

(1, 0, 1, 0) θlij ≥ ǫlij (51)

(0, 1, 0, 1) γlij ≥ ǫlij (52)

(0, 0, 0, 0) ǫlij ≤ 0 (53)

For example, if (xi, xj , y
j
i , y

i
j) = (1, 1, 1, 1), each constraint (49) is reduced to αl

ij+βl
ij+θlij+γlij ≥ ǫlij,

which coincides with condition (50). The proposition then follows as any solution (x, y) in A is also
in B. 2

Proposition 1 implies that with parameter specification as in (50) – (53), we ensure that any
combination in C1 must satisfy all corresponding constraints (49) for every index pair.

Proposition 2 Consider any (x, y) ∈ B. If (xi, xj , y
j
i , y

i
j) ∈ C1 ∪ C2 for each (i, j), i, j = 1, . . . , n

and i < j, then there exists (x, ŷ) ∈ A such that (x, y) in (P2) and (x, ŷ) in (P1) yield the same
objective function value.

Proof: Given a (x, y) ∈ B, we consider two cases to construct (x, ŷ). For each index pair (i, j),
1) if (xi, xj , y

j
i , y

i
j) ∈ C1, we simply let (xi, xj , ŷ

j
i , ŷ

i
j) = (xi, xj , y

j
i , y

i
j); 2) if (xi, xj , y

j
i , y

i
j) ∈ C2, we

construct (xi, xj , ŷ
j
i , ŷ

i
j) in the following manner:

17

(xi, xj , y
j
i , y

i
j) (xi, xj , ŷ

j
i , ŷ

i
j)

(1, 0, 0, 0) (1, 0, 1, 0)

(0, 1, 0, 0) (0, 1, 0, 1)

(0, 0, 0, 1) (0, 0, 0, 0)

(0, 0, 1, 0) (0, 0, 0, 0)

(0, 0, 1, 1) (0, 0, 0, 0)

It is easy to see that (x, ŷ) ∈ A with the above construction. Regarding the objective functions, it
is clear that for any pair (i, j), cijxiy

i
j + cjixjy

j
i = cijxiŷ

i
j + cjixj ŷ

j
i given (x, y) ∈ B and (x, ŷ) ∈ A.

The proposition then follows as the two objective function values are equal. 2

Proposition 2 implies that although A ⊆ B allows more feasible solutions to (P2) than (P1), such
feasible solution region expansion does not affect the optimality equivalence between (P1) and (P2)
as long as for all (i, j), 1 ≤ i < j ≤ n, (xi, xj , y

j
i , y

i
j) ∈ C1 ∪ C2. Next, we show certain expansion

should not be allowed as it may affect the optimality equivalence between (P1) and (P2). Thus, we
should prohibit such expansion by specifying parameters in constraint (49). In the following, we
provide a sufficient condition to ensure this.

Proposition 3 Suppose for some (s, t), s, t = 1, . . . , n and s < t, there exists an index set Lst :=
(l1, l2, l3, l4, l5) ∈ {1, . . . , rst}

5 such that the following conditions hold:

αl1
st + θl1st + γl1st < ǫl1st; (54)

βl2
st + θl2st + γl2st < ǫl2st; (55)

θl3st + γl3st < ǫl3st; (56)

αl4
st + θl4st < ǫl4st; (57)

βl5
st + γl5st < ǫl5st. (58)

For any (x, y), if (xs, xt, y
t
s, y

s
t) ∈ C3, then (x, y) /∈ B.

Proof: Given (s, t) with (xs, xt, y
t
s, y

s
t) ∈ C3, we check in the following table whether such (xs, xt, y

t
s, y

s
t)

violates constraint (49) with a set of parameters specified in (54)–(58) and (l1, l2, l3, l4, l5).

(xi, xj , y
j
i , y

i
j) Constraint (49) Violated by condition

(1, 1, 0, 1) αl1
st + θl1st + γl1st ≥ ǫl1st (54)

(1, 1, 1, 0) βl2
st + θl2st + γl2st ≥ ǫl2st (55)

(1, 1, 0, 0) θl3st + γl3st ≥ ǫl3st (56)

(1, 0, 0, 1) αl4
st + γl4st ≥ ǫl4st (57)

(1, 0, 1, 1) αl4
st + γl4st ≥ ǫl4st (57)

(0, 1, 1, 0) βl5
st + γl5st ≥ ǫl5st (58)

(0, 1, 1, 1) βl5
st + γl5st ≥ ǫl5st (58)

Note that the seven cases of (xs, xt, y
t
s, y

s
t) in the above table show all possible combinations in

C3. The violation checking in the table indicates that (xs, xt, y
t
s, y

s
t) cannot satisfy (49). Hence,

(x, y) /∈ B. 2

Note that it is allowed in Proposition 3 that ls = lt for 1 ≤ s 6= t ≤ 5 and the choice of Lst may
not be unique for a given index pair (s, t). Proposition 3 implies that B should not contain any
(x, y) with component as any of the seven combinations in C3, since such a solution may destroy
the optimality equivalence between (P1) and (P2). With the three propositions presented earlier,
we readily state one sufficient condition to ensure (P2) is a valid reformulation of (P0).

18

Theorem 1 The two formulations (P1) and (P2) are equivalent in the sense that they yield the
same optimal objective function value and the same optimal solution with respect to x if there exists
(α, β, θ, γ, ǫ), such that for any index pairs (i, j), i, j = 1, . . . , n and i < j, the following conditions
hold:

1. for all l = 1, . . . , rij ,

αl
ij + βl

ij + θlij + γlij ≥ ǫlij, (59)

θlij ≥ ǫlij; (60)

γlij ≥ ǫlij; (61)

ǫlij ≤ 0. (62)

2. there exists an index set Lij, i.e. (lij1 , l
ij
2 , l

ij
3 , l

ij
4 , l

ij
5) such that

α
lij
1

ij + θ
lij
1

ij + γ
lij
1

ij < ǫ
lij
1

ij ; (63)

β
lij
2

ij + θ
lij
2

ij + γ
lij
2

ij < ǫ
lij
2

ij ; (64)

θ
lij
3

ij + γ
lij
3

ij < ǫ
lij
3

ij ; (65)

α
lij
4

ij + θ
lij
4

ij < ǫ
lij
4

ij ; (66)

β
lij
5

ij + γ
lij
5

ij < ǫ
lij
5

ij . (67)

Proof: Let f∗
1 and f∗

2 be the optimal objective function values of (P1) and (P2), respectively. From
Proposition 1, we have A ⊆ B, and thus f∗

1 ≤ f∗
2 . Propositions 2 and 3 show that for any (x, y) ∈ B,

there exists (x, ŷ) ∈ A that yields the same objective function value with (x, y), which implies
that f∗

2 ≤ f∗
1 and thus the result follows. Furthermore, given any (x, y) ∈ B, the construction of

(x, ŷ) ∈ A in Proposition 2 ensures that the solutions are always identical with respect to x, which
completes the proof. 2

Corollary 1 The formulation (P2) is a valid reformulation of (P0) with parameter specification
given in Theorem 1.

Theorem 1 and Corollary 1 establish the fact that with appropriate parameter specification in
constraints (49), (P2) is a valid reformulation of (P0). Thus one may solve (P2) instead of (P0).
Two issues remain for the algorithmic development. One issue is how to solve (P2) efficiently. The
other is how to specify the parameters in constraints (49) so that we ensure not only the formulation
equivalence but also the solution efficiency in practice. In Section 3.2.2, we develop an Lagrangian
decomposition method to improve the efficiency of solving (P2). In Section 3.2.3, we propose some
practical specifications of the parameters in constraints (49) and discuss their resultant Lagrangian
relaxation bounds.

Lagrangian Decomposition in (P2)

In this section, we present a Lagrangian decomposition method to solve the reformulation (P2). We
assume that the parameters in constraints (49) have been specified to ensure the validity of (P2).
For each pair 1 ≤ i < j ≤ n and each l = 1, . . . , rij , we associate a Lagrangian multiplier λl

ij with
the corresponding constraint (49). Then the Lagrangian dual problem of (P2), denoted by L(λ), is

L(λ) = max
x,y
{L(λ, x, y) | (48), (50)}, (68)

19

where L(λ, x, y) = f(x, y) +
∑n

i=1

∑
j>i

∑rij
l=1

(
λl
ij(α

l
ijxiy

i
j + βl

ijxjy
j
i + θlijxi + γlijxj − ǫlij)

)
=

n∑

i=1


ci +

∑

j>i

rij∑

l=1

λl
ijθ

l
ij +

∑

j<i

rji∑

l=1

λl
jiγ

l
ji +

∑

j>i

(
1

2
cij +

rij∑

l=1

λl
ijα

l
ij)y

i
j +

∑

j<i

(
1

2
cij +

rji∑

l=1

λl
jiβ

l
ji)y

i
j


xi

−
n∑

i=1

∑

j>i

rij∑

l=1

λl
ijǫ

l
ij ,(69)

and the optimal Lagrangian dual of (P2), denoted by BLD, is:

BLD = min
λ≥0

L(λ). (70)

Lemma 1 Consider a function f(x, y) with form f(x, y) = g(y)h(x) with x ∈ X and y ∈ Y . If
h(x) ≥ 0 for all x ∈ X, then maxx∈X,y∈Y f(x, y) = maxx∈X,y∈Y g(y)h(x) = maxx∈X{(maxy∈Y g(y))h(x)}.

With Lemma 1, we can further derive L(λ) as:

L(λ) = max
x,y

L(λ, x, y) = max
x,y

{
n∑

i=1

(
gi(y

i)xi
)
}
−

n∑

i=1

∑

j>i

rij∑

l=1

λl
ijǫ

l
ij

= max
x

{
n∑

i=1

(
max
yi

gi(y
i)

)
xi

}
−

n∑

i=1

∑

j>i

rij∑

l=1

λl
ijǫ

l
ij , (71)

where

gi(y
i) = ci +

∑

j>i

rij∑

l=1

λl
ijθ

l
ij +

∑

j<i

rji∑

l=1

λl
jiγ

l
ji +

∑

j>i

(
1

2
cij +

rij∑

l=1

λl
ijα

l
ij)y

i
j

+
∑

j<i

(
1

2
cij +

rji∑

l=1

λl
jiβ

l
ji)y

i
j , (72)

for i = 1, . . . , n. Note that we drop the constraints in (71) for simplicity of the exposition. Also
note that the mutual independence among gi(y

i) along with Lemma 1 ensure the second equality
in (71). Hence, we can decompose L(λ) to n unconstrained linear binary problems and one linear
binary program. For each i = 1, . . . , n, let

g∗i = max
yi

gi(y
i), (73)

which is an unconstrained linear binary program only involving yi. Then L(λ) is further derived as:

L(λ) = max
x





n∑

i=1

g∗i xi −
n∑

i=1

∑

j>i

rij∑

l=1

λl
ijǫ

l
ij

∣∣∣∣∣∣
(48), (50)



 , (74)

which is a linear binary program only involving x. We call (74) the master subproblem after
decomposition (MSAD).

By applying Lemma 1, we can compute L(λ) by solving n unconstrained linear binary problems,
each of which corresponds to yi, i = 1, . . . , n, and one linear binary program, which corresponds

20

to x. It is easy to solve each unconstrained integer program (IP) maxyi gi(y
i) with n − 1 binary

variables. Thus, generally speaking, the complexity of solving L(λ) is determined by the complexity
of solving MSAD. In addition, we note that MSAD preserves the feasible solution region of the
original problem (P0) whereas linearization methods introduce additional constraints to (P0) (e.g.,
[64, 68, 109]), which may significantly complicate the original problem structure. With the feature
of structure preserving, our method is expected to be efficient, especially for problems with special
structures. Furthermore, it is expected to be beneficial when embedding our method within a
branch-and-bound framework, as indicated in the following remark.

Remark 4 For any given λ ≥ 0, solving MSAD provides a feasible solution to (P0) while L(λ)
offers an upper bound to (P0).

In a Lagrangian decomposition based branch-and-bound framework, it may be computationally
useful to terminate the solution of a Lagrangian relaxation problem before it reaches the optimality.
In our case, we terminate a subgraident algorithm for solving problem (70) prematurely and use
the obtained Lagrangian dual as the upper bound instead of BLD. Note that we also obtain a
potentially promising feasible solution at the same time with the upper bound. In section 3.4.4,
We state computational considerations on solving the Lagrangian duals via the subgradient method
and discuss their effects in a branch-and-bound framework.

Parameter Specification in Quadratic Constraints (49)

To ensure the equivalence of (P0) and (P2), we need to specify parameters in the set of quadratic
constraints (49). Theorem 1 provides a sufficient condition on the parameter specification. However,
that sufficient condition leads to infinitely many feasible parameter specifications. In this section,
we assume that a constant number of quadratic constraints for each index pair, i.e., rij = r for
all 1 ≤ i < j ≤ n and discuss only some particular subsets of the parameter space. We consider
r = 1, 2, 6 and identify some characterizations of the obtained quadratic constraints.

Case r = 1

As indicated in Propositions 1 and 3, a necessary condition for valid specification of (α, β, θ, γ, ǫ)
is that for any index pair (i, j) with 1 ≤ i < j ≤ n, the corresponding quadratic constraint (49),
αijxiy

i
j + βijxjy

j
i + θijxi + γijxj ≥ ǫij , is satisfied by (xi, xj , y

j
i , y

i
j) = (1, 1, 1, 1) and (0, 0, 0, 0) but

violated by (xi, xj , y
j
i , y

i
j) = (0, 1, 1, 1) and (1, 0, 0, 1). Therefore, the parameters (αij , βij , θij, γij , ǫij)

must satisfy the following conditions:

αij + βij + θij + γij ≥ ǫij;

ǫij ≤ 0;

βij + γij < ǫij;

αij + θij < ǫij,

for 1 ≤ i < j ≤ n. It is easy to see that the above four conditions can not be satisfied simultaneously,
which leads to the following remark.

Remark 5 A necessary condition to ensure the equivalence between (P0) and (P2) is rij ≥ 2 for
any index pair (i, j) with 1 ≤ i < j ≤ n, in the parameter specification of quadratic constraints (49).

21

Case r = 2

In the case r = 2, there are two quadratic constraints (49) for each index pair, which requires us
to specify twice as many parameters as in the case r = 1. This gives us more freedom to specify
the parameters that satisfy the conditions in Theorem 1. Namely, we must find a set of parameters
such that (59)–(62) and (63)–(67) hold simultaneously for each index pair. We next present a valid
way to specify the parameters to ensure the equivalence between (P1) and (P2).

For each index pair (i, j), 1 ≤ i < j ≤ n, let αij := α1
ij = β2

ij , βij := α2
ij = β1

ij , θij := θ1ij = γ2ij,

γij := θ2ij = γ1ij and ǫij := ǫ1ij = ǫ2ij . Hence, conditions (59) – (62) can be further derived as:

αij + βij + θij + γij ≥ ǫij; (75)

θij ≥ ǫij; (76)

γij ≥ ǫij; (77)

ǫij ≤ 0, (78)

for each (i, j), 1 ≤ i < j ≤ n. Furthermore, we set l1 = 2, l2 = 1, l3 = 1, l4 = 2, l5 = 1 for each (i, j),
1 ≤ i < j ≤ n. Hence, conditions (63) – (67) can be further derived as:

βij + θij + γij < ǫij, (79)

θij + γij < ǫij, (80)

βij + γij < ǫij, (81)

for each (i, j), 1 ≤ i < j ≤ n. Note that given the above specification on (α, β, θ, γ, ǫ), with l1 = 2
and l2 = 1, conditions (63) and (64) are identical and become (79); and with l4 = 2 and l5 = 1,
conditions (66) and (67) are identical and become (81). Finally, in order to find a valid set of
parameters, (78) has to be tightened to ǫij < 0. This is because (76), (77), and (80) together, imply
ǫij > 2ǫij . Hence, we replace (78) with

ǫij < 0, (82)

for each (i, j), 1 ≤ i < j ≤ n, in the following discussion on the case r = 2.

Remark 6 Given the selection on (l1, l2, l3, l4, l5) as above, for each index pair (i, j), 1 ≤ i < j ≤ n,
any solution (αij , βij , θij , γij , ǫij) that satisfies the set of inequalities (75)–(77), (79)–(81), and (82),
is valid in terms of parameter specification. Piecing satisfactory solutions together for all index pairs
ensures the equivalence between (P1) and (P2).

Remark 7 In the case r = 2, once conditions (75)–(77) and (82) are satisfied, one can find a
valid set of parameters to ensure the equivalence (P1) and (P2) as long as l1 6= l2 and l4 6= l5 when
selecting (l1, l2, l3, l4, l5).

The above two remarks imply that there are still a large number of valid specifications to ensure
the equivalence between (P1) and (P2). In the following, we fix the selection on (l1, l2, l3, l4, l5) as
used earlier for conditions (79)–(81). However, we further simply the selection on (α, β, θ, γ, ǫ) with
the goal of improving computational efficiency in solving the Lagrangian relaxation problem (70).
To solve (70), we apply the subgradient method in Held and Wolfe [78], with which Lagrangian
multipliers λ are updated at every iteration in the following fashion. For each (i, j) with 1 ≤ i <
j ≤ n and l = 1, 2,

(λl
ij)

k+1 = max{0, (λl
ij)

k + s(ǫlij − αl
ijxiy

i
j − βl

ijxjy
j
i − θlijxi − γlijxj)}, (83)

22

where k is the iteration index and s is the step size. In general, it is desirable to update the
Lagrangian multipliers only when (xi, xj , y

j
i , y

i
j) is infeasible to (P2). In other words, the fact that

(xi, xj , y
j
i , y

i
j) satisfies (49), suggests that (λl

ij)
k is likely to be sufficiently good and thus there is

no need to further modify it. Therefore, conditions (75)–(77) should be satisfied with equality
whenever it is possible , which leads to the following. For each (i, j), 1 ≤ i < j ≤ n and l = 1, 2,
we set θlij = γlij = ǫlij = ǫ and βl

ij = −(αl
ij + ǫlij). Note that with the above partial parameter

specifications, we still need to set αl
ij . Without loss of generality, we arbitrarily let α1

ij = β2
ij = 1

and α2
ij = β1

ij = −1− ǫ for all (i, j). For each (i, j), 1 ≤ i < j ≤ n, we thus have

xi(y
i
j + ǫ) + xj((−1− ǫ)yji + ǫ) ≥ ǫ; (84)

xi((−1− ǫ)yij + ǫ) + xj(y
j
i + ǫ) ≥ ǫ. (85)

Finally to satisfy (81) and (82), we must have −1 < ǫ < 0. It is easy to check the above parameter
specification satisfies the conditions in Theorem 1 and thus ensure the equivalence between (P1)
and (P2) with (84) and (85) in place of (49) for each (i, j), 1 ≤ i < j ≤ n. Given its simplicity, we
use the above specification in all our computational experiments. Our preliminary computational
results show that although it is likely that we cannot obtain a Lagrangian relaxation bound as good
as BSL, the bound obtained by solving the LP relaxation of (PSL), the computational benefit due
to Lagrangian decomposition offsets the bounding inferiority. However, the inferiority motivates us
to study cases where r > 2.

Case r = 6

As r increases, it is less a concern for identifying a set of parameters (α, β, θ, γ, ǫ) that satisfies the
sufficient condition in Theorem 1 and thus ensures the equivalence of (P1) and (P2). In the case
r = 2, we explore how to improve the computational efficiency in terms of solving the proposed La-
grangian relaxation problem. In this section, we intend to investigate good parameter specifications
such that the the proposed Lagrangian relaxation bound can outperform BSL.

We present a special case of r = 6, with which we show that one can generate an upper bound
on (P0) at least as tight as BSL. Let us consider the following specification of the parameters. For
all index pairs (i, j) with 1 ≤ i < j ≤ n, we set

α1
ij = 1, β1

ij = 0, θ1ij = −1, γ1ij = −1, ǫ1ij = −1; (86)

α2
ij = 0, β2

ij = 1, θ2ij = −1, γ2ij = −1, ǫ2ij = −1; (87)

α3
ij = −1, β3

ij = 0, θ3ij = 0, γ3ij = 1, ǫ3ij = 0; (88)

α4
ij = 0, β4

ij = −1, θ4ij = 1, γ4ij = 0, ǫ4ij = 0; (89)

α5
ij = 1, β5

ij = −1, θ5ij = 0, γ5ij = 0, ǫ5ij = 0; (90)

α6
ij = −1, β6

ij = 1, θ6ij = 0, γ6ij = 0, ǫ6ij = 0. (91)

It is clear that (86)–(91) satisfy the sufficient condition in Theorem 1. To be specific, for all (i, j)
with 1 ≤ i < j ≤ n, we have a) (86)–(91) all satisfy conditions (59)–(62); and b) (87) and (91)
satisfy (63), (86) and (90) satisfy (64), (86) and (87) satisfy (65), (88) and (91) satisfy (66), and (89)
and (90) satisfy (67). Therefore, one can select li, i = 1, . . . , 5, accordingly. For example, by setting
(l1, l2, l3, l4, l5) = (2, 1, 2, 3, 4), the condition in Theorem 1 is satisfied and thus the equivalence
between (P1) and (P2) is established. Note that our selection of li, i = 1, . . . , 5, indicates that it is
sufficient to have the first four sets of parameters. It will be clear later in this section that the last
two sets of parameters ensure the superiority of the derived Lagrangian relaxation bound.

23

With the parameters specified in (86)–(91), we rewrite quadratic constraints (49) to the following
five constraints:

xiy
i
j ≥ xi + xj − 1; (92)

xjy
j
i ≥ xi + xj − 1; (93)

xi ≥ xjy
j
i ; (94)

xj ≥ xiy
i
j; (95)

xiy
i
j = xjy

j
i , (96)

for each (i, j), 1 ≤ i < j ≤ n. Note that (90) yields xiy
i
j ≥ xjy

j
i and (91) yields xiy

i
j ≤ xjy

j
i , we

thus combine them and form the equality in (96).
By replacing zij = xiy

i
j = xjy

j
i for each pair (i, j), 1 ≤ i < j ≤ n, it is clear to see the simi-

larity between constraints (92)–(96) and constraints (39)–(41). We next show that the Lagrangian
relaxation on constraints (92)–(96), in fact, achieves an upper bound as least as tight as BSL.

Theorem 2 The upper bound obtained via the Lagrangian relaxation of (P2) on constraints (92)–
(96) is at least as tight as the upper bound obtained via the LP relaxation of (PSL), i.e. BLD ≤ BSL.

Proof: It is clear that computing the optimal Lagrangian dual of (PSL) by relaxing (39)–(41)
yields an upper bound at least as tight as the one obtained by solving the LP relaxation of (PSL)
[57, 63]. Therefore, it suffices to prove that computing the optimal Lagrangian dual of (P2) by
relaxing (92)–(96) yields an upper bound at least as tight as the one obtained by computing the
optimal Lagrangian dual of (PSL).

For each index pair (i, j), 1 ≤ i < j ≤ n, let us denote the Lagrangian multipliers associated
with (39) to be ζij, and denote those associated with (40) and (41) to be τij and τji, respectively. We
use the short-hand notation ζ and τ to represent the vectors containing all Lagrangian multipliers
ζij and τij. We then present the optimal Lagrangian dual of (PSL) as

GLD = G(ζ∗, τ∗) = min
ζ,τ

G(ζ, τ) (97)

where

G(ζ, τ) = max
x,z





n∑

i=1

(ci +
∑

j 6=i

τij −
∑

j<i

ζji −
∑

j>i

ζij)xi +

n∑

i=1

∑

j>i

(cij + ζij − τij − τji)zij

+

n∑

i=1

∑

j>i

ζij (38), (42)



 . (98)

Next let us denote the Lagrangian multipliers associated with (92)–(96) with νij , νji, δij , δji, and
κij, for each (i, j) with 1 ≤ i < j ≤ n. Note that νij , νji, δij , δji must be non-negative whereas κij
can be any real number. We then present the optimal Lagrangian dual of (P2) as

BLD = L(ν∗, δ∗, κ∗) = min
ν,δ,κ

L(ν, δ, κ), (99)

where

L(ν, δ, κ) = max
x,y





n∑

i=1


ci +

∑

j 6=i

δij −
∑

j 6=i

(νij + νji)


xi+

∑

i=1

∑

j>i

(
1

2
cij + νij − δji + κij

)
yijxi

24

+
∑

i=1

∑

j>i

(
1

2
cji + νji − δij − κji

)
yjixj +

n∑

i=1

∑

j>i

(νij + νji) (48), (50)



 . (100)

With the notation introduced above, we have GLD ≤ BSL. Hence, we need to prove BLD ≤ GLD

to complete the proof of the theorem.
Next we show for any feasible (ζ, τ), there exists a feasible (ν, δ, κ) such that L(ν, δ, κ) ≤ G(ζ, τ).

If this is true, for (ζ∗, τ∗), the multipliers associated with the optimal Lagrangian dual of (PSL),
there must exist some feasible (ν̂, δ̂, κ̂) such that L(ν̂, δ̂, κ̂) ≤ G(ζ∗, τ∗) which implies that BLD ≤
L(ν̂, δ̂, κ̂) ≤ G(ζ∗, τ∗) = GLD.

Given any feasible (ζ, τ), we let δij = τij, for 1 ≤ i 6= j ≤ n, and νij+νji = ζij, for 1 ≤ i < j ≤ n.
It is clear with the above assignments that

ci +
∑

j 6=i

δij −
∑

j 6=i

(νij + νji) = ci +
∑

j 6=i

τij −
∑

j<i

ζji −
∑

j>i

ζij, (101)

for i = 1, . . . , n, and
n∑

i=1

∑

j>i

(νij + νji) =

n∑

i=1

∑

j>i

ζij. (102)

Let z∗ be an optimal solution to (98) with a feasible (ζ, τ). Since binary variable z is unrestricted
in (98), we know for each (i, j), 1 ≤ i < j ≤ n, z∗ij = 1 if cij + ζij − τij − τji > 0 and z∗ij = 0,
otherwise. We also let y∗ be an optimal solution to (100).

For any (s, t), 1 ≤ s < t ≤ n, we further write cst + ζst − τst − τts = (12cst + νst − δts + κst) +
(12cts + νts − δst − κst). Here we use the fact that cij = cji for all (i, j) with 1 ≤ i < j ≤ n. We
consider three cases on cst + ζst − τst − τts in (98).

Case I: cst + ζst − τst − τts > 0. This condition implies that z∗st = 1. In this case, we can find
νst, νts ≥ 0 and κst ∈ R such that 1

2cst + νst − δts + κst > 0 and 1
2cts + νts − δst − κst > 0. Hence,

we conclude that (yst)
∗ = 1 and (yts)

∗ = 1, which implies that

(
1

2
cst + νst − δts + κst

)
(yst)

∗x∗s +

(
1

2
cts + νts − δst − κst

)
(yts)

∗x∗t

≤ (cst + ζst − τst − τts)z
∗
st, (103)

since x is a binary variable.
Case II: cst + ζst − τst − τts = 0. Similar to Case I, it is clear that we can find νst, νts ≥ 0 and

κst ∈ R such that 1
2cst + νst − δts + κst = 0 and 1

2cts + νts − δst − κst = 0 and thus (103) holds
trivially with both sides being 0.

Case III: cst + ζst − τst − τts ≤ 0, which implies z∗st = 0. It is clear that we can find νst, νts ≥ 0
and κst ∈ R such that 1

2cst + νst − δts + κst ≤ 0 and 1
2cts + νts − δst − κst ≤ 0. We conclude that

(yst)
∗(xs)

∗ = 0 and (yts)
∗(xt)

∗ = 0. Hence, (103) follows.
We have proven for any feasible (ζ, τ), there exists some (ν̂ , δ̂, κ̂) such that (103) holds for any

(i, j) with 1 ≤ i < j ≤ n. Together with (101) and (102), we complete the proof. 2

Remark 8 As a matter of fact, only one of (92) and (93) is needed to ensure the results above.
To see this, without loss of generality, we keep (92) and discard (93). This is equivalent to letting
νij = ζij and νji = 0 for all index pairs (i, j) and the above proof is still valid. Hence, we can
strengthen Theorem 2 with r = 5 (i.e., with only four quadratic constraints for each index pair).

25

Remark 9 If we keep constraints (92)–(96) and add more constraints of form (49) into (P2), we
can always improve the tightness of the resultant Lagrangian relaxation upper bound. For example,
we may consider a case of r = 8 by adding (92)–(96) together with (84)–(85) into (P2), which
yields an upper bound at least as tight as only relaxing (92)–(96) or (84)–(85). This indicates that
Lagrangian relaxation on constraints (49) gives us flexibility in the upper bound improvement, which
is potentially significant in a Lagrangian relaxation based branch-and-bound framework.

When we add (92)–(96) to general constrained QBPs, it is typical that no fast solution exists to
the MSAD (i.e., problem (74)) that is induced by relaxing (92)–(96). We thus consider solving the
LP relaxation of MSAD. In the following, we prove that such an LP relaxation can still produce an
upper bound at least as tight as BSL.

Corollary 2 We consider an MSAD described as above. Let BLP
LD be the LP relaxation bound of

this MSAD. Such an upper bound is at least as tight as the LP relaxation of (PSL), i.e., BLP
LD ≤ BSL.

Proof: Let GLP
LD be the optimal objective value of the LP relaxation of (97). Relaxing the integrality

restrictions on x in (97) yields an unconstrained problem with linear objective function. Thus,
GLP

LD = BSL. To prove BLP
LD ≤ GLP

LD, we can use the same Lagrangian multipliers as in the proof of
Theorem 2. Hence, we conclude BLP

LD ≤ GLP
LD = BSL. 2

3.4.3 Structure Preserving Decomposition

As we discuss in Section 3.2.2, in order to solve Lagrangian dual L(λ) for given multipliers λ, i.e.,
problem (68), one can decompose the problem into n unconstrained linear binary problems with
respect to only a subset of variables y (i.e., problem (72)–(73)) and one MSAD (i.e., problem (74))
with respect to only the original x variables. It is well known that an unconstrained linear binary
program of size n can be solved in O(n) time. Therefore, it takes O(n2) time to compute all g∗i
for all i in an MSAD. This implies that the computational complexity of solving L(λ) as well as
obtaining both upper and lower bounds on the original problem (P2) relies on how fast one can
solve the corresponding MSAD.

It is easy to see that MSAD has the same set of constraints as (P2). Hence, we can directly apply
efficient heuristics or exact solution methods that are available to those linear binary programming
counterparts of (P2) that have the same set of constraints. To the best of our knowledge, such
“structure preserving” feature is not inherent to existing general linearization techniques. In this
section, we survey several classes of QBPs and illustrate how we can exploit their special constraint
structure to improve the efficiency of solving MSADs. We also discuss a few ideas regarding how to
cope with the computational intractability of general constrained MSADs.

MSAD with Exact Solution in Polynomial Time

Unconstrained QBP

Applications of unconstrained QBPs are numerous. For example, Laughunn [93] studied capital
budgeting and investment portfolio selection. Chardaire and Sutter discussed several other appli-
cations of unconstrained QBPs in [38]. It is also worth noting that a large portion of QBP solution
studies are focused on unconstrained QBPs.

Apparently, if (P2) of size n is unconstrained, then the respective MSAD is also unconstrained
and can be solved in O(n). Hence, solving (68) takes only O(n2) for unconstrained QBPs.

26

Dense k-Subgraph Problem (DkS)

In the dense k-subgraph maximization problem [55], we are given a graph G with n nodes, weight
wi associated with each node and weight wij associated with each edge between nodes i and j. For
the parameter k, the DkS problem is to find a subgraph of size k which has the maximum total
weight of the nodes and edges.

The DkS problem can be formulated as:

max
x





n∑

i=1

wixi +
n∑

i=1

n∑

j=1,j 6=i

1

2
wijxixj



 (104)

s.t.
∑

i

xi = k; (105)

xi ∈ {0, 1}, for i = 1, . . . , n,

where xi is the variable indicating whether node i should be selected. In the case where only the
weights of edges are considered, wi can be simply set to zero for all i. The MSAD of a DkS problem
is then derived as:

max
x





n∑

i=1

g∗i xi −
n∑

i=1

∑

j>i

rij∑

l=1

λl
ijǫ

l
ij (105) − (106)



 . (106)

The problem (106) can be solved by sorting all g∗i , selecting the indices that correspond to k largest
g∗i , set the corresponding xi to be 1, and set the other variables xi to be 0. Since sorting can be
done in O(n log n), the MSAD of a DkS problem can be solved in polynomial time.

Quadratic Semi-Assignment Problem (QSAP)

The quadratic semi-assignment problem [20] is to minimize a quadratic pseudo-Boolean function
subject to the semi-assignment constraints. The problem is known to be NP -hard [20]. Many
task-assignment problems in distributed systems can be easily formulated as QSAPs [19, 40, 146].
The problem also has important applications in a variety of other fields, e.g., bioinformatics [60].

The quadratic 0–1 formulation of QSAP is given as follows:

max
x





n∑

i=1

m∑

k=1

cikxik +

n∑

i=1

∑

j 6=i

m∑

k=1

∑

l 6=k

1

2
cijklxikxjl



 (107)

s.t.

m∑

k=1

xik = 1, for i = 1, . . . , n; (108)

xik ∈ {0, 1}, for i = 1, . . . , n, k = 1, . . . ,m. (109)

The MSAD of a QSAP is then derived as:

max
x





n∑

i=1

m∑

k=1

g∗ikxik −
n∑

i=1

∑

j>i

m∑

k=1

∑

l>k

rijkl∑

r=1

λr
ijklǫ

r
ijkl

∣∣∣∣∣∣
(108) − (109)



 . (110)

An optimal solution to (110) can be obtained in O(mn), as

x∗ik =

{
1, k = argmax{g∗il, l = 1, . . . ,m};
0, otherwise,

(111)

27

for i = 1, . . . , n. Hence, QSAP is another example whose corresponding MSAD can be solved in
polynomial time. Since there are totally mn variables in this problem, the computational complexity
for solving the MSAD for a quadratic semi-assignment problem is the same as for an unconstrained
QBP.

Quadratic Assignment Problem (QAP)

QAP is one of the most important classes of constrained QBPs as it can be used to model a variety
of real-world problems in facility allocation, parallel and distributed computing, combinatorial data
analysis, among others. The surveys on the problem can be found in Burkard [28] and Pardalos et
al. [114]. Besides being NP -hard, QAP is known to be computationally challenging even for rather
small size instances [97]. QAP was first studied by Lawler [94] about half a century ago, and there is
extended literature dedicated to obtaining bounds or suboptimal solutions to QAPs [9, 12, 13, 14].

Similar to QSAP, a QAP can be formulated as:

max
x





n∑

i=1

n∑

k=1

cikxik +

n∑

i=1

∑

j 6=i

n∑

k=1

∑

l 6=k

1

2
cijklxikxjl



 (112)

s.t.
n∑

k=1

xik = 1, for i = 1, . . . , n; (113)

n∑

i=1

xik = 1, for k = 1, . . . , n; (114)

xik ∈ {0, 1}, for i = 1, . . . , n, k = 1, . . . , n. (115)

The MSAD of the QAP is then derived as:

max
x





n∑

i=1

n∑

k=1

g∗ikxik −
n∑

i=1

∑

j>i

n∑

k=1

∑

l>k

rijkl∑

r=1

λr
ijklǫ

r
ijkl

∣∣∣∣∣∣
(113) − (115)



 , (116)

which has the property of total unimodularity and can thus be solved in polynomial time (e.g., with
the Hungarian method in O(n3) time).

General Constrained MSAD

In general, an MSAD is an constrained binary linear program and no polynomial solution is available.
In this section, we describe three approaches that deal with the constraints. We note that the
performance of applying these three methods may vary depending on a particular application.

Solving the LP Relaxation of MSAD

A straightforward way to deal with a general constrained MSAD is to relax the integrality restric-
tions on x and solve the respective LP relaxation. It is easy to see that the LP relaxation provides
an upper bound to (P2). A potential drawback of using this method is the inferiority of such a
bound. In addition, no feasible solution to (P2) is guaranteed. A possible remedy is solving the
LP relaxation of the MSAD iteratively to update the Lagrangian multipliers until the last iteration
of a subgradient method and only dealing with the construction of a feasible solution at the last
iteration. In our computational experiments on quadratic binary knapsack problem instances, we
use this approach and apply a rounding heuristic to obtain a feasible solution at the last iteration.

28

Relaxing Original Constraints

Fisher [57] discussed the use of Lagrangian relaxation to solve integer programming problems in
general. Given any λ, we can obtain an upper bound to (74) by further relaxing constraint (48)
and solving the Lagrangian dual problem. The Lagrangian relaxation bound of MSAD is at least
as tight as the LP relaxation bound [102]. In the actual computational implementation, one can
combine the solutions of the two Lagrangian duals (relaxation of both quadratic constraints (49)
and original constraints (48)) without destroying the decomposability. This idea can be beneficial
in many problems, especially when there are not many original constraints, such as in a quadratic
binary knapsack problem. It may be also beneficial to consider relaxing a subset of (48), as suggested
by many studies in the IP literature.

Applying Existing Heuristics

Many binary linear programs (e.g., linear binary knapsack problem) have efficient heuristics to
obtain good suboptimal solutions. With our decomposition method, these heuristics can be adapted
to solve MSAD and provide feasible solutions. In addition, we note that surrogate subgradient
methods (e.g., [150]) may be used here to update the Lagrangian multipliers effectively when only
a suboptimal solution is obtained at each step.

3.4.4 Computational Considerations in the B&B Framework

It is natural to embed our Lagrangian relaxation bounding method into a branch-and-bound frame-
work. In this section, we discuss two computational issues in our actual implementation of the
branch-and-bound algorithm.

Subgradient Method

The subgradient method used to solve each Lagrangian relaxation problem is the most time-
consuming part in the branch-and-bound algorithm. We employ two practically useful ideas in
our actual implementation to alleviate this computational burden.

First, we set the maximum number of iterations in the subgradient optimization at each node
and terminate each Lagrangian relaxation optimization once the number of iterations exceeds this
threshold. We may choose different threshold values for different nodes in the tree. Intuitively,
with this approach, spending more time at the beginning of a branch-and-bound solution procedure
would likely lead to more promising solutions at the beginning of the procedure and prevent serious
“tailing-off” effect at the end. In our actual implementation, we set this threshold to be 1000 at the
root node and set it to be 5 at each of the other tree nodes. Our preliminary experiments indicate
the benefit of using this specific setting.

Furthermore, unlike Caparara et al. [32] that used the same initial Lagrangian multipliers
throughout the entire branch-and-bound tree, we find through our preliminary experiments that it
is beneficial to “pass” Lagrangian multipliers from father nodes to children nodes along the tree.
That is, when branching at a branch-and-bound tree node, we use its final iterative Lagrangian
multipliers in the subgradient method to set the initial Lagrangian multipliers at its children nodes.
This implies that we do not start the subgradient method with initial Lagrangian multipliers being
zero at each tree node in our actual implementation. Intuitively, with this approach, we are more
likely to use near-optimal multipliers from the beginning of each Lagrangian relaxation optimization.

29

Branching Rule

For a binary optimization problem, branching is equivalent to value fixation of the selected variable
to 0 or 1. It is important to note that at each node of our branch-and-bound tree, we will select not
only variable xi to fix, but also all the corresponding variables yji , j = 1, . . . , n, j 6= i. Therefore,
the maximum number of variables that need to be branched on is n.

Unlike standard linearization methods that lack a general guideline for branching, our La-
grangian relaxation method naturally lends itself to an efficient branching rule. For each xi, let
wi =

∑
j>i

∑rij
l=1 λ

l
ij +

∑
j<i

∑rji
l=1 λ

l
ji. We then select the variable with the largest corresponding

w value to branch at each node of the branch-and-bound tree, i.e., i∗ = argmaxni=1{wi}. In other
words, we select the variable that offers the largest sum of the Lagrangian multipliers associated
with it. Intuitively, this branching rule may identify the most “unstable” x variable. The level of
referred “stability” indicates how much a variable xi deviates from its associated variables yji . To
better understand this, take r = 2 for instance. In (83), for each (i, j) with 1 ≤ i < j ≤ n, (λl

ij)
k,

l = 1 or 2, increases at each iteration k only when the corresponding constraint (84) or (85) does
not hold. Therefore, the larger the final Lagrangian multipliers are, the more their corresponding
constraints are violated. A major contributor to the violation is the difference between each variable
xi and its associated yji variables. Apparently, this argument applies in general cases.

3.4.5 Computational Experiments

We conducted computational experiments on randomly generated test instances of the uncon-
strained quadratic binary problem (UQBP) and the quadratic binary knapsack problem (QBKP).
To show the superior performance of our Lagrangian relaxation based branch-and-bound method,
we compared it to the direct CPLEX MIP solutions of the standard linearized reformulation (PSL)
and an MIP reformulation that appears in Oral and Kettani [109], which contains only n auxil-
iary continuous variables and n additional constraints. This technique was originally presented in
Glover [64] and Glover and Woolsey [67]. Some other variations are also discussed in [4]. However,
to the best of our knowledge, the MIP reformulation presented in Oral and Kettani [109] introduces
the fewest auxiliary variables and additional constraints among various reformulations due to this
technique. We use the MIP reformulation in Oral and Kettani [109] to present the computational
comparison in this chapter and term their reformulation as OK reformulation.

To construct reformulation (P2) for our method, we added to the original formulation (P0),
two quadratic constraints (84) and (85) for each index pair. We set ǫ = −0.7 in our experiments.
To solve (P2), we implemented our branch and bound method in C with Python 2.6. With either
comparative linearization technique, we solved the resultant reformulation using Cplex 10.1 with
default settings as well. We primarily recorded the solution time. However, we set a CPU time
limit of one hours for all three methods. When the time limit was reached, we reported the best
suboptimal solution. All our computational experiments were conducted on a Linux 2.6.18 64bit
machine with 16GB RAM and an Intel Xeon X5365 CPU of 3.0GHz.

Test Instance Generation

To design a test instance, we first generated the objective function coefficient matrix, which contains
both cij and ci. Note that we assumed ci = cii for each i = 1, . . . , n. We used the method described
by Pardalos [116]. The off-diagonal elements in the matrix were drawn uniformly from [−50, 50]. For
diagonal elements, two parameter settings were considered. In the first setting, diagonal elements
were drawn uniformly from [−50, 50]. In the second setting, the diagonal elements were drawn
uniformly between [0, 75]. All the generated objective coefficient matrices were of full density. Note

30

that to solve instances with partially dense objective coefficient matrices, we only need to impose
the quadratic constraints on the pairs of variables whose cross-term coefficients are nonzero. It
helps improve the solution efficiency. However, it increases the implementation complexity. Hence,
we leave its implementation to our future work.

For the QBKP instances, we generated the constraints in the following way. First, we randomly
generated the constraint matrix using a similar method as the one used to generate the objective
function coefficient matrix in [116]. Second, for each test instance, we randomly generated a feasible
solution and multiplied it with the constraint matrix to form the nominal right-hand side of the
constraints. In this way, we ensured that each test instance would have at least one feasible solution.
Finally, we perturbed the right-hand side by adding some variance that was randomly generated
from a uniform distribution U(0, 20). In this way, we allowed multiple feasible solutions and thus
guaranteed the non-triviality of each instance.

We considered three sizes of the problem (n = 30, 40, and 50) for each test problem (UQBP or
QBKP). Given each problem size, we randomly generated 10 test instances with each parameter
setting for generating the diagonal elements of the objective function coefficient matrix. In summary,
we randomly generated 120 test instances in total.

Computational Results and Discussions

In the following two tables, we report the comparative running times (in seconds) with the three
methods. Tables 2 and 3 present the results for the tested UQBP and QBKP instances, respectively.
There are two portions in each table that correspond to each of the two parameter setting on the
objective function coefficient matrix generation. Note that for each QBKP instance, we solved
the LP relaxation of the resultant MSAD at each iteration in the subgradient method until the
final iteration. We applied a standard rounding heuristic to obtain a feasible solution in the final
iteration.

We use “LD”, “PSL” and “OK” to represent the Lagrangian decomposition method introduced
in this chapter, and the direct solutions of the PSL [5] and OK [109] reformulations, respectively.
If the time limit is reached, we use “TO” to indicate it and report in the following parentheses
the relative gap of the best feasible solution obtained by the studied algorithm to the optimal
solution. For all of the test instances, our Lagrangian relaxation based method outperforms both
direct solutions of the PSL and OK reformulations in terms of the solution time. Our method is on
average two to three times faster than the direct CPLEX solution of PSL. This ratio seems to be
insensitive to the size increase. We also conclude that our method can always find better feasible
solutions compared to the standard linearization technique for those instances that cannot be solved
to optimality within the time limit. Although the OK reformulation can obtain an equally good
feasible solution for all of the test instances, it has to take a rather large amount of time for the
method to discern the optimality.

3.5 Concluding Remarks and Future Work

In this line of research, we have proposed two dual decomposition schemes for stochastic QBPs
and developed an innovative Lagrangian decomposition based method to solve deterministic QBPs.
Our focus has been the latter one up to this point. The key of the Lagrangian decomposition based
method is that we introduce parameterized quadratic constraints, which results in solving a series of
binary linear programs to compute a Lagrangian relaxation bound. We provide a sufficient condi-
tion on the parameter specification for the introduced quadratic constraints. We also discuss several
special cases of parameter specifications and their impacts on the bound tightness. We illustrate

31

Diagonal elements: U(−50, 50)
Size n = 30 n = 40 n = 50

Inst. No. LD PSL OK LD PSL OK LD PSL OK

1 0.74 2.07 4.09 76.13 244 TO(0%) 1418.39 3286.58 TO(0%)

2 0.71 2.60 6.78 10.74 37.31 164.86 1373.89 TO(1.46%) TO(0%)

3 2.08 6.37 41.61 34.13 99.11 680.93 519.99 1672.28 TO(0%)

4 0.10 1.09 0.15 56.36 222.50 2041.93 811.17 1550.94 TO(0%)

5 0.39 1.42 1.75 67.09 318.13 3421.51 1204.44 2868.07 TO(0%)

6 0.77 2.14 4.24 22.38 41.18 342.88 1311.41 3548.89 TO(0%)

7 0.62 2.56 3.01 21.60 63.53 303.31 573.99 1449.92 TO(0%)

8 0.59 2.66 4.31 50.78 147.06 1811.44 984.99 2720.1 TO(0%)

9 0.72 2.24 3.19 66.61 244.12 3335.31 2236.05 TO(0%) TO(0%)

10 0.56 1.73 1.55 23.44 66.43 485.69 1173.20 TO(0%) TO(0%)

Diagonal elements: U(0, 75)

Size n = 30 n = 40 n = 50

Inst. No. LD PSL OK LD PSL OK LD PSL OK

1 0.35 1.21 1.02 10.15 27.37 145.59 1495.81 2978.02 TO(0%)

2 0.27 1.08 0.27 16.75 31.18 136.12 468.73 1616.57 TO(0%)

3 0.18 0.83 0.35 16.80 47.93 251.56 639.23 1275.13 TO(0%)

4 0.18 0.91 0.50 7.66 20.69 37.88 324.76 1148.55 TO(0%)

5 0.43 1.61 1.40 29.67 66.70 434.75 548.56 1704.43 TO(0%)

6 0.25 0.99 0.98 6.48 16.16 46.87 156.65 360.73 1433.89

7 0.25 1.06 0.35 22.48 79.36 538.45 1072.17 TO(2.08%) TO(0%)

8 0.69 2.26 2.53 17.54 37.93 279.88 2254.32 TO(0.01%) TO(0%)

9 0.08 0.68 0.06 6.88 14.43 17.08 362.04 433.83 TO(0%)

10 0.60 1.86 2.21 30.58 81.72 1469.03 639.57 1802.08 TO(0%)

Table 2: Comparative results on the UQBP instances (running times, in seconds)

32

Diagonal elements: U(−50, 50)
Size n = 30 n = 40 n = 50

Inst. No. LD PSL OK LD PSL OK LD PSL OK

1 0.33 1.17 0.68 33.97 69.48 791.43 1517.75 2982.94 TO(0%)

2 1.40 3.81 7.55 20.35 24.89 107.72 2686.68 TO(0.74%) TO(0%)

3 1.35 3.15 15.74 38.59 125.41 997.92 459.77 1199.46 TO(0%)

4 1.39 3.53 16.23 39.18 73.95 978.38 1064.81 2813.01 TO(0%)

5 1.57 2.61 5.60 29.99 42.17 386.29 586.36 1245.19 TO(0%)

6 0.51 1.53 2.35 52.13 147.57 1645.26 1282.25 2838.76 TO(0%)

7 0.63 2.69 4.55 49.67 57.78 674.76 TO(0%) TO(6.53%) TO(0%)

8 0.73 2.10 3.39 18.97 43.66 239.95 TO(0%) TO(3.00%) TO(0%)

9 2.11 4.65 11.55 69.06 128.07 2405.16 2649.65 TO(6.01%) TO(0%)

10 0.36 1.62 1.58 12.38 23.09 81.17 400.87 876.90 TO(0%)

Diagonal elements: U(0, 75)

Size n = 30 n = 40 n = 50

Inst. No. LD PSL OK LD PSL OK LD PSL OK

1 1.15 2.57 3.17 37.15 137.11 1781.01 2498.06 TO(1.28%) TO(0%)

2 1.18 3.84 11.81 128.24 228.96 3147.89 1078.95 2585.18 TO(0%)

3 0.57 2.09 3.15 21.46 27.70 178.57 TO(0%) TO(8.01%) TO(0%)

4 0.31 1.10 0.65 90.10 226.75 1821.99 2208.05 3158.26 TO(0%)

5 5.57 10.22 72.21 96.19 117.34 1159.45 1299.29 3337.02 TO(0%)

6 0.36 1.32 0.83 42.71 75.95 726.00 2422.73 TO(0%) TO(0%)

7 0.96 1.64 3.87 104.81 217.69 TO(0%) 3507.39 TO(2.46%) TO(0%)

8 1.82 2.56 9.35 57.75 82.70 1232.01 273.90 486.37 TO(0%)

9 1.37 4.69 16.56 68.99 124.38 2573.05 921.49 TO(0%) TO(0%)

10 1.68 3.51 5.50 49.87 81.94 800.43 TO(0%) TO(3.42%) TO(0%)

Table 3: Comparative results on the QBKP instances (running times, in seconds)

33

that our method does not change the underlying structure of the original QBP. Therefore, we have
the potential to use the existing fast solution methods for the problem’s IP counterpart. Computa-
tionally, we discuss several practically useful ideas, including parameter specifications, subgradient
method for computing Lagrangian duals, and variable selection in the branch-and-bound algorithm.
Our numerical experiments on the two classes of QBPs show that our method outperforms two well
known linearization techniques. As for the development of the dual decomposition schemes for
generic SQBPs, our aim is to seamlessly integrate dual decomposition and linearization. We are
currently conducting computational experiments on larger instances to investigate the tradeoff be-
tween bound tightness and computational time on various proposed Lagrangian relaxation bounds.

For the Lagrangian decomposition based method, we propose several research items for further
improvement of our method. First, in this work we use a specific parameter setting for the pair
of quadratic constraints (84) and (85) in all of our computational experiments. In the future, it is
worthwhile to investigate the impact of other parameter settings (e.g., the value of ǫ) for the case
r = 2 both analytically and computationally. Furthermore, in this work, we present some prelimi-
nary attempts to understand the impact of r > 2. It is worthwhile to explore more general cases of
using the proposed family of quadratic constraints. Analytically, we plan to evaluate the bounding
performance with additional constraints in the reformulation. Computationally, we plan to investi-
gate how each case affects the solution of the respective Lagrangian duals. Note also that in this work
the subgradient method for computing the Lagrangian relaxation bound is the most time-consuming
part in the branch-and-bound algorithm. Therefore, we need to investigate more advanced subgra-
dient methods as well as their integration within the branch-and-bound algorithm. Finally, we
plan to tune our algorithm for solving other classes of QBPs, e.g., quadratic assignment problems.
For the application of dual decomposition to solving SQBPs, our future work will be focused on the
computational aspect. Once both parts of this research are more mature, we plan to incorporate the
parametric quadratic constraints introduced in our deterministic QBP research into dual decompo-
sition for SQBPs, our stochastic QBP research. Our ultimate goal is to develop a computationally
attractive Lagrangian decomposition based branch-and-bound method for generic SQBPs.

34

4 Two-Stage Stochastic Minimum s− t Problem

This chapter is mostly based on the results from:

• S. Rebennack, O.A. Prokopyev, “Two-Stage Stochastic Minimum s−t Problem: Formulations
and Complexity,” Technical Report, 2011.

4.1 Introduction

Let G = (V,E) be a directed graph with node set V , arc set E ⊆ V × V and nonnegative costs cij
given for each arc ij ∈ E. The minimum s − t cut problem for directed graphs can be defined as
follows [130]. For a given directed connected graph G = (V,E) with root node s and terminal node
t, the task is to find a node set S ⊂ V with s ∈ S and a node set T ⊂ V with t ∈ T , such that
S ∪ T = V , S ∩ T = ∅ and the cost of the cut c[S, T] :=

∑
ij∈E:i∈S∧j∈T cij is minimized.

Graph connectivity is one of the classical research topics in the graph theory, with a variety
of practical applications, in particular, in network design [8]. The minimum s − t cut problem
and the maximum flow problem are dual problems to each other. This relation is called Max-Flow
Min-Cut Theorem and was first proven by Ford and Fulkerson [58]. This duality enhanced the
development of many polynomial time algorithms computing minimum s− t cuts [8].

The following mathematical programming formulation of the minimum s− t cut problem dates
back to Ford and Fulkerson in 1962 [59]. Let

xi =

{
1, if i ∈ T
0, if i ∈ S

and yij =

{
1, if i ∈ S, j ∈ T
0, otherwise

. (117)

This allows the following linear 0-1 programming problem formulation:

min
∑

ij∈E

cijyij (118)

s.t. yij ≥ xj − xi ∀ij ∈ E (119)

xs = 0, xt = 1 (120)

xi, yij ∈ {0, 1} ∀i ∈ V, ij ∈ E (121)

Note that Ford and Fulkerson consider equation xt − xs = 1 instead of (120) in [59]. The
constraint matrix defined by (119) - (120) is totally unimodular [59] (see further discussion in
Sections 4.2.1 and 4.2.2), allowing the relaxation of the variables x and y to be non-negative,
continuous and bounded above by 1. This provides another indication of the fact that the minimum
s− t cut problem is polynomially solvable.

An alternative definition of the minimum s − t cut problem can be provided using the notion
of the cutset. Define cutset as a set of arcs whose removal ensures that there is no no directed
path from s to t. Then the minimum s − t cut problem can be defined as the problem of finding
a cutset of the minimum weight. Note that formulation (118)-(121) has a clear interpretation in
this framework since variable yij is 1 if the corresponding arc ij ∈ E belongs to the required cutset.
Motivated by this fact, we introduce the following two-stage stochastic extension of the original
deterministic problem.

Definition 1 (two-stage stochastic minimum s− t cut) Given is a directed graph G = (V,E)
with node set V and arc set E and a root s ∈ V . There are K scenarios. The kth scenario consists

35

of a single terminal tk and has probability pk of being realized. Arc ij ∈ E has cost cij in the first
stage and dkij in the recourse stage (or second stage) if the kth scenario is realized. The task is to
find a set of arcs E0 to be cut in the first stage and for each scenario k, an arc set Ek to be cut in
the recourse stage if scenario k is realized, such that removing E0∪Ek from the graph G disconnects
s from the terminal tk. The objective is to minimize the expected cost over all scenarios:

zA∗ := min



∑

ij∈E0

cij +
K∑

k=1

pk
∑

ij∈Ek

dkij


 .

A number of studies demonstrates the potential benefits of stochastic programming solutions
over deterministic approaches [133]. Stochastic programming models take advantage of the fact
that probability distributions governing the data are known or can be estimated. Therefore, it
is natural to consider stochastic extensions of classical graph and network design problems. The
authors in [48, 70] discuss a somewhat related robust s − t min-cut problem, where the task is
to minimize the maximum cost over all scenarios while disconnecting s from terminals tk. Other
recent examples include two-stage stochastic extensions of maximum weight matching [90], shortest
path [70], minimum spanning tree [49, 61] and Steiner tree [75] problems. For an introduction to
stochastic programming, we refer the reader to Birge and Louveaux [23].

The remainder of this chapter is organized as follows. In Section 4.2, we provide a linear mixed
0–1 programming formulation of the two-stage stochastic minimum s− t cut problem that is a gen-
eralization of the classical model (118)-(121). Unfortunately, the constraint matrix of the proposed
mathematical program loses the total unimodularity property (Section 4.2.2) of the original deter-
ministic formulation; however, this property is preserved if graph G is a tree (Section 4.2.3). This
fact turns out to be not surprising as we prove in Section 4.3 that the considered problem is NP -
hard, while a linear time solution algorithm is available when the graph is a tree (see Section 4.4).
In Section 4.5, we discuss another variation of the two-stage stochastic minimum s− t cut problem
(referred to as the node-based version), that is motivated by an alternative formulation for the
deterministic problem via a quadratic 0–1 program. Finally, Section 4.6 concludes the discussion.

We should also note that as a side result in Section 4.2.1 we derive a new characterization of
totally unimodular matrices that generalizes some of the well-known results by Camion [30, 31].
This characterization is necessary for our discussion in Section 4.2.3.

4.2 Mathematical Programming Formulation

Let us discuss the two-stage stochastic minimum s−t cut problem considering the graph in Figure 1.
This graph has four nodes with node 1 as the root and node 4 as the terminal. Two scenarios are
given with equal probabilities of 0.5.

In the two-stage stochastic minimum s − t cut problem, one has to decide which arcs have to
be cut in the first stage and in the second stage, where the cut in the second stage depends on the
particular scenario of the second stage. An optimal solution using this arc-based interpretation is
shown in Figure 2. In the first stage, both arcs (2,3) and (3,2) are cut. In the second stage, either
arcs (1,2) and (3,4) are cut in case of scenario 1, or arcs (1,3) and (2,4) are cut in case of scenario
two. This way, the optimal objective function value is 4.

Interestingly, in both scenarios, the resulting graph is disconnected after removing the arcs but
the removal of the arcs does not correspond to a “minimum cut” in the classic sense, i.e., as a
partition of the nodes. This is the case, as always both arcs (2,3) and (3,2) are cut in the first stage.
We interpret this solution as hedging of arcs. However, note that the resulting arcs define a valid
cutset.

36

1

3

2

4

(10,1,10)

(1,10,10)(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)

i j
(cij , d

1
ij , d

2
ij)

Figure 1: A two-stage minimum s− t cut instance with node 1 as the root node and node 4 as the
destination node. Given are two scenarios with equal probability.

On the other hand, let us consider each scenario independently after the arcs that are cut in
the first stage are removed from G. Then we can observe that the resulting subproblem for each
scenario is a classical minimum s − t cut problem that can be equivalently interpreted either as a
partition of the nodes or a cutset of arcs.

1

3

2

4

(10,1,10)

(1,10,10)(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)

i j
(cij , d

1
ij , d

2
ij)

first stage cut

second stage cut: scenario 1

second stage cut: scenario 2

Figure 2: Hedging: in the first stage, both arc (2,3) and (3,2) are cut; all arcs are cut in this graph.
The cost of this minimum cut is 4.

Let us now discuss two cases when specific structure on the arc cost are present.

Case 1: cij ≤ pkdkij , ∀ij ∈ E, k = 1, . . . ,K The first stage cutting cost for each arc is less than
or equal to the cost of cutting in each of the K scenarios in the second stage, weighted with
the scenario probability. Thus, there is no need to cut in the second stage. Now, the problem
transforms into a cut problem, where K terminals have to be cut from a single source s. This
problem can be transformed into a (deterministic) minimum s− t cut problem by introducing
a super terminal node t which is connected to each of the k terminals with arc cost +∞.

Case 2: cij ≥ dkij , ∀ij ∈ E, k = 1, . . . ,K The first stage arc cost is greater than or equal to the
cost of cutting in the second stage at any of the scenarios. In this case, no arcs need to be cut
in the first stage and the second stage problem decomposes into K independent (deterministic)
minimum s− t cut problems.

37

Thus, in both cases, the two-stage stochastic minimum s−t cut problem is solvable in polynomial
time. This is summarized in the following Corollary.

Corollary 1 The two-stage stochastic minimum s−t cut problem is solvable in strongly polynomial
time for arbitrary graphs if one of the two cases holds true:

cij ≤ min
k=1,...,K

{pkdkij} ∀ij ∈ E ,

or
cij ≥ max

k=1,...,K
{dkij} ∀ij ∈ E .

Allowing “hedging” of arcs, based on (118)-(121), we obtain the following formulation for the
two-stage stochastic minimum s− t cut problem

min
∑

ij∈E

cijyij +

K∑

k=1

pk
∑

ij∈E

dkiju
k
ij (122)

s.t. ukij + yij ≥ xkj − xki , ∀ij ∈ E, k = 1, . . . ,K; (123)

xks = 0, k = 1, . . . ,K; (124)

xktk = 1, k = 1, . . . ,K; (125)

xki , yij , u
k
ij ∈ {0, 1} ∀i ∈ V, ∀ij ∈ E, k = 1, . . . ,K, (126)

where we define variables ukij similar to (117) as the arc to be cut for scenario k and variable xki has

value one if node i ∈ V belongs to set T k, otherwise it has value 0 and belongs to set Sk.

Proposition 1 Formulation (122) - (126) models the two-stage stochastic minimum s − t cut
problem correctly.

Proof:Let arc sets E0 and Ek define a two-stage s − t cut for graph G. Arc set Ek defines sets
Sk and T k for each scenario k. With this, assign variables xk values 0 or 1 accordingly. The cut
variables y and uk obtain their values according to the arc sets E0 and Ek. With this assignment,
equation (123) is satisfied because otherwise, the sets Sk and T k do not define a cut. The objective
function value of this cut is calculated correctly.

It remains to show that any optimal solution of (122) - (126) defines a two-stage s − t cut for
graph G. Therefore, assume that we are given an optimal solution of (122) - (126) and that the
graph is not disconnected. Hence, for at least one scenario k, there is a (directed) path from root
s to terminal tk. Equations (123) imply that all variables xki for nodes i along this path have the
same value, which contradicts equations (124) and (125). 2

The yij variables in equations (123) represent the cuts in the first stage. As such, the yij
variables connect the K stages. Thus, if variables yij are fixed to 0 or 1, then problem (122) - (126)
decomposed into K separate minimum s− t cut problems of type (118) - (121). Thus, each of the
K optimization problems is a linear program. This structure suggests that we could develop of a
solution algorithm based on the Benders Decomposition approach [101], where the master problem
contains the yij variables and the K sub-problems are minimum s− t cut problems for trial values
ȳij obtained from the master problem.

Recognize that formulation (122) - (126) does not involve any variables xi for the first stage,
but only for the recourse stage. Furthermore, variables y and uk can be relaxed to be non-negative
continuous if variables xk are binary. In order to see this, consider an optimal, fractional solution

38

for variables y and uk, as well as the corresponding binary solution values of variables xki and xkj ,

and assume that all dkij > 0. This implies that there must be an arc ij ∈ E with yij = l ∈ (0, 1);

otherwise, each fractional variable ukij implies that dkij = 0. Then, equations (123) imply that

either ukij = 1 − l if xkj − xki = 1 or ukij = 0 in all other cases. Considering all scenarios k, arc

ij ∈ E contributes to the objective function the value cij · l +
∑K

k=1 pkd
k
iju

k
ij = l · cij + (1 − l) ·∑

k:k∈K∧uk
ij 6=0 pkd

k
ij , which is a convex combination of the two values cij and

∑
k:k∈K∧uk

ij 6=0 pkd
k
ij .

As the solution defined by variables y, uk and xk is optimal, we obtain that cij =
∑

k:k∈K∧uk
ij 6=0 pkd

k
ij .

Hence, the extreme point solution yij = 1 and ukij = 0 is also an optimal solution.

It is natural to consider whether variables xk can be relaxed as well, similar to the deterministic
case. This leads us to the discussion of whether constraint matrix (123) - (125) is totally unimodular.
We show that the constraint matrix of the two-stage stochastic minimum s − t cut problem loses
its property of being totally unimodular when extended from the deterministic case.

4.2.1 Total Unimodularity

In this section, we review properties of totally unimodular (TU) matrices. Furthermore, we also
derive a new characterization of TU matrices that generalizes some of the well-known results by
Camion [30, 31]. This characterization is necessary for our further discussion in Section 4.2.3.

A matrix A is totally unimodular (TU), if the determinant of each square submatrix of A has the
value 0, 1, or -1. Recognize that a totally unimodular matrix does not need to be square itself. From
the definition it follows that any totally unimodular matrix has only {±1, 0} entries. Therefore, in
the remainder of this section we assume that A always denotes a matrix with {±1, 0} entries.

The next theorem shows the importance of totally unimodular matrices for integer programming.

Theorem 1 ([149]) Matrix A is totally unimodular, if and only if of for each integral vector b, set
{x ∈ R

n : Ax ≤ b} is an integer polyhedron.

We state two sufficient and necessary conditions for a matrix to be totally unimodular, using a
specific matrix called an Eulerian matrix.

Definition 2 ([18]) A matrix A is said to be Eulerian, if

∑

i

aij ≡ 0 mod 2 ∀j , (127)

and

∑

j

aij ≡ 0 mod 2 ∀i . (128)

This enables us to state the following two theorems characterizing totally unimodular matrices.

Theorem 2 ([30]) Matrix A is totally unimodular, if and only if every square Eulerian submatrix
is singular.

Theorem 3 ([31]) Matrix A is totally unimodular, if and only if every square Eulerian submatrix
E satisfies: ∑

i,j

eij ≡ 0 mod 4 .

39

In the next result, we combine Theorems 2 and 3. The difference to each theorem is that it
suffices to check one of the two criteria for Eulerian submatrices. Thus, one can “mix” the criterion
as needed.

Theorem 4 Let E be the set of all square Eulerian submatrices of matrix A. Matrix A is totally
unimodular, if and only if

∀E ∈ E : E is singular or satisfies
∑

i,j

eij ≡ 0 mod 4 . (129)

Proof:“⇒” This follows directly from Theorems 2 and 3.
“⇐” The proof of this direction is along the lines of cf. [31, Theorem 2]. We need the following

results from [31] and [144]:

Statement 1 (due to R. Gomory) [31]. Let E be a square Eulerian submatrix of a matrix A,
such that every proper submatrix of E is totally unimodular, then

∑
i,j eij ≡ det(E) mod 4.

Statement 2 (due to R. Gomory) [144]. If A is not TU, then A has a submatrix of determinant
±2.

Statement 3 (due to R. Gomory) [31]. If for every square Eulerian submatrix E of A, det(E) = 0,
then, for every square submatrix B of A, det(B) ≡ 0 mod 2 implies det(B) = 0.

We prove the necessary result by contradiction. Let A be not TU. By Theorem 2, there exists
a square Eulerian submatrix E of A which is not singular, i.e., det(E) 6= 0. Note that E is not TU.
However, by (129) we know that this matrix satisfies

∑
i,j eij ≡ 0 mod 4.

Without loss of generality assume that E is the smallest square Eulerian submatrix of A such
that det(E) 6= 0. In other words, every proper square Eulerian submatrix Ẽ of E is singular, i.e.,
det(Ẽ) = 0. Then by Theorem 2, every proper square Eulerian submatrix Ẽ of E is TU, which,
due to Statement 1, implies that

∑
i,j eij ≡ det(E) mod 4. Recall that

∑
i,j eij ≡ 0 mod 4. Thus,

det(E) ≡ 0 mod 4. Then det(E) ≥ 4 since det(E) 6= 0.
Note that E is not TU. Then by Statement 2 there exists submatrix B of E such that |det(B)| =

2. Observe that B is a proper submatrix of E; therefore, every square Eulerian submatrix Ē of B
satisfies det(Ē) = 0. Therefore, Statement 3 can be applied implying that det(B) = 0, which results
in a contradiction. 2

Denote by I an identity matrix with an appropriate dimension. I|A denotes “gluing” matrix A

to the right of matrix I. We also use the following two results.

Lemma 1 ([149]) Matrix I|A is totally unimodular, if and only if A is totally unimodular.

Lemma 2 Let A be a matrix and B be the matrix where one row with exactly one entry with value
+1 or -1 is added to A. Then, matrix B is totally unimodular, if and only if A is totally unimodular.

Proof:Use the criterion in [1] and observe that J1 and J2 is a partition of the columns for matrix

A with
∣∣∣
∑

j∈J1 aij −
∑

j∈J2 aij

∣∣∣ ≤ 1 for each row i, if and only if it is for B. 2

4.2.2 General Case: Total Unimodularity is Lost

In order to discuss totally unimodularity of the constraint matrix (123) - (125), it suffices to consider
the matrix defined by (123), due to Lemma 2. Let us re-write the constraints in the form Ax̃ ≤ b.
Therefore, let y be the vector of variables yij, u

k be the vector of variables ukij and xk be the vector

of variables xkij. Furthermore, let B be the arc-node incidence matrix of graph G with dimension

40

(m× n), let I be the identity matrix (with appropriate dimension) and 0 be the matrix consistent

of entries all 0 (with appropriate dimension). Finally, let x̃ =
(
u1, . . . , uK , y, x1, . . . , xK

)T
. This

enables us to re-write (123) as

Ax⊤ =




−I 0 · · · 0 −I B 0 · · · 0

0 −I
... 0 −I 0 B

... 0
... · · ·

. . .
...

...
... · · ·

. . .
...

0 0 · · · −I −I 0 0 · · · B







u1

u2

...
uK

y

x1

x2

...
xK




≤ 0 . (130)

With Lemma 1, it suffices to consider matrix

C =




−I B 0 · · · 0

−I 0 B
... 0

...
... · · ·

. . .
...

−I 0 0 · · · B




. (131)

Consider now the graph with four nodes and four arcs shown in Figure 3. Recognize that the
graph does not contain a directed cycle (but is not a tree).

14

2

3

Figure 3: The corresponding matrix defined through constraints (123) - (125) is not totally uni-
modular for K ≥ 2.

For K = 2 scenarios, matrix C is given as

C =

(1, 4) (1, 2) (1, 3) (2, 3) 1 2 3 4 1 2 3 4



−1 0 0 0 −1 0 0 1 0 0 0 0
0 −1 0 0 −1 1 0 0 0 0 0 0
0 0 −1 0 −1 0 1 0 0 0 0 0
0 0 0 −1 0 −1 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 −1 0 0 1
0 −1 0 0 0 0 0 0 −1 1 0 0
0 0 −1 0 0 0 0 0 −1 0 1 0
0 0 0 −1 0 0 0 0 0 −1 1 0




,
(132)

where the first four columns correspond to the arc variables ykij, columns 5 to 8 to the node variables

x1i for scenario 1 and the last four columns to variables x2i for scenario two, respectively. Matrix C

41

in (132) is not totally unimodular as the square sub-matrix

E =

(1, 4) (2, 3) 1 2 1 3



−1 0 −1 0 0 0
0 0 −1 1 0 0
0 −1 0 −1 0 0

−1 0 0 0 −1 0
0 0 0 0 −1 1
0 −1 0 0 0 1




(133)

has determinant -2. Recognize that the square sub-matrix E is also Eulerian but neither satisfies
the criteria of Theorem 2 nor of Theorem 3.

4.2.3 Trees: Total Unimodularity is Preserved

In this section, we consider the special case that graph G is a tree, i.e., the graph does not contain
any (undirected) circles. We provide two proofs that the constraint matrix of (123) - (125) is totally
unimodular in the case of trees.

The first proof described in Section 4.2.3 defines so-called walks in matrices to show that the
criteria of Theorem 4 is satisfied. We gain deep insights of the structure of matrix C and we can
identify the elements of the tree needed for the TU property of Theorem 4.

In Section 4.2.3, we present an alternative proof that the constraint matrix of (123) - (125) is
TU. The proof relies on regular matroids and their transformations. As a by-product, we learn that
the two-stage stochastic minimum s− t cut problems for trees are single commodity flow problems
on a transformed graph. Furthermore, in Section 4.4, we discuss a linear time algorithm for the
two-stage stochastic minimum s − t cut problem. All this implies that the two-stage stochastic
minimum s− t cut problem is polynomially solvable for trees – just as the demand robust minimum
s− t cut problem is [70].

In the following, we consider only (directed) rooted-out trees, that is, a directed graph where
each node except the root node has indegree 1. The more general case considering trees where
the direction of the arcs does not matter is not of interest in the context of two-stage stochastic
min-cut problems. The reason is that not strongly connected trees lead to a 0-cost cut (in case
that a terminal node is not strongly connected to the root node). Recall that a directed graph
is strongly connected if for each pair of nodes, there is a directed path connecting them. If not
mentioned otherwise, we mean by a tree a (directed) rooted-out tree.

We have already seen with Figure 3 that, in general, the constraint matrix (123) - (125) is
not totally unimodular. The underlying reason is that the graph contains an undirected loop.
Forbidding undirected loops for graphs leads to trees – and this property of a tree is exactly what
we need in order to prove that the corresponding constraint matrix is totally unimodular.

Proof via Walks

We start with the following lemma, which is true because in a tree each node has at most one
predecessor.

Lemma 3 If the graph G is a tree, then any column of the constraint matrix defined by (123) has
at most one entry with value +1.

In this section, we denote by E an Eulerian (square) sub-matrix of the matrix C defined in (131).
Let us introduce the following notation: Let J be the set of columns of matrix C, J̄ ⊂ J be the

42

1

2 3

4

5 6

7 8 9

(a) Graph G

1

d12
d13

d34

4

5

d57

6

d69

dij
Dummy node

for arc ij

(b) Forest TD

Figure 4: Graph G and the corresponding forest TD for the Eulerian matrix E defined in (134)

columns of J corresponding to variable y and let Jk ⊂ J be the columns of J corresponding to
variable xk.

Consider now the tree G given in Figure 4 (a) and assume that the number of scenarios is greater
than or equal than 3. One square Eulerian sub-matrix E of the corresponding constraint matrix is
given by

E =

J̄ J1 J2 J3

(1, 2) (1, 3) (3, 4) (5, 7) (6, 9) 1 4 6 4 5 6 1 4 5



−1 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 −1 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 0 0 0
0 0 0 0 −1 0 0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 −1 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 −1 0 0 0 0 0 0 0 0 0 −1




(134)

43

We can easily check that the square sub-matrix E of C is Eulerian. In order to more easily recognize
the similarity of E to the original constraint matrix, we include the corresponding column names.
The first five columns of E are from set J̄ , corresponding to the arc variables y. The rest of the
columns correspond to one of the scenarios k = 1, 2, 3 (with K ≥ 3) and to the node variables xki .

Let E be an Eulerian sub-matrix of C corresponding to directed graph G and consider the case in
which J̄ 6= ∅. Let j̄ be a column of J̄ with a -1 entry for a scenario k. Then, the corresponding row
of this -1 entry is unique and is denoted by ik1 . In the following discussion, we omit the superscript
k and write i1 instead. As E is Eulerian, each row sum has value 0 mod 2. Applying this logic to
row i1 implies that there is exactly one column j1 ∈ Jk which has entry ±1 in row i1. Similarly,
each column sum has to equal 0 mod 2. This ensures that there is an odd number of entries ±1 in
column j1 other than the entry ±1 in row i1. Selecting one of these values and applying the same
argument for the new row, we either obtain a -1 entry in a column of J̄ or a ±1 entry in one of the
other columns of Jk. Applying this argument for the new value will lead to a new row selection.
This can be repeated until, eventually, we will end up at a -1 entry of a column in J̄ (as each row
sum is 0 mod 2). Let us call this process of proceeding from one column j̄1 of J̄ to another column
j̄2 of J̄ a “walk” in matrix E from column j̄1 to j̄2. Note that by construction j̄1 and j̄2 belong to
the row block of the same scenario.

With this notation, we can state the next lemma which holds true for any directed graph G.

Lemma 4 Let G be a graph and E be an Eulerian sub-matrix of C. Then, for any k, E has an
even number of -1 entries in columns of J̄ belonging to the row block of scenario k.

Proof:If J̄ = ∅, there is nothing to show. Hence, assume J̄ 6= ∅ and consider a walk from column
j̄1 to j̄2. For this walk, mark all the ±1 entries contained in this walk. According to construction
of the walk, in each row and each column, we mark either exactly two entries or none at all; that
is, an even number of entries.

For that same scenario k, pick any column j̄ ∈ J̄ with an un-marked -1 entry. If there is none,
then we are done with this scenario. Now, assume that there is such an entry.

Construct a “walk” from this column j to any other, not fixed, column in J̄ . Assume that we
cannot find any such walk. This means that we arrive at a row or column in which all non-zero
entries have been marked. However, this is a contradiction as this would imply that there is an
odd number of non-zero entries in this particular row or column (as we marked an even number of
entries for each row and column).

Finally, we can apply this analysis to each scenario k separately, until all -1 entries in columns
of J̄ have been marked. 2

Recognize that if there is a walk from a column j̄1 ∈ J̄ to j̄2 ∈ J̄ for any particular scenario k,
then this walk is unique, as G is a tree. However, starting at a particular column j̄ ∈ J̄ , we can
arrive at different columns of J̄ . This is due to (possible) multiple choices for selecting a value in a
column (for a fixed row).

Furthermore, recognize that the number of columns J̄ of matrix E can be odd; see for instance
the Eulerian matrix E defined in (134). Notice that Lemma 4 does not require the Eulerian matrix
to be square.

With the help of Lemma 4, we are able to prove the following results, which seem to be surprising
at the first glance.

Lemma 5 Let G be a graph and E be an Eulerian sub-matrix of C. Then, if J̄ 6= ∅ and none of
the columns and rows of E is the 0 vector, then matrix E is square, if and only if the sum of each
element in column j ∈ J̄ has value -2; i.e., in each column j ∈ J̄ , there are exactly two non-zero
entries (both having value -1).

44

Proof:Let us first prove direction “⇐”. Therefore, consider a walk in E from a column j̄1 ∈ J̄ to
j̄2 ∈ J̄ and “mark” the rows and columns used in this walk. Assume that both j̄1 and j̄2 are not
“marked” initially. Then it is easy to observe that the number of rows covered by this walk is 2+ ℓ,
with ℓ being non-negative and integral. Then, the number of columns for this walk is 2 (for the
columns in J̄) + 1 + ℓ. Hence, the number of “marked” columns is one more than the number of
“marked” rows.

Now, consider another walk in E from “marked” column j̄1 ∈ J̄ (but not “marked” row) to one
arbitrary column j̄ ∈ J̄ . In the case that j̄ = j̄2, we “mark” in a new walk additionally 2 +m new
rows but only 1 + m columns (as the columns in J̄ have been already “marked”) for some non-
negative and integer m. Hence, the number of “marked” columns is one less(!) than the number
of “marked” rows. In the other case in which j̄ 6= j̄2 (i.e., the final column has not been “marked”
yet), we cover with “marks” additionally 2 +m rows and 2 +m columns.

We can construct a set of walks for each scenario which are row distinct (through the argument
with the “marks”) and cover all rows of matrix E (recognize that E contains no row or column having
only 0 entries). Simply speaking every iteration of the “marking” procedure (by iteration we imply
construction of a new walk) has three possible outcomes: (i) the number of additional “marked”
columns and rows is the same, i.e., exactly one column from J̄ is encountered (and “marked”) for
the first time in a new walk; (ii) the number of additional “marked” columns is one less than the
number of new “marked” rows, i.e., no new columns from J̄ are “marked”; (iii) the number of
additional “marked” columns is one more than the number of new “marked” rows, i.e., exactly two
new columns from J̄ are “marked.”

Let x1, x2 and x3 be the numbers of times outcomes (i), (ii) and (iii) occurred, respectively.
During the procedure the number of new columns from J̄ encountered is x1 + 2x3; the number of
“marked” columns from J̄ encountered is x1+2x2. Since each column of J̄ has exactly two -1 entries
in E, then each column is encountered exactly twice: once as a new one and the other time as a
“marked” one. Therefore, x1 + 2x2 = x1 + 2x3 and x2 = x3. It immediately implies that for every
outcome (ii) that increases the difference between the numbers of “marked” rows and columns by
one, there exists exactly one outcome (iii) that decreases this difference by one. Therefore, at the
end of the procedure the number of “marked” columns must be equal to the number of “marked”
rows and matrix E has to be square.

For the other direction “⇒”, assume that there exists a column in J̄ that has more that two -1
entries in E. With the calculations above, it is easy to observe that during the procedure the number
of “marked” columns from J̄ encountered should be greater than the number of new columns from
J̄ encountered, i.e., x1 + 2x2 > x1 + 2x3. Therefore, x2 > x3 that implies that at the end of the
procedure the number of “marked” columns must be less than the number of “marked” rows and
matrix E is not square. 2

Now, let us define a special tree structure resulting from an Eulerian sub-matrix E of C (131).
For the tree construction, we assume that J̄ 6= ∅. The tree TD is then constructed via procedure
CT ; see below.

Applying Procedure CT to the graph G of Figure 4 (a) for the constraint matrix (134) leads
to the forest TD shown in Figure 4 (b). Recognize that graph TD is disconnected and that all leaf
nodes are dummy nodes. Furthermore, any dummy node is either a leaf node or the root node
of a particular tree in the forest TD. Both observations hold true in general; however, we do not
provide a proof here as we do not require this property in the following discussion, even though the
proof follows immediately from Lemma 6 together with Lemma 5. Notice that not all nodes of the
original graph are included in the forest TD.

The following lemma summarizes the properties of graph TD.

45

Procedure Construct Graph TD (CT)

1. For each row ik of matrix E, one of the following cases (for the columns in Jk) holds:

1.1 if there is a -1 and a +1 entry in ik other than in columns of J̄ :
include the corresponding arc in TD (along with the two end nodes)

1.2 if there is only a +1 entry in ik:
the corresponding column with entry +1 corresponds to a node j in the original graph
G. Let i be the predecessor of node j in graph G. Then, include the dummy node dij
and node i in TD along with the arc (dij , j)

1.3 if there is a -1 entry but not a +1 entry in row ik:
the corresponding column with entry -1 corresponds to a node i in the original graph G.
Let i be the predecessor of node j in graph G. Then, include the dummy node dij and

node i in TD along with the arc (i, dij)

1.4 if there are no non-zero entries in ik:
ignore this row

End procedure

Lemma 6 Graph TD has the following properties:

1. Each node in the graph is either a dummy node or corresponds to a node in the original graph
G.

2. TD is a (directed) forest.

3. For each walk in matrix E, there is an (undirected) path in TD between two dummy nodes
corresponding to this walk.

4. For each dummy node di in TD, there is at least one other dummy node dj in TD which is
connected in TD; however, they are not necessarily strongly connected.

5. Any undirected path in TD from one dummy node dm to another dummy node dn is of one of
the three following types:

(a) path is only up the tree; i.e., if the path goes from node i to j, then j is a predecessor of
node i in TD,

(b) path is down the tree; i.e., if the path goes from node i to j, then j is a successor of
node i in TD,

(c) path is first up and then down the tree.

Proof:Property 1 is immediate.
For property 2, we note that each dummy node corresponds to an arc in the original graph; that

is, the original arc is replaced by a dummy node and one or two arcs. Hence, the tree structure of
G is preserved in the construction of TD. However, the connectivity property might be lost, leading
to a forest.

Consider any walk from a column j̄1 ∈ J̄ to j̄2 ∈ J̄ for a scenario k. According to construction
of TD, the columns j̄1 and j̄2 correspond to dummy nodes in TD. In the walk, proceeding from
one column jk1 ∈ Jk to another column jk2 ∈ Jk corresponds to arc (j1, j2) in TD (when using

46

appropriate labeling of the columns in E). Hence, any walk in E corresponds to a path in TD

between two dummy nodes.
Property 4 follows from property 3.
Property 5 is immediate when using the facts that TD is a forest along with Lemma 3. 2

Recognize that, in general, not every path in TD between two dummy nodes corresponds to a
walk in E; that is, property 3 of Lemma 6 is not a 1-to-1 correspondence between walks in E and
paths in TD.

Now, we are ready to prove the main theorem.

Theorem 5 If the graph G is a tree, then the constraint matrix defined by (123) - (125) is totally
unimodular.

Proof:With Lemma 1, the constraint matrix (123) - (125) is totally unimodluar, if and only if
matrix C is totally unimodular.

In order to prove that C is totally unimodular, we must show that any (square) Eulerian sub-
matrix is singular or that the sum of all entries is 0 mod 4, using Theorem 4. Therefore, let E be
any square Eulerian submatrix of C.

We use the notation for J , J̄ ⊂ J and Jk ⊂ J as introduced above.
Assume that E does not contain any column of J̄ . In this case, E is singular, as matrix C

without the first m columns is totally unimodular. Therefore, assume that E contains at least one
column of J̄ and E does not contain any column or row consisting only of 0 entries (otherwise, E is
singular).

Observe that each row sum of E has either value −2 or 0 (due to the network structure of B);
in particular, the row sum of E is not +2.

We have to show that there is always an even number of rows having row sum equal to −2,
implying that the sum of all entries is 0 mod 4.

Therefore, construct the forest TD for E with procedure CT .
Let us identify the row sums (mod 4) of any “walk” in E from j̄1 ∈ J̄ to j̄2 ∈ J̄ for scenario k

and let us name this sum the “walk sum.” Furthermore, we call the corresponding row with entry
-1 for column j̄1 the start row of the walk, the corresponding row with entry -1 for column j̄2 the
end row and all other rows visited by the walk intermediate rows. The start row and the end
row of any walk have either sum −2 or 0. All intermediate rows have sum 0, as they contain exactly
one +1 and one -1 entry. Hence, the sum of all entries in a walk in E has either value 0, -2, or -4.

Let us examine the forest TD. We already have the connection of a walk in E to a path in TD

via property 3 of Lemma 6. Now, let us assign the values of the three possible walks identified in
property 5 of Lemma 6:

1. path is only up the tree: this means that the start row sum is -2 and the end row sum is 0.
The corresponding walk in E has value -2 mod 4.

2. path is down the tree: this means that the start row sum is 0 and end row sum is -2. The
corresponding walk in E has value -2 mod 4,

3. path is first up and then down the tree: this means that the start row sum is −2 and the
end row sum is −2 as well. The corresponding walk in E has value 0 mod 4.

Through the proof of Lemma 4, we know that we can always construct a set of walks, which are
row distinct, for matrix E which have each of the -1 entries of the columns in J̄ as either a start or
an end row (this is due to the “marking” argument in the proof). Row distinct means in particular
that none of the start and end rows are the same for any two walks in this set.

47

If we can show that the row sum of all walks in this set of walks is 0 mod 4, then the proof
is complete. Or, equivalently, one can show that for the paths corresponding to the set of walks
going up the tree at a path (between two dummy nodes), implies going down the tree along a path
(between two dummy nodes). We will show the latter.

Using Lemma 5, we know that each dummy node d ∈ TD has to be visited exactly two times by
paths, corresponding to walks of the set of walks.

Let us denote by a loop a set of paths in TD, where each path is between two dummy nodes,
the end node of one path is the start node of another path, and starting at one particular dummy
node d, following the paths will lead back to dummy node d. These paths neither have to be arc
nor node distinct.

Now, we know that the number of visits per dummy node is two and that there exists such a
collection of paths which visit all the dummy nodes, resulting from the set of walks. This implies
that we can group this set of paths into loops in the forest TD.

Therefore, let us consider one such loop. If the loop contains only paths first up and then down
the tree, then the corresponding walk sum is 0 and there is nothing to show. Otherwise, let this
loop contain one path going only up the tree (or only down the tree). However, as TD consists of
trees and the loop is closed, we eventually have to go down the tree whenever we go up the tree.
Hence, the number of paths going only up equals the number of path going only down, leading to
a loop sum of 0 mod 4.

This concludes the proof. 2

Recognize that for the proof of Theorem 5, we used Lemma 3 (and hence the tree property)
indirectly.

Second Proof via Matroids

In this section, we provide a short (but much more involved) proof of Theorem 5 via Matroid theory.
An excellent overview of Matroids is given in the book [147]; particularly, we are using Chapters 9
and 11 in this section.

We restrict ourselves again to directed, connected graphs G, which are out-rooted trees. Recall
the following notation adapted to the tree G:

• B - arc-node incidence matrix of graph G with dimension (n− 1× n)

• B
T - node-arc incidence matrix of graph G with dimension (n× n− 1)

• I - identity matrix (with appropriate dimension)

• 0 - matrix consistent of entries all 0 (with appropriate dimension)

• C - matrix, as defined in (131).

Consider the following matrix

A =




B
T 0 · · · 0

0 B
T

... 0
... · · ·

. . .
...

0 0 · · · B
T

−I −I · · · −I




, (135)

where I has dimension (n− 1× n− 1). By re-numerating the columns, matrix A
T is the matrix of

our interest: C. Thus, A is TU, if and only if C is TU.

48

With Lemma 1, we can consider

G := A | I =




B
T | I 0 · · · 0 0

0 B
T | I

... 0 0
... · · ·

. . .
...

...
0 0 · · · B

T | I 0

−I |0 −I |0 · · · −I |0 I




=




B
T

I 0 0 · · · 0 0 0

0 0 B
T

I
... 0 0 0

...
... · · ·

. . .
. . .

...
...

...
0 0 · · · · · · · · · B

T
I 0

−I 0 −I 0 · · · −I 0 I




,(136)

where each of the K identity matrices added to the blocks B
T has dimension (n × n) and the

additional identity matrix corresponding to the last block of −Imatrices has dimension (n−1×n−1).
In order to show that matrix A | I is TU, we use specific transformations which do not alter

the TU property and transform A | I into a node-arc incidence matrix of some graph G. More
specifically, we use the following

Proposition 2 ([142]) Let H be a node-arc incidence matrix of a graph and F be a basis. Then
matrix F−1H is TU.

Without loss of generality, the last row of BT corresponds to a leaf node of the tree. Let F be the
matrix derived from B

T by deletion of that last row. Thus, F is square of dimension (n− 1×n− 1),
nonsingular (i.e., invertible) and TU (as a row with exactly one non-zero entry has been removed).
Furthermore, F is a basis of BT . This is the step where we exploit the assumption that G is a
connected tree.

In matrix G, modify the last row with the −I |0 matrices by adding multiples of the above rows.
Specifically, premultiply the rows corresponding to the rows present in matrix F of each B

T | I with
F
−1 and then add the resulting matrix to the last row with the −I |0 entries. This results in the

modification of the latter row.
Matrix G now reads

G̃ =




B
T | I 0 · · · 0 0

0 B
T | I

... 0 0
... · · ·

. . .
...

...
0 0 · · · B

T | I 0

0 |F−1 0 |F−1 · · · 0 |F−1
I




. (137)

Now multiply the last row with −F. This produces an overall matrix as follows:

G =




B
T | I 0 · · · 0 0

0 B
T | I

... 0 0
... · · ·

. . .
...

...
0 0 · · · B

T | I 0

0 | − I 0 | − I · · · 0 | − I −F




. (138)

Matrix G is TU, because in each column with two non-zero entries, the sum of all entries with
two nonzero entries amount to 0; cf. [107, Proposition 2.6]. This completes the proof of Theorem 5.

Note: By removing the one column of matrix F which has exactly one non-zero entry, the
resulting matrix G̃ is the node-arc incidence matrix of some graph, as each column contains exactly
one +1 and one −1 entry.

49

This matrix transformation from (135) to (138) is a particular case of the single commodity
representation produced by the multicommodity network transformation described in [142], where
we mainly use the step 3 b) of the transformation algorithm in [142].

The presented proof provides us with a different insight into two-stage minimum s − t cut
problems for trees: The two-stage minimum s− t cut problem for a tree G is equivalent to a single
commodity flow problem for the graph represented by G̃.

4.3 Computational Complexity

The fact that the constraint matrix of the two-stage stochastic minimum s−t cut problem loses its to-
tal unimodularity raises the question about the theoretical computational complexity of the problem.
In this section, we show that the stochastic programming extension of the polynomially solvable s−t
minimum cut problem becomes NP -hard in general. This is consistent with similar observations for
the two-stage stochastic extensions of the minimum spanning tree [61] and maximum weight match-
ing [90] problems. In this section for simplicity of further discussion we consider the undirected ver-
sion of the problem. Define the decision version of two-stage stochastic s− t cut problem as follows:

Definition 3 (Decision Version)
Instance: A graph G = (V,E) with node set V , arc set E, root s ∈ V , and K scenarios. The k-th
scenario consists of a single terminal tk and has probability pk of being realized. Arc ij ∈ E has cost
cij in the first stage and dkij in the recourse stage (or second stage) if the k-th scenario is realized.
Question: Is there a set of arcs E0 to be cut in the first stage and for each scenario k, an arc
set Ek to be cut in the recourse stage if scenario k is realized, such that removing E0 ∪ Ek from
the graph G disconnects s from the terminal tk, while the expected cost of cutting c :=

∑
ij∈E0

cij +∑K
k=1 p

k
∑

ij∈Ek
dkij over all scenarios does not exceed C, i.e., c ≤ C?

We call the arc set E0 ∪ Ek a feasible cut for scenario k, if the removal of E0 ∪ Ek from the
graph G disconnects s from the terminal tk. In our reduction, we use the Multiterminal Cut (MC)
problem.

Definition 4 (Multiterminal Cut) [42]
Instance: A graph G(V,E), a set of S = {s1, s2, . . . , sκ} ⊆ V of κ specified vertices or terminals,
and a positive weight w(e) for each arc e ∈ E and a bound B.
Question: Is there a subset of arcs Ē ⊆ E with w(Ē) ≤ B such that the removal of Ē from E
disconnects each terminal from all others?

An arc set Ē ⊆ E is called a feasible cut for MC, if the removal of Ē from E disconnects each
terminal from all others. We need the following complexity result.

Theorem 6 ([42]) The Multiterminal Cut problem for k = 3 and arbitrary graphs is NP -complete
even if all edge weights are equal to 1.

Note that for κ = 2 the MC problem reduces to the standard minimum s− t cut problem which
can be solved in polynomial time.

We now establish the strongly NP -completeness of the two-stage stochastic s − t cut problem
by reducing the MC problem with κ = 3 to it. We are given an instance of the MC problem
with G = (V,E), respective weights wij for each ij ∈ E, S = {s1, s2, s3} and bound B. Without
loss of generality, assume that arcs s1s2 and s1s3 do not exist in G, i.e., s1s2, s1s3 /∈ E. Next we
construct an instance of the two-stage stochastic s− t cut problem such that there is a one-to-one
correspondence of their respective solutions. Define GMC = (Ṽ , Ẽ) as follows:

50

• Let Ṽ = V ∪{t} and Ẽ = E ∪{s1s2, s1s3, s2t, s3t}. In other words, we add an extra node and
four additional arcs into the original graph.

• First-stage arc capacities: cij = wij ∀ ij ∈ E and cij = +∞ for ij ∈ {s1s2, s1s3, s2t, s3t}.

• Second-stage arc capacities: d1ij = d2ij = +∞ ∀ ij ∈ E; d1s1s2 = d1s3t = d2s1s3 = d2s2t = +∞ and

d1s1s3 = d1s2t = d2s1s2 = d2s3t = 0.

• Let the source node s be s1 and the sink node be t for both scenarios.

• Let the probability of each scenario be given by p1 = p2 = 1/2.

An example and the corresponding transformation is shown in Figure 5. The MC instance in
Figure 5(a) is a “YES” instance for B ≥ 10, with the feasible cut set Ē = {s2s3, s24, s34, s35}. This
set is marked by the gray lines. Figure 5(b) shows the transformed graph GMC with a cut having
weight 11.

Lemma 7 An instance for the Multiterminal Cut problem with bound B is a “YES” instance, if
and only if the transformed graph GMC is a “YES” instance for the two-stage stochastic s − t cut
problem with cost bound C = B.

Proof:“⇒” Let the MC problem have the feasible cut set Ē with w := w(Ē) ≤ B. The first stage
cuts for GMC are Ē as well, for the first scenario, arcs (s1s3) and (s2t) are cut in the second stage
while arcs (s1s2) and (s3t) are cut in the second stage for scenario two. In this way, the cut weight
is c ≡ w. This leads to a feasible cut for GMC for the two-stage s− t cut problem for both scenarios
with weight c ≤ C = B.

“⇐” Suppose the solution of the constructed two-stage stochastic minimum s − t cut problem
is given by the arc set Ẽ0 for the first stage and arc sets Ẽ1 and Ẽ2 for scenarios 1 and 2 in the
second stage, respectively, and cut weight C. Because C <∞, any feasible two-stage s− t cut has
finite total capacity. We can observe the following:

• We need Ẽ0 ⊆ E since cij = +∞ for any ij ∈ Ẽ \ E.

• We may assume that Ẽ1 = {s1s3, s2t)} and Ẽ2 = {s1s2, s3t} since the respective capacities
are zero, while all other capacities are +∞.

• For scenario 1, since d1s1s2 = d1s3t = +∞, arcs s1s2 and s3t are contained in the graph.

Therefore, Ẽ0 must contain arcs that completely disconnect s1 from s3 and s2 from s3.

• For scenario 2, since d2s1s3 = d2s2t = +∞, arcs s1s3 and s2t are contained in the graph.

Therefore, Ẽ0 must contain arcs that completely disconnect s1 from s2 and s3 from s2.

Therefore, any two-stage stochastic s − t cut with the finite total capacity must contain Ẽ0 that
completely disconnects s1, s2 and s3 from each other, i.e., Ẽ0 is a multiterminal cut in the original
graph G(V,E). Moreover, since the capacities of arcs in Ẽ1 and Ẽ2 are zero, then minimizing the
total capacity of the two-stage s− t cut corresponds to minimizing the weight of the multiterminal
cut. Thus, Ẽ0 is a feasible cut for MC with weight B = C. 2

This allows us to prove the main result.

Theorem 7 The decision version of the two-stage stochastic s− t cut problem is NP -complete in
the strong sense even for two scenarios and the same terminal node for both scenarios.

51

s1

s2

s3

4

5

3

1

2

3

4

1

4

(a) Instance for MC problem with cut.

s1

s2

s3

4

5

t

(3,+∞,+∞)

(1,+∞,+∞)

(2,+∞,+∞)

(3,+∞,+∞)

(4,+∞,+∞)

(1,+∞,+∞)

(4,+∞,+∞)

(+∞, 0,+∞)

(+∞,+∞, 0)

(+∞,+∞, 0)

(+∞, 0,+∞)

(b) Corresponding graph GMC with cut.

Figure 5: MC instance and corresponding instance GMC for the two-stage stochastic minimum s− t
cut problem. The legend for (b) is the same as in Figures 2 and 6, but rather for undirected arcs.

52

Proof:The two-stage stochastic s− t cut problem is in NP , as a non-deterministic algorithm needs
only to guess the arcs to be cut and check if this leads to a feasible cut for each scenario and if the
cost of the cut is less than or equal to C.

The given transformation from MC to the two-stage stochastic s− t cut problem via graph GMC

is valid according to Lemma 7. By replacing the weights +∞ by B + 1, the node set, the arc set
and the arc weights of the constructed graph GMC are linearly bounded in the input size of MC.
Thus, the transformation can be done in (strongly) polynomial time. 2

Remark 1 The directed version of the two-stage stochastic s− t cut problem is also NP -complete
in the strong sense. To see this, one can use the same reduction as for the undirected case by
preserving the direction of the arcs to be cut in the construction presented in the proof of Lemma 7.

4.4 Linear Running Time Algorithm for Trees

As we discuss in Section 4.2.3, if graph G is a tree, then the constraint matrix (123) - (125) is
totally unimodular. This fact indicates that the two-stage stochastic minimum s− t cut problem is
polynomially solvable if G is tree. Moreover, we show next that the problem admits a linear time
solution algorithm.

Consider now the following transformation. Given an instance of the two-stage stochastic min-
imum s − t cut problem on graph G = (V,E) with the notation of Definition 1, construct a graph
G = (V ,E) with arc weight function w : E → R

+ as follows:

• Add one additional node T k to V for each scenario k; i.e., V := V
⋃K

k=1{T
k}.

• Add one arc between terminal tk and TK to E for each scenario k; i.e., E = E
⋃K

k=1{t
kT k}.

• Weights for e ∈ E are the first stage cost; i.e., w(ij) = cij ∀ij ∈ E.

• Weights for arcs tkTK are constructed as follows. Let Pk be the (unique) path from the source
s to tk, and ẽk be one least cost arc in scenario k (along this path Pk). Then w(tkT k) =
pkdk(ẽk) ∀k = 1, . . . ,K.

Graph G remains a tree by construction. Now, finding a minimum cut in G which separates s
from all terminals T k can be done via a linear time dynamic programming algorithm. Any such cut
in G corresponds then to a cut in G (and vise versa) with the same cost as follows: If arc e ∈ E for
G is cut, then in the first stage, e is cut in G; if arc e = tkTK ∈ E \E is cut, then in the k-scenario,
arc ẽk is cut. This proves the following Corollary:

Corollary 2 If graph G is a tree, then the two-stage stochastic minimum s− t cut problem can be
solved in linear time.

Adjusting the formulation of the deterministic minimum s− t cut problem (118) - (121) to the
cut problem for graph G, one obtains:

min
∑

ij∈E

w(ij)yij (139)

s.t. yij ≥ xj − xi ∀ij ∈ E (140)

xs = 0, xtk = 1 ∀k = 1, . . . ,K (141)

xi, yij ∈ [0, 1] ∀i ∈ V , ij ∈ E. (142)

The constraint matrix defined by (140) - (141) is TU. However, this does not (at least in an
obvious manner) imply that C is TU as well for the tree G.

53

4.5 Node-Based Version

We define two mathematical programming formulations as equivalent, if and only if both formula-
tions have the same set of feasible and optimal solutions. It is well-known that the minimum s− t
cut problem can be equivalently reformulated as the following quadratic 0–1 program [25]:

min
∑

ij∈E

cij(1− xi)xj (143)

s.t. xs = 0, xt = 1 (144)

xi ∈ {0, 1} ∀i ∈ V. (145)

We also may consider the relaxed concave quadratic programming problem.

min
∑

ij∈E

cij(1− xi)xj (146)

s.t. xs = 0, xt = 1 (147)

0 ≤ xi ≤ 1 ∀i ∈ V. (148)

For a concave minimization problem over a bounded polytope, there always is an optimal solution
at a corner point of the polytope. Thus, formulations (143) - (145) and (146) - (148) are equivalent.

Due to the nonlinearity of the objective function in (143), the resulting formulation (143)-(145)
defines the minimum s − t cut problem without variables yij that appear in (118)-(121). As we
discuss in Section 4.1, variables yij have a clear interpretation in terms of the cutset that can be also
used for the equivalent definition of the deterministic minimum s− t cut problem. This observation
leads to an alternative definition of the two-stage stochastic minimum s− t cut problem.

Definition 5 (two-stage stochastic minimum s− t cut; node-based version) Given is a di-
rected graph G = (V,E) with node set V and arc set E and a root s ∈ V . There are K scenarios.
The kth scenario consists of a single terminal tk and has probability pk of being realized. Arc ij ∈ E
has cost cij in the first stage and dkij in the recourse stage (or second stage) if the kth scenario is
realized. The task is to find two node sets S, T ⊂ V and for each scenario k, additional two node
sets Sk, T k ⊂ V with s ∈ S ∪ Sk, t ∈ T ∪ T k and S ∪ Sk ∪ T ∪ T k = V where S, T , Sk, T k are
mutually distinct. The objective is to minimize the expected cost over all scenarios:

zN∗ := min




∑

ij∈E:i∈S,j∈T

cij +
K∑

k=1

pk
∑

ij∈E:i∈Sk∪S,j∈T k∪T,i/∈S∨j /∈T

dkij


 .

We refer to this definition of the two-stage stochastic minimum s− t cut problem as its node-based
version; the original definition provided in Section 4.1 is further referred to as the arc-based version.

Consider an example given by Figure 1 and discussed in Section 4.2. An optimal solution using
this node-based interpretation is shown in Figure 6. In the first stage, neither of the two nodes 2
and 3 is assigned. In the second stage, both nodes 2 and 3 are assigned to set T , corresponding to
the terminal node 4. Hence, arcs (1,2) and (1,3) are cut in both scenarios, leading to a total cost of
11. Recognize that this solution is not unique.

Comparing the two optimal solutions from the arc-based version and the node-based version,
we recognize that the difference in both interpretations is the role of the sets S and T . In the

54

1

3

2

4

(10,1,10)

(1,10,10)(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)

i j
(cij , d

1
ij , d

2
ij)

first stage cut

second stage cut: scenario 1

second stage cut: scenario 2

Figure 6: In the first stage, no node is assigned. In the second stage, nodes 2 and 3 are assigned to
set T . The second stage decision is the same for both scenarios. The cost of this minimum cut is
11.

arc-based version, nodes 2 and 3 are not assigned to any of those sets, while the arcs (2,3) and (3,2)
are both cut in the first stage. The assignments of the nodes are performed in the second stage,
dependent on the scenario. The resulting solution cannot be obtained via the node-based version,
as assignments of the nodes to one of the sets performed in the first stage are final. However, this is
not possible in the node-based version of the problem. Generally speaking, in the node-based case
the assignments of the nodes can either be done in the first stage or in the second stage, depending
on the scenario that occurred. However, all the assignments performed in the first-stage are final
and cannot be changed in the second stage. The cut is then the result of the assignments of the
nodes in both stages.

Inspecting the two definitions of the two-stage minimum s−t cut problem, one observes that any
solution of the node-based version is also feasible for the arc-based version with the same objective
function value. Such a solution can be obtained as follows. Let S, T , Sk, T k be a partition of V
defining a valid cut for the node-based version. Then, define the following cut for the arc-based
version:

E0 :={ij | ij ∈ E and i ∈ S and j ∈ T} (149)

Ek :={ij | ij ∈ E and i ∈ S ∪ Sk and j ∈ T k} ∀k. (150)

This is summarized in the next proposition.

Proposition 3 zA∗ ≤ zN∗.

Furthermore, one can observe that the arc-based and node-based versions are equivalent when
G is a tree. The reason is that for trees selecting an arc ij ∈ E in the first stage is equivalent to
assigning node i to set S and node j to set T .

Corollary 3 The arc-based and node-based versions of the two-stage stochastic minimum s− t cut
problem are equivalent and solvable in linear time if graph G is a tree.

One may wonder whether this difference of the arc-based and the node-based version for directed
graphs holds true as well for the corresponding undirected version of the problems. An answer is

55

1

3

2

4

(10,1,10)

(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)

(a) Instance for undirected two-stage minimum s− t cut problems.

1

3

2

4

(10,1,10)

(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)

(b) Optimal solution for arc-based version
with cost 2.

1

3

2

4

(10,1,10)

(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)

(c) Optimal solution for node-based version
with cost 11.

Figure 7: Difference of node-based and arc-based versions for undirected graphs. The legend is the
same as in Figures 2 and 6, but rather for undirected arcs.

provided in Figures 7, which demonstrates the difference of arc-based and node-based version of the
two-stage stochastic minimum cut problem for undirected graphs.

We define the following:

xSi =

{
1, if i ∈ S
0, otherwise

and xTi =

{
1, if i ∈ T
0, otherwise

, (151)

as well as

zSik =

{
1, if i ∈ Sk

0, otherwise
and zTik =

{
1, if i ∈ T k

0, otherwise
. (152)

Consider the following bi-linear, linearly constrained 0-1 programming formulation:

min
∑

ij∈E

(
cijx

S
i x

T
j +

K∑

k=1

pkd
k
ij

(
xSi z

T
jk + zSikx

T
j + zSikz

T
jk

)
)

(153)

s.t. xSi + xTi + zSik + zTik = 1 ∀i ∈ V, k = 1, . . . ,K; (154)

xSs + zSsk = 1 xTt + zTtk = 1 ∀k = 1, . . . ,K; (155)

xSi , x
T
i , z

S
ik, z

T
ik ∈ {0, 1} ∀i ∈ V, ∀k = 1, . . . ,K. (156)

Constraints (154) ensure that each node i ∈ V is assigned to exactly one of the sets S, T, Sk or
T k for each scenario k, while constraints (155) make sure that s ∈ S ∪ Sk and t ∈ T ∪ T k for each

56

scenario k. The cost of the corresponding cut is evaluated in the objective (153) as follows: the first
terms sum all the costs of all cut arcs ij ∈ E with i ∈ S and j ∈ T , while the second term sums all
costs of the cut arcs ij ∈ E with i ∈ Sk ∪ S and j ∈ T k. This proves the following result.

Proposition 4 Formulation (153) - (156) models the node-based version of the two-stage minimum
s− t cut problem correctly.

By eliminating variables zSik using the relations in equalities (154) and (155), one obtains the
following continuous, box-constrained, bi-linear optimization problem:

min
∑

ij∈E

(
cijx

S
i x

T
j +

K∑

k=1

pkd
k
ij

(
xTj + zTjk − xSi x

T
j − xTi x

T
j − zTikx

T
j − xTi z

T
jk − zTikz

T
jk

)
)

(157)

s.t. xTs = zTsk = 0 xSt = zStk = 0 ∀k = 1, . . . ,K (158)

xSi , x
T
i , z

T
ik ∈ [0, 1] ∀i ∈ V, ∀k = 1, . . . ,K. (159)

Proposition 5 Formulations (153) - (156) and (157) - (159) are equivalent.

Proof:We need to show that any optimal solution of (157) - (159) is binary. This follows from the
fact that there are no quadratic terms but only bi-linear expressions in the objective. 2

4.6 Concluding Remarks

Based on two equivalent formulations of the classical minimum s − t cut problem, we introduce
two different versions (arc-based and node-based) of the two-stage stochastic minimum s − t cut
problem. These versions are equivalent if the considered graph is a tree; however, in the general case
they lead to different solutions. We provide a mathematical programming formulation for the arc-
based version that is motivated by a standard linear 0–1 programming model for the deterministic
minimum s−t cut problem. We prove that the constraint matrix of the new formulation loses its total
unimodularity property, in general; however, the matrix preserves the property if the considered
graph is a tree. This fact turns out to be not surprising as we show that similar to many other
stochastic extensions of classical combinatorial optimization problems, (e.g., minimum spanning
tree [61]) the arc-based version of the two-stage stochastic minimum s− t cut problem is NP -hard.
In the case of trees, the two-stage stochastic minimum s − t cut problem is polynomially solvable
due to the total unimodularity property; we also describe a simple linear time solution algorithm.
The computational complexity of the node-based version has yet to be fully explored (e.g., its
NP -hardness remains open).

57

5 Bilevel Knapsack Problems with Stochastic Right-Hand Sides

The details of the work in this chapter can be found in:

• O.Y. Ozaltin, O.A. Prokopyev, A.J. Schaefer, “The Bilevel Knapsack Problem with Stochastic
Right-Hand Sides,” Operations Research Letters, Vol. 38/4 (2010), pp. 328–333.

Bilevel programs [41, 45, 106] model the hierarchical relationship between two autonomous, and
possibly conflicting, decision makers: the leader and the follower. This hierarchical relationship
results from the fact that the follower’s problem is affected by the decision of the leader. Moreover,
the follower’s decision in return affects the leader’s problem.

The bilevel knapsack problem was first considered by Dempe and Richter [46]. In this problem,
the follower solves a 0–1 knapsack problem subject to the capacity set by the leader. The leader
earns a profit from the items selected by the follower, and both decision makers seek to maximize
their own profits. Dempe and Richter [46] formulated this problem as a mixed-integer bilevel
program, and proposed a branch-and-bound algorithm. Recently, Brotcorne et al. [27] considered
the same problem, and developed a dynamic programming algorithm that outperformed Dempe
and Richter’s [46] branch-and-bound algorithm.

In our work we introduce the bilevel knapsack problem with stochastic right-hand sides (BKPS).
BKPS is a stochastic extension of the bilevel knapsack problem where the leader’s decision has an
uncertain effect on the follower’s knapsack capacity. We model this uncertainty using a finite set of
scenarios. Brotcorne et al. [27] identified an application of the bilevel knapsack problem in revenue
management, where a company (i.e., the leader) determines the number of units to sell by itself,
and handing the remainder over to an intermediary (i.e., the follower). In this context, BKPS arises
when there is uncertainty in the number of units transferred to the intermediary. For example, in
the distribution of perishable goods [72], some items may be spoiled during the shipment process.

Consider a set of n items where each item j ∈ {1, . . . , n} has an associated weight aj ∈ Z
1
+, and

two revenues: the follower’s revenue cj ∈ R
1
+, and the leader’s revenue dj ∈ R

1
+. The follower must

solve a knapsack problem to maximize her own objective subject to a capacity h(ω, y) that depends
on the leader’s choice of y as well as a discretely distributed random variable ω ∈ Ω. This yields
the following stochastic bilevel program:

[BKPS] maximize f(y,X) = ty + Eω

[
dTx(ω, y)

]
(160a)

subject to b ≤ y ≤ b̄, y ∈ R
1, (160b)

x(ω, y) ∈ R (h(ω, y)) ∀ ω ∈ Ω, (160c)

where R(h(ω, y)) = argmax
{
cTx : aTx ≤ h(ω, y), x ∈ {0, 1}n

}
, i.e., the follower’s rational reac-

tion set. For y ∈ [b, b̄], X is an |Ω|×n binary matrix whose rows represent the subset of items selected
by the follower under the scenario ω ∈ Ω, i.e., x(ω, y). We assume that h(ω, y) : Ω× Z

1 → Z
1
+ is a

nondecreasing function of y, and that h(ω, b̄) is finite for all ω ∈ Ω.
In our paper cited above we provide necessary and sufficient conditions for the existence of an

optimal solution. When the leader’s decisions can take only integer values, we present an equivalent
two-stage stochastic programming reformulation with binary recourse. We develop a branch-and-
cut algorithm for solving this reformulation, and a branch-and-backtrack algorithm for solving
the scenario subproblems. Computational experiments indicate that our approach can solve large
instances in a reasonable amount of time.

58

6 Two-Stage Stochastic Assignment Problems

This chapter is mostly based on the results from:

• S. Karademir, O.A. Prokopyev, N. Kong, “On Greedy Approximation Algorithms for a Class
of Two-Stage Stochastic Assignment Problems,” Technical report, 2011

6.1 Introduction

Given a set V of n agents, a set U of n jobs and a weight (or cost) wij for each i ∈ V and j ∈ U , the
well-known linear assignment problem consists of assigning each agent to exactly one job in such
a manner that each job is performed by exactly one of the agents and the total weight (cost) of
the obtained assignment is maximized (minimized). In this chapter we consider the maximization
version and the mathematical program for the related linear assignment problem can be given as
follows [113]:

max
x

∑

i∈V

∑

j∈U

wijxij (161)

s.t.
∑

j∈U

xij = 1, for all i ∈ V, (162)

∑

i∈V

xij = 1, for all j ∈ U, (163)

xij ∈{0, 1}, for all i ∈ V, j ∈ U. (164)

Linear assignment problem (161)-(164) is also known as the weighted bipartite matching prob-
lem [113]. Namely, given a weighted bipartite graph G(V ∪ U,E) with |V | = |U | and arc weights
wij for all (i, j) ∈ E we need to find a perfect matching of maximum weight. Recall that perfect
matching is a matching which matches all vertices of the graph.

It is well known that the constraint matrix for (162)-(163) is totally unimodular [113]. Therefore,
we can safely remove integrality constraints (164) and solve the linear programming relaxation
(161)-(163) to get the optimal solution. However, the most popular approach to tackle the linear
assignment problem is the Hungarian Method [91], which can be considered as an implementation
of the primal-dual method for the respective minimum cost flow problem [113]. The Hungarian

Method (HM) works with the dual of the linear program (161)-(163) given by

min
α,β

n∑

i=1

αi +

n∑

j=1

βj (165)

s.t. αi + βj ≥ wij , i = 1, . . . , n, j = 1, . . . , n. (166)

In this chapter we are concerned with the following two-stage stochastic programming extension
of (161)-(164), which is further referred to as the two-stage stochastic linear assignment (2SSLA)
problem. Each edge (i, j), i ∈ V and j ∈ U , is associated with the first-stage weight wij , and the
second-stage weight qkij for scenario k, k = 1, . . . ,K. The first-stage decision x is to choose some

59

matching in G that is not necessarily perfect. At the second stage a scenario k is realized with
probability pk. For each scenario k, the second-stage decision yk is to choose a matching over those
agents and jobs that are unmatched in the first stage in order to form a perfect matching. The
overall goal is to find a perfect matching with the maximum expected weight. Then the two-stage
stochastic programming extension of (161)-(164) can be written as follows:

max
x,y

n∑

i=1

n∑

j=1

wij · xij +
K∑

k=1

pk ·
n∑

i=1

n∑

j=1

qkij · y
k
ij (167)

s.t.

n∑

j=1

(
xij + ykij

)
= 1, i = 1, . . . , n, k = 1, . . . ,K, (168)

n∑

i=1

(
xij + ykij

)
= 1, j = 1, . . . , n, k = 1, . . . ,K, (169)

xij ∈ {0, 1}, ykij ∈ {0, 1}, i, j = 1, . . . , n, k = 1, . . . ,K. (170)

A number of studies demonstrate the advantage of stochastic programming models over de-
terministic approaches [23]. Recent examples of these types of studies in the literature include
two-stage stochastic extensions of the shortest path [70], minimum spanning tree [49, 61], min-
cut [48, 70], and Steiner tree [75] problems. For a detailed introduction to stochastic programming,
we refer the reader to [23, 133]. Next we briefly describe two papers that are most closely related
to our work in this chapter.

Kong and Schaefer [88] consider the two-stage stochastic maximum weight matching problem
on general graphs. They show that the problem is NP -hard and propose a greedy 1

2 -approximation
algorithm. Escoffier et al. [52] prove that the two-stage stochastic maximum weight matching
problem is APX-complete even for bipartite graphs of maximum degree 4 and general graphs
of degree 3, which implies that there is no polynomial-time approximation scheme (PTAS) for
this problem as long as P 6= NP . Based on the concepts from [88], they also provide a greedy
max{ K

2K−1 ,
∆

2∆−1}-approximation algorithm, where K is the number of scenarios in the second-
stage and ∆ is the degree of the bipartite graph.

Our work is essentially built on these two studies [52, 88]. First, we consider the greedy ap-
proximation methods from these papers for the two-stage stochastic linear assignment problem.
Since the maximum weight matching problem on bipartite graphs can be easily reduced to the
linear assignment problem via addition of dummy agents and/or jobs, the 2SSLA problem is also
APX-complete. We propose a necessary optimality condition that generalizes and unifies the key
ideas behind the two algorithms by Kong and Schaefer [88] and Escoffier et al. [52]. Then based
on this optimality condition, we design a new greedy approximation algorithm referred to as EGA.
While the developed approach preserves the existing approximation guarantees, we are not able to
prove whether EGA provides a better approximation bound. However, analytical observations and
extensive computational results indicate that EGA has strictly better results on some rather broad
classes of the two-stage stochastic linear assignment problem.

6.2 Greedy Approximation Algorithms

6.2.1 Basic Greedy Approach

Since the 2SSLA problem is NP -hard, we can not expect to solve it exactly for large input sizes.
Hence, we seek for an approximation algorithm that will have a reasonable performance guarantee.

60

We first discuss the Greedy Algorithm (GA) for more general two-stage stochastic matching prob-
lem given in [88]. Since linear assignment is a specific case of maximum weight matching problem,
this algorithm can be simply adopted to 2SSLA with the same performance guarantee. For further
discussion we need the following notation:

Definition 1 A first-stage myopic solution is an optimal solution to:

(GA− I) : max





n∑

i=1

n∑

j=1

wijxij

∣∣∣ ∀j
n∑

i=1

xij = 1, ∀i
n∑

j=1

xij = 1; ∀i, j xij ∈ {0, 1}



 . (171)

Definition 2 A second-stage myopic solution for scenario k is an optimal solution to:

(GA− II) : max





n∑

i=1

n∑

j=1

qkijy
k
ij

∣∣∣ ∀j
n∑

i=1

ykij = 1, ∀i
n∑

j=1

ykij = 1; ∀i, j ykij ∈ {0, 1}



 . (172)

First- and second-stage myopic solutions are the solutions corresponding to deterministic linear
assignment problems with the appropriate choices of weights in the objective functions. Let xGA

and ZGA
1 be the first-stage myopic solution and the respective optimal objective function value.

Similarly, let yGA
k and ZGA

2k be the second-stage myopic solution and the respective optimal objective
function value for scenario k. Finally, denote by ZGA

2 the expected value of the second-stage myopic
solutions, i.e.,

ZGA
2 =

K∑

k=1

pkZ
GA
2k .

GA works as follows. Initially, it finds the first-stage myopic solution (GA-I) as well as the second-
stage myopic solutions for each scenario (GA-II). Then it compares the objective function value of
the first-stage myopic solution with the expected objective function value of the second-stage myopic
solutions. The final assignment weight ZGA corresponds to the better of them and is given by

ZGA = max
{
ZGA
1 , ZGA

2

}
. (173)

The final agent-job assignments are given either by (xGA,0, . . . ,0) or by (0,yGA
1 , . . . ,yGA

K), respec-
tively. That is all assignments are made completely either at the first stage, or at the second stage
for each scenario.

Theorem 3 Greedy Algorithm is an approximation algorithm with the performance guarantee 1
2

for 2SSLA problem.

Proof: Same as the proof in [88] for the two-stage stochastic matching problem. 2

Since GA solves each stage and each scenario separately, it actually solves the deterministic linear
assignment problem K + 1 times. Thus, one can utilize the Hungarian Method(HM) [91] to solve
each assignment problem. Consequently, given the complexity of HM, the outlined algorithm obtains
1
2–approximate solution of (167)-(170) in O(Kn3) arithmetic operations.

6.2.2 Greedy Approach of Escoffier et al.

In this section we describe a slightly more advanced greedy approach proposed by Escoffier et al.
in [52]. We will refer to this algorithm as GAE. The basic idea is that if

∑K
k=1 pkq

k
ij > wij for some

i and j, then it can not be optimal to assign agent i to job j in the first stage. This result follows

61

from the observation that any solution to the 2SSLA problem that assigns i to j in the first stage,
could be improved by assigning i to j in the second stage across all scenarios. In fact, as we show
in Section 6.3, this result is a special case of a more general necessary optimality condition.

GAE works as follows. Initially, it replaces all first-stage weights wij with

ŵij = max

{
wij ,

K∑

k=1

pkq
k
ij

}

and obtains the first-stage myopic solution with the updated weights. Then, all agent-job assign-
ments (i, j), i.e., j = mate[i] and i = mate[j], such that ŵij =

∑K
k=1 pkq

k
ij are moved to the second

stage. Subsequently, GAE solves K assignment problems for all agents and jobs moved to the sec-
ond stage across all scenarios. Denote the resulting solution by ZGAE

1 and the above described
algorithmic procedure by GAE-I.

Next GAE compares ZGAE
1 with the expected objective function value of the second-stage myopic

solutions ZGA
2 . The final assignment weight ZGAE corresponds to the better of them and is given

by
ZGAE = max

{
ZGAE
1 , ZGA

2

}
.

Theorem 4 ([52]) GAE is an approximation algorithm with the performance guarantee K
2K−1 for

2SSLA.

Theorem 5 ([52]) GAE is an approximation algorithm with the performance guarantee ∆
2∆−1 for

2SSLA, where ∆ is the degree of the bipartite graph.

Both approximation bounds listed above are slightly better than 1
2 approximation bound of GA.

Furthermore, it is easy to observe that running time of GAE is given by O(Kn3).

6.3 Necessary Optimality Condition

In this section we describe a necessary optimality condition for the 2SSLA problem. Let A ⊆ V
be a subset of agents and J ⊆ U be a subset of jobs such that |A| = |J |. Since cardinality of sets
A and J are the same, we can consider a two-stage stochastic linear assignment problem on these
subsets of agents and jobs. This assignment will be a perfect one as all agents and jobs can be
matched. Let W1[A, J] be the first-stage myopic solution and W2[A, J] be the expected value of the
second-stage myopic solutions over all scenarios. Next we can state the following result:

Proposition 4 (Necessary Optimality Condition) Let A ⊆ V , J ⊆ U and |A| = |J |. If
W1[A, J] < W2[A, J] (W1[A, J] > W2[A, J]), then no optimal solution of 2SSLA can contain a
perfect assignment between agents in A and jobs in J in the first stage (second stage).

Proof: Consider an optimal solution of an instance of the 2SSLA problem. If W1[A, J] < W2[A, J]
(W1[A, J] > W2[A, J]) and the optimal solution contains a perfect assignment between A and J in
the first stage (second stage), then moving assignments between A and J to the second stage (first
stage) would increase the weight of the optimal solution, which contradicts our assumption that the
solution is optimal. 2

Unfortunately, this necessary optimality condition is not sufficient for a solution of 2SSLA to
be optimal even if we check it for all O(2n) possible different subsets of V and U . Consider the
following simple instance of the 2SSLA problem given in Figure 8.

62

Figure 8: A counterexample to show that the necessary optimality condition given by Proposition 4
is not sufficient for optimality. Only arcs with nonzero weight are shown.

In the first stage, agents a1 and a2 are assigned to jobs j2 and j1, respectively. In the second
stage, agent a3 is assigned to job j3 under both scenarios. The total weight of the assignment is 4
units. Notice that this solution does not violate the necessary optimality condition for any subset
of agents and jobs. However, optimal assignment has a total weight of 5 units which is achieved
by assigning a1 to j1, a2 to j3, and a3 to j2 in the first stage. Therefore, the necessary optimality
condition given by Proposition 4 is not sufficient to guarantee optimality.

Nevertheless, Proposition 4 can be actually utilized to construct approximation algorithms. In
fact, algorithms GA (Section 6.2.1) and GAE (Section 6.2.2) are based on the necessary optimality
condition for some specific subsets of agents and jobs. Observe that GA is the implementation of
Proposition 4 when |A| = |J | = n. In other words, GA verifies the necessary optimality condition
only for A = V and J = U . If W1[V,U] (i.e., the weight of the first-stage myopic solution given by
GA-I) is greater than W2[V,U] (i.e., the expected weight of the second-stage myopic solutions over
all scenarios given by GA-II), then it moves assignments between V and U to the second stage.
Otherwise all assignments are made in the first stage.

Similarly, GAE is the implementation of the necessary optimality condition for all sets A and J
such that |A| = |J | = 1 and |A| = |J | = n. As we have stated in Section 6.2.2, GAE-I moves an
assignment (i, j) to the second stage if it has a better expected weight in the second stage. Thus,
A = {i}, J = {j}, W1[A, J] = wij , and W2[A, J] =

∑K
k=1 pkq

k
ij. Next, GAE compares ZGAE

1 with

ZGA
2 = W2[V,U] and outputs the better solution, which is equivalent to checking the necessary

optimality condition for |A| = |J | = n. The only difference here is that instead of W1[V,U], we use
the solution of GAE-I and compare it to W2[V,U].

6.4 Enhanced Greedy Approach

In this section we propose a more generic approximation algorithm, further referred to as Enhanced
Greedy Algorithm (EGA), that attempts to utilize the necessary optimality condition described
by Proposition 4 in a more sophisticated manner. EGA is based on the Hungarian Method as a
standard routine to solve all the deterministic linear assignment subproblems. Recall that HM works
with the dual problem (165)-(166). Furthermore, EGA utilizes the dual problem of the LP relaxation
of (167)-(169) given by:

63

min
α,β

n∑

i=1

K∑

k=1

αik +

n∑

j=1

K∑

k=1

βjk (174)

s.t.

n∑

k=1

(αik + βjk) ≥ wij , i = 1, . . . , n, j = 1, . . . , n, (175)

αik + βjk ≥ pkq
k
ij, i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . ,K. (176)

In the remainder of this chapter we will refer to (175) and (176) as the “first-stage” and “second-
stage” dual constraints, respectively, as they correspond to the assignment weights at the first and
second stage. Furthermore, for convenience of notation, we let q̃kij = pkq

k
ij.

EGA has two major steps. The first step (further referred to as EGA-I) is to start with first-
stage myopic solution and then attempt to improve the objective value by “moving” some of the
assignments to the second stage via checking the necessary optimality condition. The second step
of the EGA (further referred to as EGA-II) is to start with the second-stage myopic solutions and
then attempt to improve the objective value by “moving” some of the assignments to the first stage.
Then similar to GA and GAE, EGA chooses the solution with the better objective value and outputs
it as the final solution.

We want to note that there is a strong relationship between the necessary optimality condition
given by Proposition 4 and the feasibility of the dual program (175)-(176). The first-stage myopic
solution is feasible to the first-stage dual constraints (175) and the second-stage myopic solutions are
feasible to the second-stage dual constraints (176). However, the myopic solutions are not necessarily
feasible to both (175) and (176) simultaneously. EGA-I starts with the first-stage myopic solution
feasible to the first-stage dual constraints, and uses the necessary optimality condition to achieve
feasibility of the second-stage dual constraints. Specifically, it will be shown that the necessary
optimality condition for specific pairs of subsets of agents and jobs corresponds to a second-stage
aggregated dual constraint, which is obtained by aggregating the respective subset of the second-
stage dual constraints. Similarly, EGA-II starts with the second-stage myopic solutions feasible to
the second-stage dual constraints, and uses the necessary optimality condition to achieve feasibility
of a first-stage aggregated dual constraint, which is obtained by aggregating a subset of the first-
stage dual constraints.

6.4.1 Improving the first-stage assignment (EGA-I)

EGA-I starts with all agent-job assignments made in the first stage (i.e., the first-stage myopic
solution) and then attempts “moving” some of them to the second stage if it is worth doing so.
Next we briefly describe the key ideas behind EGA-I. The pseudo-code of the approach is given by
Algorithm 1.

The initial step of our algorithm is essentially GAE described in Section 6.2.2. EGA-I applies the
necessary optimality condition given by Proposition 4 and starts with the sets of unit cardinality, i.e.,
|A| = |J | = 1. For every agent-job pair (i, j), A = {i} and J = {j}, we know that W1[{i}, {j}] = wij

and we calculate W2[{i}, {j}] =
∑

k q̃
k
ij. Then, we make the following weight update in the first

stage:

ŵij = max {W1[{i}, {j}], W2[{i}, {j}]} = max

{
wij ,

∑

k

q̃kij

}
. (177)

64

Algorithm 1: EGA-I

Input: n agents, n jobs, K scenarios, wij , q
k
ij , pk.

1 Run GAE-I
2 Reset all the first-stage weights to their original values and remove from consideration all
agents and jobs moved to the second stage by GAE-I

3 Let q̃kij = pkq
k
ij; define G0 and Gk to be the graphs for the first stage and the kth scenario in

the second stage, respectively
4 Run Hungarian Method on Gk for all k
5 Let C include closed subsets of agents and jobs in the obtained second-stage solution
6 foreach {A, J} ∈ C do
7 Let ∆ = W2[A, J]− (

∑
i∈A αi +

∑
j∈J βj), where α, β is the dual solution for G0.

8 if ∆ > 0 then
9 Let G be the graph containing only A and J

10 Run Hungarian Method on G

11 Let Ẽ be set of edges selected in the resulting assignment

12 Let Ẽ = {e1, e2, . . . e|A|} be sorted in non-decreasing order of edge weight

13 Set we|A|+1
=∞ and let w ∈ R+ and t ∈ Z+ satisfy the following condition:

14 (1) t · w −
∑t

r=1wer = ∆
15 (2) wet ≤ w < wet+1

16 Set wer = w for r = 1, t in G0

17 else
18 C ← C\{A, J}

19 Run Hungarian Method on G0.
20 begin Reset G0

21 while there exists {A, J} ∈ C not closed in G0 do
22 foreach Edge weight wij modified in {A, J} do
23 Reset w
24 Perform one iteration of Hungarian Method

25 C ← C\{A, J}

26 Move all closed subsets in C to the second stage
27 Redefine Gk to be the subgraph of agents and jobs moved to the second-stage for scenario k.
28 Run Hungarian Method on Gk for all k.

29 ZEGA
1 =

∑
i∈G0

wi,mate[i] +
∑

k

∑
i∈Gk

q̃ki,matek [i]

30 return ZEGA
1 , G0, and Gk ∀ k

65

Then, HM is applied on the resulting graph, all assignments with a modified weight are moved to
the second stage, and all edge weights are reset to their original values (lines 1 and 2 of Algorithm
1). We want to emphasize that after this point, EGA-I works only with agents and jobs that are
not moved to the second stage in line 1.

Next EGA-I checks the optimality condition for sets with cardinality greater than 1, i.e., |A| =
|J | > 1. There are O(2n) possible ways that the subsets A and J can be selected. Furthermore, in
order to calculate W1[A, J] and W2[A, J], one needs to solve K + 1 deterministic linear assignment
problems for every subset, where K is the number of scenarios. Thus, it is computationally pro-
hibitive to check all subsets of agents and jobs. Instead, EGA-I considers only a few subsets that
are promising and easy to check.

Definition 3 (Closed Subset) A closed subset in the first stage is a pair of subsets A of agents
and J of jobs such that all agent-job assignments remain within these two sets in the first-stage
myopic solution, i.e.,

J = {j ∈ U | j = mate[i] for some i ∈ A} ,

A = {i ∈ V | i = mate[j] for some j ∈ J} .

A closed subset in the second stage is a pair of subsets A of agents and J of jobs such that all
agent-job assignments remain within these two sets across all scenarios in the second-stage myopic
solutions, i.e.,

J = {j ∈ U | j = matek[i] for some i ∈ A and some scenario k} ,

A = {i ∈ V | i = matek[j] for some j ∈ J and some scenario k} .

Here we want to provide some details about how EGA-I finds closed subsets. For the first-stage
myopic solution, given a subset of agents A, we simply construct J from the mates of agents in
A. For the second stage, EGA-I starts constructing a closed subset in the second stage with empty
sets A of agents and J of jobs. Given the second-stage myopic solution, we arbitrarily choose an
agent and add it to the set of agents A. Then, all jobs that this agent is assigned to across various
scenarios are added to the set of jobs J . Notice that an agent may be assigned to the same job in
several scenarios. Then, for all jobs that are selected in the previous step, the algorithm updates A
to find all agents that jobs from J are assigned to across all scenarios. The algorithm continues in
this manner until both sets cease to change, which implies that a closed subset is constructed. The
whole process described above is repeated for the remaining agents and jobs until a partition of the
set of agents and jobs into a set of closed subsets is obtained.

If A and J correspond to one of the closed subsets in the second stage found by our algorithm,
then by the definition of a closed subset, we have that |A| = |J |. Moreover, the value of W2[A, J]
is readily available and is calculated using the second-stage myopic solutions. After finding closed
subsets in the second stage, EGA-I identifies the ones that satisfy (line 7):

∑

i∈A

αi +
∑

j∈J

βj < W2[A, J], (178)

where αi and βj are dual variables associated with the first-stage myopic solution and the respective
dual problem (165)-(166). Clearly, closed subsets that satisfy (178) violate the necessary optimality
condition since the left-hand side of (178) is an upper bound on W1[A, J]. We use the dual solution
due to the fact that the pair (A, J) is not necessarily closed in the first stage and we do not want
to solve an assignment problem to find W1[A, J].

66

For all subsets that are closed in the second stage and satisfy (178), EGA-I updates the first-stage
weights (lines 6-6). In contrast to GAE-I, updating the first-stage weights properly turns out to be
a more difficult task when we have more than one agent-job pair to consider. Our main goal is to
update edge weights in the first stage for each closed subset of the second stage in such a way that:
(1) the resulting assignment with updated weights should favor the sets to be also closed in the first
stage and (2) if the set becomes also closed in the first stage, then the weight of the assignment
within this set should be exactly W2[A, J].

Next we discuss in detail the weight update procedure for a pair (A, J). First, W1[A, J] is
computed by running HM. Define Ẽ to be the set of all agent-job assignments in the obtained
solution. Then we increase the weights wij in the first stage only for pairs (i, j) ∈ Ẽ according to
the following procedure (see also lines 12-16 of Algorithm 1).

• Let Ẽ = {e1, . . . , e|A|} be sorted in non-decreasing order of the edge weights.

• Find w ∈ R+ and t ∈ Z+ , t ≤ |A|, that satisfy the following conditions:

t∑

r=1

(w − wer) = t · w −
t∑

r=1

wer = ∆, (179)

wet ≤ w < wet+1
, (180)

where we assume that we|A|+1
= +∞.

• Set the weight of each er ∈ Ẽ, 1 ≤ r ≤ t, to be w.

Let W̃1[A, J] be the weight of the optimal assignment in (A, J) after the weight update procedure
described above. It is easy to observe that W̃1[A, J] = W1[A, J] + ∆ = W2[A, J].

As an example, assume that {3, 10, 25} are the weights of the assignment in Ẽ (i.e., we have 3
agents and 3 jobs with selected assignment edges that have values 3, 10, and 25). Thus W1[A, J] =
38. Let W2[A, J] = 50. Then, ∆ = 12. If we start with t = 1, then by (179), we get w = 15, which
violates (180). Incrementing t, we set t = 2 and find w = 12.5, which satisfies (180). Thus we set
we1 = we2 = 12.5. Now we have W̃1[A, J] = 12.5 + 12.5 + 25 = 50 = W2[A, J]. Simply speaking we
increase the weights of the edges with the smallest weights until we have the total increase of ∆.

Subsequently, EGA-I finds the first-stage myopic solution with the updated weights (line 19).
For every closed subset (A, J), we check whether it remains closed in the first-stage, i.e., ∀i ∈ A we
have that mate[i] ∈ J . If this is not the case, we restore each modified assignment weight of [A, J]
and perform one iteration of HM to restore optimality. This phase ends when all the remaining closed
subsets are also closed in the first stage. Note that the number of weights restored and the number
of HM iterations performed are bounded by n, the number of agents. Next, the remaining closed sets
are moved to the second stage (line 26). Finally, EGA-I solves K deterministic assignment problems
with all the agents and jobs moved to the second stage (including those moved after line 1) to find
the second stage solution, and outputs the resulting assignment.

Lemma 2 Let ZEGA
1 be the weight of the assignment returned by EGA-I. Then

ZEGA
1 ≥ ZGAE

1 ≥ ZGA
1 . (181)

Proof: It is clear that the solution found after line 1 is exactly the solution found by GAE-I. Next
consider the first-stage solution and edge weights after line 21. Let {A, J} ∈ C be a closed subset
that is not removed from consideration during the procedure between lines 20-21. Any assignment

67

edge in the first stage that does not belong to closed subsets from C, now has its original value as
it was reset in line 23. Any assignment edge weight that belongs to a closed subset {A, J} ∈ C is
at least as large as its original value because the weight update mechanism given by (179)-(180)
only increases the weights of the edges. By construction, since {A, J} ∈ C is also closed in the first
stage, the total weight of the assignments in this subset, W̃1[A, J](> W1[A, J]), is exactly equal to
W2[A, J]. It implies that there exists an assignment of A and J at the second stage with the same
weight. Hence, the weight of the assignment returned after line 21 is at least as large as weight of
the assignment returned after line 1. The necessary result follows. 2

6.4.2 Improving the second-stage assignment (EGA-II)

EGA-II starts with all agent-job assignments made in the second stage and then attempts to move
some of them to the first stage if it is worth doing so. Due to the lack of control to preserve closed
subsets after each weight update in the second stage, this approach is more sensitive to variations in
assignments across the scenarios. Using the necessary optimality condition, EGA-II tries to achieve
dual feasibility of the model given by (175) and (176). First, it solves the optimization problem given
by the objective function (174) and the constraint set (176). Since the constraints are separable for
the scenarios, we use HM to solve the assignment problem for each scenario separately (lines 2-3 of
Algorithm 2). Therefore, initially all second-stage constraints of the form

αik + βjk ≥ q̃kij, ∀i, j, k (182)

are satisfied as the obtained assignments are the second-stage myopic solutions. Then the algorithm
searches for the pair (i′, j′) such that

(i′, j′) = argmax
(i,j)

{
wij −

K∑

k=1

(αik + βjk)
∣∣∣ wij −

K∑

k=1

(αik + βjk) > 0

}
.

If such pair (i′, j′) does not exists, then the algorithm stops. Otherwise, it implies that the first-stage

dual constraint
{ ∑K

k=1

(
αi′k + βj′k

)
≥ wi′j′

}
is violated. Then consider slack sk = αi′k + βj′k −

q̃ki′j′ for each scenario (line 8). EGA-II updates the weight q̃ki′j′ according to the following scheme:

• If
∑

k sk > 0:

q̂ki′j′ = q̃ki′j′ +

(
wi′j′ −

∑

k

q̃ki′j′

)(
sk∑
k sk

)
. (line 11)

• If
∑

k sk = 0:

q̂ki′j′ = wi′j′

(
q̃ki′j′∑
k q̃

k
i′j′

)
. (line 14)

The intuition behind these update strategies is attempting to keep agent i′ assigned to job j′ across
all scenarios after we update arc weights qki′j′ . Note that after the weight update, we have

K∑

k=1

q̂ki′j′ = wi′j′ .

Therefore, any labeling feasible for the second-stage dual constraints
{

αi′k + βj′k ≥ q̂ki′j′ ∀k
}

is

also feasible for the respective first-stage dual constraint.

68

Algorithm 2: EGA-II

Input: n agents, n jobs, K scenarios, wij , q
k
ij , pk.

1 Let q̃kij = pkq
k
ij and Gk be the graph for the kth scenario in the second-stage

2 foreach Scenario k do
3 Run Hungarian Method on Gk to find an assignment for the kth scenario.

4 while There is an i and j such that [wij >
∑

k (αik + βjk)] do
5 Let (i′, j′) = argmax {wij −

∑
k (αik + βjk)}

6 Add (i′, j′) to set R
7 begin Update assignments on Gk ∀ k
8 Let sk = αi′k + βj′k − q̃ki′j′ // Slack for the kth scenario

9 if
∑

k sk > 0 then
10 foreach Scenario k do

11 q̃ki′j′ := q̃ki′j′ +
(
wi′j′ −

∑
k q̃

k
i′j′

)(
sk∑
k sk

)

12 else
13 foreach Scenario k do

14 q̃ki′j′ := wi′j′

(
q̃k
i′j′∑
k q̃k

i′j′

)

15 foreach Scenario k do
16 Remove edge (mate [j′] , j) from assignment on Gk

17 βj′k = maxi

{
q̃kij′ − αik

}

18 Perform one iteration of Hungarian Method on Gk

19 begin Reset all Gk

20 while There is a pair (i,j) ∈ R such that mate [i] is not j ∀ k do
21 foreach Scenario k do
22 Reset edge weight q̃kij to its original value

23 if mate[i] = j then
24 Remove assignment (i, j) from Gk

25 Perform one iteration of Hungarian Method on Gk

26 Remove the pair (i, j) from R

27 Let G0 be the graph for the first-stage. Move all pairs (i, j) ∈ R from Gk, ∀ k, to G0

28 Run Hungarian Method on G0

29 ZEGA
2 =

∑
i∈G0

wi,mate[i] +
∑

k

∑
i∈Gk

q̃ki,matek [i]

30 return ZEGA
2 , G0, and Gk ∀ k

69

Then, for each scenario, we remove assignment between job j′ and its mate (line 16) and update
dual variable βj′k (line 17), which is necessary to keep the respective constraints (176) satisfied.
Consequently, for each scenario, we lack only one agent-job assignment and the current labeling,
i.e., the values of dual variables (α, β), is feasible for (176). Thus, one iteration of HM (line 18) is
sufficient to achieve an optimal labeling for updated weights q̂ki′j′ for each scenario. This procedure
(lines 4-18) is performed until for every pair (i, j) we have

K∑

k=1

(αik + βjk) ≥ wij, ∀i, j . (183)

Therefore, the following result holds.

Proposition 5 Let A and J be a pair of subsets of agents and jobs, respectively, such that |A| = |J |.
Then after line 18 of Algorithm 2, we have that

∑

k



∑

i∈A

αik +
∑

j∈J

βjk


 ≥W1[A, J]. (184)

Proof: Follows directly from (183). 2

This result implies that after the above described procedure (lines 4-18), the obtained assignment
satisfies the necessary optimality condition for all closed subsets in the second stage. Therefore, con-
trary to the case for EGA-I, EGA-II does not check subsets with cardinality strictly greater than one.

Now, consider an assignment (i,matek[i]) in the kth scenario. If the weight q̂ki,matek[i]
is an

updated weight, and we have the same assignment in all scenarios, i.e., (i,matek[i]) is a closed
subset in the second stage, we can move this assignment to the first stage without changing the
total weight of the current assignments and without affecting other assignments. If we can do this
for all such pairs, then we have an optimal solution due to strong duality. However, it may not
be the case that each time we have the same assignment (i,mate[i]) in all scenarios as the original
problem is NP -hard. Therefore, moving this assignment to the first stage will change assignments
in scenarios where we do not have the assignment (i,mate[i]).

On the other hand, keeping assignment (i,mate[i]), for the subsets that are not closed in the
second stage indicates that we have an updated arc weight which actually does not exist and we can
not find an assignment corresponding to it (i.e., primal infeasible). EGA-II decreases the weight of
the assignment for such pairs to their original values (line 22) and updates the assignments across
all scenarios (lines 23-25) to accommodate this change. Finally, the remaining agent-job pairs with
updated weights are moved to the first stage and a separate assignment problem is solved for them
(lines 27-28).

Lemma 3 Let ZEGA
2 be the weight of the assignment returned by EGA-II. Then

ZEGA
2 ≥ ZGA

2 . (185)

Proof: Denote by (α̃, β̃) the dual second-stage myopic solutions. Consider labeling (α̂, β̂) obtained
after line 26 of Algorithm 2. Since the weight updates only increase the arc weights, we have

K∑

k=1

n∑

i=1

α̂ik +
K∑

k=1

n∑

j=1

β̂jk ≥
K∑

k=1

n∑

i=1

α̃ik +
K∑

k=1

n∑

j=1

β̃jk.

Observe that the procedure after line 26 can only potentially improve the weight of the final
assignment returned by EGA-II, which concludes the proof. 2

70

Theorem 6 Approximation bounds given for GAE in Theorems 4 and 5 are valid for EGA, and its
solution satisfies

ZEGA ≥ ZGAE ≥ ZGA.

Proof: The necessary result directly follows from Lemmas 2 and 3. 2

Proposition 6 Time complexity of EGA is O
(
Kn4

)
.

Proof: First we consider complexity of GAE-I. It is easy to observe that lines 1-4 takes O(Kn3)
time. Next step is to find closed subsets. There can be at most n closed subsets and O(Kn) time
is required in the worst case to construct each of them. Thus, in total O(Kn2) time is required
to construct all closed subsets. Next, solving the assignment problem for a closed subset (line 10)
would take O(|A||A|2) which is equal to O(|A|n2). Since

∑
{A,J}∈C |A| ≤ n, the total complexity

of solving the assignment problems for all closed subsets would take O(n3) time. The complexity
of sorting in line 12 is O(|A| lg |A|) and similar to our previous argument, total time complexity
of sorting would be O(n lg n). If one starts with t = 1 and tries each index sequentially, the total
time complexity of the lines 13-16 for all closed subsets would be O(n). Consequently, complexity
of updating the weights is of O(n3). At most n iterations of HM is performed between lines 20-21
and thus the resetting procedure is of O(n3) time complexity. Finally solving K + 1 assignment
problems (line 28) has a time complexity of O(Kn3). Consequently, the total time complexity of
EGA-I is O(Kn3).

The most time consuming procedure for EGA-II is updating weights and assignments (lines 4-4).
Since there are n2 first-stage dual constraints, the outer loop requires O(n2) operations. The inner
loop is to increase cardinality of assignments by 1 across all scenarios, in the worst case. Since
each stage of HM requires O(n2) time, the inner loop requires at most O(Kn2) time. Thus, the time
complexity of EGA-II is O

(
Kn4

)
. This completes the proof. 2

6.4.3 Improving EGA with Local Search

In this section we introduce a greedy local exchange based heuristic that seeks to further improve the
results obtained by EGA-I and EGA-II. Let (X,Y) = (x, y1, y2, . . . , yK) be a feasible assignment for
the 2SSLA problem. Here, we distinguish between an assignment (i, j) and a pair [i, j]. The former
one indicates that agent i is assigned to job j whereas for the latter one we do not imply any de-
pendence. We say that pair [i, j] belongs to the partial solution X (or Y) if assignments (i,mate[i])
and (mate[j], j) are at the first stage (or second stage). Define the following neighborhoods for a
given solution (X,Y):

• Neighborhood N1 for solution (X,Y) is defined to be the set of all solutions obtained by
moving any pair [i, j] from X to Y . This implicitly requires [i, j] ∈ X. Thus, to maintain
feasibility, if a solution (X,Y) ∈ N1(X,Y), then we have (mate[j],mate[i]) ∈ X and (i, j) ∈ Y ,
assuming that (X,Y) is obtained from (X,Y) with respect to pair [i, j]. This exchange process
is illustrated in Figure 9.

• NeighborhoodN2 for solution (X,Y) is defined to be the set of all solutions obtained by moving
any pair [i, j] from Y to X. This implicitly requires [i, j] ∈ Y . Thus, to maintain feasibility,
if a solution (X,Y) ∈ N2(X,Y), then we have (i, j) ∈ X and (mate[j],mate[i]) ∈ Y . This
exchange process is illustrated in Figure 10.

Proposition 7 The solutions obtained by GAE and EGA-I are locally optimal with respect to the
neighborhood N1.

71

(a) Initial solution. (b) Final solution obtained.

Figure 9: The neighborhood N1.

(a) Initial solution. (b) Final solution obtained.

Figure 10: The neighborhood N2.

Proof: Let (X,Y) be the solution returned after line 1 of Algorithm 1. Consider a pair [i, j] ∈ X.
We check whether there is a better solution (X,Y) ∈ N1(X,Y) with respect to [i, j] as follows:

K∑

k=1

q̃kij > wi,mate[i] +wmate[j],j − wmate[j],mate[i]. (186)

72

Assume that [i, j] satisfies (186) and consider the respective dual solution for X. Then we know
that the constraints (166) are tight for (i,mate[i]) and (mate[j], j):

αi + βmate[i] = wi,mate[i]; αmate[j] + βj = wmate[j],j; and αmate[j] + βmate[i] ≥ wmate[j],mate[i].

Then, from (186), we have

K∑

k=1

q̃kij > wi,mate[i] + wmate[j],j − wmate[j],mate[i]

≥ (αi + βmate[i]) + (αmate[j] + βj) − (αmate[j] + βmate[i])

= αi + βj .

However, this is not possible because the necessary optimality condition for sets with unit cardinality
implies that αi + βj ≥ wij ≥

∑K
k=1 q̃

k
ij due to the update in (177). Therefore, the necessary result

follows. 2

Next consider EGA-II. Let (X,Y) be the solution obtained by EGA-II and let [i, j] ∈ Y . We check
whether switching to a solution in the neighborhood N2 of (X,Y) with respect to [i, j] improves
our current solution. Formally, we verify whether

wij >

K∑

k=1

(
q̃ki,mate[i] + q̃kmate[j],j − q̃kmate[j],mate[i]

)
. (187)

If (187) is satisfied, then removing pair [i, j] for all scenarios in the second stage and assigning i to
j in the first stage improves our solution. This process is illustrated in Figure 10. However, we may
further improve our new solution by running one iteration of Hungarian Method for the first stage
and K iterations of Hungarian Method for the second stage. Since each iteration of Hungarian
Method requires O(n2) time, this update requires O(Kn2) time. Furthermore, at most n pairs may
be moved to the first stage which results in a total time complexity of O(Kn3) for local search after
EGA-II.

6.4.4 Analytical Observations

Next, we discuss performance of GA, GAE, and EGA on two carefully constructed classes of test in-
stances. Assume that in both classes, we have 2n agents, 2n jobs, and K scenarios, K ≤ n. We
partition the set of all agents and jobs into two groups: G1 and G2, where G1 contains the first n
agents and n jobs and G2 contains remaining n agents and n jobs. Now we describe two types of
instances.

Split Instances: We construct this type of instances as follows:

wij =





1 for (i, j) ∈ G1 ,
2K for (i, j) ∈ G2 and i = j ,
0 o/w.

qkij =





K for (i, j) ∈ G1 and i+ k − 1 ≡ j mod (n) ,
K for (i, j) ∈ G2 ,
0 o/w.

and pk = 1/K, k = 1, . . . ,K . The structure of these instances is illustrated in Figure 11. It is
optimal to make assignments for G2 in the first stage while for G1 it is optimal to make assignments

73

Figure 11: A split instance forK = n = 2 (only nonzero arcs are shown). Thick lines show first-stage
and second-stage myopic solutions.

in the second stage. Therefore, the total weight of the optimal assignment is 3nK.

Interleaved Instances: We construct this type of instances as follows:

wij =





1 for (i, j) ∈ G1 ,
2K for (i, j) ∈ G2 and i = j ,
0 o/w.

qkij =





K for (i, j) ∈ G1 and i+ k − 1 ≡ j mod (n) ,
K for i ∈ G1, j ∈ G2, and i+ k − 1 ≡ j − n mod (n) ,
K for i ∈ G2, j ∈ G1, and i+ k − 1 ≡ j mod (n) ,
0 o/w.

and pk = 1/K, k = 1, . . . ,K. The structure of these instances is illustrated in Figure 12. The
optimal solution should have all assignments within G1 in the second stage and all assignments
within G2 in the first stage, with the total weight of 3nK.

Proposition 8 The weights of the assignments obtained by GA, GAE, and EGA for split instances are
n(2K + 1), n(2K + 1), and 3nK, respectively.

Proof: It is easy to check that GA would make all assignments in the first stage and the total
weight of this assignment would be n(2K + 1). Next we consider GAE. From Figure 11, it is clear
that the first-stage myopic solution satisfies the necessary optimality condition for the sets of unit
cardinality. Thus, solution returned by GAE is the same as the solution returned by GA.

Finally, we consider EGA. Notice that the total weight of the assignments within G1 in the
first stage is n whereas the expected total weight of assignments within G1 in the second stage is
nK. Thus, the first-stage myopic solution violates the necessary optimality condition. Since in the
second-stage myopic solution, G1 will be a closed subset, EGA-I would move all assignments to the

74

Figure 12: An interleaved instance for K = n = 2 (only nonzero arcs are shown). Thick lines show
first-stage and second-stage myopic solutions.

second stage. Therefore, the weight of the assignment returned by EGA-I is at least 3nK. Since
the weight of the optimal assignment for ‘split’ instances is 3nK and EGA returns the best of EGA-I
and EGA-II, EGA finds the optimal solution. 2

Proposition 9 The weights of the assignments obtained by GA, GAE, and EGA for interleaved in-
stances are n(2K + 1), n(2K + 1), and 3nK, respectively.

Proof: Similar to the proof of Proposition 8. 2

We want to conclude this section by emphasizing the importance of the constructed problem
instances as they demonstrate that both GA and GAE can give results significantly away from optimal,
while EGA returns the optimal solution for both of these classes of test instances.

6.5 Computational Experiments

6.5.1 Setup

Five classes of test instances are used in our computational experiments. The first two classes are
similar to the ones used in [52], which allow us to provide an unbiased comparison of GAE and EGA.

Uncorrelated Instances: All the edge weights are drawn from N(10, 15), the normal distri-
bution with mean 10 and standard deviation 15.

wij ∼ N(10, 15), ∀i, j.

qkij ∼ N(10, 15), ∀i, j, k.

If the generated weight is negative, then it is set to zero. All scenarios have the same probability.

75

Correlated Instances: For these instances, the second stage weights are correlated.

wij ∼ N(10, 15), ∀i, j.

qij ∼ N(10, 15), ∀i, j.

qkij ∼ qij +N(0, 5), ∀i, j, k.

If the generated weight is negative, then it is set to zero. All scenarios have the same probability.
The intuition behind the next class of test instances is to have the necessary optimality condition

satisfied for nearly all unit cardinality sets, but possibly violated for subsets with two agents and
two jobs. As it is demonstrated later, both GA and GAE fail to identify such rather simple weight
dependencies.

Pairwise-Correlated Instances: Unlike correlated instances, the correlation in these in-
stances is not just on a single agent and job, but on pairs of agents and jobs.

wij =





N(200, 40) for i ≡ 0 mod (3),
N(140, 30) for i ≡ 1 mod (3) and i ≤ j ≤ i+ 1,
N(140, 30) for i ≡ 2 mod (3) and i− 1 ≤ j ≤ i,
N(10, 15) o/w.

qkij =





N(200, 40) for k ≡ 0 mod (2), i ≡ 1 mod (3), and j = i,
N(200, 40) for k ≡ 1 mod (2), i ≡ 1 mod (3), and j = i+ 1,
N(200, 40) for k ≡ 0 mod (2), i ≡ 2 mod (3), and j = i,
N(200, 40) for k ≡ 1 mod (2), i ≡ 2 mod (3), and j = i− 1,
N(10, 15) o/w.

Next we provide details for split-like and interleaved-like instances. Both classes are based on
the instances introduced in Section 6.4.4 with modifications that are aimed at “randomizing” their
structures. In particular, we add a third class of agents and jobs to the ‘split’ and ‘interleaved’
instances with uniformly generated assignment weights. Thus, we have 3n agents, 3n jobs, and K
scenarios, K ≤ n. Let G1, G2, and G3 be the sets of first, second, and third n agents and jobs,
respectively.

Split-like Instances: We let

wij =





U [900/K, 1000/K] for (i, j) ∈ G1 ,
U [500, 1000] for (i, j) ∈ G2 ,
U [100, 1000] for (i, j) ∈ G3 ,

U [2, 10] o/w.

qkij =





U [800, 900] for (i, j) ∈ G1 and i+ k − 1 ≡ j mod (n) ,
U [100, 500] for (i, j) ∈ G2 ,
U [100, 1000] for (i, j) ∈ G3 ,

U [2, 10] o/w.

Interleaved-like Instances: We let

wij =





U [900/K, 1000/K] for (i, j) ∈ G1 ,
U [4000, 5000] for (i, j) ∈ G2 and i = j ,
U [100, 1000] for (i, j) ∈ G3 ,

U [2, 10] o/w.

76

qkij =





U [800, 900] for (i, j) ∈ G1 and i+ k − 1 ≡ j mod (n) ,
U [1500, 2000] for i ∈ G1, j ∈ G2, and i+ k − 1 ≡ j − n mod (n) ,
U [1500, 2000] for i ∈ G2, j ∈ G1, and i+ k − 1 ≡ j mod (n) ,
U [100, 1000] for (i, j) ∈ G3 ,

U [2, 10] o/w.

The probability for each scenario is set to be 1/K for each instance from either class.
In our computational experiments, we use CPLEX 12.2 [82]. The algorithms are coded in C++

and implemented on a Windows XP based machine with Intel Xeon 3 GHz processor and 3GB RAM.
In our experiments we consider problems with 2, 3, 5, 10, and 20 scenarios and 10, 20, 50, 100, and
200 agents/jobs. For each of these 25 configurations, we conduct 10 replications and report their
averages.

6.5.2 Results and Discussion

We report statistics for CPLEX solver as well as GA, GAE, and EGA algorithms. The first two columns,
as can be seen in Table 4, are self explanatory. We provide average running time (in seconds) for
CPLEX in Cplex T column. We have enforced a time limit of 3600 seconds on CPLEX and an
average running time of 3600 seconds in this column implies that CPLEX is unable to solve all
IP formulations directly to optimality. In such cases, when an integral solution is not available,
we use the LP relaxation solution for comparison purpose. The next three columns report the
percentage deviation from the CPLEX solution for GA-I, GA-II, and the overall running time for
GA in seconds. Next we provide the percentage deviation of the solution returned by GAE-I from
the CPLEX solution. Since GAE-II is the same as GA-II, we do not provide such information.
However, we report the combined time of GAE-I and GAE-II under the GAE T column. The next
three columns are results obtained by EGA. Finally, we provide results for EGA-II with local search
and the time spent for the local search procedure, excluding the time for obtaining EGA-II solution
prior to the local search procedure. We have marked the best results in bold in all tables.

Results for the uncorrelated instances are given in Table 4. It can be observed that CPLEX has
difficulty in solving large instances whereas the running time does not exceed 5 seconds for all other
algorithms. As expected, EGA finds the best results in all cases. EGA solution yields a significant
improvement over GA solution and is reasonably better than GAE solution. EGA-II (with and without
local search) is successful in improving the second-stage myopic solution.

Table 5 summarizes results for the correlated instances. Both EGA-I and EGA-II find nearly
optimal solutions and local search further improves the solution of EGA-II. GAE-I also performs
very well on these instances, which is expected due to the structure of these test instances. Note
that if an edge has a large weight in one scenario, then it should have a large weight in all scenarios.
Thus, most of the time, it is better to make assignments for the agents and jobs incident to such
edges in the second stage. Since GAE checks the necessary optimality condition for subsets of unit
cardinality, its success on these instances is expected.

Results for the pairwise-correlated instances are summarized in Table 6. Both GA and GAE per-
form rather poorly. On the other hand, EGA (especially EGA-I) is successful in detecting correlation
between pairs of agents and jobs. Since correlation is between pairs of jobs but not larger subsets,
local search is also successful and is able to find an optimal solution in almost all cases.

Results for the split-like instances are summarized in Table 7. One can observe that CPLEX
runs out of time for larger instances. Solutions found by GA and GAE are poor. In fact, GA and GAE

find almost the same solutions. On the other hand, solution of EGA-I is only 1% worse than the
CPLEX solution on average. EGA-II performs rather poorly for large instances; however the local
search procedure is able to eliminate this deviation as shown in EGA-II LS. The reason that EGA-I

77

Table 4: Results for uncorrelated instances.

Scenarios Agents Cplex T GA-I GA-II GA T GAE-I GAE T EGA-I EGA-II EGA T EGA-II LS EGA-II LS T

2 10 0 9.60 10.24 0 2.00 0 2.00 6.36 0 3.72 0
20 0 10.03 9.15 0 5.33 0 5.33 4.36 0 2.71 0
50 0 6.88 6.95 0 4.55 0 4.55 3.88 0 3.22 0
100 1 6.24 6.28 0 4.80 0 4.80 3.23 0 3.08 0
200 10 5.16 5.36 0 4.53 0 4.50 2.70 0 2.67 0

3 10 0 9.33 8.84 0 3.48 0 3.48 6.83 0 3.84 0
20 0 6.87 8.05 0 3.77 0 3.77 6.15 0 4.96 0
50 0 6.34 6.65 0 5.65 0 5.65 5.42 0 4.79 0
100 7 5.37 5.10 0 5.03 0 4.83 3.65 0 3.42 0
200 325 4.65 4.74 0 4.55 0 4.21 3.13 0 3.09 0

5 10 0 12.11 8.82 0 6.85 0 5.68 8.51 0 2.63 0
20 0 7.85 6.74 0 6.63 0 5.71 6.55 0 5.48 0
50 1 5.25 5.53 0 5.10 0 3.97 4.66 0 4.40 0
100 119 4.22 4.10 0 4.20 0 3.51 3.55 0 3.36 0
200 2113 3.98 3.68 0 3.98 0 3.51 3.06 2 3.02 0

10 10 0 8.46 8.16 0 6.21 0 5.65 7.51 0 2.53 0
20 0 4.42 6.56 0 4.26 0 3.96 6.56 0 4.81 0
50 26 4.63 4.81 0 4.58 0 3.74 4.40 0 4.07 0
100 1536 4.26 3.58 0 4.26 0 3.31 3.41 0 3.40 0
200 3600 3.73 3.49 0 3.73 0 3.40 2.93 3 2.82 0

20 10 0 4.47 9.87 0 2.34 0 2.34 9.87 0 4.39 0
20 0 5.86 4.39 0 5.47 0 4.50 4.39 0 3.92 0
50 96 4.42 4.03 0 4.42 0 3.31 4.03 0 3.57 0
100 2391 3.81 3.80 0 3.81 0 3.32 3.71 0 3.71 0
200 3600 0.43 0.76 1 0.43 1 0.23 0.52 5 0.20 0

78

Table 5: Results for correlated instances.

Scenarios Agents Cplex T GA-I GA-II GA T GAE-I GAE T EGA-I EGA-II EGA T EGA-II LS EGA-II LS T

2 10 0 6.89 2.49 0 0.32 0 0.19 0.13 0 0.09 0
20 0 4.65 1.90 0 0.56 0 0.55 0.13 0 0.12 0
50 0 4.98 1.18 0 0.61 0 0.60 0.23 0 0.20 0
100 0 4.80 1.05 0 0.73 0 0.72 0.15 0 0.13 0
200 2 4.76 0.82 0 0.81 0 0.80 0.16 0 0.15 0

3 10 0 5.65 1.70 0 0.73 0 0.31 0.18 0 0.15 0
20 0 4.86 1.24 0 0.69 0 0.57 0.19 0 0.17 0
50 0 4.78 0.67 0 1.00 0 1.00 0.15 0 0.15 0
100 0 4.54 0.66 0 1.18 0 1.18 0.22 0 0.21 0
200 3 4.64 0.46 0 1.22 0 1.22 0.15 0 0.14 0

5 10 0 4.57 1.06 0 1.13 0 0.95 0.41 0 0.27 0
20 0 4.20 0.65 0 1.20 0 0.87 0.16 0 0.15 0
50 0 4.27 0.45 0 1.43 0 1.43 0.19 0 0.15 0
100 0 4.60 0.32 0 1.61 0 1.59 0.15 0 0.14 0
200 5 4.48 0.24 0 1.63 0 1.63 0.09 0 0.09 0

10 10 0 4.26 0.50 0 1.17 0 1.17 0.14 0 0.13 0
20 0 4.12 0.46 0 1.84 0 1.42 0.28 0 0.20 0
50 0 4.05 0.25 0 1.97 0 1.97 0.13 0 0.11 0
100 1 4.23 0.20 0 2.02 0 1.82 0.10 0 0.08 0
200 10 4.22 0.14 0 2.03 0 1.38 0.07 1 0.07 0

20 10 0 3.44 0.28 0 1.71 0 0.80 0.10 0 0.07 0
20 0 3.90 0.19 0 1.91 0 1.18 0.10 0 0.07 0
50 0 4.07 0.10 0 2.21 0 1.33 0.06 0 0.05 0
100 3 4.00 0.11 0 2.23 0 1.51 0.07 0 0.06 0
200 2526 4.12 0.06 1 2.39 1 0.52 0.04 2 0.04 0

79

Table 6: Results for pairwise-correlated instances.

Scenarios Agents Cplex T GA-I GA-II GA T GAE-I GAE T EGA-I EGA-II EGA T EGA-II LS EGA-II LS T

2 10 0 11.35 36.30 0 10.91 0 3.43 0.00 0 0.00 0
20 0 14.14 31.56 0 13.29 0 3.04 0.44 0 0.00 0
50 0 15.31 28.55 0 14.51 0 4.21 1.16 0 0.00 0
100 0 16.34 27.45 0 15.13 0 4.55 0.42 0 0.00 0
200 1 16.38 26.36 0 14.92 0 4.49 0.63 0 0.00 0

3 10 0 13.87 35.07 0 9.62 0 3.29 0.00 0 0.00 0
20 0 14.65 30.45 0 11.18 0 4.46 3.48 0 0.00 0
50 0 14.66 28.54 0 10.55 0 3.56 4.02 0 0.00 0
100 0 16.08 27.41 0 11.20 0 5.53 2.37 0 0.00 0
200 1 15.66 26.12 0 11.04 0 4.88 0.60 0 0.00 0

5 10 0 14.57 35.08 0 13.72 0 5.54 0.00 0 0.00 0
20 0 14.87 30.51 0 12.86 0 3.75 5.23 0 0.00 0
50 0 15.46 28.32 0 14.22 0 4.12 3.65 0 0.00 0
100 0 15.42 27.57 0 13.88 0 4.19 3.84 0 0.01 0
200 2 15.97 26.31 0 13.83 0 4.25 4.76 0 0.00 0

10 10 0 14.87 36.65 0 14.71 0 2.32 0.00 0 0.00 0
20 0 13.14 30.83 0 12.96 0 0.97 14.76 0 0.00 0
50 0 14.82 28.53 0 14.57 0 2.26 18.68 0 0.00 0
100 1 15.72 27.79 0 15.29 0 2.85 9.22 0 0.00 0
200 5 15.60 26.66 0 15.16 0 2.41 8.70 1 0.01 0

20 10 0 14.87 35.35 0 14.70 0 2.99 3.92 0 0.00 0
20 0 16.04 30.10 0 15.48 0 4.28 8.80 0 0.00 0
50 0 15.67 28.71 0 15.00 0 3.25 14.11 0 0.00 0
100 2 16.17 27.28 0 15.88 0 2.61 19.12 0 0.00 0
200 2524 15.91 26.18 1 15.50 1 2.57 15.70 3 0.00 0

80

is successful on this class of instances is that it is the only algorithm that can move the whole set G1

of agents and jobs to the second stage as this set of agents and jobs does not satisfy the necessary
optimality condition. It takes only 5 seconds for EGA to find a very good solution to the largest
problem instance, whereas CPLEX is considerably slower.

Table 8 reports results for the interleaved-like instances. This time EGA-II is the best of all
the algorithms considered. Its solution is only about 0.3% worse than the CPLEX solution. Since
EGA-II is already very successful, we do not expect much improvement from the local search heuris-
tic. It is also interesting to notice that contrary to the case for EGA, the first-stage solution is better
than the second-stage solution for GA and GAE. In terms of time requirements, EGA requires at most
3 seconds for all test instances.

In summary, we should point out that the results for the pairwise-correlated as well as split-like
and interleaved-like instances indicate that if the weight dependencies between subsets of agents
and jobs become more complicated (e.g., in comparison with the correlated instances) then GA and
GAE algorithms fail to correctly identify the proper assignments between such subsets of agents and
jobs. This is due to the fact that these algorithms check the necessary optimality conditions only
for subsets of size 1 and n. On the other hand, EGA is specifically designed to locate some of such
subsets of agents and jobs, thus significantly improving the quality of the obtained solutions.

6.6 Concluding Remarks

In this chapter we discuss several greedy approximation algorithms for the 2SSLA problem. The
proposed necessary optimality condition unifies two recent greedy approximation algorithms from
the literature, and aid in the development of a more advanced approach. While EGA preserves
the approximation guarantees of GAE, we are not able to prove whether EGA provides a better
approximation bound. However, analytical observations and computational results indicate that EGA
has strictly better results on some rather broad classes of the two-stage stochastic linear assignment
problem.

As future research directions, one can use the proposed necessary optimality condition to develop
new algorithms with better approximation guarantees, consider the extension to the multi-stage
stochastic linear assignment problem, or concentrate on the problems with stochastic right-hand
sides, e.g., when multiple jobs can be performed by the same agent. Furthermore, the results of
the reported computational experiments indicate that the integrality gap is very small for most of
the considered test instances. Thus, development of approximation algorithms based on the LP
relaxation of the original integer program is among promising research directions. We are also
currently working extending these results for some classes of nonlinear assignment problems.

81

Table 7: Results for split-like instances.

Scenarios Agents Cplex T GA-I GA-II GA T GAE-I GAE T EGA-I EGA-II EGA T EGA-II LS EGA-II LS T

2 10 0 22.01 8.41 0 15.39 0 3.17 1.75 0 0.85 0
20 0 17.23 11.89 0 13.89 0 2.00 3.66 0 1.03 0
50 0 14.41 15.60 0 13.30 0 1.20 6.93 0 1.04 0
100 0 13.63 16.73 0 13.19 0 0.73 6.22 0 0.78 0
200 5 12.73 17.12 0 12.57 0 0.33 6.71 0 0.51 0

3 10 0 25.43 4.01 0 21.20 0 2.67 0.94 0 0.41 0
20 0 19.99 10.12 0 18.75 0 1.12 5.78 0 1.50 0
50 0 19.04 14.62 0 18.85 0 0.71 9.69 0 1.35 0
100 1 18.75 16.22 0 18.71 0 0.33 9.28 0 0.98 0
200 27 18.32 16.84 0 18.32 0 0.18 7.94 0 0.51 0

5 20 0 23.33 9.29 0 22.70 0 0.37 7.81 0 2.10 0
50 0 23.27 14.43 0 23.21 0 0.43 11.84 0 1.73 0
100 5 23.38 16.19 0 23.37 0 0.22 11.02 0 0.77 0
200 860 22.91 16.79 0 22.91 0 0.11 10.18 1 0.48 0

10 50 2 26.98 14.19 0 26.97 0 0.25 13.50 0 0.58 0
100 120 26.77 16.10 0 26.77 0 0.07 13.97 0 0.41 0
200 3600 26.41 16.80 0 26.41 0 0.11 12.86 2 0.34 0

20 100 2892 28.52 16.20 0 28.52 0 0.16 15.84 0 0.45 0
200 3600 28.18 16.77 1 28.18 1 0.10 15.38 5 0.27 0

82

Table 8: Results for interleaved-like instances.

Scenarios Agents Cplex T GA-I GA-II GA T GAE-I GAE T EGA-I EGA-II EGA T EGA-II LS EGA-II LS T

2 10 0 6.55 30.21 0 5.67 0 5.67 0.57 0 0.30 0
20 0 6.44 29.45 0 5.68 0 5.68 0.69 0 0.50 0
50 0 5.92 29.57 0 5.76 0 5.75 0.32 0 0.28 0
100 0 5.77 29.35 0 5.70 0 5.70 0.17 0 0.17 0
200 3 5.62 29.30 0 5.60 0 5.60 0.09 0 0.09 0

3 10 0 9.66 30.69 0 8.59 0 8.53 0.86 0 0.22 0
20 0 9.01 29.31 0 8.40 0 8.32 0.81 0 0.62 0
50 0 8.57 28.99 0 8.45 0 8.42 0.28 0 0.26 0
100 1 8.34 29.24 0 8.32 0 8.31 0.19 0 0.18 0
200 12 8.20 29.36 0 8.20 0 8.19 0.09 0 0.09 0

5 20 0 10.72 29.29 0 10.36 0 10.36 0.69 0 0.54 0
50 0 10.35 29.51 0 10.32 0 10.24 0.21 0 0.21 0
100 4 10.38 29.43 0 10.37 0 10.33 0.14 0 0.14 0
200 984 10.24 29.40 0 10.24 0 10.22 0.06 0 0.06 0

10 50 1 12.01 28.75 0 11.99 0 11.90 0.14 0 0.14 0
100 65 11.94 29.11 0 11.94 0 11.90 0.09 0 0.09 0
200 3600 11.83 29.19 0 11.83 0 11.82 0.07 1 0.07 0

20 100 3273 12.75 28.96 0 12.75 0 12.74 0.11 0 0.11 0
200 3600 12.62 29.12 1 12.62 1 12.61 0.06 3 0.06 0

83

7 Multiple-Ratio Fractional Programming Problems

This chapter is mostly based on the results from:

• O. Ursulenko, S. Butenko, O.A. Prokopyev, “A Global Optimization Algorithm for Solving
the Minimum Multiple Ratio Spanning Tree Problem,” Technical report, 2010.

7.1 Introduction

A fractional combinatorial optimization problem is defined as follows:

min
x∈X

f(x)

g(x)
, (188)

where X ⊆ {0, 1}p is a set of certain combinatorial structures, and f and g are real-valued functions
defined on X . In addition, it is common to assume that g(x) > 0 for all x ∈ X [129].

One of the classical fractional combinatorial optimization problems is the minimum ratio span-
ning tree (MRST) problem [35], which is defined as follows. Consider a graph G = (V,E) with
the set V of n vertices and the set E of m edges. Given a pair of numbers (aij , bij) for each edge
(i, j) ∈ E, find a spanning tree τ∗, which solves

min
τ∈T

∑
(i,j)∈τ aij∑
(i,j)∈τ bij

, (189)

where T denotes the set of all spanning trees of G.
The practical applications of this problem include the minimal cost-reliability ratio spanning

tree problem [36], where the functions in the numerator and the denominator of (189) represent
the cost and the reliability of the spanning tree τ ∈ T , respectively. This problem can be solved
in polynomial time using O(|E|5/2 log log |V |) arithmetic operations [36, 37, 85]. Closely related
classes of problems, where X is a cycle, a path, or a cut in graph G also admit polynomial time
solution approaches [8, 105, 128, 129]. An example of such a problem is the minimum cost-to-time
ratio cycle problem, also known as the tramp steamer problem [8]. A short survey on fractional
combinatorial optimization problems and related solution approaches can be found in [129].

Recently, Skiscim and Palocsay [140, 141] have considered a generalization of the MRST problem,
where the objective function is given by the sum of two ratios. The resulting two ratio minimum
spanning tree (TRMST) problem is defined as follows. Consider a graph G = (V,E) with the set V
of n vertices and the set E of m edges. Given a set of 4 real positive numbers (aij , bij , cij , dij) for
each edge (i, j) ∈ E, find a spanning tree τ∗, which solves

min
τ∈T

∑
(i,j)∈τ aij∑
(i,j)∈τ bij

+

∑
(i,j)∈τ cij∑
(i,j)∈τ dij

, (190)

where T denotes the set of all spanning trees of G.
A closely related class of combinatorial optimization problems is optimization of the ratio of two

linear 0–1 functions:

max
x∈{0,1}n

f(x) =
a0 +

∑n
i=1 aixi

b0 +
∑n

i=1 bixi
. (191)

This problem is a special case of (188) and is usually referred to as a single-ratio hyperbolic 0-1
programming problem or single-ratio fractional 0–1 programming problem [25]. In a generalization

84

of this problem one considers the sum of ratios of linear 0–1 functions in the objective:

max
x∈{0,1}n

f(x) =

k∑

r=1

ar0 +
∑n

i=1 arixi
br0 +

∑n
i=1 brixi

, (192)

This problem is known as the multiple-ratio hyperbolic (fractional) 0-1 programming problem [127,
145]. A short survey of the literature dealing with the fractional 0–1 programming problems can
be found in [125]. Applications of constrained and unconstrained versions of these problems can be
found in service systems design [51], facility location [145], query optimization in data bases and
information retrieval [77], data mining [29], etc.

Both the minimum ratio spanning tree problem and the single-ratio hyperbolic 0–1 programming
problem are polynomially solvable if the denominator is always positive, but become NP -hard if
the denominator can take both positive and negative values [77, 126, 140]. On the other hand, their
multiple-ratio versions (190) and (192) are NP -hard for two ratios, even if all denominators are
always positive [127, 140]. Some other complexity aspects of unconstrained single- and multiple-
ratio fractional 0–1 programming problems, including complexity of uniqueness, approximability
and local search, are addressed in [126, 127].

Generally speaking, multiple-ratio problems appear in the case of multiple fractional perfor-
mance metrics that need to be optimized, e.g., a fleet of cargo ships in the tramp steamer problem.
Related discussion can be found in [39, 135, 140, 141] and references therein. Analogously with the
definition of the multiple-ratio hyperbolic 0–1 programming problem, the multiple-ratio fractional
combinatorial optimization (MRFCO) problem is defined as

min
x∈X

k∑

i=1

fr(x)

gr(x)
, (193)

where X ⊆ {0, 1}p is a set of certain combinatorial structures, and fr and gr, r = 1, . . . , k, are
real-valued function defined on X .

Another possible application of MRFCO problems is to consider the original single-ratio prob-
lem in a stochastic environment. Suppose the input data can be described by a discrete number of
possible scenarios with corresponding probabilities ps, which is a typical assumption in stochastic
optimization literature [23]. Assume also that the original metric is given by fs(x)/gs(x) for each
scenario s, s = 1, . . . , S. Then designing combinatorial structure x ∈ X with the minimum expected
cost reduces to the MRFCO problem:

min
x∈X

S∑

s=1

ps
fs(x)

gs(x)
. (194)

Obviously, the TRMST problem mentioned above is a simple example of the MRFCO problem.
Then the multiple-ratio version of the MRST problem is formulated as follows. Let G = (V,E) be a
graph with the set V of n vertices and the set E of m edges. Given k pairs of real positive numbers
(a1ij , b

1
ij), (a

2
ij , b

2
ij), . . ., (a

k
ij , b

k
ij) for each edge (i, j) ∈ E, the minimum multiple-ratio spanning tree

(MMRST) problem is to find a spanning tree τ∗, which solves

min
τ∈T

k∑

r=1

∑
(i,j)∈τ a

r
ij∑

(i,j)∈τ b
r
ij

, (195)

where T denotes the set of all spanning trees of G. Note that, similarly to [141], we assume that
all the coefficients in the pairs (a1ij , b

1
ij), (a

2
ij , b

2
ij), . . ., (a

k
ij , b

k
ij) are positive for each arc (i, j) ∈ A.

85

The MMRST problem may naturally arise, e.g., in applications where one is looking for an optimal
connected configuration in a network that serves k users, r = 1, . . . , k, each of which has its own
set of “cost” and “benefit” pairs {(arij , b

r
ij) : (i, j) ∈ E} associated with edges in E.

In this chapter we develop a global branch-and-bound approach for solving the MMRST problem
based on representing the problem in the image space pioneered by Falk and Palocsay for general
fractional programming [53, 54]. The suggested algorithm has evolved from the ideas behind the
work on two-ratio minimum spanning trees by Skiscim and Palocsay [140].

The image space of the feasible set T [54] is obtained via introducing a mapping M : T → R
k,

such that

Y =

{
M(x) ≡

(
aT1 x

bT1 x
,
aT2 x

bT2 x
, . . . ,

aTk x

bTk x

)T

: x ∈ T

}
. (196)

The idea of the image space became popular in research related to solving the problems involving the
sum of ratios. One reason is that using the image space may significantly reduce the computational
burden when k << n, which is usually the case in practical applications. This especially applies to
our case, since for combinatorial problems like MST the dimension of the original feasible region is
often extremely large. Another reason is that, when translated to R

k, the MMRST problem (195)
is equivalent to the linear program

min eT y
subject to y ∈ conv(M(T)),

(197)

where e denotes the corresponding vector of all ones. Unfortunately, neither we have a description
of conv(M(T)) nor there exists a systematic way of generating its facets or extreme points. It may
be possible, however, to build a sort of an approximation of conv(Y), which would be accurate
enough in the neighborhood of an optimal extreme point y∗ to guarantee a solution as close to y∗

as needed. This is precisely the idea our algorithm is based on.
The rest of this chapter is organized as follows. Section 7.2 provides a detailed description of

the developed global optimization algorithm and the proof of its convergence. The computational
results are discussed in Section 7.3. Section 7.4 outlines some directions for future research. For
graph theory definitions used in the chapter and for a recent detailed bibliography of fractional
programming we refer the reader to [8] and [143], respectively.

7.2 A Global Optimization Approach

This section develops a global optimization approach for the MMRST problem. Its first subsection
provides the description of the proposed algorithm and establishes convergence, while the remaining
two subsections address two important aspects of the algorithm, namely, solving a subproblem and
partitioning the feasible region, respectively.

7.2.1 Description and convergence of the main algorithm

In order to proceed with description of the algorithm, let us introduce some additional notation
that we use throughout the rest of the chapter. Recall the definition of the image Y , M(T) of
the feasible set T of the MMRST problem introduced in (196), where M : T → R

k is given by

M(x) ≡
(
aT
1
x

bT
1
x
,
aT
2
x

bT
2
x
, . . . ,

aTk x

bTk x

)T
for any x ∈ T . Given x ∈ T , we will denote by Mr(x) the r-th ratio

aTr x/b
T
r x. Given y ∈ Y , we will denote byM−1(y) the inverse image {x ∈ T : M(x) = y} . Note that

since T is finite, Y is also finite. For a rectangular region Q = {y ∈ R
k : lr ≤ yr ≤ ur, r = 1, . . . , k},

86

we denote the vector l = (l1, . . . , lk) by L(Q), and its r-th component by Lr(Q). Similarly, U(Q)
and Ur(Q) denote u and ur, respectively.

On each step j of our algorithm, an approximation of the portion of conv(Y) containing optimal
solution y∗ is given by a set of rectangular regions Sj = {Qj

1, . . . , Q
j
t}, such that for all steps j and

i, where j < i, we have

1. y∗ ∈
⋃

Q∈Sj

Q;

2.
⋃

Q∈Si

Q ⊆
⋃

Q∈Sj

Q;

3. ȳj ∈
⋃

Q∈Sj

Q and ȳi ∈
⋃

Q∈Si

Q are available s.t. eT y∗ ≤ eT ȳi ≤ eT ȳj .

Note that eTL(Qj
p) provides a lower bound on the optimal objective of (197) over the rectangle

Qj
p. Without loss of generality, we can assume that on every step j the rectangular regions in

the set Sj are sorted in the nondecreasing order of such lower bounds, i.e., we have eTL(Qj
p) ≤

eTL(Qj
q) ∀p < q. Then eTL(Qj

1) provides the lower bound on (197) available from the approximation
Sj. Let us denote this lower bound by zj, and the current upper bound, which is the best feasible
solution found so far, by z̄. Sj+1 is obtained from Sj by reducing Qj

1 and/or partitioning it into
two subregions. The reduction is done similarly to [140], by solving the following subproblem for a
particular ratio r ∈ {1, . . . , k}:

min{yr : y ∈ Y ∩Qj
1, ys ≤ us, s = 1, . . . , k} (198)

where
us = max{ys : y ∈ Qj

1, e
T y ≤ z̄} = z̄ − zj + Ls(Q

j
1), s = 1, . . . , k.

Let ỹ be an optimal solution to (198). Then Qj
1 may be reduced to

P = {y ∈ Qj
1 : ys ≤ us, s = 1, . . . , k, s 6= r, yr ≥ ỹr}

without discarding any y ∈ Y ∩ Qj
1 that are no worse than the best incumbent solution to (197).

If ỹr > Lr(Q
j
1), then zj+1 will be a better lower bound than zj . Certainly, P is discarded from

further consideration if eTL(P) ≥ z̄. Otherwise, ỹ may improve on the current incumbent solution.
If ỹr = Lr(Q

j
1), then P is partitioned into P ′ = {y ∈ P : yh ≤ (Lh(P) + ỹh)/2} and P ′′ = {y ∈ P :

yh ≥ (Lh(P) + ỹh)/2}, where

h = argmax{|ỹs − Ls(P)| : s = 1, . . . , k}. (199)

Thus ỹ becomes separated from L(P ′), making the next iteration likely to improve z. Of course,
(198) does not have to be solved when ỹ ∈ P such that ỹr = Lr(Q

j
1) is already known from previous

steps of the algorithm.
The formal description of the algorithm is provided in Algorithm 3. Note that T is passed to

the main procedure implicitly through the description of graph G. We discuss how the subproblems
(198) are solved along with some other important details in the following subsections.

Theorem 7 Algorithm 3 converges in a finite number of steps.

87

Algorithm 3:

Require: G; ar, br ∈ Rn, r = 1, . . . , k; 0 < ǫ < 1.
Ensure: x̄, an ǫ-optimal solution to (195).

1: yr ← argmin{yr : y ∈ Y }, r = 1, . . . , k;
2: ȳ ← argmin{eT y : y ∈ {y1, . . . , yk} };
3: z̄ ← eT ȳ;
4: Q← {y ∈ R

k : yr ≥ yrr , r = 1, . . . , k};
5: S ← {Q};
6: Choose r ∈ {1, . . . , k};
7: repeat
8: Q← the first set in S;
9: Remove Q from S;

10: z ← eTL(Q);
11: P ← {y ∈ Q : ys ≤ z̄ − z + Ls(Q), s = 1, . . . , k};
12: ỹ = argmin{yr : y ∈ Y ∩ P};
13: if eT ỹ < z̄ then
14: z̄ ← eT ỹ;
15: ȳ ← ỹ;
16: end if
17: if ỹr = Lr(P) then
18: Choose h ∈ {1, . . . , k}(h 6= r) that maximizes ỹh − Lh(P);
19: P ′ ← {y ∈ P : yh ≤ (Lh(P) + ỹh)/2};
20: P ′′ ← {y ∈ P : yh ≥ (Lh(P) + ỹh)/2};
21: if eTL(P ′′) < z̄ then
22: S ← S ∪ {P ′′};
23: end if
24: else
25: P ′ ← {y ∈ P : yr ≥ ỹr};
26: end if
27: if eTL(P ′) < z̄ then
28: S ← S ∪ {P ′};
29: end if
30: until z̄ − z ≤ ǫz̄
31: return x̄ ∈M−1(ȳ);

Proof: Let z̄j denote the value of z̄ after j steps of the algorithm. The algorithm terminates when
z̄j−zj ≤ ǫz̄. Suppose that the stopping criterion is not satisfied in a finite number of steps, i.e., the
algorithm generates infinite sequences of bounds {zj : j ≥ 1} and {z̄j : j ≥ 1}. Since {zj : j ≥ 1}
is monotonously nondecreasing, {z̄j : j ≥ 1} is monotonously nonincreasing, and zj ≤ z̄j for any
j ≥ 1, both sequences must converge:

lim
j→∞

zj = z∗, lim
j→∞

z̄j = z̄∗, and z∗ < z̄∗.

The last inequality is strict because of the assumption that we do not have a finite convergence of
the algorithm. Consider an arbitrary δ > 0. We will show that there exists ĵ such that for any
j ≥ ĵ : z̄j − zj ≤ δ, thus obtaining a contradiction.

88

Note that finiteness of Y guarantees that z improves after a finite number of steps, and the
lower bound can increase only due to one of the following two reasons:

1. ỹr > Lr(P), in which case the lower bound increases by yr − Lr(P);

2. P ′ is not added to S, i.e., eTL(P ′) ≥ z̄, in which case the increase in lower bound value would
be (ỹh − Lh(P))/2.

Due to finiteness of Y it is possible to choose δ1 < min{|y′r − y′′r | : y′, y′′ ∈ Y, y′r 6= y′′r },
δ2 ≤ min{δ1, δ/(2k)}, and due to convergence of {zj : j ≥ 1} there exists ĵ such that for any j ≥ ĵ
we have |zj − zj+1| < δ2. On the other hand, if zj in the algorithm increases because ỹr > Lr(P)
then the increase must be at least δ2. Thus, if j ≥ ĵ, zj can increase only due to the second reason,
and the corresponding increase (ỹh − Lh(P))/2, where h is defined in line 18 of Algorithm 3, must
be less than δ2. Since h maximizes ỹs − Ls(P), s = 1, . . . , k and yh is a feasible solution, we have

z̄j − zj ≤ eT ỹ − eTL(P) ≤ k(ỹh − Lh(P)) < 2kδ2 ≤ δ.

Thus, z̄∗ = z∗, and we obtain the contradiction with our assumption that the stopping criterion is
not satisfied in a finite number of steps. The finite convergence follows. 2

7.2.2 Solving the subproblem

Computational complexity of each iteration of the algorithm described above is defined by the com-
plexity of solving the subproblem (198), therefore it is imperative to solve this problem effectively.
Returning to the original variable x, for a rectangular region Q ∈ R

k it is formulated as

min aTr x/b
T
r x (200)

subject to x ∈ T ∩ B, (200a)

where B defines Q in terms of x:

(ai − Ui(Q)bi)
Tx ≤ 0, i = 1, . . . , k; (200b)

(Li(Q)bi − ai)
Tx ≤ 0, i = 1, . . . , k. (200c)

The constrained minimum ratio spanning tree (CMRST) problem (200) above is a generalization
of the capacity-constrained version of the MST problem. Unfortunately, the latter problem is NP -
hard, as shown by Aggarwal et al. [6], even in the case of one constraint. Unless we specifically
mention otherwise, Lr(Q) and Ur(Q) in (200b)-(200c) should be assumed −∞ and ∞, respectively,
i.e., k = 2 refers to a single constraint case of (200).

An effective branch-and-bound approach is suggested in [6] for the MST problem with a single
capacity constraint. This approach can be directly extended to our problem when k = 2, but
because it heavily exploits the ability to obtain solutions that satisfy the capacity constraint, further
generalization for k > 2 is difficult, if at all possible. In fact, the case of multiple capacity constraints
in such classical combinatorial optimization problems as the MST problem and the shortest path
problem is not addressed in the literature. Therefore, we have developed our own branch-and-bound
approach for solving the general CMRST problem when k ≥ 2.

Each node N of our branch-and-bound tree is characterized by the sets F 0
N = {e ∈ E(G) :

xe is fixed to 0} and F 1
N = {e ∈ E(G) : xe is fixed to 1}. To obtain a good lower bound on

the objective in each node, we dualize the constraints (200b) and (200c) and solve the fractional

89

Lagrangian dual introduced by Gol’stein in [71]. Assume, without loss of generality, that r = 1 in
(200). Then the respective Lagrangian dual problem is defined as

max
v≥0

min
x∈T
L(x, v), (201)

where v ∈ R
2k−2 and

L(x, v) = max
v≥0

min
x∈T

(
aT1 x

bT1 x
+

k∑

r=2

vr−1(ar − Ur(Q)br)
Tx

bT1 x
+

k∑

r=2

vk+r−2(Lr(Q)br − ar)
Tx

bT1 x

)
. (202)

We can solve (201), e.g., via some subgradient optimization algorithm [108]. We employ the Kelley’s
cutting plane method, since for moderate k it converges fast for piecewise linear functions in practice.
Each new cutting plane generated by the Kelley’s method corresponds to a tree x ∈ T , which may
or may not be feasible for our CMRST problem. Depending on whether this is the case, they will
be used differently in computing a lower bound for the CMRST problem.

We adopt a branching rule similar to the one introduced in [6]. Suppose that solving the dual
problem in node N yields a solution x̂ ∈ T feasible to (200), and let e1, . . . , ep (p ≤ m − 1) be
all edges of the tree corresponding to x̂ that are not fixed in node N . We produce p child nodes
M1, . . . ,Mp of N by additionally fixing some of those edges at each child node. Specifically, a child
nodeMj (j = 1, . . . , p) is created by additionally fixing j edges out of e1, . . . , ep according to the
rule:

F 0
Mj

= F 0
N ∪ {ej};

F 1
Mj

= F 1
N ∪ {e1, e2, . . . , ej−1}.

(203)

Note that if F 1
N is a forest, then it is guaranteed that F 1

Mj
is a forest. If several trees feasible to

(200) are available in N , then we choose a tree that yields the best objective value.
However, it is possible that the procedure that solves (201) does not encounter a solution feasible

to (200). Then we use a different criterion for choosing the edges to branch upon. Let v̄ be the
optimal solution to (201), and the trees t1, . . . , tw define the hyperplanes that are tangent to the
lower epigraph of L(v) = min

x∈T
L(x, v) at v̄ for some w ≥ 1. Since epiL ⊂ R

2k−1, to define v̄ uniquely

we need at least 2k−1 hyperplanes. Thus, eliminating w−2k+2 of the w trees guarantees increase
in the optimal value of L(v). Therefore, the branching should be performed on the edges of those
particular trees.

However, it may be difficult to obtain all hyperplanes tangent to the lower epigraph of L(v) at
v̄. Instead, we branch on the edges of the trees t1, . . . , tα, corresponding to the last α hyperplanes
produced by Kelley’s method to approximate the epigraph of L(v). We choose p′ edges occurring
most frequently in t1, . . . , tα, that are not yet fixed, and produce p′ child nodes according to the
rule (203). Clearly, because in this case there is no guarantee for a child node Mj that F 1

Mj
is a

forest, we have to check this fact, and discard the node if it is not.
Solving (201) via the Kelley’s method, in turn, involves solving a sequence of problems of the

form
min
x∈T

aTx/bTx, (204)

which is polynomially solvable. We solve (204) using the Dinkelbach’s method [50], which, again,
involves solving a sequence of MST problems. Consequently, to derive a lower bound for (200), we
examine a sequence of spanning trees of G, each of them being a feasible solution to the original
MMRST problem (195). Therefore, as we obtain each spanning tree, we examine the value of the
original objective that it yields, and improve the upper bound z̄ whenever possible.

90

7.2.3 Partitioning the feasible region

There is a subtle, yet extremely important from the computational perspective, difference between
the cases k = 2 and k > 2. To solve (197) for k = 2, one can take advantage of the fact that
alternating r = 1 and r = 2 in

min yr (205)

subject to Li(Q) ≤ yi ≤ Ui(Q), i 6= r (205a)

y ∈ Y (205b)

virtually rules out the necessity to partition Q ⊂ R
2. Note also that Li(Q) may be set to −∞, and

thus efficient procedures suggested in [6, 76] for solving (205) with only one side constraint may be
utilized. In fact, this is the strategy used in the algorithm by Skiscim and Palocsay [140]. Indeed,
suppose that y1 is the solution to (205) for r = 1 and

Q = {y ∈ R
2 : (l1, l2) ≤ y ≤ (u1, u2)}.

Now Q is reduced to
Q′ = {y ∈ R

2 : (y11, l2) ≤ y ≤ (eT y1 − l2, y
1
2)}.

Let y2 be a solution to (205) for r = 2 and Q = Q′.
If eT y2 < eT y1, then we can further reduce Q′ to

Q′′ = {y ∈ R
2 : (y11 , y

2
2) ≤ y ≤ (y21 , e

T y2 − y11)}

thus forcing y1 /∈ Q′′, since eT y2 < eT y1 ⇒ eT y2 − y11 < y12. Now that y1 is separated from L(Q′′),
we can again solve (205) for r = 1 and Q = Q′′ to further improve the bounds on the optimal
objective of (197).

If eT y2 > eT y1, then we can reduce Q′ to

Q′′′ = {y ∈ R
2 : (y11, y

2
2) ≤ y ≤ (eT y1 − y22, y

1
2)}

forcing y2 /∈ Q′′′, and we can proceed with solving (205) for r = 2 and Q = Q′′′.
The only case when the algorithm cannot proceed is eT y2 = eT y1. In [140] the authors restart

the procedure by improving the upper bound, thus reducing Q′ and forcing both y1 and y2 outside
of the resulting rectangle. To achieve this, either a local search is performed, or, if the local search
fails to improve an incumbent solution, the procedure is applied recursively to {y ∈ Q′ : ys ≤
(Ls(Q)+Us(Q))/2}, s = 1, 2 until either a better incumbent is found or ǫ-optimality of the current
incumbent is proved.

Consider now the case k > 2. Let Q ⊂ R
k such that

Ls(Q) = min{ys ∈ R : y ∈ Y ∩Q},

with ys being the respective optimal image point, s = 1, . . . , k; and

Us(Q) = z̄ −
k∑

s′=1,s′ 6=s

Ls′(Q), s = 1, . . . , k,

where z̄ = min{eT ys, s = 1, . . . , k}.
It is likely that ys ∈ Q′ for all s = 1, . . . , k when k > 2. This case is analogous to eT y2 = eT y1 for

k = 2 above, and the procedure by Sciskim and Palocsay [140] outlined above stalls. Improvement

91

Figure 13: A two-dimensional illustration of condition (206) where r = 1.

of the upper bound, unless it is large enough (which cannot be guaranteed), does not restart
the procedure. Therefore, for k > 2 partitioning Q is a vital step for the algorithm to proceed.
Moreover, it turns out that the way the feasible region is partitioned has a significant impact on
the computational performance of the algorithm. In particular, we would like to avoid solving (200)
with finite Lr(Q). Suppose such subproblem may have to be solved and

∃Q′, Q′′ ∈ S : Lr(Q
′) ≥ Ur(Q

′′), Ls(Q
′) ≤ Ls(Q

′′) ≤ Us(Q
′) for some s 6= r, (206)

i.e., the regions Q′ and Q′′ are positioned as shown on Figure 13 with r = 1 and s = 2.
As the following proposition implies, the situation described by the condition (206) may lead

to extremely inefficient computations. Assume that B is defined as in (200b)-(200c), Lr(Q) > −∞,
and L(x, v) is the fractional Lagrangian function of (200) obtained via dualizing the constraints
defining B. Then the following proposition is true.

Proposition 10 Let conv(T) ∩ B 6= ∅, and x̃ ∈ T be such that aTr x̃/b
T
r x̃ < Lr(Q), and all other

inequalities that define B are satisfied in x̃. Then

sup
v≥0

inf
x∈T
L(x, v) = Lr(Q).

Proof: Take some x̄ ∈ conv(T) ∩ B. Let x̂ = αx̄ + (1 − α)x̃ for some 0 ≤ α < 1 such that
aTr x̂/b

T
r x̂ = Lr(Q). Since B is convex, such x̂ exists. Moreover, it is an optimal solution to the

linear relaxation of (200)

min aTr x/b
T
r x (207)

subject to x ∈ conv(T) ∩ B. (207a)

92

Indeed, x ∈ B enforces the lower bound of Lr(Q) on the objective, and this bound is achieved at x̂.
On the other hand, it follows from the results in fractional duality [24, 71, 134] that

Lr(Q) = inf{aTr x/b
T
r x : x ∈ conv(T) ∩ B} = sup

v≥0
inf{L(x, v) : x ∈ conv(T)}.

Since L(x, v) is quasiconcave for any fixed v ≥ 0, it achieves its minimum over conv(T) in some x∗

that is a vertex of conv(T). Thus x∗ ∈ T and

sup
v≥0

inf{L(x, v) : x ∈ T } = sup
v≥0

inf{L(x, v) : x ∈ conv(T)} = Lr(Q).

2

Suppose that Q′, Q′′ are defined as in (206), and T ⊂ T is such that

∀x ∈ T Mr(x) ∈ Q′′ and Ls(Q
′) ≤Ms(x) ≤ Us(Q

′), s = 1, . . . , k, s 6= r.

The example displayed on Figure 13 shows M(T) as the image points encircled by a dash line.
Then, if the CMRST subproblem (200) with the box constraints defined by Q′ is solved via the
procedure described in subsection 7.2.2, the lower bound on the optimal value of (200) obtained in
all nodes of the branch-and-bound tree will be equal to Lr(Q

′) until at least one edge is excluded
for each x ∈ T . Not only this may be a weak bound ; what is worse, it leaves the branching process
without direction for choosing the next node to process, thus dramatically increasing run time. To
rule out the possibility of such a situation to occur, we do not alternate the index r, but choose it
to be fixed in Algorithm 3. This way, the boxes can only be split by hyperplanes that are parallel
to the r-th coordinate axis. Hence, since we start with a single box, the projections of boxes in Sj

at any step j of the algorithm onto any coordinate axes other than r-th never overlap.
It should be clear, that the run time of the main algorithm does depend on the choice of r, as

it depends on the shape of conv(Y). It may be chosen, for example, by running a few iterations of
the algorithm for every r = 1, . . . , k, and choosing the ratio along which the lower bound progresses
faster.

7.3 Computational Experiments

7.3.1 Setup

All algorithms are implemented in C++ using Microsoft Visual Studio 2003 environment.We rely
on the Boost Graph Library [139] implementation of adjacency list to represent graphs, and the
Mersenne Twister MT19937 [103] random number generator implementation from the Boost Ran-
dom Number Library [104]. The experiments were performed on a computer with Intelr CoreTM 2
Duo 3.16 GHz CPU and 3.23 GB of RAM.

The computational experiments were carried out for k = 1, . . . , 5. We considered two types
of test instances: complete graphs and connected random graphs. For all graphs the parameters
a1ij, . . . , a

k
ij , b

1
ij, . . . , b

k
ij for each edge (i, j) of the graph are uncorrelated and follow standard uniform

distribution.

7.3.2 Results and Discussion

Tables 9 and 10 summarize the computational performance of the developed global optimization
algorithm for complete graph instances and sparse connected random graphs, respectively. Proba-
bility of an edge in the latter type of instances is set to 0.1 when |V | = 20, and to 0.05 otherwise.
We tested a batch of five instances for each reported pair (k, n). The target gap value is set to 1%,

93

Table 9: Performance on complete graph instances

k n steps run time gap
(sec.) (%)

2

10 12.4 0.1 0.6
15 20.0 0.6 0.9
20 26.0 2.6 0.9
30 37.0 16.8 0.9
40 28.6 37.0 0.9
50 39.0 87.0 0.9
80 65.4 1053.0 1.0

100 65.8 2941.0 3.9

3

10 51.0 1.1 0.9
15 104.2 14.6 0.9
20 190.4 108.0 1.0
30 495.6 1801.0 1.0
40 322.0 3465.0 1.9
50 46.0 3600.0 16.2

4

10 318.0 19.8 0.9
15 999.4 441.0 1.0
20 1773.2 3424.0 1.9
30 198.6 3600.0 17.7

5
10 1534.0 181.0 0.9
15 4101.2 3600.0 2.9
20 710.0 3600.0 8.9

and computation time is limited to 1 hour. Average run time as well as average final gap values are
reported for each batch. In addition to run time and gap, we report the average number of steps
(i.e., subproblems solved) performed by the algorithm in order to reach the final gap value, or until
the allotted time expires.

It is evident that performance of the global optimization approach depends on both k and |T |,
which have their impact on how difficult it is to build the approximation of conv(Y) that is accurate
enough. Furthermore, computational complexity of each iteration also depends on both of these
factors. As expected, the results suggest that k primarily affects the number of iterations, and that
|T | mostly affects the time per iteration. An encouraging empirical conclusion can be drawn from
Figure 14, which presents convergence of bounds on the optimal objective value for the hardest
tested instances. It turns out that an optimal or near-optimal solution is found by the algorithm
early, and most of the time is spent on proving quality of an incumbent. This tendency is even
more obvious for easier instances. Most likely this should be contributed to a large number of trees
examined on each step of the algorithm. Therefore, when the size of the instance does not allow
to prove near-optimality in a reasonable time, the suggested algorithm may still be used as a good
heuristic.

In general, the developed global optimization procedure shows consistently good performance
on the instances with small and medium graph sizes and relatively small number of ratios in the
objective function. However, the considered approach needs substantial improvement in order to
guarantee a near-optimal solution in reasonable time for large scale instances and large number of
ratios in the objective.

94

Table 10: Performance on sparse random graph instances

k n steps run time gap
(sec.) (%)

2

20 5.8 0.1 0.8
40 6.0 0.3 0.8
60 16.6 8.9 0.9
80 20.6 46.9 0.9

100 50.6 371.0 0.9
120 54.0 996.3 1.0
140 63.6 2677.0 1.2
160 50.0 3600.0 3.5

3

20 19.4 0.25 0.7
40 34.0 6.8 0.9
60 141.2 387.7 0.9
80 184.6 3000.6 1.1

100 49.6 3600.0 6.3

4

20 23.4 0.6 0.8
40 210.0 87.0 0.9
60 386.2 2610.0 1.7
80 39.6 3600.0 10.6

5
20 154.0 3.3 1.0
40 610.0 208.0 1.0
60 243.6 3600.0 6.0

0

0.5

1

1.5

2

2.5

3

3.5

4

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

3
2

3

3
3

0

3
3

7

3
4

4

3
5

1

3
5

8

3
6

5

3
7

2

3
7

9

3
8

6

3
9

3

4
0

0

2 ratios, 100 vertices 3 ratios, 50 vertices 4 ratios, 30 vertices 5 ratios, 20 vertices

2 ratios, 100 vertices

3 ratios, 50 vertices

4 ratios, 30 vertices

5 ratios, 20 vertices

Figure 14: Convergence of lower and upper bounds, represented by dashed and solid lines, respec-
tively, for the hardest complete graph instances.

95

7.4 Concluding Remarks

We have proposed a global optimization algorithm for solving the MMRST problem. The developed
method has evolved from the ideas used by Skiscim and Palocsay [140] to solve a special case of
MMRST. The algorithm approximates the convex hull of the images of the spanning trees by
subdividing the image space and minimizing a single ratio in the obtained subregions. Extensive
computational tests reveal positive sides of the considered approach, as well as its limitations.

Several directions of the further research seem to be apparent from our results. Firstly, the
optimization algorithm can be adapted to other combinatorial problems with the considered form
of the objective, as long as the linear version of the problem can be solved rather efficiently. Secondly,
instead of solving the constrained minimum ratio spanning tree subproblem to optimality on every
iteration, it may be beneficial to underestimate its optimal value, provided that we can guarantee
convergence of the bounds for such method. Also, if we could find a way to emphasize proving the
quality of an incumbent solution at a reasonable computational cost, we would perhaps significantly
increase overall performance of the global optimization procedure.

96

8 Irregular Polyomino Tiling via Integer Programming

This chapter is mostly based on the results from:

• S. Karademir, O.A. Prokopyev, “Irregular Polyomino Tiling via Integer Programming,” work-
ing paper, 2011.

8.1 Introduction

A phased array antenna is composed of many stationary antenna elements. Phase shift and time
delay are the key ideas behind electronically steering the beam in phased array antennas. This
technology replaces mechanically steered array antenna designs. Details on theoretical foundations
of antennas and review of current antenna technology can be found in [56, 98, 122]. Ideally one
would like to have controls (phase shift or time delay depending on the application [99]) at element
level but it is too expensive to implement that many controls. Therefore, a group of elements are
used to form a ‘subarray’ which is treated and controlled as an oversized element.

Quantization sidelobes’ occur due to periodicity introduced by identical rectangular subarrays
used in practice. Simply speaking, a sidelobe is a beam (typically of a smaller magnitude) with a
direction other than the main beam direction of the antenna. Such undesired radiation reduces the
quality of the pattern generated by antenna. It has been shown that using irregular polyomino-
shaped subarrays in design of phased array antennas results in a significant reduction of quantization
lobes [99, 100]. Figure 15 from [100] illustrates that when polyominoes are used as subarray shapes,
sidelobe quantization is reduced to white noise level and the main beam is substantially more
significant.

Figure 15: Comparison of 3D sidelobe profiles with time delay at: (a) element level, (b) rectangular
subarray level, and (c) polyomino shaped subarray level [100].

In combinatorial geometry, a polyomino is a generalization of the domino and is created by
connecting certain numbers of equal-sized squares [26, 69]. Fig. 16 shows the first five families of
polyominoes. The number of different polyominoes, excluding rotations and reflection, increases
very fast as n, the number of squares used, grows. There are 2, 108, and 63600 different polyomi-
noes for n equal to 3, 7, and 12, respectively. Polyomino tiling is computationally difficult since
even deciding whether a rectangular box can be exactly tiled by a set of given rectangles is NP -
complete [44]. Enumeration is the only technique that is typically applied in practice. Furthermore,
as previously stated, using ‘irregular’ polyomino tilings results in a major improvement in array
antenna performance [99, 100]. Therefore, another challenge that we face is to define a proper

97

measure of ‘irregularity ’ of a tiling. We tackle these problems using mixed integer programming
approach incorporating the concept of information-theoretic entropy. In particular, ‘irregular’ poly-
omino tiling problem can be modeled as an entropy maximizing set partitioning/covering problem,
which can be formulated as a nonlinear mixed integer program (MIP).

This chapter briefly reviews our current progress in developing the solution approaches for
solving the ‘irregular’ polyomino tiling problem. In particular, the remainder of this chapter is
organized as follows. In Section 8.2 we describe our metric for measuring the irregularity of a tiling.
Section 8.3 develops respective mathematical programming formulations. Section 8.4 describes
heuristic procedures that can be used to solve large-scale tiling problems. Finally, Section 8.5
motivates our current work.

Figure 16: Monomino, domino, triomino, tetromino, and pentomino families.

8.2 Information Theoretic Entropy as a Measure of “Irregularity”

We need a metric that can measure the irregularity of a given tiling. Subsequently, it can be
incorporated into the mathematical programming models as an objective function. We use the
Information Theoretic Entropy concept. Though this concept has found applications in optimization
and graph theory, we believe our work is the first to use it as a measure of irregularity in the
framework of the polyomino tiling problem.

Let X be a discrete random variable with n outcomes. Furthermore, let pi be the probability
of the ith outcome. Then the information theoretic entropy of X, H(X) is defined as

H(X) = −
∑

i

pi lg(pi) .

If pi = 0, the value of the term pi log pi is assumed to be zero, which is consistent with
limp→0+ p log p = 0. It is easy to verify that H(X) is concave and its maximum occurs when
pi =

1
n for all i. This implies that the entropy attains its maximum for the uniform distribution.

To link this result to the entropy concept from the statistical mechanics, consider each outcome of
X to be a micro-state that some system may occupy. The less we know about the micro-state that
the system occupies, the larger is the entropy of the system. Then, intuitively if each state may
occur with equal probability then our knowledge about the system is minimal; hence, its entropy

98

is maximized. Conversely, consider a random variable with a single outcome having probability 1.
Then we have complete knowledge about the system state; thus, its entropy is 0.

Assume each polyomino is a solid body with some center of gravity. Figure 16 illustrates the
center of gravity for each polyomino as a black dot inside, or outside, of each polyomino. For
simplicity we assume that each center of gravity is located exactly at the center of one of the squares.

Intuitively, we expect that for regular tilings the locations of centers of gravities also have some
regular pattern. In particular, most of them should be located in certain rows and/or columns.
According to this observation, we define probability distribution for rows and columns of any tiling
as follows: row i has probability r[i[

2T and column j has probability c[j]
2T , where r[i] and c[j] are the

numbers of centers of gravity located in row i and column j, respectively; T is the total number of
polyominoes used for the considered tiling. Since each center of polyomino is counted exactly once
for rows and exactly once for columns, it easy to verify the validity of this probability distribution.
Figure 17 stands as a proof of concept for our argument. Observe how centers of gravity are aligned
when entropy is minimized. For the maximization case, one can easily notice that the centers of
gravity form almost uniform distribution.

As mentioned above, uniform distribution has the maximum entropy. Therefore,

H(X) ≤ H(Uniform) = −
n∑

i=1

1

n
log

(
1

n

)
= log(n) .

This theoretical upper bound is extremely important since it allows us to evaluate the per-
formance of the developed approximation or heuristic algorithms. Observe that for the board in
Figure 17 we have log(40) = 3.6889, implying that the obtained tiling in the maximization case is
close to the optimal solution.

8.3 Mathematical Programming Formulations

8.3.1 Formal Setup

Consider a rectangular set of equal-sized squares (located next to each other) and a polyomino that
covers some of the squares. Observe that the polyomino type (e.g., domino) and the location of its
north-western corner completely determine squares covered by this polyomino. Hence, it is natural
to model our polyomino tiling problem as a set partitioning or a set covering problem: all squares
form the ground set and each polyomino with the location of its north-western corner describes some
subset of the ground set. Before proceeding with the mathematical programming formulations, we
define the notation and provide the formal problem statement.

We will refer to the rectangular set of squares that is required to be tiled as a board. We can
visualize the board as a matrix since referring to its rows and columns is natural. Thus, (r, c)
denotes the square at the intersection of row r and column c. For a standard board we define two
regions: the “frame” and the “center.” The frame consists of a fixed number of rows and columns
that form the boundaries of the board. In general, frame is not required to be tiled exactly. The
center of the board (inside the frame) consists of squares that need to be covered by exactly one
polyomino. If a perfect tiling of an m×n board is required, then the center of the respective board
is of size m× n.

To avoid the necessity of mentioning two different parameters for each board, whenever we
refer to its dimensions m × n, the values of m and n define the size of the center of the board.
Furthermore, we will say that a given tiling is perfect if none of the squares of the board frame are
covered. Finally, we can state our problem more formally:

99

(a) Minimizing entropy for a 20× 20 board. (b) Maximizing entropy for a 20× 20 board.

(c) Minimizing entropy: H(X) = 2.8842 (d) Maximizing entropy: H(X) = 3.6889

Figure 17: Validating entropy concept on pentomino family.

INPUT: A set of polyominoes P with |P | = K members, m× n board B, and the type of tiling:
perfect or imperfect.
OUTPUT: The most irregular (according to the metric defined above) tiling of board B.

Next, we develop mathematical programming formulations for this problem.

100

8.3.2 Nonlinear Set Partitioning Formulation

In the remainder of this chapter we assume that each polyomino covers exactly the same number
of squares of the board (i.e., all polyominos have the same area size). In general this assumption
can be easily relaxed.

Next we introduce the following notation.

• Define 0–1 variable xkpq = 1 iff the north-western corner of a polyomino of type k is located
at (p, q). For example, a monomino located at (p, q) would cover a single square {(p, q)};
similarly, a vertical domino located at (p, q) would cover {(p, q), (p+ 1, q)}.

• Let ri and cj be continuous decision variables that denote the number of centers of gravity in
row i and column j, respectively. In fact, r and c are auxiliary variables that are completely
determined by the values of x variables.

• Let Iij be the set of all triples (k, p, q) such that if a polyomino of type k located at (p, q) then
it covers (i, j).

• Let Ri be the set of triples (k, p, q) such that if a polyomino of type k is located at (p, q) then
its center of gravity is located in row i.

• Let Cj be the set of triples (k, p, q) such that if a polyomino of type k is located at (p, q) then
its center of gravity is located in column j.

• Let T be the total number of polyominoes used for tiling the board. In fact, due to our
assumption T is constant since its value can be easily derived from the area to be covered
and the size of the used polyomino family. For instance, an exact tiling of 8× 8 board using
tetromino family requires T = 8 ∗ 8/4 = 16 polyominoes.

Given this notation, we provide the following nonlinear mixed integer programming (MIP)
formulation of the exact tiling problem:

PNL: min
∑

i

ri
2T

lg
(ri
2T

)
+
∑

j

cj
2T

lg
(cj
2T

)

s.to
∑

(kpq)∈Iij

xkpq = 1 ∀ i, j

ri =
∑

(kpq)∈Ri

xkpq, ∀ i

cj =
∑

(kpq)∈Cj

xkpq ∀ j

xkpq ∈ {0, 1}, ri, cj ≥ 0 ∀ i, j, p, q, k.

8.3.3 Linear Set Partitioning Formulation

We use value disjunctions to reformulate PNL as a linear MIP that can be tackled using any standard
mixed integer programming solver (e.g., CPLEX).

101

• Define 0–1 variable rit = 1 iff there are exactly t centers of gravity in row i.

• Similarly, define 0–1 variable cjt = 1 iff there are exactly t centers of gravity in column j.

Then we obtain the following linear MIP denoted as PL.

PL: min

m∑

i=1

T∑

t=1

(
t

2T
lg

t

2T

)
rit +

n∑

j=1

T∑

t=1

(
t

2T
lg

t

2T

)
cjt

s.to
∑

(kpq)∈Iij

xkpq = 1 ∀ i, j

T∑

t=1

t rit =
∑

(kpq)∈Ri

xkpq ∀ i

T∑

t=1

t cjt =
∑

(kpq)∈Cj

xkpq ∀ j

T∑

t=0

rit = 1 ∀ i

T∑

t=0

cjt = 1 ∀ j

xkpq, rit, cjt ∈ {0, 1} ∀ i, j, p, q, k, t.

If there are K polyomino types used to tile an m× n board, we would have O(Kmn) variables.
Note also that both formulations can be easily modified to handle imperfect tilings. Figure 18
provides a perfect tiling of 10×10 board and an imperfect tiling of 9×11 board (there is no perfect
tiling for this board size) using tetromino family.

Proposition 11 Variables rit and cjt in PL can be relaxed to be nonnegative, i.e., formulation PL

is locally ideal.

Proof: Consider the second derivative of the function φ(x) = x lg(x) which is continuous on (0, 1]:

φ′′(x) =
1

x
> 0 .

Hence, φ(x) is strictly convex. Now consider the strictly convex function φT (x) =
x
T lg(xT) defined

on x ∈ (0, T]. Using constraints of the model (
∑

t rt = ∆ ≤ T and
∑

rt = 1) and the Jensen’s
Inequality,

∆

T
lg(

∆

T
) · 1 = φT (∆) = φT

(∑
t rt∑
rt

)

<

∑
rtφT (t)∑

rt

=
∑

rtφT (t) =
∑ t

T
lg

(
t

T

)
rt

whenever more than one rt is nonzero. Thus, the lower bound on the left hand side is attained only
when r∆ = 1. In the derivation above, we drop indices i and j for simplicity. 2

102

(a) Perfect tiling of 10× 10 board. (b) Imperfect tiling of 9× 11 board.

Figure 18: Optimal tilings using the tetromino family.

8.4 Heuristics

Since the obtained linear MIP can be used to solve exactly tiling problems of rather small sizes, we
also develop a heuristic approach that can be applied to tile large-scale boards. In the algorithms
described below solving PL for small board sizes serves as a subprocedure. In order to simplify the
description of the developed algorithms, we illustrate them with some simple examples.

8.4.1 Heuristic Procedure: Zoom-in

Consider a board that consists of a single square. One could enlarge the board by replacing the
square by a 2× 2 board and tile it using 4 unit squares. In general, given board B (not necessarily
rectangular) we can enlarge it replacing each unit square of B by another rectangular board of
size a × b. We refer to this procedure as “zoom-in” with level z = (a, b), or z = (a × b). If B is
rectangular of size m× n, then we obtain a board of size m · a× n · b.

Consider a set of polyominoes P . Assume that there exists a “zoom” level (a, b) (obtained
replacing each square with an a× b rectangular board) such that each polyomino in P can be tiled
exactly with polyominoes from P . Figure 19 illustrates this concept providing several pentominoes
tiled with other pentominoes at (5 × 5) “zoom” level. The respective tilings are obtained solving
formulation PL exactly.

For any given initial tiling of size m×n, the “zoom-in” procedure can be used to generate tilings
of m · ax × n · bx for any positive integer x. Procedure Zoom-in below provides the pseudo-code of
the algorithm.

103

(a) ‘F’ rotated 90◦. (b) ‘T’ rotated 270◦. (c) ‘W’.

Figure 19: Several pentominoes at (5× 5) “zoom” level.

Procedure Zoom-in
Input: m× n board B tiled exactly (e.g., via solving PL) by some set of polyominoes P1,

required “zoom” level z = (a, b), and exact tilings (e.g., also obtained via solving PL)
of each polyomino in P1 with some other set of polyominoes P2 (possibly same as P1)
at the “zoom” level z.

1 begin Zoom-in
2 Replace each unit square of B with an a× b board.
3 Denote the final enlarged board be Bz.
4 Denote by pz in Bz a polyomino p ∈ P1 enlarged by z after the “zoom-in”.
5 foreach pz in Bz do
6 Let p∗z be the perfect tiling of pz using P2.
7 Replace pz with p∗z in Bz.

8 return Final tiling.

8.4.2 Heuristic Procedure: Magnify

Consider a set of polyominoes P and some m×n board tiled exactly solving formulation PL. If one
requires tilings of other board sizes, procedure Magnify is designed to serve this aim. Unfortunately,
the resulting tiling may be not necessarily perfect.

Assume that we are required to tile a board of size M × N , where M >> m and N >> n.
Suppose there exists a “zoom” level (a, b) (i.e., obtained replacing each square with an a × b rect-
angular board) such that each polyomino in P can be tiled exactly with polyominoes from P . One
can simply first enlarge the original tiling until m · ax ≥ M and n · bx ≥ N , and then drop the
polyominoes that are completely outside the board of the required size. Otherwise, we can simply
paste the copies of the initial m× n tiling side by side until we cover the board above the required
size and then drop the polyominoes that are completely outside.

Figure 20 shows the solutions of Figure 18 pasted side-by-side and “zoomed-in.” Initially, the
tiling of Figure 18(a) is enlarged to 50× 50 and tiling of Figure 18(b) is enlarged to 45× 55. Both
tilings then reduced to 45× 45.

104

Procedure Magnify

Input: (1) Required tiling dimensions (M ×N). (2) Either (2a) a small (not necessarily
perfect) tiling of size m× n together with the perfect tiling of each polyomino at
some “zoom” level (a× b) exists or (2b) a small perfect tiling of size (m× n) exists.

1 if Tiling of each polyomino at “zoom” level a× b exists then
2 Let x be the smallest integer satisfying M ≤ m · ax and N ≤ n · bx

3 “Zoom-in” x times (Alg. Zoom-in)
4 Draw a rectangle of size M ×N inside the obtained tiling
5 Drop any polyomino that lies completely outside the M ×N rectangle

6 else
7 Let y and x be the smallest integers satisfying M ≤ m · y and N ≤ n · x
8 Create a horizontal strip by pasting x copies of the m× n perfect tiling side by side
9 Paste y copies of the obtained strip vertically to get (m · y)× (n · x) perfect tiling

10 Draw a rectangle of size M ×N inside the obtained tiling
11 Drop any polyomino that lies completely outside the M ×N rectangle

12 return Final tiling.

(a) Initial perfect tiling pasted side-by-side. (b) Initial imperfect tiling zoomed-in.

Figure 20: Initial solutions of Figure 18 magnified.

8.4.3 Heuristic Procedure: Retile

Procedure Retile is an important part of our heuristic. Consider board B and assume some of its
tilings is given (e.g., obtained via any of the procedures described above). Let (r, c) be some square
of B. Consider a smaller board S of size d× d centered at (r, c). There are some polyominoes that
cross the boundaries of S and others that are completely inside S. We may fix the polyominoes
crossing the boundaries and retile the area covered by the others. Retiling starts with the existing
tiling of S (i.e., polyominoes that are completely inside S form a feasible solution for S); therefore,

105

we are always guaranteed to have a solution, which is at least as good as the original one. Therefore,
we possibly may improve irregularity of a very large tiling by solving smaller MIPs.

Procedure Retile
Input: Tiling of m× n board B, d (d ≤ min{m,n}), (r, c) for S, and the type of retiling

(perfect vs. imperfect).

1 Draw a square S of dimension d× d centered at (r, c) of B.
2 Divide S into three regions: Center, CoveredFrame, and FreeFrame.
3 Center consists of squares in S that: (i) are covered by polyominoes that are completely in S
and (ii) do not belong to the frame of B.

4 CoveredFrame consists of squares in S that: (i) do not belong to the Center and (ii) do not
belong to the frame of B.

5 FreeFrame consists of squares in S that do not belong to the frame of B.
6 Mark the Center as to be covered exactly,
7 Mark the CoveredFrame as not to be covered,
8 if retiling type is ‘perfect’ then
9 Mark the FreeFrame as to be “penalized” if covered.

10 else
11 Mark the FreeFrame as to be packed on.

12 Using the appropriate entropy maximizing mathematical model, tile S.
13 return Final tiling.

8.4.4 Heuristic Procedure: Smoothen

We can slightly modify the objective function of formulation PL “penalizing” for tiled squares in
the frame of board B. Procedure Smoothen takes as its input an imperfect tiling (possibly a very
large one) of B. Then it attempts to obtain a perfect tiling of B by “moving” along its frame and
retiling B while “penalizing” for squares in the frame of B that are tiled.

Procedure Smoothen
Input: An imperfect tiling of m× n board B.

1 Let d× d, d ≤ min{m,n}, be a square that can be tiled in a short time using standard MIP
solvers.

2 Consider the following closed rectangular path P on B :
(d, d)→ (d, n − d)→ (m− d, n− d)→ (m− d, d)→ (d, d).

3 Let δ be the step size along the path. // Usually δ ≤ d/2
4 Using the d× d board and step size δ, retile B perfectly (Alg. Retile) along the path P .
5 return Final tiling.

8.4.5 Heuristic Procedure: Randomize

Procedure Randomize is another building block of our heuristic. Given some tiled board B (typically
very large), it traverses along B and applies Procedure Retile to “randomize” (i.e., increasing
irregularity according to the developed metric) the subregions in B. Figure 21 illustrates application
of Procedures Retile and Randomize starting from the tiling of Figure 20(a) to obtain a near-perfect
irregular tiling.

106

(a) Perfect tiling from 18(a) pasted side-by-side: 6 % gap
with respect to the theoretical upper bound on irregularity.

(b) Tiling from 21(a) randomized: 0.2 % gap with respect
to the theoretical upper bound on irregularity.

(c) Tiling from 21(b) smoothed along the boundaries.

Figure 21: Perfect tiling of Figure 18(a) magnified, randomized and smoothed.

107

(a) Members of octomino family that are used. (b) 12× 16 tiling.

(c) Tiling in (b) “zoomed-in” by (4, 4).

Figure 22: 12 × 16 board magnified to 48× 64 board in less than 1 minute.

108

(a) Tiling from 22 (c) pasted side-by-side to obtain 96× 128 board.

(b) Tiling from 23(a) randomized. Final gap 0.37 % with respect to the theoretical upper
bound on irregularity.

Figure 23: Final tiling: original 12× 16 board magnified to 96× 128 and randomized.

109

Procedure Randomize
Input: Tiled m× n board B and the type of the required tiling (perfect vs. imperfect).

1 Let d× d, d ≤ min{m,n}, be a square that can be tiled in a short time using standard MIP
solvers.

2 Let δ be the step size. // Usually δ ≤ d/2
3 Consider the following path P on B :
(d, d)→ (d, d+δ)→ . . .→ (d, n−d)→ (d+δ, d)→ . . .→ (d+δ, n−d)→ . . .→ (m−δ, n−δ).

// If (n − 2d)/δ is not integral: . . . (d, d+ δ⌊(n − 2d)/δ⌋) → (d, n − d) . . .
4 Using the d× d board and step size δ, retile B (Pro. Retile) along the path P enforcing the
required type of tiling.

5 return Final tiling.

Figures 22 and 23 illustrates application of the developed heuristic on another problem instance.
Comparison to the theoretical upper bound proves that the algorithm is rather successful in obtain-
ing an irregular tiling.

8.5 Current Work and Concluding Remarks

The above described heuristic can be applied to obtain arbitrarily large tilings, though not necessar-
ily perfect. Observe that exact MIP formulation PL is at the core of the algorithm. Therefore, we
are currently working on developing more advanced exact (!) solution approaches that will be able
to solve exact tiling problems for larger problem sizes. There are three distinct research directions:

(i) another set partitioning formulation (we are currently performing some preliminary compu-
tational tests);

(ii) a better branching strategy (specifically using constraints of PL);
(iii) a more advanced branch-and-price algorithm.

The PI expects that the first paper on the topic will be submitted for publication within next
two-three months. The target journal is INFORMS Journal on Computing.

110

9 Participants

The project participants whose work was supported by this grant are:

• PI: Oleg Prokopyev (University of Pittsburgh);

• co-PI: Nan Kong (Purdue);

• Graduate students (fully or partially supported during last three years): Osman Ozaltin,
Serdar Karademir, Behdad Behesti, Anahita Khojandi (all from University of Pittsburgh)
and Zhen Zhu (Purdue).

Other major collaborators (i.e., co-authors on some of the papers below that were result of the
work in the framework of this project) included: O. Ursulenko, S. Butenko (both from Texas A&
M University), S. Rebennack (Colorado School of Mines), A.J. Schaefer and L.M. Maillart (both
from University of Pittsburgh).

10 Publications

The following list includes published or accepted for publication journal articles:

• O.Y. Ozaltin, O.A. Prokopyev, A.J. Schaefer, “Two-Stage Quadratic Integer Programs with
Stochastic Right-Hand Sides,” Mathematical Programming, accepted for publication, 2010.

• O.Y. Ozaltin, O.A. Prokopyev, A.J. Schaefer, M.S. Roberts, “Optimizing the Societal Benefits
of the Annual Influenza Vaccine: A Stochastic Programming Approach,” Operations Research,
accepted for publication, 2010.

• O.Y. Ozaltin, O.A. Prokopyev, A.J. Schaefer, “The Bilevel Knapsack Problem with Stochastic
Right-Hand Sides,” Operations Research Letters, Vol. 38/4 (2010), pp. 328–333.

• O.A. Prokopyev, N. Kong, D.L. Martinez-Torres, “The Equitable Dispersion Problem,” Eu-
ropean Journal of Operational Research, Vol. 197 (2009), pp. 59-67.

• J. Rajgopal, Z. Wang, A.J. Schaefer, O.A. Prokopyev, “Integrated Design and Operation
of Remnant Inventory Supply Chains under Uncertainty,” European Journal of Operational
Research, Vol. 214/2 (2011), pp. 358-364.

• O.A. Prokopyev, S. Butenko, A.C. Trapp, “Checking Solvability of Systems of Interval Linear
Equations and Inequalities via Mixed Integer Programming,” European Journal of Operational
Research, Vol. 199/1 (2009), pp. 117-121.

The following list includes technical reports (articles that are submitted for publication to the
refereed journals, or under revision):

• S. Karademir, O.A. Prokopyev, N. Kong, “On Greedy Approximation Algorithms for a Class
of Two-Stage Stochastic Assignment Problems,” Technical report, 2011.

• Z. Zhu, N. Kong, O.A. Prokopyev, “A New Lagrangian Decomposition Based Approach for
Quadratic Binary Programs,” Technical Report, 2011.

111

• S. Rebennack, O.A. Prokopyev, “Two-Stage Stochastic Minimum s−t Problem: Formulations
and Complexity,” Technical Report, 2011.

• O. Ursulenko, S. Butenko, O.A. Prokopyev, “A Global Optimization Algorithm for Solving
the Minimum Multiple Ratio Spanning Tree Problem,” Technical report, 2011.

• A. Khojandi, L.M. Maillart, O.A. Prokopyev, “Optimal Planning of Life-Depleting Mainte-
nance Activities,” Technical report, 2011.

The following list includes of articles that the PIs expect to be submitted for publication within
next several months:

• Z. Zhu, N. Kong, O.A. Prokopyev, “Two-Stage Stochastic Quadratic Binary Program with
Recourse: A Dual Decomposition Approach,” working paper, 2011.

• S. Karademir, O.A. Prokopyev, “Irregular Polyomino Tiling via Integer Programming,” work-
ing paper, 2011.

11 Presentations

Invited seminars at other universities given by the PIs included:

• “Discovering Underlying Structure with Integer Programming,” BMERC Seminar Series, De-
partment of Biomedical Engineering, Boston University, October 1, 2010.

• “Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides,” Texas A&M
University, Department of Industrial Engineering, March 24, 2011.

• “Optimizing the Societal Benefits of the Annual Influenza Vaccine,” 2010 University of Florida-
Air Force Research Lab Summer Seminar Series, University of Florida, REEF, June 15, 2010.

Major invited conference presentations by the PIs and graduate students included:

• “Two-stage quadratic integer programs with stochastic right-hand sides,” Mixed Integer Pro-
gramming (MIP) Workshop, Waterloo, Canada, June 20-23, 2011.

• “The Bilevel Knapsack Problem with Stochastic Right-Hand Sides,” 3rd International Con-
ference on the Dynamics of Information Systems, Gainesville, FL, February 16 - 18, 2011.

• “Two-stage quadratic integer programs with stochastic right-hand sides,” 12th International
Conference on Stochastic Programming, Halifax, Canada, August 16-20, 2010.

• “On Approximation Algorithms for a Class of Stochastic Assignment Problems,” 2nd Inter-
national Conference on the Dynamics of Information Systems, Destin, FL, February 3 - 5,
2010.

• “A Lagrangian Decomposition Based Branch and Bound Approach to Quadratic 0–1 Pro-
grams,” 2010 INFORMS Annual Meeting, Austin, TX, November 7-10, 2010.

• “Algorithm Study for Two-stage Stochastic Quadratic 0-1 Recourse Problem,” 2010 IN-
FORMS Annual Meeting, Austin, TX, November 7-10, 2010.

112

• “On Greedy Approximation Algorithms for a Class of Stochastic Assignment Problems,” 2010
INFORMS Annual Meeting, Austin, TX, November 7-10, 2010.

• “The Bilevel Knapsack Problem with Stochastic Right-hand Sides,” 2010 INFORMS Annual
Meeting, Austin, TX, November 7-10, 2010.

• “Two-stage Quadratic Integer Programs with Stochastic Right-hand Sides,” 2010 INFORMS
Annual Meeting, Austin, TX, November 7-10, 2010.

• “Optimal Strain Selection for the Annual Influenza Vaccine,” 2010 INFORMS Annual Meet-
ing, Austin, TX, November 7-10, 2010.

• “Exact Approaches for Solving Minimum Ratio Spanning Trees with Multiple-Ratios,” IIE
Annual Conference, Miami, FL, May 30 - June 3, 2009.

• “Exact Approaches for Solving Minimum Ratio Spanning Trees with Multiple-Ratios,” 2009
INFORMS Annual Meeting, San Diego, CA, October 11-14, 2009.

• “On Global Optimization of Two-stage Stochastic Integer Programs,” 2009 INFORMS Annual
Meeting, San Diego, CA, October 11-14, 2009.

• “On Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Side,” 2009 IN-
FORMS Annual Meeting, San Diego, CA, October 11-14, 2009.

113

References

[1] A.-Ghouila-Houri. Caracterisation des matrices totalement unimodulaires. C. R. Academy of
Sciences of Paris, 254:1192–1194, 1962.

[2] J. Abello, S. Butenko, P.M. Pardalos, and M. Resende. Finding independent sets in a graph
using continuous multivariable polynomial formulations. Journal of Global Optimization,
21:111–137, 2001.

[3] W.P. Adams and R.J. Forrester. A simple approach for generating concise linear representa-
tions of mixed 0-1 polynomial programs. Operations Research Letters, 33(1):55–61, 2005.

[4] W.P. Adams and R.J. Forrester. Linear forms of nonlinear expressions: New insights on old
ideas. Operations Research Letters, 35(4):510–518, 2007.

[5] W.P. Adams and H.D. Sherali. A tight linearization and an algorithm for zero-one quadratic
programming problems. Management Science, 32(10):1274–1290, 1986.

[6] V. Aggarwal, Y.P. Aneja, and K.P.K Nair. Minimal spanning tree subject to a side constraint.
Computers and Operations Research, 9:287–296, 1982.

[7] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis. A finite branch and bound algorithm for
two-stage stochastic integer programs. Mathematical Programming, 100(2):355–377, 2004.

[8] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Appli-
cations. Prentice Hall, 1993.

[9] R.K. Ahuja, J.B. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic assign-
ment problem. Computers & Operations Research, 27(10):917–934, 2000.

[10] B. Alidaee, G.A. Kochenberger, and A. Ahmadian. 0-1 Quadratic programming approach
for optimum solutions of two scheduling problems. International Journal of Systems Science,
25(2):401–408, 1994.

[11] K. Allemand, K. Fukuda, T.M. Liebling, and E. Steiner. A polynomial case of unconstrained
zero-one quadratic optimization. Mathematical Programming, 91(1):49–52, 2001.

[12] K.M. Anstreicher. Recent advances in the solution of quadratic assignment problems. Math-
ematical Programming, 97(1):27–42, 2003.

[13] K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problem
based on convex quadratic programming. Mathematical Programming, 89(3):341–357, 2001.

[14] G.C. Armour and E.S. Buffa. A heuristic algorithm and simulation approach to relative
location of facilities. Management Science, 9(2):294–309, 1963.

[15] F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics
A: Mathematical and General, 15:3241, 1982.

[16] F. Barahona. A solvable case of quadratic 0-1 programming. Discrete Applied Mathematics,
13(1):23–26, 1986.

[17] F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt. An application of combinatorial
optimization to statistical physics and circuit layout design. Operations Research, 36(3):493–
513, 1988.

114

[18] C. Berge. Theori des graphes et ses applications. Dunod, Paris, 1958.

[19] A. Billionnet, M.-C. Costa, and A. Sutter. An efficient algorithm for a task allocation problem.
Journal of the ACM, 39:502–518, 1992.

[20] A. Billionnet and S. Elloumi. Best reduction of the quadratic semi-assignment problem.
Discrete Applied Mathematics, 109(3):197–213, 2001.

[21] A. Billionnet, A. Faye, and É. Soutif. A new upper bound for the 0-1 quadratic knapsack
problem. European Journal of Operational Research, 112(3):664–672, 1999.

[22] A. Billionnet and É. Soutif. An exact method based on Lagrangian decomposition for the
0-1 quadratic knapsack problem. European Journal of Operational Research, 157(3):565–575,
2004.

[23] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, 1997.

[24] G.R. Bitran and T.L. Magnanti. Duality and sensitivity analysis for fractional programs.
Operations Research, 24:675–699, 1976.

[25] E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123:155–225, 2002.

[26] P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, New
York, 2005.

[27] L. Brotcorne, S. Hanafi, and R. Mansi. A dynamic programming algorithm for the bilevel
knapsack problem. Operations Research Letters, 37(3):215–218, 2009.

[28] R. E. Burkard. Location with spatial interactions: The quadratic assignment problem. In
P.B. Mirchandani and R.L. Francis, editors, Discrete Location Theory. Wiley, San Mateo, CA,
1991.

[29] S. Busygin, O.A. Prokopyev, and P.M. Pardalos. Feature selection for consistent biclustering
via fractional 0–1 programming. Journal of Combinatorial Optimization, 10:7–21, 2005.

[30] P. Camion. Caracterisation des matrices unimodulaires. Cahiers Centre Etudes Rech., 5(4),
1963.

[31] P. Camion. Characterization of Totally Unimodular Matrices. Proceedings of the American
Mathematical Society, 16(5):1068–1073, 1965.

[32] A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack problem.
INFORMS Journal on Computing, 11(2):125–137, 1999.

[33] C. C. Carøe and R. Schultz. Dual decomposition in stochastic integer programming. Opera-
tions Research Letters, 24:37–45, 1999.

[34] C. C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic programs with
integer recourse. Mathematical Programming, 83(1–3):451–464, 1998.

[35] R. Chandrasekaran. Ratio spanning trees. Networks, 7:335–342, 1977.

[36] R. Chandrasekaran, Y.P. Aneja, and K.P.K. Nair. Minimal cost reliability ratio spanning tree.
Ann. Discrete Math., 11:53–60, 1981.

115

[37] R. Chandrasekaran and A. Tamir. Polynomial testing of the query is ab ≥ cd? with application
to finding a minimal cost reliability ratio spanning tree. Discrete Applied Mathemtaics, 9:117–
123, 1984.

[38] P. Chardaire and A. Sutter. A decomposition method for quadratic zero-one programming.
Management Science, 41(4):704–712, 1995.

[39] D.Z. Chen, O. Daescu, Y. Dai, N. Katoh, X. Wu, and J. Xu. Optimizing the sum of linear
fractional functions and applications. In Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 707–716, New York, 2000. ACM.

[40] P. Chretienne. A polynomial algorithm to optimally schedule tasks on a virtual distributed
system under tree-like precedence constraints. European Journal of Operational Research,
43:225–230, 1989.

[41] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
Operations Research, 153(1):235–256, 2007.

[42] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894, 1994.

[43] J. W. Daniel. Stability of the solution of definite quadratic programs. Mathematical Program-
ming, 5(1):41–53, 1973.

[44] E.D. Demaine and M.L. Demaine. Jigsaw puzzles, edge matching, and polyomino packing:
Connections and complexity. Graphs and Combinatorics, 23:195–208, 2007.

[45] S. Dempe. Foundations of bilevel programming. Dordrecht: Kluwer Academic, 2002.

[46] S. Dempe and K. Richter. Bilevel programming with knapsack constraints. Central European
Journal of Operations Research, 8(2):93–107, 2000.

[47] M. A. H. Dempster, M. L. Fisher, L. Jansen, B. J. Lageweg, J. K. Lenstra, and A. H. G.
Rinnooy Kan. Analytical evaluation of hierarchical planning systems. Operations Research,
29:707–716, 1981.

[48] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh. How to Pay, Come What May: Approx-
imation Algorithms for Demand-Robust Covering Problems. In Foundations of Computer
Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 367–378, 2005.

[49] K. Dhamdhere, R. Ravi, and M. Singh. On stochastic minimum spanning trees. In Pro-
ceedings of the 11th International Conference on Integer Programming and Combinatorial
Optimization, 2005.

[50] W. Dinklebach. On nonlinear fractional programming. Management Science, 13:492–498,
1967.

[51] S. Elhedhli. Exact solution of a class of nonlinear knapsack problems. Operations Research
Letters, 33:615–624, 2005.

[52] B. Escoffier, L. Gourves, J. Monnot, and O. Spanjaard. Two-stage stochastic matching and
spanning tree problems: Polynomial instances and approximation. European Journal of Op-
erations Research, 205:19–30, 2010.

116

[53] J.E. Falk and S.W. Palocsay. Optimizing the sum of linear fractional functions. pages 221–258.
Princeton University Press, Princeton, NJ, 1992.

[54] J.E. Falk and S.W. Palocsay. Image space analysis of generalized fractional programs. Journal
of Global Optimization, 4:63–88, 1994.

[55] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410–
421, 2001.

[56] A.J. Fenn, D.H. Temme, W.P. Delaney, , and W.E. Courtney. The development of phased-
array radar technology. Lincoln Laboratory Journal, 12(2):321–340, 2000.

[57] M.L. Fisher. The lagrangian relaxation method for solving integer programming problems.
Management Science, 50(12S):1861–1871, 2004.

[58] FL. R. Ford and D. R. Fulkerson. Maximal flow through a network. Can. J. Math., 8:399–404,
1956.

[59] FL. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
New Jersey, 1962.

[60] R.J. Forrester and H.J. Greenberg. Quadratic binary programming models in computational
biology. Algorithmic Operations Research, 3(2):110–129, 2008.

[61] A. Frieze, A. Flaxman, and M. Krivelevich. On the random 2-stage minimum spanning tree.
Random Structures and Algorithms, 28:24–36, 2006.

[62] H. K. Fung, M. S. Taylor, and C. A. Floudas. Novel formulations for the sequence selection
problem in de novo protein design with flexible templates. Optimization Methods and Software,
22(1):51–71, 2007.

[63] A. M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Programming
Studies, pages 82–114, 1974.

[64] F. Glover. Improved linear integer programming formulations of nonlinear integer problems.
Management Science, 22(4):445–460, 1975.

[65] F. Glover, B. Alidaee, C. Rego, and G. Kochenberger. One-pass heuristics for large-
scale unconstrained binary quadratic problems. European Journal of Operational Research,
137(2):272–287, 2002.

[66] F. Glover, G.A. Kochenberger, and B. Alidaee. Adaptive memory tabu search for binary
quadratic programs. Management Science, 44(3):336–345, 1998.

[67] F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming problems
to zero-one linear programming problems. Operations Research, 21:156–161, 1973.

[68] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem to a 0-1
linear program. Operations Research, 22(1):180–182, 1974.

[69] S.W. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton University
Press, 1994.

117

[70] D. Golovin, V. Goyal, and R. Ravi. STACS 2006, volume 3884/2006 of Lecture Notes in
Computer Science, chapter Pay Today for a Rainy Day: Improved Approximation Algorithms
for Demand-Robust Min-Cut and Shortest Path Problems, pages 206–217. Springer, Berlin /
Heidelberg, 2006.

[71] E.G. Gol’stein. Dual problems of convex and fractionally-convex programming in functional
spaces. Soviet Math. Dokl., 8:212–216, 1967.

[72] S. K. Goyal and B. C. Giri. Recent trends in modeling of deteriorating inventory. European
Journal of Operations Research, 134(1):1–16, 2001.

[73] F. Granot and J. Skorin-Kapov. Some proximity and sensitivity results in quadratic integer
programming. Mathematical Programming, 47(2):259–268, 1990.

[74] M. Guignard and S. Kim. Lagrangean decomposition: A model yielding stronger bounds.
Mathematical Programming, 39:215–228, 1987.

[75] A. Gupta, R. Ravi, and A. Sinha. Lp rounding approximation algorithms for stochastic
network design. Mathematics of Operations Research, 32:345–364, 2007.

[76] G.Y. Handler and I. Zhang. A dual algorithm for the constrained shortest path problem.
Networks, 10:293–310, 1980.

[77] P. Hansen, M. Poggi de Aragão, and C.C. Ribeiro. Hyperbolic 0–1 programming and query
optimization in information retrieval. Mathematical Programming, 52:256–263, 1991.

[78] M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient optimization. Mathematical
programming, 6(1):62–88, 1974.

[79] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs and
cutting planes. Mathematical Programming, 82(3):291–315, 1998.

[80] H.-X. Huang, P. M. Pardalos, and O. A. Prokopyev. Lower bound improvement and forcing
rule for quadratic binary programming. Computational Optimization and Applications, 33(2–
3):187–208, 2006.

[81] L.D. Iasemidis, P.M. Pardalos, J.C. Sackellares, and D.S. Shiau. Quadratic binary program-
ming and dynamical system approach to determine the predictability of epileptic seizures.
Journal of Combinatorial Optimization, 5(1):9–26, 2001.

[82] ILOG S.A. and ILOG Inc. ILOG CPLEX 12.2, September 2007.

[83] K. O. Jörnsten, M. Näsberg, and P. A. Smeds. Variable splitting – A new Lagragean relaxation
approach to some mathematical programming models. Technical Report LiTH-MAT-R-85-04,
Department of Mathematics, Linköping Institute of Technology, Sweden.

[84] M. Juenger, A. Martin, G. Reinelt, and R. Weismantel. Quadratic 0/1 optimization and a
decomposition approach for the placement of electronic circuits. Mathematical Programming,
63(1):257–279, 1994.

[85] D. Jungnickel. Graphs, networks and algorithms. Springer, 2007.

118

[86] W. K. Klein Haneveld and M. H. van der Vlerk. Optimizing electricity distribution: Using
two-stage integer recourse models. In Stochastic Optimization: Algorithms and Applications,
pages 137–154. Kluwer Academic Publishers, 2001.

[87] J.L. Klepeis, C.A. Floudas, D. Morikis, C.G. Tsokos, and J.D. Lambriss. Design of peptide
analogues with improved activity using a novel de novo protein design approach. Industrial
and Engineering Chemistry Research, 43(14):3817–3826, 2004.

[88] N. Kong and A. Schaefer. A factor 1/2 approximation algorithm for two-stage stochastic
matching problems. European Journal of Operational Research, 81:387–394, 2006.

[89] N. Kong, A. J. Schaefer, and B. Hunsaker. Two-stage integer programs with stochastic right-
hand sides: a superadditive dual approach. Mathematical Programming, 108(2):275–296, 2006.

[90] N. Kong and A.J. Schaefer. A factor 1/2 approximation algorithm for two-stage stochastic
matching problem. European Journal of Operational Research, 172:740–746, 2006.

[91] H.W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[92] G. Laporte, F. V. Louveaux, and H. Mercure. The vehicle routing problem with stochastic
travel times. Transportation Science, 26:161–170, 1992.

[93] D.J. Laughhunn. Quadratic binary programming with application to capital-budgeting prob-
lems. Operations Research, pages 454–461, 1970.

[94] E.L. Lawler. The quadratic assignment problem. Management Science, 9(4):586–599, 1963.

[95] A. Lodi, K. Allemand, and T.M. Liebling. An evolutionary heuristic for quadratic 0-1 pro-
gramming. European Journal of Operational Research, 119(3):662–670, 1999.

[96] J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, B. Strumfels, and R. Yoshida. Short ratio-
nal functions for toric algebra and applications. Journal of Symbolic Computation, 38(2):959–
973, 2004.

[97] E.M. Loiola, N.M.M. de Abreu, P.O. Boaventura-Netto, P. Hahn, and T. Querido. A survey
for the quadratic assignment problem. European Journal of Operational Research, 176(2):657–
690, 2007.

[98] R.J. Mailloux. Phased array theory and technology. Proceedings of the IEEE, 70(3):246–302,
1982.

[99] R.J. Mailloux, S.G. Santarelli, and T.M. Roberts. Wideband arrays using irregular (poly-
omino) shaped subarrays. Electronics Letters, 42(18):11–12, 2006.

[100] R.J. Mailloux, S.G. Santarelli, T.M. Roberts, and D. Luu. Irregular polyomino-shaped subar-
rays for space-based active arrays. International Journal of Antennas and Propagation, 2009,
2009. Article ID 956524, 9 pages.

[101] K. Martin. Large Scale Linear and Integer Optimization: A Unified Approach. Kluwer Aca-
demic Press, 1999.

[102] R. K. Martin. Large Scale Linear and Integer Optimization: A Unified Approach. Kluwer
Academic Publishers, Boston, MA, 1999.

119

[103] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation, 8:3–30, 1998.

[104] J. Maurer. The boost random number library.
http://www.boost.org/doc/libs/1 38 0/libs/random/index.html. Accessed 29 April 2009.

[105] N. Megiddo. Combinatorial optimization with rational objective functions. Mathematics of
Operations Research, 4:414–424, 1979.

[106] A. Migdalas, P. M. Pardalos, and P. Värbrand. Multilevel optimization: algorithms and
applications. Norwell: Kluwer Academic Publishers, 1998.

[107] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, NewYork,
NY, 1988.

[108] Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer,
2004.

[109] M. Oral and O. Kettani. A linearization procedure for quadratic and cubic mixed-integer
problems. Operations Research, 40(S1):109–116, 1990.

[110] M. Oral and O. Kettani. Reformulating nonlinear combinatorial optimization problems for
higher computational efficiency. European Journal of Operational Research, 58(2):236–249,
1992.

[111] G. Palubeckis. Heuristics with a worst-case bound for unconstrained quadratic 0-1 program-
ming. Informatica, 3:225–240, 1992.

[112] G. Palubeckis. Multistart tabu search strategies for the unconstrained binary quadratic opti-
mization problem. Annals of Operations Research, 131(1):259–282, 2004.

[113] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-
ity. Dover Publications,Inc., 1998.

[114] P. M. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment problem. In P.M.
Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related Problems, DIMACS
Series, pages 1–42. American Mathematical Society, Providence, RI, 1994.

[115] P. M. Pardalos and G. P. Rodgers. Computational aspects of a branch and bound algorithm
for quadratic zero–one programming. Computing, 45(2):131–144, 1990.

[116] P.M. Pardalos. Construction of test problems in quadratic bivalent programming. ACM
Transactions on Mathematical Software (TOMS), 17(1):74–87, 1991.

[117] P.M. Pardalos and S. Jha. Graph separation techniques for quadratic zero-one programming.
Computers & Mathematics with Applications, 21(6-7):107–113, 1991.

[118] P.M. Pardalos and S. Jha. Complexity of uniqueness and local search in quadratic 0-1 pro-
gramming. Operations Research Letters, 11(2):119–123, 1992.

[119] P.M. Pardalos, O.A. Prokopyev, O.V. Shylo, and V.P. Shylo. Global equilibrium search
applied to the unconstrained binary quadratic optimization problem. Optimization Methods
and Software, 23(1):129–140, 2008.

120

[120] P.M. Pardalos and G.P. Rodgers. A branch and bound algorithm for the maximum clique
problem. Computers & Operations Research, 19(5):363–375, 1992.

[121] P.M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Optimization,
4(3):301–328, 1994.

[122] D. Parker and D.C. Zimmermann. Phased arrays - part I: Theory and architectures. IEEE
Transactions on Microwave Theory and Techniques, 50(13):678–687, 2002.

[123] J.C. Picard and H.D. Ratliff. Minimum cuts and related problems. Networks, 5(4):357–370,
1975.

[124] D. Pisinger. The quadratic knapsack problem – A survey. Discrete Applied Mathematics,
155:623–648, 2007.

[125] O.A. Prokopyev. Fractional zero-one programming. In C. Floudas and P.M. Pardalos, editors,
Encyclopedia of Optimization, pages 1091–1094. Springer, 2009.

[126] O.A. Prokopyev, H.-Z. Huang, and P.M. Pardalos. On complexity of unconstrained hyperbolic
0–1 programming problems. Operations Research Letters, 33:312–318, 2005.

[127] O.A. Prokopyev, C. Meneses, C.A.S. Oliveira, and P.M. Pardalos. On multiple-ratio hyperbolic
0–1 programming problems. Pacific Journal of Optimization, 1:327–345, 2005.

[128] T. Radzik. Parametric flows, weighted means of cuts, and fractional combinatorial optimiza-
tion. In P.M. Pardalos, editor, Complexity in Numerical Optimization, pages 351–386. World
Scientific, 1993.

[129] T. Radzik. Fractional combinatorial optimization. In C.A. Floudas and P.M. Pardalos, editors,
Encyclopedia of Optimization, volume 2, pages 159–161. Kluwer Academic Publishers, 2001.

[130] G. Reinelt. Effiziente Algorithmen 1. Lecture notes. Institut für Informatik, Universität
Heidelberg, 2001.

[131] R. T. Rockafellar and R.J.-B. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research, 16:1–23, 1991.

[132] C. H. Rosa and Ruszczyński. On augmented Lagrangian decomposition methods for multistage
stochastic programs. Annals of Operations Research, 64:289–309, 1996.

[133] A. Ruszczyński and A. Shapiro, editors. Handbooks in OR & MS: Stochastic Programming,
Vol. 10. Elsevier, 2003.

[134] S. Schaible. Duality in fractional programming: A unified approach. Operations Research,
24:452–461, 1976.

[135] S. Schaible and J. Shi. Fractional programming: the sum-of-ratios case. Optimization Methods
and Software, 18:219–229, 2003.

[136] R. Schultz. On structure and stability in stochastic programs with random technology matrix
and complete integer recourse. Mathematical Programming, 70(1):73–89, 1995.

[137] R. Schultz, L. Stougie, and M. H. van der Vlerk. Solving stochastic programs with inte-
ger recourse by enumeration: A framework using Gröbner basis reductions. Mathematical
Programming, 83(1–3):229–252, 1998.

121

[138] H.D. Sherali and W.P. Adams. A Reformulation-linearization Technique for Solving Discrete
and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1999.

[139] J. Siek and L.-Q. Lee. The boost graph library.
http://www.boost.org/doc/libs/1 38 0/libs/graph/doc/index.html. Accessed 29 April
2009.

[140] C.C. Skiscim and S.W. Palocsay. Minimum spanning trees with sums of ratios. Journal of
Global Optimization, 19:103–120, 2001.

[141] C.C. Skiscim and S.W. Palocsay. The complexity of minimum ratio spanning tree problems.
Journal of Global Optimization, 30:335–346, 2004.

[142] Y. Soun and K. Truemper. Single Commodity Representation of Multicommodity Networks.
SIAM. J. on Algebraic and Discrete Methods, 1:348–358, 1980.

[143] I.M. Stancu-Minasian. A sixth bibliography of fractional programming. Optimization, 55:405–
428, 2006.

[144] A. Tamir. On totally unimodular matrices. Networks, 6(4):373–382, 1976.

[145] M. Tawarmalani, S. Ahmed, and N. Sahinidis. Global optimization of 0–1 hyperbolic pro-
grams. Journal of Global Optimization, 24:385–416, 2002.

[146] D. Towsley. Allocating programs containing branches and loops within a multiple processor
system. IEEE Transactions on Software Engineering, SE-12:1018–1024, 1986.

[147] K. Truemper. Matroid Decomposition. Academic Press, Boston, revised edition leibniz, plano,
texas edition, 1998.

[148] R. J-B. Wets. Stochastic programs with fixed recourse: The equivalent deterministic problem.
SIAM Review, 16:309–339, 1974.

[149] L.A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[150] X. Zhao, PB Luh, and J. Wang. Surrogate gradient algorithm for Lagrangian relaxation.
Journal of Optimization Theory and Applications, 100(3):699–712, 1999.

122

	0268
	FA9550-08-1-0268

