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ning problem in simplicial complexes and weighted minimuommected set cover
problem.
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1 Introduction

Multi-Radio Multi-Channel (MR-MC) wireless networkingiaes in the context of
wireless mesh networks, dynamic spectrum access via oogmnédio, and next-
generation cellular networks [11]. By the use of multiplachels, spatially adjacent
transmissions can be carried over non-overlapping chatoeloid mutual interfer-
ence. Furthermore, each node, equipped with multiple saiacapable of working
in a full-duplex mode by tuning the transmitting and recedvradios to two non-
overlapping channels.

The increasing demand for high data rate and the persisteoction in radio
costs have greatly stimulated research on MR-MC networ&asfderable work has
been done on capacity analysis, channel and radio assigiiberi6, 18, 21], and
routing protocols [10, 18]. In this paper, we consider theaoicasting problem in
MR-MC ad hoc networks.

1.1 Broadcasting in Single-Radio Single-Channel Networks

Broadcasting is a basic operation in wireless networks ifesaininating a message
containing, for example, situation awareness data andhgaontrol information, to
all nodes. For a Single-Radio Single-Channel (SR-SC) nidtwaokey question for
the network-wide broadcast is: which set of nodes shouleleeted to transmit such
that the total cost (such as energy consumption or the nupoflteansmissions) is
minimized. In contrast to the wireless broadcast problemsiinimizing the energy
consumption and the number of transmissions which are showe NP-complete
in [22], their counterparts in wired networks have polynahsolutions.

The complexity of the problem arises from the broadcastreatfithe wireless
medium: a single transmission from one node can reach atitttex nodes within the
transmission range of this node, but it may cause interéerém other nearby trans-
missions. This “node-centric” nature of the wireless bizesting problem along with
the mutual interference between concurrent transmissiomgplicates the design of
efficient broadcasting algorithms.

1.2 Broadcasting in MR-MC Networks

In an MR-MC ad hoc network, such as the DARPA Wireless Netveditdr Next (\W-
NaN) [19], each node is equipped with multiple radios, eguérating on a different
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channel. The introduction of multiple channels and mudtidios further compli-

cates the design of an efficient broadcasting scheme. Sieceumber of radios at
a node is usually smaller than the number of channels, thedloest scheme should
decide not only which nodes act as relays but also for thdag n@des, which chan-

nel(s) should be assigned to the transmitting radio(s)esihie selection of the relay
nodes, two simple broadcast schemes are: (i) transmittiritipie copies of the mes-

sage on all channels; (ii) transmitting a single copy of thessage on a common
channel dedicated to broadcasting. Both schemes are iagffi€or the latter one,

if the broadcast load is high, the common channel will be whetmed, even while

plenty of other channels are free.

One subtle issue is the complication of the wireless brostdadvantage. In an
MR-MC network, if the radios of the neighboring nodes areetlito different chan-
nels, a single transmission on one channel cannot reachealéighboring nodes
simultaneously. In other words, only the neighboring naatethe same channel can
share the wireless broadcast advantage. More preciselgpticept of neighborhood
must be defined both by radio range and channel. Anotheresigitlie is channel het-
erogeneity. Channels may have different bandwidth, fadorglition, and accessing
cost, leading to different implications for the total broadt cost.

Broadcasting in MR-MC networks is thus a multi-faceted peafy involving
channel assignment, relay node selection, and channetiseldor the source and
relay nodes. In this paper, we focus on the latter two issyeassuming a given
channel-to-radio assignment. To avoid the hidden chamodlem [16], two nodes
that are two-hops away from each other are assigned twadistets of channels.
Our design objective is to minimize the total broadcast,cakere the cost can be
of any form that is summable over all the transmissionsyidiclg, for example, the
transmission and reception enetgihe price for accessing each channel.

1.3 A Simplicial Complex Model for Broadcasting in MR-MC Nedrks

Our technical approach is based on a simplicial complex inofdtbe broadcasting
problem in MR-MC networks. A simplicial complex is a collent of nonempty
sets with finite size that is closed under the subset operatioother words, if a
sets belongs to the collection, all subsets ©flso belongs to the collection. An
element of the collection is calledsamplexor face This subset constraint is often
satisfied in the network context. For example, subsets obadmast/multicast group
are broadcast/multicast groups, subsets of a clique agaedi A simple example
of graph and simplicial complex is given in Fig. 1. While thencept of simplicial
complex has been around since the 1920’s, many well-soluedeimental problems
in graph remain largely open under this more general model.

We use a simplicial complex model rather than a graph becdwessimplicial
complex more naturally captures the broadcast channelthendistinction and dis-
jointness between broadcasting on different channelsh&gyrcosts can be attached
to faces (simplices) in a way not easily possible with graphs

1 The ‘reception energy’ denotes the energy consumed by the irareception mode.
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Consider an example MR-MC network. As shown in Fig. 2, after thannels
are assigned, the network is partitioned into cliques oBso8uch clique assignment
scheme is implemented in the DARPA WNaN system and was usad &xercise
at Ft. Devens [19]. A clique consists of the nodes which ardiwieach other’s
transmission range and share at least one common chanddlyarcliques are s-
pliced (.e.,connected) via nodes operating on multiple channels shareasimmon
by the two cliques. Within each clique, depending on the fiosttion, the transmit-
ter decides which dimension simplexe(, a subclique or the clique itself) in a clique
complex to activate. The message for the network-wide lmastds thus propagated
through a sequence of cliques, possibly of different dirfmerss Note that the unicast
case corresponds to a clique of dimension 1 (an edge). Thimghe could also ap-
ply to the case where nodes may have multiple radios, pedfapiferent modality
(e.g., RF and optical); in this case, there may also be a ssetated with switching
modes.

The network-wide broadcast problem can be formulated asnihenum span-
ning problem in simplicial complexes. A clique in the MR-M@twork is modeled
as a simplex in the simplicial complex (see Fig. 2), and smceibset of a clique
is still a clique, the constructed simplicial complex metbis requirement of being
closed under the subset operation. The minimum spanningegmoin a simplicial
complex is to find a connected subset of simplices that caaethe vertices with
the minimum total weight, i.e., the Minimum Connected Spagrsubcomplex (M-
CSSubj. Then the solution to the network-wide broadcast problembzaobtained
by solving the MCSSub problem.

1.4 Minimum Spanning Problem in Simplicial Complexes

The minimum spanning problem in a graph is to find a conneatibgjraph that
covers all the vertices with minimum total weight. The smotmust be a tree for
graphs with nonnegative weights (hence called the Minimpam®ing Tree (MST)).
There are several polynomial-time algorithms for MST, &Kguskal’'s Algorithm and
Prim’s Algorithm [9]. The MST problem has many applicatiomsetwork planning,
broadcasting in communication networks, touring problesmsl VLSI design [1].
With the addition of high dimensional simplices, the minimepanning problem
in a simplicial complex is fundamentally different and muabre difficult than its
counterpart in a graph. First, unlike the case in a graphMB8&Sub of a simplicial
complex may not be a “treé”As illustrated in Fig. 3, the MCSSub of the simplicial
complexis the three filled triangles which form a cycle. Setavhile simple greedy-
type polynomial-time algorithms exist for finding the minim spanning tree in a

2 Strictly speaking, a subcomplex should also be closed uheesubset operation, but without loss of
generality, we do not include this condition in the defimitimf minimum connected spanning subcomplex,
which is also more relevant to the broadcasting problemrad ha

3 Although there is no unified definition of tree in simpliciaraplexes, a couple of definitions can be
obtained by generalizing those equivalent definitions eé in a graph. For example, simplicial trees can
be defined based on the universal existence of leaves in agyaph, or the uniqueness of simplicial facet
paths (see Sec. 2).
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graph, the minimum spanning problem in a simplicial compteNP-complete as
established in this paper (see Sec. 3.1).

We develop polynomial-time approximation algorithms floe tminimum span-
ning problem in simplicial complexes. We propose two aldnis: one reduces this
problem to a minimum connected set cover problem, and ther oélduces the prob-
lem to a node-weighted Steiner tree problem in a graph diifivem the original
simplicial complex. We also establish the approximatidioesof the two algorithm-
s. Both are shown to be order-optimal. The time-complexityrese two algorithms
is also analyzed, illustrating the tradeoff between penfomce and complexity of-
fered by these two algorithms. In a broader context, thiskvempears to be the first
that studies the minimum spanning problem in simplicial ptares and weighted
minimum connected set cover problem.

1.5 Related Work

Broadcasting in MR-MC networks, mostly in the context ofeliiss mesh networks,
has been studied for different optimization objectivee (& 3, 12, 16] and ref-
erences therein). Different from the previous work, therojztation objective in our
work can be any cost function which is summable over all thegmissions, thus tak-
ing into account channel heterogeneity (e.g., transnmssa different channels may
consume different amounts of energy, due to different badtthe or different prop-
agation characteristics or some other factor). We pointloatt neither minimizing
the total number of transmissions nor minimizing the totahiver of radios used in
the broadcast is, in general, equivalent to minimizing titaltenergy consumption.
The reception energy is ignored if the total number of traesions is minimized,
while the transmission energy and the reception energycrated if the total num-
ber of radios is minimized. More importantly, channel hetgmeity is not addressed
if these two objectives are optimized.

Furthermore, to our best knowledge, our work is the first mpadimplicial com-
plexes to model and solve the broadcast problem in wirelddsoa networks. For
a more detailed discussion on the potential applicatiorsimplicial complexes in
communication and social networks, readers are referrgld{o

2 Basic Conceptsin Simplicial Complexes

In this section, we introduce several basic concepts inlgmpcomplexes [15].

An (abstract) simplicial compleis a collectionA of nonempty sets with finite
size such thatifA € A, thenV B C A, B € A, i.e., Ais closed under the operation
of taking subsets. The elemefbf A is called asimplexof 4; its dimensior(denoted
by dim A) is one less than the number of its elements. Each nonempsesof A
is called afacée* of A. Thedimensionof A is the maximum dimension over all its
simplices, or is infinite if the maximum does not exist. Megtex set” of A is the
union of the one-point elements af. Fig. 4 shows an example of2adimensional

4 Notice that sinced is its own nonempty subset, the simpléxs also a face ofd.
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simplicial complex. A subcollection ofl that is itself a simplicial complex is called
asubcomplexf A. A subcomplex ofA is thep-skeletorof A, denoted byA®), if

it is the collection of all simplices ofA with dimension no larger than Thus, the
1-skeleton is the underlying graph df

A facetof a simplicial complexA is a maximal face of), i.e., it is not a subset of
any other face. A simplicial complexé@®nnectedf its 1-skeleton (i.e., the underlying
graph) is connected in the graph sense.

A weighted simplicial compleQVSC) A is a triple (V, S, w)®, whereV is the
set of verticesS the set of faces ofg, andw : § — {R* U {0}} a nonnegative
weight function defined for each face dhwith w(v) = 0 for all v € V. We define
thefacet-only weightVy(A) of a WSCA as

We(d) = > w(F).

F;e{facetofA}

3 Minimum Connected Spanning Subcomplex

In this section, we show that the MCSSub problem is NP-cotepknd we pro-
pose two approximation algorithms based on connected set ead node-weighted
Steiner tree. We also establish the approximation ratiadh@ftwo algorithms and
analyze their time complexity.

3.1 NP-Completeness

The decision version (D-MCSSub) of the MCSSub problem igedtas follows: let
V(A) denote the vertex set of a WSE and Wr(A) the facet-only weight ofA.
Given a WSCA = (V,S,w) and K > 0, is there a connected subcomplex*®
of A such thatV (As#) = V andWg(A%*?) < K? Then we have the following
theorem.

Theorem 1 The D-MCSSub problem is NP-complete.

To prove the NP-completeness, we reduce a classic NP-ctampieblem — the
unweighted set cover problem to the MCSSub problem.

Proof To check a solution to the D-MCSSub problem, we only need tdythe
following points: (i) compute the facet-only weight of thelistion and compare the
weight with K; (i) check whether the underlying graph of the solutiondacected or
not; (iii) check whether all the vertices of the original gilicial complex are covered
by the solution. Since all these can be done within polynbtimee, the D-MCSSub
problem is NP.

Given is an unweighted Set Cover instari¢ée., a universe of elements and
a family of subsetd” of U. For each element € U, we introduce a corresponding
vertex in MCSSub instancE. We introduce one additional vertéxFor each sef €

5 (S, w) suffices to denote the WSC sinkeC S, but we use the redundafit, S, w) for convenience.
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F', we introduce a corresponding fage= f U {d}, of weight 1. Being a simplcial
complex, all subsets of’ are also introduced, all also of weight 1. In addition to
covering all vertices, a solution 6 must be connected.

Given any solutiolSOL to I of costc, we can construct a solution 10 also of
coste. For every seff in SOL not includingd, replacef with f U {d}.

On the other hand, given any solutiSi®) L’ to I’ of costc, a solution tol of the
same cost can be constructed as follows: for any faceSOL’ such thatf does not
appear as a set ift, replacef with any superset off — {d} appearing inF. Note
that there must exist at least one such superset.

This proof is for general D-MCSSub problems. It can be shdvat eéven if the
weight function of the WSC is monotone or strictly monotgrke D-MCSSub prob-
lem is NP-hard. But it is still possible that the D-MCSSublgem under some spe-
cial structured weight function is P.

In the following, we present two approximation algorithrasthe MCSSub prob-
lem both with performance guarant®éln n), wheren is the number of vertices in
the WSC. Since the best possible approximation ratio forstitecover problem is
Inn [5], these two algorithms are order-optimal.

3.2 Algorithm Based on Connected Set Cover

Let A be a set with finite number of elements, afi¢= {B; C A: i=1,..,n}a
collection of subsets oft where eaclB; is associated with a weight(B;) > 0. Let

G be a connected graph with the vertex 8eA connected set covéCSC)S¢ with
respecttq A, B, w, G) is a set cover ofl such thatS¢ induces a connected subgraph
of G. The minimum connected set cover (MCSC) problem is to find@BE with
the minimum weight, where the weight of a CSg is defined as

w(Se)= > w(Bi).
B;eSc

From a WSCA = (V, S, w), we derive an auxiliary undirected graphi in the
following way: letS \ V' be the vertex set off o, and connect two vertices (non-
vertex faces ind) S; andS; if and only if S; N .Sy # 0 (i.e., S1 and.S; have at least
one element of” in common). Then we have the following theorem on the retatio
between the MCSSub problem and the MCSC problem.

Theorem 2 Let A* be the MCSSub of a WSE = (V, S, w) andS;. the MCSC of
(V,S8\ V,w,G ). Then we have

wr(A*) = w(Sp).
Proof The proofis based on the following lemma.

Lemmal Let S} be the MCSC ofV,S \ V,w,GA). For any faceS € S¢ with
w(S) > 0, we have that there does not exist a f&te= S, such thatS C S’

6 We say that the weight function satisfies ti@notoneproperty if for any two facesS; C Sa,
w(S1) < w(S2), i.e.,the weight is monotone non-decreasing with respect to themion of the face.
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Proof (Proof of Lemma 1puppose that for some face € S, with w(S) > 0,
35" € 8 suchthatS € S’ LetSi. = S¢ \ s. Obviously,S¢. is a set cover, and
w(SE) = w(SE) — w(S) < w(S). On the other hand, sincgn S” # () implies
S'N S"” # () for any faceS” € S}, it follows from the connection rule of the
auxiliary graphG 4 that any path vigs has an alternative path vigl. Thus,S; is a
CSC, leading to a contradiction.

Given the MCSGS¢, of (V, S\ V,w, G a), we can obtain a connected spanning
subcomplexA¢, by mapping each element 6§, to a face inA. Since the facet-only
weightwr (Ag) of A only counts facets i\, it follows thatwp (Af) < w(SE).
Based on Lemma 1, we have that every elemedioivith positive weight is a facet
in A%, and thus

wp(A*) < wp(AL) = w(SE),

whereA* is the MCSSub ofA.
On the other hand, the facets Af leads to an CSG?,, andw(S%,) = wgr(A*).
Itimplies that
w(Se) < w(S3) = wr(AY).

Thus,wp(A*) = w(SE).
3.2.1 Algorithm
Based on Theorem 2, we can reduce the MCSSub problem of a WWSQV, S, w)

to the MCSC problentV, S \ V,w, GA). We obtain the following Set Cover based
Algorithm (SCA) for the MCSSub problem.

Algorithm 1 SCA for MCSSub:
INPUT: AWSCA = (V, S, w).
OUTPUT: An approximate MCSSub of A.

1. Derive the auxiliary graptG A.

2. Find an approximate MCSG of (V, S \ V,w, G) by using the greedy algo-
rithm for MCSC (Algorithm 2).

3. TransformSc to a connected spanning subcompl&x by mapping each element
of S¢ to a face inA.

Zhanget al.propose a greedy approximation algorithm for the unweijM€SC
problem [23],i.e.,w(B;) = 1 for all i. The original algorithm in [23] has a flaw and
the established approximation ratio is incorrect. In [28E flaw is corrected and
a stronger result on the approximation ratio is shown. Byegalizing their greedy
approach, we develop a greedy algorithm for the weighted ®1@®blem.

Before stating the algorithm, we introduce the followingatmns and definitions.
For two setsS, .52 € S, let dist; (S1, S2) be the length of the shortest path between
S1 andS; in an auxiliary grapltz, where the length of a path is given by the number
of edges;S; and.S; are said to bgraph-adjacentf they are connected via an edge
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inG (i.e., distz(S1,.52) = 1), and they are said to lm®ver-adjacenif S; NSy # 0.
Notice that in a general MCSC problem, there is no connedigween these two
types of adjacency. Theover-diameteD (G) is defined as the maximum distance
between any two cover-adjacent ses.,,

Dc(G) = InaX{diSTg(Sl, SQ) | Sl, S, eS andS1 N Ssy 7£ @}

For the MCSC problem derived from the MCSSub problem of a W&Qve have
thatDc(GA) =1.

At each step of the algorithm, I& denote the collection of the subsets (faces
of A) that have been selected, abidthe vertex subset of\ that has been covered.
GivenR # () and asefS € S\ R, anR — S path is a patq Sy, S1, ..., Sk} in G
such that (i)So € R; (i) Sk = S; (iii) S1, ..., Sk € S\ R. We define the weight ratio
r(Ps) of Pg as

w(S(Ps)\R) ZSES(PS)\Rw(S)

Vb (B @)

T(Ps) =

whereS(Ps) \ R is the subsets (faces &) of Pg that are not iR, and|Vy (Ps)| is
the number of vertices aof\ that are covered bj¥s but not covered biR.

Algorithm 2 A Greedy Algorithm for MCSC.
INPUT: (V, S\ V,w,GA)
OUTPUT: A CSCR.

1. ChooseS, € S\ V such that the weight ratie(.Sy ) defined in (1)s the minimum,
and letR = {Sy} andU = S,.
2. WHILEV \ U # () DO
2.1. ForeachS € S\ (VU R) which is cover-adjacent or graph-adjacent with a
setinR, find a shortestR — S path Ps.
2.2. SelectPs with the minimum weight ratio( Ps) defined in (1) and letR =
R U Ps (add all the subsets dfs to R) andU = U U Vi (Ps).
END WHILE
3. RETURN R.

3.2.2 Approximation Ratio

The approximation ratio of SCA is determined by Stepe2,the approximation ratio
of the greedy algorithm for the MCSC problem. First, we elihbthe following
lemma.

7 Notice that the shortest path is defined in terms of the nurabedges, not the total weight of all
vertices along the path.
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Lemma 2 Given a weighted MCSC problef#, S \ V,w, G) with D¢ (G) = 1, let

max{w(S)}
_ Ses
e = i e ()} @

Then the approximation ratio of the greedy algorithm for MCiS at mostR,, +

H(y—1), wherey = max{|S] | S € S\ V} is the maximum size of the subsetSin
and H (-) is the harmonic function.

Proof (Proof of Lemma Z)he proofis based on the classic charge argumentSt.et
be an optimal solution to the weighted set cover prob{&iS \ V,w), andR the
solution returned by the greedy algorithm for the weighte@3«€ problemV, S \
V,w,G) with De(G) = 1. Let w(S*) andw(R) denote the total weight of the
subsets included i§* andR, respectively. In the following, we will show that

w(R)
w(8*)

<Ry + H(y—1). ®)

Let S;. be an optimal solution to the weighted MCSC probléms \ V, w, G)
with D¢ (G) = 1. Sincew(S*) < w(S¢), Lemma 2 follows immediately from (3).

To prove (3), we apply the classic charge argument. Eachdisubses) (at step
1) or a shortesR — S path P} (at step 2) is selected to be addedi@pwe charge

each of the newly covered elemer#%i"% (at step 1) or(Pg) defined in (1) (at step

2). Notice that wheD(G) = 1, the shorteskR — S path P{ is only a single edge
connecting some subsetfands, and

w(S(P3\R) _ w(S)
VPl IS\UT

r(Ps) =

During the entire procedure, each elemenVaé charged exactly once. Assume
that step 2 is completed i’ — 1 iterations. LetPg, be the shortesk — S path
selected by the algorithm at iterationLet C'(v) denote the charge of an element
in V. Then we have that

K1
dCwy=3 > C
vevV i=0 veVn (PZ,)
- K1 w(S;)
=0 veS;\U |Sl \ U|
K—1
= w(S;) = w(R), (4)
i=0

wherePg, = {So}.
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Suppose that* = {57, ..., Sy} is a minimum weighted set cover ¢/, S \
V,w}. Since an element df may be contained in more than one subsefof it
follows that

N
dcw <) Cw). (5)

veV i=1veSy

Next we will show an inequality which bounds from above th&@ltcharge of a
subset inS*, i.e.,for any B* € §*,

Y Cv) < [Ru + H(IS™] = D]w(S"). (6)

vEB*

Letn, (: = 0,1,..., K) be the number of elements 6f that have not been
covered byS after iterationi — 1, where step 1 is considered as iteratinn_et
{i1, ..., i } denote the subsequence{eéf= 0,1, ..., K — 1} such thaty; — n;41 > 0.
For each element covered at iterationy, if i, = 0, based on the greedy rule at step
1, we have that

Cw) = r(ps,) < 22, ™

N

Otherwise,

00 =1, = R < “

The inequality in (8) is due to the fact théit, covers at least;, — n(;, 1) elements
of V,i.e,|Si, \U| > ns, —n(,+1). Summing up (7) and (8),

w(S*) Ry,

Ny — N1 41)

C(v) < )

Consider two cases:

(i) If all the elements ofS* have been covered after iteration i.e., n(;, +1) = 0,
then

C(v) < M:w S™ )Ry . (10)
EZS: (v) EZS: o (57)

(i) If notallthe elements o™ have been covered by after iteratiori, S* becomes
cover-adjacent witlR and thus a candidate for being selected at the following
iterations. At each iteration, for each element= S* covered at iteratiori;

(j =2,..., k), the greedy rule at step 2 still yields

Clv) = r(P5,) < r(P5-)
_ w5 _ w(sY)
SO e,

J

(11)
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It follows from (9,11) that

> C) < w(S*)(niy, — ngiy11))

vES*

1
Ny = Ny 41)
r 1
w(S*) > (ni; =g 1)) —

N4
J=2 v

k
Miy 7 Migen | (12)

Here we have used the fact that, 1) = n; ,_,, . Itis because between iteration
i; and iteration(; ), no elements of™ are covered.
For the summation term in (12), we have the following inegyal

k k
Z Ni; — nl(ﬁrl) < Z i 1
B =2 i ni(j+1) +1

Jj=2

= H(ni,) < H(|S"[ = 1). (13)
The last inequality is due to the fact that < n;, — 1 =[5*| — 1.
Eqn. (6) is a direct consequence of (10), (12), and (13). ;Tising (4-6),

N
=Y Cl) <> > C)

veV i=1 veSy
N
[R + H(|S7] = D]w(S7)

[R + H(y — 1)]w(S").

Then, as a direct consequence of Lemma 2, we have the foljdw@orem on the
approximation rati® of the greedy algorithm for the MCSC problem with- (G) =
1.

Theorem 3 LetA* be the MCSSub of a WSE= (V, S, w) and A¢ be the solution
returned by Algorithm 1. LeR,, be defined as in (2). Then we have
wF(Ac)

o (A < R, + H(dimA),

where din is the dimension aft and H (-) is the harmonic function.

From Theorem 3, we see that the approximation ratio depemtieearatioR?,, of
the maximum weight to the minimum weight. It is shown in thédeing theorem
that if R,, is unbounded, then the scaling order of the approximatitio can be as
bad as linear with respect to the number of vertices in th@lgiml complex.

8 The approximation ratio of the greedy algorithm for generaighted MCSC problem is still an open
problem.
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Theorem 4 Letn be the number of the vertices in a W3C= (V, S, w), andR,,
defined as in (2). IR, is unbounded, then the approximation ratio of Algorithm 1
for the MCSSub problem af is 2(n).

Proof Consider a specific examplet is a (n — 1)-dimensional simplex with the
vertex set” = {v1, ..., v, }, and all the weights of the faces are infinite except for the
following five faces:

w(S1) = w( vy, Jm}) = %,
S .
1
wi$h) = ({#(g 2z }) = 5
w(S) = w({og.m)) = 5

For ease of presentation, we have assumedrthata multiple of4. By applying
Algorithm 1, we reduce the MCSSub problem fdrto the MCSC problentV, S \
V,w, G A). Due to the weight assignment, it suffices to only considestibgraph of
G 4 induced by the above five faces, as shown in Fig 5.

The optimal solutionA* to the MCSSub problem is given by

A*={SeS|SCS,orS;orSs},

and
’LUF(A*) = w(SQ) + w(Sg) + w(S5) = 2.

On the other hand, the solutiafn- returned by Algorithm 1 is given by
Ac:{S€S|Sg810I’S4},
and

L
.

N | =

’U}F(Ac) = w(Sl) + w(S4) =
Specifically,S is firstly selected, and thesy. Thus,

’LUF(Ac) - n 1 -
TF(A*) - 1_6+Z —@(n)

It follows that the approximation ratio of Algorithm 1 i3(n).

From Theorem 4, we see that Algorithm 1 is not suitable foMI@GSSub problem
of a WSC A if its weight function has a relatively wide range. As showaxnin
Sec. 3.3, the other approximation algorithm based on the&teee does not have
this issue: its approximation ratio does not depend on thgaaf the weight function.
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3.3 Algorithm Based on Steiner Tree

From a WSCA = (V. S, w), we derive an undirected gragha with the vertex set
S: for each faceS € S\ V (i.e.,the faces that are not the verticesf, we replace
it by a vertexvs in Ha and connects to all the vertices of5. The weightw(vs)
assigned to the vertexs is the weightw(S) of the faceS. Notice that the weight
of vertices inH o corresponding to the vertices i (i.e., V) is zero. Fig. 6 shows
an example of the derivation of the graph frora-gimplex. We have the following
theorem on the relation between the MCSSul\pthe Steiner tree off 4 that spans
the vertex set’ of A and the minimum connected dominating®saft / .

Theorem 5 Let A* denote the MCSSub of a WSC= (V, S, w), T* the Steiner tree
of H 4 that spans the vertex sBtof A, and D}, the minimum connected dominating
set ofH 5. Then we have that

wp(A*) = w(T*) = w(DL).

Proof First we show thatvr(A*) = w(T™). Since every connected spanning sub-
complexA’ of A corresponds to a connected subgrapli/of which only contain-
s the vertices ofA and the vertices representing the facets/df it follows that
w(T*) < wp(A*). On the other hand, since by contradiction, there is a orm®
mapping between the vertices of the Steiner trediaf and the vertices plus the
facets of a connected spanning subcompleApit follows thatwg (A*) < w(T*).
Next we show that(7*) = w(D{,). Notice that the vertex sét of A is a
dominating set ofi 5. Since the Steiner tréE* of H 5 spans the vertex sét, 7" is
aCDS ofHa. Thus,w(D§) < w(T*). On the other hand, given the minimum CDS
D¢, of H,, since each vertex in the vertex sel’ is either inD¢, or a neighbor of
some face inD¢, and the weights of the verticesinare all zero, the combination of
V andD¢. yields a connected subgraphff, that spang” with the same weight as
D¢, Thus,w(T*) < w(DE).

Based on Theorem 5, we propose the following Steiner TreedAfgorithm
(STA) for the MCSSub problem.

Algorithm 3 STA for MCSSub:
INPUT: AWSCA = (V, S, w).
OUTPUT: An approximate MCSSub of A.

1. Derive the graphi o from A.

2. Obtain an approximate Steiner trgeof H o by using the algorithms given in [7,
8].

3. TransformT' to a connected spanning subcompléx of A by mapping each
vertex of" to a face ofA.

9 A dominating set of a graph is a subset of vertices such thatexertex of the graph is either in the
subset or a neighbor of some vertex in the subset, and a dedngaminating set (CDS) is a dominating
set where the subgraph induced by the vertices in the doiminseét is connected. The CDS problem asks
for a CDS with the minimum total weight, and it is shown to beeadal case of the MCSC problem [20].



Broadcasting in Multi-Radio Multi-Channel Wireless Netks® using Simplicial Complexes 15

Since approximation only occurs in Step 2, the approxinmatadio of STA is
equal to that of the algorithm for the node-weighted Stetres problem. The best
approximation ratio is known to b@ .35 + ¢) Inn for any constanté > 0, wheren
is the number of vertices o and is also the number of terminals in the Steiner tree
of H, [7]. Here we do not try to find the CDB}, of H 4 at step 2, because the best
known approximation ratio for the CDS problem(is35 + €) Innz ,) [6, 7]. Since
n(m,) > n, the latter approximation ratio is much worse than the forome.

3.4 Time Complexity Analysis

Here we analyze the time complexity of SCA and STA for the MQi$8roblem.
Given a WSCA = (V, S, w), letn = |V| denote the number of vertices it m =
|S \ V| the number of non-vertex faces i, andd the dimension ofA. Recall that
the existence of edges in the auxiliary graph for SCA and the derived grapt o
for STA depends entirely on whether the two non-vertex fameslap and whether
the vertex is contained in the non-vertex face, respegtiveimplies that all the
information of these two graphs can be easily retrieved fiteedWSCA. Thus, Step
1 in both algorithms can be skipped in the implementatiod,tae time complexity
of both algorithms is determined by their Step 2.

Step 2 of SCA is to apply the greedy algorithm to the MCSC bV, S \
V,w,G ). It takesO(m) time to complete Step 1 of the greedy algorithm. Since at
least one vertex becomes covered at each iteration of Stefh2 greedy algorithm,
there are at most — 1 iterations. At each iteration, the weight ratios of at mast
faces are computed, and due to the fact that cover-adjzaesd fire graph-adjacent,
the weight ratio of each face is done in constant time. Thgstinning time of SCA
is O(m + nm) = O(nm).

Since the derived grapti o hasn +m vertices and)(dm) edges and the Steiner
tree has: terminals to cover, it follows from [13] that the running &nof Step 2 of
STA is O(dnm? + nm?logm). From the above, we see that the time complexity
of STA is significantly higher than that of SCA. This is modblgcause the approx-
imation algorithm for the Steiner tree requires the comfparteof the shortest paths
between all vertex pairs.

We point out that while the Steiner tree based algorithm Hagleer complexity,
it can offer better performance in a WSC with a large weighge In a simulation
example of random simple complexes, we consider a case velaeteface weight
takes only two valuesv,,;,, andw,,,, with equal probability. Withw,,,;, = 1,
Wmae = 10000, and 1000 Monte Carlo runs for &00-vertex random simplicial
complexX®[14], we find that the total weight of the solution returnedtbg set cov-

10 A random simplicial complexA(n, D, p) with n vertices, dimension at mosb, and a D-
dimensional probability vectqs = {p1, p2, ..., pp } is constructed in a bottom-up manner: fitstertices
are fixed, which are th@-simplices of4, and then higher-dimensional simplices are generatedfively.
Specifically, for each < 7 < D, after all the simplices with dimension lower thaihave been gener-
ated, consider everittuple of vertices: if they have formed all the lower dimamsl simplices, then an
i-simplex consisting of them is generated with probability Notice that a random simplicial complex
A(n, 1, p) is the random graph introduced by Erdés and Rényi [4].
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er based algorithm can He7 times that of the solution returned by the Steiner tree
based algorithm. These two algorithms thus offer a tradssiffeen performance and
complexity.

4 Simulation Results

In this section, we present simulation results on the perémrce of the two approxi-
mation algorithms (SCA and STA) for the broadcast probleammR-MC network.

We consider a dense MR-MC network, where all the nodes at@néach other’s
transmission range, and we aim to minimize the total eneansemption of the
broadcast.

There arel2 non-overlapping channel§ (1 < ¢ < 12), possibly with differ-
ent communication rates;, available for the MR-MC network, and each node is
equipped with4 radios. At the beginning of the broadcast, each node randsenl
lects4 of the 12 channels for itsl radios. As discussed in Sec. 1.3, the nodes which
share at least one common channel form a clique, and thereng-#0-one corre-
spondence between the cliques and the faces of the deriv& W weight of the
face is defined as the energy consumption of the broadcdsnwiite corresponding
cligue,i.e., the sum of the transmission energy and the reception enesgyy be a
face containing: + 1 nodes and fs; : j =1,2,...,q} theg (1 < ¢ < 12) common
channels shared by tfie+ 1 nodes. Assume that if a node in the clique is selected as
relay, it will choose the common channel with the maximum pamication rate to
transmit. Then the weight(S) of the faceS is given by

L

max {rg;}’
Jj=1,....q

w(S) = (P + kPry)

whereP,, and P, are the transmission power and the reception power, regelct
andL is a constant.

In Fig. 7, the average total energy of the solutions retulme8CA and STA is
compared with that of the MST with respect to the underlyingpy of the WSC.
The average is taken ovéd random channel assignments. Notice that although two
different links on the same channel are treated separatetynthe MST is derived,
the transmission energy corresponding to them is countgdamte to exploit the
wireless broadcast advantage when the total energy of theiM&mputed. We see
that the performances of SCA and STA are extremely closettegidperformances
are significantly better than that of MST.

5 Conclusion and Future Work

In this paper, we study the minimum cost broadcast problemuitti-radio multi-

channel ad hoc networks, where the total cost is the sum afdsis associated with
the transmissions during the broadcast. We formulate ihagrtinimum spanning
problem in simplicial complexes. We show that it is NP-coetel Hence we pro-
pose two approximation algorithms for this minimum spagnamoblem: one is to
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transform it into the connected set cover problem; the oithéo transform it into

the node-weighted Steiner tree problem and then apply thresmmonding algorith-
m. Despite their distinct approaches, both approximatigorghms are shown to be
order-optimal and offer a tradeoff in terms of performansecomplexity.

As a starting point, we have assumed that the channel assignssheme is
designed independent of the broadcast scheme. The joimhimption of the two
schemes will further reduce the broadcast cost. Anothardudirection is to develop
distributed versions of the approximation algorithms f@ minimum cost broadcast
problem.
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vo Vo

V1 V2 v1 V2
(a) Graph (b) Simplicial Complex

Fig. 1 Graph and simplicial compleX?” = {vo, v1,v2}, S(a) = {(v0,v1), (vo,v2), (v1,v2)}, Sy =
{(U07 v1, UQ), (v07 Ul)7 (v07v2)7 (Ul7v2)7 (UO)7 (U1), (1}2)}'

{f2,f7} {fl’f2}

{fa, fo}

[
{fs, fs} {f1, f3} {f1, fa, f5} {fs, fe}

Fig. 2 An illustration of an MR-MC network and the constructed slicipl complex. The parameters
within the braces are the channels which each node can atc¢lse communication graph derived from
the network, a link exists between two nodes if and only if tvaales are within each other’s transmission
range and they share at least one common channel. Notica ttigue in the communication graph may
not be a clique in the MR-MC network (correspondingly, a dewpn the simplicial complex), e.g., the
three nodes of the right empty triangle (they do not sharevawon channel).
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U5

Fig. 3 A simplicial complex whose MCSSub is the three filled triaggland is not a “tree” (the integers
are the weights of the simplices).

U5

vo

v1

(% V.
v 3 4

Fig. 4 A simplicial complex A with 6 vertices (-dimensional sim-
plices: {vo}.{v1}.{v2} {va}.{va}.{vs}), 5 edges {-dimensional simplices:
{v1,v2},{v2,v3},{vs,va},{vs,v5},{va,v5}), and 1 filled triangle Z%-dimensional simplex:
{v3,v4,v5}).
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| gy ) R
Fig. 5 The subgraph of7 » induced by the five faceS;, S2, S3, S4, andS5 with finite weights.

A Ha
Fig. 6 The derived graph of a-simplex (squares it/ 5 represent the faces that are not verticeg\pf
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A

—%—SCA T
9001 | .+ @Q STA o

=0~ MST o

Average Total Energy

. .
20 30 40 50 60 70 80 90
Number of Nodes

Fig. 7 Average total energy vs. number of nodes. Paramet&rs:1, P, = 0.01, L = 100, r; = i for
1 <3< 12



