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1 Introduction

Multi-Radio Multi-Channel (MR-MC) wireless networking arises in the context of
wireless mesh networks, dynamic spectrum access via cognitive radio, and next-
generation cellular networks [11]. By the use of multiple channels, spatially adjacent
transmissions can be carried over non-overlapping channels to avoid mutual interfer-
ence. Furthermore, each node, equipped with multiple radios, is capable of working
in a full-duplex mode by tuning the transmitting and receiving radios to two non-
overlapping channels.

The increasing demand for high data rate and the persistent reduction in radio
costs have greatly stimulated research on MR-MC networks. Considerable work has
been done on capacity analysis, channel and radio assignment [10, 16, 18, 21], and
routing protocols [10, 18]. In this paper, we consider the broadcasting problem in
MR-MC ad hoc networks.

1.1 Broadcasting in Single-Radio Single-Channel Networks

Broadcasting is a basic operation in wireless networks for disseminating a message
containing, for example, situation awareness data and routing control information, to
all nodes. For a Single-Radio Single-Channel (SR-SC) network, a key question for
the network-wide broadcast is: which set of nodes should be selected to transmit such
that the total cost (such as energy consumption or the numberof transmissions) is
minimized. In contrast to the wireless broadcast problems for minimizing the energy
consumption and the number of transmissions which are shownto be NP-complete
in [22], their counterparts in wired networks have polynomial solutions.

The complexity of the problem arises from the broadcast nature of the wireless
medium: a single transmission from one node can reach all theother nodes within the
transmission range of this node, but it may cause interference to other nearby trans-
missions. This “node-centric” nature of the wireless broadcasting problem along with
the mutual interference between concurrent transmissionscomplicates the design of
efficient broadcasting algorithms.

1.2 Broadcasting in MR-MC Networks

In an MR-MC ad hoc network, such as the DARPA Wireless Networkafter Next (W-
NaN) [19], each node is equipped with multiple radios, each operating on a different
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channel. The introduction of multiple channels and multiple radios further compli-
cates the design of an efficient broadcasting scheme. Since the number of radios at
a node is usually smaller than the number of channels, the broadcast scheme should
decide not only which nodes act as relays but also for those relay nodes, which chan-
nel(s) should be assigned to the transmitting radio(s). Given the selection of the relay
nodes, two simple broadcast schemes are: (i) transmitting multiple copies of the mes-
sage on all channels; (ii) transmitting a single copy of the message on a common
channel dedicated to broadcasting. Both schemes are inefficient. For the latter one,
if the broadcast load is high, the common channel will be overwhelmed, even while
plenty of other channels are free.

One subtle issue is the complication of the wireless broadcast advantage. In an
MR-MC network, if the radios of the neighboring nodes are tuned to different chan-
nels, a single transmission on one channel cannot reach all the neighboring nodes
simultaneously. In other words, only the neighboring nodeson the same channel can
share the wireless broadcast advantage. More precisely, the concept of neighborhood
must be defined both by radio range and channel. Another subtle issue is channel het-
erogeneity. Channels may have different bandwidth, fadingcondition, and accessing
cost, leading to different implications for the total broadcast cost.

Broadcasting in MR-MC networks is thus a multi-faceted problem, involving
channel assignment, relay node selection, and channel selection for the source and
relay nodes. In this paper, we focus on the latter two issues by assuming a given
channel-to-radio assignment. To avoid the hidden channel problem [16], two nodes
that are two-hops away from each other are assigned two distinct sets of channels.
Our design objective is to minimize the total broadcast cost, where the cost can be
of any form that is summable over all the transmissions, including, for example, the
transmission and reception energy1, the price for accessing each channel.

1.3 A Simplicial Complex Model for Broadcasting in MR-MC Networks

Our technical approach is based on a simplicial complex model of the broadcasting
problem in MR-MC networks. A simplicial complex is a collection of nonempty
sets with finite size that is closed under the subset operation. In other words, if a
set s belongs to the collection, all subsets ofs also belongs to the collection. An
element of the collection is called asimplexor face. This subset constraint is often
satisfied in the network context. For example, subsets of a broadcast/multicast group
are broadcast/multicast groups, subsets of a clique are cliques. A simple example
of graph and simplicial complex is given in Fig. 1. While the concept of simplicial
complex has been around since the 1920’s, many well-solved fundamental problems
in graph remain largely open under this more general model.

We use a simplicial complex model rather than a graph becausethe simplicial
complex more naturally captures the broadcast channel, andthe distinction and dis-
jointness between broadcasting on different channels. Further, costs can be attached
to faces (simplices) in a way not easily possible with graphs.

1 The ‘reception energy’ denotes the energy consumed by the radio in reception mode.
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Consider an example MR-MC network. As shown in Fig. 2, after the channels
are assigned, the network is partitioned into cliques of nodes. Such clique assignment
scheme is implemented in the DARPA WNaN system and was used inan exercise
at Ft. Devens [19]. A clique consists of the nodes which are within each other’s
transmission range and share at least one common channel, and two cliques are s-
pliced (i.e., connected) via nodes operating on multiple channels sharedin common
by the two cliques. Within each clique, depending on the costfunction, the transmit-
ter decides which dimension simplex (i.e.,a subclique or the clique itself) in a clique
complex to activate. The message for the network-wide broadcast is thus propagated
through a sequence of cliques, possibly of different dimensions. Note that the unicast
case corresponds to a clique of dimension 1 (an edge). This example could also ap-
ply to the case where nodes may have multiple radios, perhapsof different modality
(e.g., RF and optical); in this case, there may also be a cost associated with switching
modes.

The network-wide broadcast problem can be formulated as theminimum span-
ning problem in simplicial complexes. A clique in the MR-MC network is modeled
as a simplex in the simplicial complex (see Fig. 2), and sincea subset of a clique
is still a clique, the constructed simplicial complex meetsthe requirement of being
closed under the subset operation. The minimum spanning problem in a simplicial
complex is to find a connected subset of simplices that coversall the vertices with
the minimum total weight, i.e., the Minimum Connected Spanning Subcomplex (M-
CSSub)2. Then the solution to the network-wide broadcast problem can be obtained
by solving the MCSSub problem.

1.4 Minimum Spanning Problem in Simplicial Complexes

The minimum spanning problem in a graph is to find a connected subgraph that
covers all the vertices with minimum total weight. The solution must be a tree for
graphs with nonnegative weights (hence called the Minimum Spanning Tree (MST)).
There are several polynomial-time algorithms for MST, e.g., Kruskal’s Algorithm and
Prim’s Algorithm [9]. The MST problem has many applicationsin network planning,
broadcasting in communication networks, touring problems, and VLSI design [1].

With the addition of high dimensional simplices, the minimum spanning problem
in a simplicial complex is fundamentally different and muchmore difficult than its
counterpart in a graph. First, unlike the case in a graph, theMCSSub of a simplicial
complex may not be a “tree”3. As illustrated in Fig. 3, the MCSSub of the simplicial
complex is the three filled triangles which form a cycle. Second, while simple greedy-
type polynomial-time algorithms exist for finding the minimum spanning tree in a

2 Strictly speaking, a subcomplex should also be closed underthe subset operation, but without loss of
generality, we do not include this condition in the definition of minimum connected spanning subcomplex,
which is also more relevant to the broadcasting problem at hand.

3 Although there is no unified definition of tree in simplicial complexes, a couple of definitions can be
obtained by generalizing those equivalent definitions of tree in a graph. For example, simplicial trees can
be defined based on the universal existence of leaves in any subgraph, or the uniqueness of simplicial facet
paths (see Sec. 2).
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graph, the minimum spanning problem in a simplicial complexis NP-complete as
established in this paper (see Sec. 3.1).

We develop polynomial-time approximation algorithms for the minimum span-
ning problem in simplicial complexes. We propose two algorithms: one reduces this
problem to a minimum connected set cover problem, and the other reduces the prob-
lem to a node-weighted Steiner tree problem in a graph derived from the original
simplicial complex. We also establish the approximation ratios of the two algorithm-
s. Both are shown to be order-optimal. The time-complexity of these two algorithms
is also analyzed, illustrating the tradeoff between performance and complexity of-
fered by these two algorithms. In a broader context, this work appears to be the first
that studies the minimum spanning problem in simplicial complexes and weighted
minimum connected set cover problem.

1.5 Related Work

Broadcasting in MR-MC networks, mostly in the context of wireless mesh networks,
has been studied for different optimization objectives (see [2, 3, 12, 16] and ref-
erences therein). Different from the previous work, the optimization objective in our
work can be any cost function which is summable over all the transmissions, thus tak-
ing into account channel heterogeneity (e.g., transmissions on different channels may
consume different amounts of energy, due to different bandwidths or different prop-
agation characteristics or some other factor). We point outthat neither minimizing
the total number of transmissions nor minimizing the total number of radios used in
the broadcast is, in general, equivalent to minimizing the total energy consumption.
The reception energy is ignored if the total number of transmissions is minimized,
while the transmission energy and the reception energy are equated if the total num-
ber of radios is minimized. More importantly, channel heterogeneity is not addressed
if these two objectives are optimized.

Furthermore, to our best knowledge, our work is the first to adopt simplicial com-
plexes to model and solve the broadcast problem in wireless ad hoc networks. For
a more detailed discussion on the potential applications ofsimplicial complexes in
communication and social networks, readers are referred to[17].

2 Basic Concepts in Simplicial Complexes

In this section, we introduce several basic concepts in simplicial complexes [15].
An (abstract) simplicial complexis a collection∆ of nonempty sets with finite

size such that ifA ∈ ∆, then∀ B ⊆ A, B ∈ ∆, i.e.,∆ is closed under the operation
of taking subsets. The elementA of∆ is called asimplexof∆; its dimension(denoted
by dim A) is one less than the number of its elements. Each nonempty subset ofA
is called aface4 of A. Thedimensionof ∆ is the maximum dimension over all its
simplices, or is infinite if the maximum does not exist. Thevertex setV of ∆ is the
union of the one-point elements of∆. Fig. 4 shows an example of a2-dimensional

4 Notice that sinceA is its own nonempty subset, the simplexA is also a face ofA.
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simplicial complex. A subcollection of∆ that is itself a simplicial complex is called
a subcomplexof ∆. A subcomplex of∆ is thep-skeletonof ∆, denoted by∆(p), if
it is the collection of all simplices of∆ with dimension no larger thanp. Thus, the
1-skeleton is the underlying graph of∆.

A facetof a simplicial complex∆ is a maximal face of∆, i.e., it is not a subset of
any other face. A simplicial complex isconnectedif its 1-skeleton (i.e., the underlying
graph) is connected in the graph sense.

A weighted simplicial complex(WSC)∆ is a triple(V,S, w)5, whereV is the
set of vertices,S the set of faces of∆, andw : S → {R+ ∪ {0}} a nonnegative
weight function defined for each face inS with w(v) = 0 for all v ∈ V . We define
thefacet-only weightWF (∆) of a WSC∆ as

WF (∆) =
∑

Fi∈{facet of∆}

w(Fi).

3 Minimum Connected Spanning Subcomplex

In this section, we show that the MCSSub problem is NP-complete, and we pro-
pose two approximation algorithms based on connected set cover and node-weighted
Steiner tree. We also establish the approximation ratios ofthe two algorithms and
analyze their time complexity.

3.1 NP-Completeness

The decision version (D-MCSSub) of the MCSSub problem is stated as follows: let
V (∆) denote the vertex set of a WSC∆ andWF (∆) the facet-only weight of∆.
Given a WSC∆ = (V,S, w) andK > 0, is there a connected subcomplex∆sub

of ∆ such thatV (∆sub) = V andWF (∆
sub) ≤ K? Then we have the following

theorem.

Theorem 1 The D-MCSSub problem is NP-complete.

To prove the NP-completeness, we reduce a classic NP-complete problem – the
unweighted set cover problem to the MCSSub problem.

Proof To check a solution to the D-MCSSub problem, we only need to verify the
following points: (i) compute the facet-only weight of the solution and compare the
weight withK; (ii) check whether the underlying graph of the solution is connected or
not; (iii) check whether all the vertices of the original simplicial complex are covered
by the solution. Since all these can be done within polynomial time, the D-MCSSub
problem is NP.

Given is an unweighted Set Cover instanceI, i.e., a universe of elementsU and
a family of subsetsF of U . For each elementu ∈ U , we introduce a corresponding
vertex in MCSSub instanceI ′. We introduce one additional vertexd. For each setf ∈

5 (S, w) suffices to denote the WSC sinceV ⊆ S, but we use the redundant(V,S, w) for convenience.
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F , we introduce a corresponding facef ′ = f ∪ {d}, of weight 1. Being a simplcial
complex, all subsets off ′ are also introduced, all also of weight 1. In addition to
covering all vertices, a solution toI ′ must be connected.

Given any solutionSOL to I of costc, we can construct a solution toI ′ also of
costc. For every setf in SOL not includingd, replacef with f ∪ {d}.

On the other hand, given any solutionSOL′ to I ′ of costc, a solution toI of the
same cost can be constructed as follows: for any facef ∈ SOL′ such thatf does not
appear as a set inF , replacef with anysuperset off − {d} appearing inF . Note
that there must exist at least one such superset.

This proof is for general D-MCSSub problems. It can be shown that even if the
weight function of the WSC is monotone or strictly monotone6, the D-MCSSub prob-
lem is NP-hard. But it is still possible that the D-MCSSub problem under some spe-
cial structured weight function is P.

In the following, we present two approximation algorithms for the MCSSub prob-
lem both with performance guaranteeO(lnn), wheren is the number of vertices in
the WSC. Since the best possible approximation ratio for theset cover problem is
lnn [5], these two algorithms are order-optimal.

3.2 Algorithm Based on Connected Set Cover

Let A be a set with finite number of elements, andB = {Bi ⊆ A : i = 1, ..., n} a
collection of subsets ofA where eachBi is associated with a weightw(Bi) ≥ 0. Let
G be a connected graph with the vertex setB. A connected set cover(CSC)SC with
respect to(A,B, w,G) is a set cover ofA such thatSC induces a connected subgraph
of G. The minimum connected set cover (MCSC) problem is to find theCSC with
the minimum weight, where the weight of a CSCSC is defined as

w(SC) =
∑

Bi∈SC

w(Bi).

From a WSC∆ = (V,S, w), we derive an auxiliary undirected graphG∆ in the
following way: letS \ V be the vertex set ofG∆, and connect two vertices (non-
vertex faces in∆) S1 andS2 if and only if S1 ∩ S2 6= ∅ (i.e.,S1 andS2 have at least
one element ofV in common). Then we have the following theorem on the relation
between the MCSSub problem and the MCSC problem.

Theorem 2 Let∆∗ be the MCSSub of a WSC∆ = (V,S, w) andS∗
C the MCSC of

(V,S \ V,w,G∆). Then we have

wF (∆
∗) = w(S∗

C).

Proof The proof is based on the following lemma.

Lemma 1 Let S∗
C be the MCSC of(V,S \ V,w,G∆). For any faceS ∈ S∗

C with
w(S) > 0, we have that there does not exist a faceS′ ∈ S∗

C such thatS ⊂ S′.

6 We say that the weight function satisfies themonotoneproperty if for any two facesS1 ⊆ S2,
w(S1) ≤ w(S2), i.e., the weight is monotone non-decreasing with respect to the dimension of the face.
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Proof (Proof of Lemma 1)Suppose that for some faceS ∈ S∗
C with w(S) > 0,

∃ S′ ∈ S∗
C such thatS ⊂ S′. Let S ′

C = S∗
C \ s. Obviously,S ′

C is a set cover, and
w(S ′

C) = w(S∗
C) − w(S) < w(S∗

C). On the other hand, sinceS ∩ S′′ 6= ∅ implies
S′ ∩ S′′ 6= ∅ for any faceS′′ ∈ S∗

C , it follows from the connection rule of the
auxiliary graphG∆ that any path viaS has an alternative path viaS′. Thus,S ′

C is a
CSC, leading to a contradiction.

Given the MCSCS∗
C of (V,S \ V,w,G∆), we can obtain a connected spanning

subcomplex∆∗
C by mapping each element ofS∗

C to a face in∆. Since the facet-only
weightwF (∆

∗
C) of ∆∗

C only counts facets in∆∗
C , it follows thatwF (∆

∗
C) ≤ w(S∗

C).
Based on Lemma 1, we have that every element ofS∗

C with positive weight is a facet
in ∆∗

C , and thus
wF (∆

∗) ≤ wF (∆
∗
C) = w(S∗

C ),

where∆∗ is the MCSSub of∆.
On the other hand, the facets of∆∗ leads to an CSCS∗

∆, andw(S∗
∆) = wF (∆

∗).
It implies that

w(S∗
C) ≤ w(S∗

∆) = wF (∆
∗).

Thus,wF (∆
∗) = w(S∗

C).

3.2.1 Algorithm

Based on Theorem 2, we can reduce the MCSSub problem of a WSC∆ = (V,S, w)
to the MCSC problem(V,S \ V,w,G∆). We obtain the following Set Cover based
Algorithm (SCA) for the MCSSub problem.

Algorithm 1 SCA for MCSSub:
INPUT: A WSC∆ = (V,S, w).
OUTPUT: An approximate MCSSub∆C of∆.

1. Derive the auxiliary graphG∆.
2. Find an approximate MCSCSC of (V,S \ V,w,G∆) by using the greedy algo-

rithm for MCSC (Algorithm 2).
3. TransformSC to a connected spanning subcomplex∆C by mapping each element

of SC to a face in∆.

Zhanget al.propose a greedy approximation algorithm for the unweighted MCSC
problem [23],i.e.,w(Bi) = 1 for all i. The original algorithm in [23] has a flaw and
the established approximation ratio is incorrect. In [20],the flaw is corrected and
a stronger result on the approximation ratio is shown. By generalizing their greedy
approach, we develop a greedy algorithm for the weighted MCSC problem.

Before stating the algorithm, we introduce the following notations and definitions.
For two setsS1, S2 ∈ S, let distG(S1, S2) be the length of the shortest path between
S1 andS2 in an auxiliary graphG, where the length of a path is given by the number
of edges;S1 andS2 are said to begraph-adjacentif they are connected via an edge
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in G (i .e., distG(S1, S2) = 1), and they are said to becover-adjacentif S1∩S2 6= ∅.
Notice that in a general MCSC problem, there is no connectionbetween these two
types of adjacency. Thecover-diameterDC(G) is defined as the maximum distance
between any two cover-adjacent sets,i.e.,

DC(G) = max{distG(S1, S2) | S1, S2 ∈ S andS1 ∩ S2 6= ∅}.

For the MCSC problem derived from the MCSSub problem of a WSC∆, we have
thatDC(G∆) = 1.

At each step of the algorithm, letR denote the collection of the subsets (faces
of ∆) that have been selected, andU the vertex subset of∆ that has been covered.
GivenR 6= ∅ and a setS ∈ S \ R, anR → S path is a path{S0, S1, ..., Sk} in G

such that (i)S0 ∈ R; (ii) Sk = S; (iii) S1, ..., Sk ∈ S \R. We define the weight ratio
r(PS) of PS as

r(PS) =
w(S(PS) \ R)

|VN (PS)|
=

∑

S∈S(PS)\R w(S)

|VN (PS)|
, (1)

whereS(PS) \R is the subsets (faces inS) of PS that are not inR, and|VN (PS)| is
the number of vertices of∆ that are covered byPS but not covered byR.

Algorithm 2 A Greedy Algorithm for MCSC.
INPUT: (V,S \ V,w,G∆)

OUTPUT: A CSCR.

1. ChooseS0 ∈ S\V such that the weight ratior(S0) defined in (1)is the minimum,
and letR = {S0} andU = S0.

2. WHILE V \ U 6= ∅ DO
2.1. For eachS ∈ S \ (V ∪R) which is cover-adjacent or graph-adjacent with a

set inR, find a shortest7 R → S pathPS .
2.2. SelectPS with the minimum weight ratior(PS) defined in (1), and letR =

R∪ PS (add all the subsets ofPS to R) andU = U ∪ VN (PS).
END WHILE

3. RETURN R.

3.2.2 Approximation Ratio

The approximation ratio of SCA is determined by Step 2,i.e.,the approximation ratio
of the greedy algorithm for the MCSC problem. First, we establish the following
lemma.

7 Notice that the shortest path is defined in terms of the numberof edges, not the total weight of all
vertices along the path.
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Lemma 2 Given a weighted MCSC problem(V,S \ V,w,G) withDC(G) = 1, let

Rw =
max
S∈S

{w(S)}

min
S∈S

{w(S)}
. (2)

Then the approximation ratio of the greedy algorithm for MCSC is at mostRw +
H(γ − 1), whereγ = max{|S| | S ∈ S \V } is the maximum size of the subsets inS
andH(·) is the harmonic function.

Proof (Proof of Lemma 2)The proof is based on the classic charge argument. LetS∗

be an optimal solution to the weighted set cover problem(V,S \ V,w), andR the
solution returned by the greedy algorithm for the weighted MCSC problem(V,S \
V,w,G) with DC(G) = 1. Let w(S∗) andw(R) denote the total weight of the
subsets included inS∗ andR, respectively. In the following, we will show that

w(R)

w(S∗)
≤ Rw +H(γ − 1). (3)

Let S∗
C be an optimal solution to the weighted MCSC problem(V,S \ V,w,G)

with DC(G) = 1. Sincew(S∗) ≤ w(S∗
C), Lemma 2 follows immediately from (3).

To prove (3), we apply the classic charge argument. Each timea subsetS0 (at step
1) or a shortestR → S pathP ∗

S (at step 2) is selected to be added toR, we charge
each of the newly covered elementsw(S0)

|S0|
(at step 1) orr(P ∗

S ) defined in (1) (at step
2). Notice that whenDC(G) = 1, the shortestR → S pathP ∗

S is only a single edge
connecting some subset inR andS, and

r(P ∗
S ) =

w(S(P ∗
S \ R))

|VN (P ∗
S)|

=
w(S)

|S \ U |
.

During the entire procedure, each element ofV is charged exactly once. Assume
that step 2 is completed inK − 1 iterations. LetP ∗

Si be the shortestR → S path
selected by the algorithm at iterationi. Let C(v) denote the charge of an elementv

in V . Then we have that

∑

v∈V

C(v) =

K−1
∑

i=0

∑

v∈VN (P∗

Si
)

C(v)

=

K−1
∑

i=0

∑

v∈Si\U

w(Si)

|Si \ U |

=

K−1
∑

i=0

w(Si) = w(R), (4)

whereP ∗
S0 = {S0}.
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Suppose thatS∗ = {S∗
1 , ..., S

∗
N} is a minimum weighted set cover for{V,S \

V,w}. Since an element ofV may be contained in more than one subset ofS∗, it
follows that

∑

v∈V

C(v) ≤
N
∑

i=1

∑

v∈S∗

i

C(v). (5)

Next we will show an inequality which bounds from above the total charge of a
subset inS∗, i.e., for anyB∗ ∈ S∗,

∑

v∈B∗

C(v) ≤ [Rw +H(|S∗| − 1)]w(S∗). (6)

Let ni (i = 0, 1, ...,K) be the number of elements ofS∗ that have not been
covered byS after iterationi − 1, where step 1 is considered as iteration0. Let
{i1, ..., ik} denote the subsequence of{i = 0, 1, ...,K − 1} such thatni−ni+1 > 0.
For each elementa covered at iterationi1, if i1 = 0, based on the greedy rule at step
1, we have that

C(v) = r(P ∗
S0
) ≤

w(S∗)

ni1

; (7)

Otherwise,

C(v) = r(P ∗
Si1

) =
w(Si1 )

|Si1 \ U |
≤

w(S∗)Rw

ni1 − n(i1+1)
. (8)

The inequality in (8) is due to the fact thatSi1 covers at leastni1 − n(i1+1) elements
of V , i.e., |Si1 \ U | ≥ ni1 − n(i1+1). Summing up (7) and (8),

C(v) ≤
w(S∗)Rw

ni1 − n(i1+1)
. (9)

Consider two cases:

(i) If all the elements ofS∗ have been covered after iterationi1, i.e.,n(i1+1) = 0,
then

∑

v∈S∗

C(v) ≤
∑

v∈S∗

w(S∗)Rw

n0
= w(S∗)Rw. (10)

(ii) If not all the elements ofS∗ have been covered byR after iterationi1,S∗ becomes
cover-adjacent withR and thus a candidate for being selected at the following
iterations. At each iteration, for each elementv ∈ S∗ covered at iterationij
(j = 2, ..., k), the greedy rule at step 2 still yields

C(v) = r(P ∗
Sij

) ≤ r(P ∗
S∗)

=
w(S∗)

|S∗ \ U |
=

w(S∗)

nij

. (11)
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It follows from (9,11) that
∑

v∈S∗

C(v) ≤ w(S∗)(ni1 − n(i1+1))
1

ni1 − n(i1+1)

+w(S∗)
k

∑

j=2

(nij − n(ij+1))
1

nij

= w(S∗)



1 +
k

∑

j=2

nij − ni(j+1)

nij



 . (12)

Here we have used the fact thatn(ij+1) = ni(j+1)
. It is because between iteration

ij and iterationi(j+1), no elements ofS∗ are covered.
For the summation term in (12), we have the following inequality:

k
∑

j=2

nij − ni(j+1)

nij

≤
k

∑

j=2

1

nij

+ · · ·+
1

ni(j+1)
+ 1

= H(ni2) ≤ H(|S∗| − 1). (13)

The last inequality is due to the fact thatni2 ≤ ni1 − 1 = |S∗| − 1.

Eqn. (6) is a direct consequence of (10), (12), and (13). Thus, using (4-6),

w(R) =
∑

v∈V

C(v) ≤
N
∑

i=1

∑

v∈S∗

i

C(v)

≤
N
∑

i=1

[Rw +H(|S∗
i | − 1)]w(S∗

i )

≤ [Rw +H(γ − 1)]w(S∗).

Then, as a direct consequence of Lemma 2, we have the following theorem on the
approximation ratio8 of the greedy algorithm for the MCSC problem withDC(G) =
1.

Theorem 3 Let∆∗ be the MCSSub of a WSC∆ = (V,S, w) and∆C be the solution
returned by Algorithm 1. LetRw be defined as in (2). Then we have

wF (∆C)

wF (∆∗)
≤ Rw +H(dim∆),

where dim∆ is the dimension of∆ andH(·) is the harmonic function.

From Theorem 3, we see that the approximation ratio depends on the ratioRw of
the maximum weight to the minimum weight. It is shown in the following theorem
that if Rw is unbounded, then the scaling order of the approximation ratio can be as
bad as linear with respect to the number of vertices in the simplicial complex.

8 The approximation ratio of the greedy algorithm for generalweighted MCSC problem is still an open
problem.
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Theorem 4 Let n be the number of the vertices in a WSC∆ = (V,S, w), andRw

defined as in (2). IfRw is unbounded, then the approximation ratio of Algorithm 1
for the MCSSub problem of∆ isΩ(n).

Proof Consider a specific example:∆ is a (n − 1)-dimensional simplex with the
vertex setV = {v1, ..., vn}, and all the weights of the faces are infinite except for the
following five faces:

w(S1) = w
({

v1, ..., vn
2

})

=
1

2
,

w(S2) = w
({

v1, ..., vn
4
, v(n

2 +2)

})

=
1

2
,

w(S3) = w
({

v(n
4 +1), ..., v(n

2 +1)

})

=
1

2
,

w(S4) = w
({

vn
2
, ..., vn

})

=
n

8
,

w(S5) = w
({

v(n
2 +1), ..., vn

})

= 1.

For ease of presentation, we have assumed thatn is a multiple of4. By applying
Algorithm 1, we reduce the MCSSub problem for∆ to the MCSC problem(V,S \
V,w,G∆). Due to the weight assignment, it suffices to only consider the subgraph of
G∆ induced by the above five faces, as shown in Fig 5.

The optimal solution∆∗ to the MCSSub problem is given by

∆∗ = {S ∈ S | S ⊆ S2 or S3 or S5},

and

wF (∆
∗) = w(S2) + w(S3) + w(S5) = 2.

On the other hand, the solution∆C returned by Algorithm 1 is given by

∆C = {S ∈ S | S ⊆ S1 or S4},

and

wF (∆C) = w(S1) + w(S4) =
1

2
+

n

8
.

Specifically,S1 is firstly selected, and thenS4. Thus,

wF (∆C)

wF (∆∗)
=

n

16
+

1

4
= Θ(n).

It follows that the approximation ratio of Algorithm 1 isΩ(n).

From Theorem 4, we see that Algorithm 1 is not suitable for theMCSSub problem
of a WSC∆ if its weight function has a relatively wide range. As shown next in
Sec. 3.3, the other approximation algorithm based on the Steiner tree does not have
this issue: its approximation ratio does not depend on the range of the weight function.
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3.3 Algorithm Based on Steiner Tree

From a WSC∆ = (V,S, w), we derive an undirected graphH∆ with the vertex set
S: for each faceS ∈ S \ V (i.e., the faces that are not the vertices of∆), we replace
it by a vertexvS in H∆ and connectvS to all the vertices ofS. The weightw(vS)
assigned to the vertexvS is the weightw(S) of the faceS. Notice that the weight
of vertices inH∆ corresponding to the vertices in∆ (i.e., V) is zero. Fig. 6 shows
an example of the derivation of the graph from a2-simplex. We have the following
theorem on the relation between the MCSSub of∆, the Steiner tree ofH∆ that spans
the vertex setV of ∆ and the minimum connected dominating set9 of H∆.

Theorem 5 Let∆∗ denote the MCSSub of a WSC∆ = (V,S, w), T ∗ the Steiner tree
ofH∆ that spans the vertex setV of∆, andD∗

C the minimum connected dominating
set ofH∆. Then we have that

wF (∆
∗) = w(T ∗) = w(D∗

C).

Proof First we show thatwF (∆
∗) = w(T ∗). Since every connected spanning sub-

complex∆′ of ∆ corresponds to a connected subgraph ofH∆ which only contain-
s the vertices of∆ and the vertices representing the facets of∆′, it follows that
w(T ∗) ≤ wF (∆

∗). On the other hand, since by contradiction, there is a one-to-one
mapping between the vertices of the Steiner tree ofH∆ and the vertices plus the
facets of a connected spanning subcomplex of∆, it follows thatwF (∆

∗) ≤ w(T ∗).
Next we show thatw(T ∗) = w(D∗

C). Notice that the vertex setV of ∆ is a
dominating set ofH∆. Since the Steiner treeT ∗ of H∆ spans the vertex setV , T ∗ is
a CDS ofH∆. Thus,w(D∗

C) ≤ w(T ∗). On the other hand, given the minimum CDS
D∗

C of H∆, since each vertexv in the vertex setV is either inD∗
C or a neighbor of

some face inD∗
C and the weights of the vertices inV are all zero, the combination of

V andD∗
C yields a connected subgraph ofH∆ that spansV with the same weight as

D∗
C . Thus,w(T ∗) ≤ w(D∗

C).

Based on Theorem 5, we propose the following Steiner Tree based Algorithm
(STA) for the MCSSub problem.

Algorithm 3 STA for MCSSub:
INPUT: A WSC∆ = (V,S, w).
OUTPUT: An approximate MCSSub∆C of∆.

1. Derive the graphH∆ from∆.
2. Obtain an approximate Steiner treeT ofH∆ by using the algorithms given in [7,

8].
3. TransformT to a connected spanning subcomplex∆C of ∆ by mapping each

vertex ofT to a face of∆.

9 A dominating set of a graph is a subset of vertices such that every vertex of the graph is either in the
subset or a neighbor of some vertex in the subset, and a connected dominating set (CDS) is a dominating
set where the subgraph induced by the vertices in the dominating set is connected. The CDS problem asks
for a CDS with the minimum total weight, and it is shown to be a special case of the MCSC problem [20].
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Since approximation only occurs in Step 2, the approximation ratio of STA is
equal to that of the algorithm for the node-weighted Steinertree problem. The best
approximation ratio is known to be(1.35 + ǫ) lnn for any constantǫ > 0, wheren
is the number of vertices of∆ and is also the number of terminals in the Steiner tree
of H∆ [7]. Here we do not try to find the CDSD∗

C of H∆ at step 2, because the best
known approximation ratio for the CDS problem is(1.35 + ǫ) lnn(H∆) [6, 7]. Since
n(H∆) ≫ n, the latter approximation ratio is much worse than the former one.

3.4 Time Complexity Analysis

Here we analyze the time complexity of SCA and STA for the MCSSub problem.
Given a WSC∆ = (V,S, w), let n = |V | denote the number of vertices in∆, m =
|S \ V | the number of non-vertex faces in∆, andd the dimension of∆. Recall that
the existence of edges in the auxiliary graphG∆ for SCA and the derived graphH∆

for STA depends entirely on whether the two non-vertex facesoverlap and whether
the vertex is contained in the non-vertex face, respectively. It implies that all the
information of these two graphs can be easily retrieved fromthe WSC∆. Thus, Step
1 in both algorithms can be skipped in the implementation, and the time complexity
of both algorithms is determined by their Step 2.

Step 2 of SCA is to apply the greedy algorithm to the MCSC problem (V,S \
V,w,G∆). It takesO(m) time to complete Step 1 of the greedy algorithm. Since at
least one vertex becomes covered at each iteration of Step 2 of the greedy algorithm,
there are at mostn − 1 iterations. At each iteration, the weight ratios of at mostm

faces are computed, and due to the fact that cover-adjacent faces are graph-adjacent,
the weight ratio of each face is done in constant time. Thus, the running time of SCA
isO(m+ nm) = O(nm).

Since the derived graphH∆ hasn+m vertices andO(dm) edges and the Steiner
tree hasn terminals to cover, it follows from [13] that the running time of Step 2 of
STA is O(dnm2 + nm2 logm). From the above, we see that the time complexity
of STA is significantly higher than that of SCA. This is mostlybecause the approx-
imation algorithm for the Steiner tree requires the computation of the shortest paths
between all vertex pairs.

We point out that while the Steiner tree based algorithm has ahigher complexity,
it can offer better performance in a WSC with a large weight range. In a simulation
example of random simple complexes, we consider a case whereeach face weight
takes only two valueswmin andwmax with equal probability. Withwmin = 1,
wmax = 10000, and1000 Monte Carlo runs for a200-vertex random simplicial
complex10 [14], we find that the total weight of the solution returned bythe set cov-

10 A random simplicial complex∆(n,D,p) with n vertices, dimension at mostD, and aD-
dimensional probability vectorp = {p1, p2, ..., pD} is constructed in a bottom-up manner: firstn vertices
are fixed, which are the0-simplices of∆, and then higher-dimensional simplices are generated inductively.
Specifically, for each1 ≤ i ≤ D, after all the simplices with dimension lower thani have been gener-
ated, consider everyi-tuple of vertices: if they have formed all the lower dimensional simplices, then an
i-simplex consisting of them is generated with probabilitypi. Notice that a random simplicial complex
∆(n, 1, p) is the random graph introduced by Erdős and Rényi [4].
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er based algorithm can be1.7 times that of the solution returned by the Steiner tree
based algorithm. These two algorithms thus offer a tradeoffbetween performance and
complexity.

4 Simulation Results

In this section, we present simulation results on the performance of the two approxi-
mation algorithms (SCA and STA) for the broadcast problem inan MR-MC network.
We consider a dense MR-MC network, where all the nodes are within each other’s
transmission range, and we aim to minimize the total energy consumption of the
broadcast.

There are12 non-overlapping channelsfi (1 ≤ i ≤ 12), possibly with differ-
ent communication ratesri, available for the MR-MC network, and each node is
equipped with4 radios. At the beginning of the broadcast, each node randomly se-
lects4 of the12 channels for its4 radios. As discussed in Sec. 1.3, the nodes which
share at least one common channel form a clique, and there is aone-to-one corre-
spondence between the cliques and the faces of the derived WSC. The weight of the
face is defined as the energy consumption of the broadcast within the corresponding
clique, i.e., the sum of the transmission energy and the reception energy.Let S be a
face containingk + 1 nodes and{fSj : j = 1, 2, ..., q} theq (1 ≤ q ≤ 12) common
channels shared by thek+1 nodes. Assume that if a node in the clique is selected as
relay, it will choose the common channel with the maximum communication rate to
transmit. Then the weightw(S) of the faceS is given by

w(S) = (Ptx + kPrx)
L

max
j=1,...,q

{rSj}
,

wherePtx andPrx are the transmission power and the reception power, respectively,
andL is a constant.

In Fig. 7, the average total energy of the solutions returnedby SCA and STA is
compared with that of the MST with respect to the underlying graph of the WSC.
The average is taken over10 random channel assignments. Notice that although two
different links on the same channel are treated separately when the MST is derived,
the transmission energy corresponding to them is counted only once to exploit the
wireless broadcast advantage when the total energy of the MST is computed. We see
that the performances of SCA and STA are extremely close, andtheir performances
are significantly better than that of MST.

5 Conclusion and Future Work

In this paper, we study the minimum cost broadcast problem inmulti-radio multi-
channel ad hoc networks, where the total cost is the sum of thecosts associated with
the transmissions during the broadcast. We formulate it as the minimum spanning
problem in simplicial complexes. We show that it is NP-complete. Hence we pro-
pose two approximation algorithms for this minimum spanning problem: one is to
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transform it into the connected set cover problem; the otheris to transform it into
the node-weighted Steiner tree problem and then apply the corresponding algorith-
m. Despite their distinct approaches, both approximation algorithms are shown to be
order-optimal and offer a tradeoff in terms of performance vs. complexity.

As a starting point, we have assumed that the channel assignment scheme is
designed independent of the broadcast scheme. The joint optimization of the two
schemes will further reduce the broadcast cost. Another future direction is to develop
distributed versions of the approximation algorithms for the minimum cost broadcast
problem.
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v0v0

v1v1 v2v2

(a) Graph (b) Simplicial Complex

Fig. 1 Graph and simplicial complex:V = {v0, v1, v2}, S(a) = {(v0, v1), (v0, v2), (v1, v2)}, S(b) =
{(v0, v1, v2), (v0, v1), (v0, v2), (v1, v2), (v0), (v1), (v2)}.

{f1, f2}

{f1, f3} {f1, f4, f5} {f5, f6}

{f4, f6}

{f2, f7}

{f3, f8}

Fig. 2 An illustration of an MR-MC network and the constructed simplicial complex. The parameters
within the braces are the channels which each node can access. In the communication graph derived from
the network, a link exists between two nodes if and only if twonodes are within each other’s transmission
range and they share at least one common channel. Notice thata clique in the communication graph may
not be a clique in the MR-MC network (correspondingly, a simplex in the simplicial complex), e.g., the
three nodes of the right empty triangle (they do not share a common channel).
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Fig. 3 A simplicial complex whose MCSSub is the three filled triangles, and is not a “tree” (the integers
are the weights of the simplices).

v0

v1

v2
v3 v4

v5

Fig. 4 A simplicial complex ∆ with 6 vertices (0-dimensional sim-
plices: {v0},{v1},{v2},{v3},{v4},{v5}), 5 edges (1-dimensional simplices:
{v1, v2},{v2, v3},{v3, v4},{v3, v5},{v4, v5}), and 1 filled triangle (2-dimensional simplex:
{v3, v4, v5}).
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Fig. 5 The subgraph ofG∆ induced by the five facesS1, S2, S3, S4, andS5 with finite weights.

∆ H∆

Fig. 6 The derived graph of a2-simplex (squares inH∆ represent the faces that are not vertices of∆).
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Fig. 7 Average total energy vs. number of nodes. Parameters:Ptx=1,Prx = 0.01, L = 100, ri = i for
1 ≤ i ≤ 12.


