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ABSTRACT 

Salinas, California has been battling an above average crime rate for over 30 

years. This is due primarily to two rival gangs in Salinas: the Norteños and the 

Sureños. The city and the surrounding community have implemented many 

methods to mitigate the crime level, from community involvement to the inception 

of a gang task force. As of yet, none of the efforts have had long-lasting effects. 

In a 2009 thesis, Jason A. Clarke and Tracy L. Onufer postulated that 

various socio-economic variables are influential on the crime level in Salinas. 

They characterized “crime” as a summation of homicides, assaults and robberies 

reported. Their thesis determined that “to lower overall violence levels, officials in 

Salinas should focus on: reducing the unemployment rate, the number of vacant 

housing units, and the high school dropout rate; and increasing the high school 

graduation rate and average daily attendance.” 

A deeper examination of the data could lead not only to assumptions 

about how to lower crime rates, but also to a means of predicting future crime 

rates by using various methods of multiple value regression. 
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I. INTRODUCTION 

The Salinas Police Department (SPD), in conjunction with the community 

leadership in Salinas, has been working tirelessly to mitigate gang related crime. 

Numerous efforts are currently in practice to reduce the city crime rate, from 

community involvement to the making of a gang task force in association with the 

surrounding county police offices. All of these efforts are derived from experience 

and, as seen in other cities, with no statistical model to predict future levels of 

violent crime in Salinas. This study’s purpose is to give Salinas a tool to predict 

crime using socio-economic statistics easily attainable from public sources. 

A. PREVIOUS RESEARCH 

In December 2009, Jason Clarke and Tracy Onufer completed a NPS 

thesis entitled “Understanding Environmental Factors that Affect Violence in 

Salinas, California” (Onufer & Clark, 2009). Their research compared nine 

environmental factors: economy; population; housing; education; police force; 

prison influence; gang rivalry; social service programs; and community 

involvement against the yearly violence rate in Salinas to determine which 

environmental factors, if any, are correlated with the violence levels in Salinas. 

Clarke and Onufer considered violence a combination of reported homicides, 

robberies, and assaults.  

The resulting recommendation of Clarke and Onufer’s research was 

summarized to follow Mayor Dennis Donahue’s “four-fold [strategy]: prevention, 

intervention, a newly envisioned and expanded police department and enhanced 

community engagement and mobilization” (Stahl, 2009, para. 51). Clarke and 

Onufer showed that violence was highly correlated with education and dropout 

rate. This led Clarke and Onufer to conjecture that with an increased emphasis 

on education and prevention, violence rates would decrease. Intervention was 

postulated to be established through vocational, education, counseling, and 

rehabilitation programs. Clarke and Onufer suggested opening a police 
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substation in the center of the gang territory as a police expansion strategy. Their 

final recommendation was to start a Mayor's Gang Prevention Task Force 

(MGPTF) like San Jose to enhance community engagement and mobilization. 

Clarke and Onufer’s correlation analysis lead to the conclusion that there 

are four highly correlated environmental factors to the Salinas violence rate: 

unemployment rate, number of vacant housing units, high school dropout rate, 

and daily school attendance rate.  

B. RESEARCH OBJECTIVE 

Using previously established environmental variables, multi-variable 

regression models were created to predict future violence levels using statistical 

analysis techniques. A program was also written to allow for automatic 

regression for further exploration and analysis of the Salinas environmental data. 

C. BACKGROUND 

1. History of Violence in Salinas 

Small tribes of Native Americans inhabited the City of Salinas until around 

1822. In 1822, Mexico gained independence from Spain and outside settlers 

began to arrive in Salinas. From the 1820s to the 1890s, the Salinas Valley was 

used primarily for ranching and wheat and barley growth. After the 1890s, 

advances in irrigation and agricultural practices introduced the sugar beet 

industry to Salinas. In the 1920s, sugar beets and beans gave way to the farming 

of lettuce because of the ice bunkered railroad, allowing fresh produce shipment 

nationwide. The area continues to grow lettuce and other green vegetables to 

this day (Seavey, 2010).  

The success of the farming industry helped give rise to the nickname “The 

Salad Bowl of the World” to Salinas, fueling a “$2 billion agriculture industry 

which supplies 80% of the country's lettuce and artichokes, along with many 
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other crops” (History of Salinas, 2012,para 3). Every year, thousands of migrant 

workers travel to Salinas from Mexico to work on the farms during the harvest 

season. 

The population and the racial demographic in Salinas has greatly changed 

from 1980 to 2011. The population in Salinas in 1980 was 80,479 (Chapman, 

1982, p. 18) and increased to 150,441 by the 2010 census (State & County 

QuickFacts: Salinas, California, 2012). In 1980, Salinas was 38.1% Hispanic and 

increased to 75.0% in the 2010 census (McFarlane, 2012). 

The Salinas gang problem can be traced back to the 1950s. In his 2009 

90-day report, Police Chief Fetherolf quoted the 1950 Police Chief McIntyre’s 

statement “Gang fights will not be tolerated in the City of Salinas” (Fetherolf, 

2009,p. 6). The 90-day report goes on to mention various instances of Salinas’s 

violence prior to his 2009 report. As displayed in Figures 1–3, the crime in 

Salinas has steadily increased and maintained a higher level than the national 

average over the past two decades. In 2009, Salinas had a record breaking 29 

homicides, about four times the national average, followed by 19 homicides in 

2010, again about four times the national average. In 2009, Salinas was ranked 

4th in California for homicides per capita (Fetherolf, 2010, p. 2). Figures 1, 2 and 

3 show a comparison of Salinas homicides, robberies and assaults, respectively, 

compared to national averages. Homicides, assaults, and robberies were added 

together and used as one statistic. They were labeled as violence in this study. 
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Figure 1.   Salinas Homicides versus U.S. Average Homicides 1980–2010 

 

Figure 2.   Salinas Robberies versus U.S. Average Robberies 1980–2010 
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Figure 3.   Salinas Assaults versus U.S. Average Assaults 1980–2010 

Much of the violence in Salinas is gang-related, stemming from two 

feuding gangs, the Norteños and the Sureños. These two gangs often live in 

Salinas physically separated by only one or two city blocks. Both of the gangs vie 

for control of the drug and prostitution trade within the city limits. 

The Sureños, Spanish for Southerner, are a Hispanic gang originating 

from “a prison dispute between the Mexican Mafia (La Eme) and Nuestra Familia 

(NF)” (Sureños, 2005). The original members of the gang were associated with 

the urban Hispanic population, distinguishing themselves from the rural farm 

working Hispanics. However, since its inception, the Sureños have turned into 

one of the largest gangs in the United States. Sureños have migrated from 

California over the past decade and are now living and active in almost every 

state in the country (Morales et al., 2008, p. 8). 

The Norteños are associated with the Nuestra Familia gang. The 

Norteños, Spanish for “Our Family,” are rumored to have started their rivalry with 

the Sureños because a member of the Sureños stole a pair of shoes from a 

Norteños member in prison. This incident started the conflict between the 
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Sureños and the Norteños that continues today (Hennessey, 2003). Norteños are 

most widely linked with the rural Hispanics in Northern California. 

Bakersfield, California is widely accepted as the division point between 

Northern and Southern California gangs. However, the gangs often ignore 

traditional boundary lines because of familial ties or gang related opportunities. 

Salinas is ideally situated to accommodate both gangs because of its proximity to 

large agricultural and mid-sized urbanized areas. Drug trafficking through Salinas 

is also very common due to its location between San Francisco and Los Angeles. 

There are 11 factors identified in Chief Fetheroff’s 2009 90-day report, 

which contribute to the Salinas gang-crime problem: 

 The close proximity of two state prisons to the city (incarcerated 

gangsters directing gangster activities outside of the prisons) 

 The effects of poverty, exacerbated by a sagging economy 

 Dysfunctional or struggling families, providing too little juvenile 

supervision 

 Lack of positive adult male role models 

 Multi-generational gang families 

 Lack of effective teacher/student attachments with at-risk youth 

 Inadequate education and an elevated high school drop-out rate 

 Drug sales money enticing youth into gang affiliation 

 Increased violence in media and video games, desensitizing youth to 

the impacts of violence 

 Limited opportunities for after-school recreation  

 Migrating gangsters infiltrating and victimizing law abiding, hardworking 

seasonal farm workers, many of whom are fearful victims of unreported 

crime (Fetherolf, 2009, pp. 7–8). 
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The close approximation to two different prisons plays a key role in the 

perpetuity of gang-related violence in Salinas. Salinas Valley State Prison and 

the Correctional Training Facility are located about 25 miles southwest of Salinas 

outside of Soledad. The California Prison System is running at 200% capacity as 

of 2010. Being overcrowded, the California Department of Corrections and 

Rehabilitation (CDCR) is taking steps to reduce the overcrowding. Some of these 

steps include inmates being placed out of state, non-revocable parole, and 

inmate population reduction (Actions CDCR Has Taken to Reduce 

Overcrowding, 2012). 

A report by Rand Corporation in their Record on Research about Criminal 

Behavior (2009) estimates that a prisoner will commit an average of 13 crimes 

after released early from prison. The current court ordered capacity for the 

California Prison Systems is 147% by November, 2012. This is a reduction from 

168,830 inmates to 117,000 inmates in a one-year period (Burke & Cavanaugh, 

2011). This equates to around 50,000 inmates released. With each early release 

potentially committing crimes, this could result in as many as 500,000 crimes in 

California. The early release program sends the inmates back into the community 

in which they were arrested and Salinas could see a percentage of this increase 

in crime rate from the early release program. 

The recidivism rate in California as of 2010 is 67.5% within three years of 

release (Cate, 2010, p. 32). Many of the gangs in America, to include the 

Norteños  and the Sureños , have strong ties to the prison system and are still 

primarily run from the leadership that is incarcerated. 

2. Current and Past Efforts to Reduce Violence in Salinas 

In 1995, the Clinton Administration “awarded the Salinas Police 

Department nearly $1 million as part of the COPS [Community Oriented Policing 

Service] Youth Firearms Violence Initiative” (Success Stories, 2011). Salinas 

Police Department used the money to create a permanent anti-gang task force. 

During this same period, the Salinas Police Department also created a “Violence 
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Suppression Unit (VSU) to take firearms away from youth and gang members” 

(Success Stories, 2011). Finally, Salinas also instituted “Peace Builders,” which 

was to encourage non-violent behavior for elementary school-aged children. 

Finally, Salinas also instituted a 20-city block clean-up program to remove clutter 

and garbage from the streets. These efforts did result in a 50% decrease of 

homicides from 1995 to 1996 and a slight reduction in robberies and assaults. 

However, as of 2002, the homicide rate was back up to a record high of 20. 

In 2010, Salinas instituted Operation Ceasefire and Operation Knockout.  

Operation Ceasefire was a program successfully instituted in 1996 in Boston, 

Massachusetts. Operation Ceasefire was a “direct law enforcement attack effort 

on illicit firearms traffickers supplying youths with guns and an attempt to 

generate a strong deterrent to gang violence” (Record on Research about 

Criminal Behavior Corrected, 2009). The local law enforcement made it clear that 

there would be zero tolerance on gang related activity. When the officers 

received reports of gang-related activity, the Boston Police Department held 

gang crackdowns, arresting gang offenders. The result of the policy is that the 

“Gang violence in Boston declined abruptly” and “it was unnecessary to repeat 

the crackdowns or move out gradually along the gang network as originally 

planned” (Record on Research about Criminal Behavior Corrected, 2009). 

As of May 2010, the Salinas Police Department had two Operation 

Ceasefire call-ins, inviting community gang members to meet with personnel who 

assisted the gang member to leave behind their gang life. “Those agreeing to 

take part in the program are offered employment opportunities, training and 

personal services – from résumé-building to tattoo removal” (Solan a, 2010). The 

call-ins are also useful in informing the gang members of the zero tolerance for 

gang- related activities in the community. 

Operation Knockout was “an eight-month operation … aimed at 

apprehending members of the Norteños and Sureños gangs that turned Salinas 

into a hub of murder, robbery and drug dealing” (San Francisco Citizen, 2010). 

The operation was a multi-organization operation led by the California 
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Department of Justice’s Bureau of Narcotics Enforcement in collaboration with 

the Salinas Police Department and other local agencies. The culmination of the 

operation resulted in 44 arrest warrants, leading to 37 arrests and the seizure of 

over 50 pounds of illegal drugs and paraphernalia. Operation Knockout was also 

an attempt to “cripple the gang's grip on younger gang members in the area and 

make existing gang-violence intervention efforts, such as Ceasefire, more 

effective” (Reynolds, 2010). 

D. REGRESSION ANALYSIS TO PREDICT CRIME 

Police departments nationwide use some form of crime prediction. The 

first instance of formal crime analysis was instituted by August Vollmer in the 

early 1900’s (Boba, 2005, p. 20). Vollmer’s method involved the “use of pin 

mapping, the regular review of police reports, and the formation of patrol districts 

based on crime volume” (Grassie et al., 1977). This method of crime analysis 

lasted into the 1970s. 

In 1968, the Omnibus Crime Control and Safe Streets Acts greatly 

increased awareness to the analysis of crime statistics and crime prediction. The 

act authorized grants to the States to fund efforts to reduce crime rates (P.L. 90-

351). This shift of attention from crime prosecution to crime prediction led to 

many police departments adopting crime analysis techniques, finally concluding 

in the creation of the International Association of Crime Analysts in 1991 and the 

implementation of Compstat, a data-and-mapping driven strategy at police 

management for increasing the awareness of crime analysis (Boba, 2005, p. 23).  

Currently, most police agencies use some type of crime analysis in every-

day operations. In a survey of over 17,000 agencies, Mamalian and La Vigne 

found that 73% of agencies use crime analysis to fulfill the Unified Crime Report 

and around 52% calculate statistical reports on criminal activity. However, out of 

all of the agencies, only 13% use some type of computerized crime analysis, the 

majority of agencies preferring the more conventional pushpin maps to the more 

advanced computerized techniques (Mamalian & LaVigne, 1999). 
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For those agencies that use some type of crime analysis, the emphasis is 

on the short-term, tactical goals of the police department as opposed to the long-

term strategic uses of the data. The 2003 report by O’Shea and Nicholls states 

that the view of the police officers is, first and foremost, the apprehension of 

criminals and secondly the “sophisticated police tactical and strategic decision 

outcomes and solutions to chronic crime problems” (O’Shea & Nicholls, 2003, p. 

25). The report goes on to state that the data and methods could better be 

served as a deterrent tool as opposed to an apprehension tool and this effort 

would take a cooperation between police officials and academics. 

Current forecasting models are primarily built around crime mapping using 

a geographic information system (GIS). This system is a computerized version of 

the pushpin map model defined as “a set of computer-based tools that allows the 

user to modify, visualize, query, and analyze geographic and tabular data” (Boba, 

2005, p. 37). GIS is a computerized tool to assist in departmental crime mapping. 

Crime mapping uses geographical information to conduct special analysis of 

crime problems to assist in resource allocation for police agencies (Boba, 2005, 

p. 37).  

A 1998 study by Diana Ehlers and Gideon Pimstone used various factors 

to predict crime rate per 100,000 in the United States. These factors included: 

 higher unemployment and increased economic deprivation 

 political instability 

 urbanisation patterns 

 successful implementation of a crime prevention campaign which calls 

on people to report crime 

 increased public awareness of crime 

 improved police detection resulting in greater recording of crime 

(Ehlers, 1998). 
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The conclusion of their research was that statistical methods could be 

used to predict crime trends. Regression analysis and correlation are useful tools 

to predict crime patterns and through these methods, policy makers can be given 

a “statistical glimpse of the future” (Ehlers, 1998). 

In “Forecasting Crime, a City-Level Analysis,” John V. Pepper (2007) 

explored the ability of different regression models to predict crime rates. In his 

study, Pepper used two primary variables to predict homicide rates: “the percent 

of the population that are 18 year old males and the fraction of the population 

(per 100,000) that are incarcerated” (Pepper, 2007, p. 4). His research 

concentrated on linear regression models and used lag regression techniques, 

which use previous homicide levels to predict future homicide levels, as well as 

other variables in the model. Pepper’s research concluded that naïve walk 

prediction, a method of prediction that uses previously witnessed statistics and 

used by many police departments, does well for very short-term prediction, but 

regression analysis out performs naïve walk prediction for long-range 

forecasting. 

Dr. Wayne Osgood took a different regression based-approach to 

predicting aggregate crime rates. Osgood explored using Poisson and negative-

binomial regression for crime rate predictions in his 2000 study (Osgood, 2000). 

His research argues, “Poisson regression analysis explicitly addresses the 

heterogeneous residual variance that presented a problem for [ordinary least 

squares] regression analysis of crime rates” (Osgood, 2000, p. 27). Osgood then 

went on to explain that negative binomial regression may be the best method 

because negative binomial does not have the problem of increased variance that 

occurs in Poisson regression. This method allows for a more varied approach at 

crime analysis. 

Linear, Poisson, and negative binomial regression were all used in this 

study in an attempt to find the best regression tool for crime rate prediction in 

Salinas. All three of the methods are discussed, in detail, in the next section. 
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II. SUMMARY OF REGRESSION 

A. ORDINARY LEAST SQUARES METHOD 

There are two different variable types associated with regression. The first 

is the class of independent variables or regressors. Independent variables are 

observed through research and study. The other type of variable is the 

dependent variable or response variable. The purpose of regression is to model 

and investigate the relationship between the dependent variable and the 

independent variable. Equivalently the errors  i nε ε are independent and 

normally distributed with mean 0 and variance σ . The βs  are estimated by 

minimizing the error or residual sums of squares: 

  
 

 
   



 
 
 
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2

0
1

0 1
1

( , , , )
n k

i j ij
i j

k yS β β xβ β β  (1) 

To find the minimum of (2) with respect to β , the derivative of the function 

in (2), with respect to each of the βs , is set to zero and solved. This gives the 

following equations: 

 
 

  
          

 
0 1

0
1 1ˆ ˆ ˆ0 , ,

ˆ ˆ2 0, 0,1,2... ,
k

n k

i j ij
i jβ β β

δS
y β β x j k

δβ
 (2) 

and 

 

 
 

  
          

 




0 1

0
1 1ˆ ˆ ˆ, ,

ˆ ˆ2 0, 1,2, , .

k

n k

i j ij ij
i jj β β β

δS
y β β x x j k

δβ
 (3) 

The β̂s , the solutions to (3) and (4), are the least squares estimates of the 

βs . 

It is useful to express both the n equations in (1) and the k+1 equations in 

(3) and (4) (which are based on linear function of the βs ) in matrix form. The 

model (1) can be expressed as 
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  y Xβ ε  (4) 

where y is the nx1 vector of observations, X is an nx(k+1) matrix of independent 

variables (and an extra column of 1s for the intercept 0β ), β  is a (k+1)x1 vector 

of coefficients and ε is an nx1 vector of independent and identically distributed 

errors associated with (1). 

In order to find theβ̂ , the (k+1)x1 vector of β̂s  and the estimate of β  that 

minimizes the error, (2) in matrix form is:  

 

 

  







 

( )( (

2

 )) T

T T T T T T

T T T T T

S y Xβ y Xβ

y y β X y y Xβ β X Xβ

y y β X y β X

β

Xβ

 (5) 

 
with a superscript “T” denoting the transpose of a matrix or vector. The 

expression T Tβ X y is a scalar. Therefore, the least-squares estimator must satisfy 

the (k+1) equations (3) and (4) written in matrix form as: 

 

    
ˆ

ˆ2 2T Tδ

δ
β

S
X y X Xβ 0

β
 (6) 

 
where 0 is the (k+1)x1 vector of 0’s. This equation can be simplified to: 
 
 ˆT TX Xβ X y  (7) 
 

Under appropriate conditions (i.e. TX X is not singular), this formula will 

finally net the least squares coefficients: 

  1ˆ ( )T Tβ X X X y  (8) 

These coefficients can then be used for predicting or estimating the 

expected dependent variable for values of the independent variables that do not 

need to be in the sample used to estimateβ . 
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B. RELATIONSHIPS AMONG VARIABLES 

1. Correlation 

In practice, there are often many candidate independent variables that can 

be used in the regression equation. One of the most difficult tasks of an analyst is 

to determine which of these to use. In order to determine the variables to use in a 

regression, the relationship between the dependent and independent variables 

must be established. The relationship between the independent variables must 

also be examined. An important relationship for this study is correlation and is 

defined as the linear relationship between two variables. This relationship is 

measured between pairs of observed variables. For example, simple linear 

regression with one independent variable, observations are the 

pairs 1 1 2 2( , ),( , ),...,( , )n nx y x y x y . The correlation between these two variables is 

measured using the sample correlation coefficient with the formula: 

 

 




 
  

 



 

1

2 2

1 1

( )

( ) ( )

n

i i
i

n n

i i
i i

y x x
r

x x y y

 (9) 

 
with x  and y  representing respectively the mean of the observed independent 

and dependent variables. The coefficient r takes values between -1 and 1, 

inclusive. A result of -1 implies a perfect negative relationship between the two 

variables wherein an increase of one variable indicates a decrease in the other. 

A positive relationship indicates an increase or decrease in both variables 

simultaneously. A result near zero indicates no or a very small linear relationship 

between the variables. 

Ideally, a good regression fit will include a dependent variable highly 

correlated with the independent variables, with a correlation value between 0.5 

and 1 or between -1 and -0.5. A good regression fit will also have independent 

variables with very low correlation with a sample correlation for any pair of 

independent variables, between -0.5 and 0.5. Including highly correlated 
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independent variables does not add to the regression and can lead to a non-

generalized, overfit regression model. Having highly correlated independent 

variables in the regression is called multicollinearity which can lead to difficulty in 

interpretation and, when extreme, will cause TX X  of equation (9) to be ill-

conditioned. Further, perfect linear dependence among the independent 

variables will cause TX X  to be singular and give infinite least squares estimates 

of β̂  in equation (8).  

2. Transforming Dependent and Independent Variables 

Oftentimes, a straight line will not be the best fit of the dependent 

variables as a function of the independent variables. Therefore, the variables, 

either dependent or independent must be transformed or adapted. Some 

common transformations of variables are: 

 Take the variable to a power 

 Use the natural log function on the variable 

 Invert the variable 

 Multiply several variables together (interactions) 

 After transformation, the variables will then be put back into the 

regression. As a standard of practice, the original variable will be left in the 

regression with any transformations. 

C. VARIABLE SELECTION FOR REGRESSION 

In this section, the focus is directed to the most pressing issue of the 

study, that of selecting the independent variables. Various methods are used to 

test the adequacy of the regression model. Should too many variables be added 

into the model, the model could be overfit and only applicable to the given 

dataset. There are various methods to determine the goodness-of-fit for the 

regression. The methods used in this analysis were hypothesis tests for the 

regression, hypothesis tests for each of the coefficients, R-squared for the 
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regression, and hypothesis tests based on the analysis of variance for the 

regression. These tools are also used as a basis for the goodness-of-fit for the 

regression model. 

1. Hypothesis Test for Regression 

The hypothesis test for regression can be performed for each of the 

coefficients separately and for the entirety of the regression. The hypothesis test 

for on a single coefficient tests: 

 



0

1

: 0,

: 0

j

j

H β

H β
 (10) 

The equation used to test this hypothesis is: 

 
 

   
 

2

*
ˆ

ˆ( )
i

i

β
F

se β
 (11) 

where ˆ
iβ  is the ith coefficient to be tested and ˆ( )ise β  is the standard error of that 

coefficient, calculated from: 

    1 ˆ ˆ( ) ([ ] [ ]) / ( )T T
ii n kX X y Xβ y Xβ  (12) 

with k being the number of β  parameters in the model including the intercept 0β , 

and where 1( )T
iiX X denotes the (i)th diagonal element of square matrix 

1( )TX X . 

 The hypothesis test for the regression tests: 

  0 1: ... 0kH β β  (13) 

by using the equation: 

 
         

    

*

ˆ ˆ( ) ( ) ( ) ( ) / ( )

ˆ ˆ( ) ( ) / ( )

T T

T

k
F

n k

y y y y y Xβ y Xβ

y Xβ y Xβ
 (14) 

where y  represents the nx1 constant vector where each element is the average 

of ,...,i ny y . Under the null hypothesis, *F  has an F-distribution with k and n-k 

degrees of freedom. Using the F-distribution with the calculated F-statistic one 

can find the probability of seeing a value in the F-distribution of the size of the F-
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statistic or larger. A small p-value indicates that at least one of the coefficients is 

not zero. A large p-value indicates that there is not enough evidence from the 

data to show any relationship between the dependent and independent variables. 

Graphically, the p-value is shown in Figure 4. 

 

Figure 4.   Graphical Representation of the p-value 

2. R-Squared (R2) 

R-Squared, often abbreviated R2, which is also called the coefficient of 

determination or the percentage of variance explained is equated by the following 

formula: 

 




 







2

2 1

2

1

ˆ( )

( )

n

i
n

i
i

y y
i SSR

R
SST

y y
 (15) 

where SSR is the sum of squares regression and SST is the sum of squares total 

and ˆ
iy  is the fitted or predicted value for the ith observation. 

R2 is the ratio of the sum of predicted values minus the mean of the 

observed dependent values squared over total sum of squares. Ideally, this 

number should be as close to 1 as possible, signifying that the predicted values 

for the dependent variable are very close to the actual values for the dependent 



 

 19

variable. An R2 value near 1 indicates that most of the variability in the observed 

y values is accounted for in the model. 

3. Residual Standard Error 

One important test to ensure the validity of a regression model is to study 

the Residual Standard Error (RSE) for the model. The equation for the RSE for 

the model is: 

 






 2

1

ˆ( )
n

i i
i

y y
RSE

n k
 (16) 

This equation is a method of estimating how far the fitted values are from 

the actual observed values. This value is also used in cross-validation of the 

model, a tool used to negate model overfitting and to be explained in another 

section. 

4. Analysis of Variance 

The Analysis of Variance (ANOVA) organizes the computation of the test 

statistics for a sequence of hypothesis tests. The most common ANOVA tests the 

sequence of hypothesis which adds coefficients into the model, one at a time in 

order to test the increased significance of the model with the independent 

variable added. The sequence of hypothesis tested: 

 


 


1

0 0

1 0 1

0

:

:

: ...k k k

H β

H β β x

H β β x

 (17) 

An F-statistic is calculated for each step of the ANOVA with ˆ( )n iH y  being 

the predicted value of the ith observation based on the model in the jth 

hypothesis. 
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

 



  
 

 

 



2 2
1

1 1

2

1

ˆ ˆ( ( )) ( ( ))
, 1,2..., .

ˆ( ) /

n n

i j i i j i
i i

n

i i
i

y H y y H y
F j k

y y n k
 (18) 

As with the p-value test, if the F-statistic is very large, implying a very 

small p-value, the nth independent variable should be left in the regression. As 

before, p-value is the probability of observing an F-statistic as large or larger than 

are computed from the data. A small p-value corresponding to the test statistic 

for the test of the null hypothesis 1jH  against the alternative jH  indicates that 

the jth regressor is needed in the regression equation when the previous j-1 

regressors are already accounted for in the model. 

One thing to note about the ANOVA is the p-value of an independent 

variable may be large, but may still be left in the regression. This is because, as 

a general rule of regression, hierarchical terms are left in the regression if higher 

power terms have a lower p-value. For example: if a squared term has a very low 

p-value, but the linear term has a high p-value, the linear term will be left in the 

regression. 

D. GENERALIZED LINEAR MODELS 

Generalized linear models (GLM) include linear regression explained in 

the previous section. GLMs are a “unifying approach to regression and 

experimental design models, uniting the usual normal-theory linear regression 

models and nonlinear model” (Montgomery, Peck & Vining, 2006, pp. 454–455) 

where the dependent variable can have a distribution from a family of distribution 

other than normal, such as Poisson, exponential, or binomial.  

It is still necessary to estimate the coefficients in order to predict the 

dependent variable for a GLM. However, a GLM will have an additional, called 

the link function, which gives the relationship between the expected dependent 

variable and the linear function of the independent variables. A GLM takes the 

form: 
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 

 



 1

( )

( )

T
i i

T
i i

g E y

E y g

x β

x β
 (19) 

where the function g is called the link function and ix is the (k+1)x1 vector of 1s 

and the values of the k independent variables for the ith observation. 

Two non-linear approaches were used in this study, Poisson regression 

and negative-binomial regression. Both of these methods will be explained in the 

following sections. 

1. Poisson Regression 

Poisson regression is based on the fact that the dependent variable may 

have a count based distribution. The formula for a Poisson distribution is 

 


 ( ) , 0,1,...
!

μ ye μ
f y y

y
 (20) 

where μ >0 and represents the mean of y. The variance for the Poisson 

distribution is also identically μ . 

For Poisson regression, the log function is used as the link function, 

therefore for 1,...,i n  where each iy  has a Poisson distribution with mean iμ , 

the Poisson regression model is expressed as: 

 






 1

( )

( )

( )

i i

T
i i

T
i i

E y μ

g μ

μ g

x β

x β

 (21) 

Substituting the log link function gives: 

 




ln( )
T
i

T
i i

i

μ

μ ex β

x β
 (22) 

The maximum-likelihood estimation (MLE) approach must be employed in 

order to estimate the βs  for the regression. Finding the MLE for the Poisson 

regression starts with the expression for the likelihood of observing y as a 

function of β  (where ,...,i ny y  are assumed independent): 
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i i
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i
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y
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y
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 (23) 

Taking the natural log of both sides gives:  
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 (24) 

Denoting ln( ( , ))L y β  by ( , )l y β , as in ordinary least squares, the goal is to 

solve the following equation: 

  
 

         
1 1

( , ) T T
i i

n n
T T T

i i i i i
i i

l
y e y ex β x βy β

x x x 0
β

 (25) 

There is no analytical approach to solving for the coefficients in the above 

equation. Therefore, at this point, some type of numerical method, such as the 

Newton-Raphson technique using iteratively reweighted least squares, is used to 

estimate the coefficients (Montgomery, Peck & Vining, 2006, p. 575). 

a) Goodness-of-Fit with the Poisson Model 

Goodness-of-fit for a Poisson model is measured using the residual 

deviance instead of R2 or the residual standard error used in linear regression. 

The formula for residual deviance for Poisson regression is: 

 


  
       


1

ˆ2 ln ( )
ˆ

n
i

i i i
i i

y
D y y y

y
 (26) 
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The residual deviance should be as small as possible. For Poisson 

regression, the residual deviance, ideally, will be close to or less than the number 

of observations minus the number of parameters, or the residual degrees of 

freedom of the model. If the residual deviance is too much greater than the 

residual degrees of freedom, the model may not be a good fit and must be 

modified. 

2. Negative Binomial Regression 

A Poisson model assumes that the variance of the dependent variable will 

equal the mean of the dependent variable. Oftentimes, this assumption does not 

hold and the dependent variable is more variable than can be accounted for by 

the independent variables in the Poisson regression. As a means to remedy this, 

the negative-binomial regression technique can be employed. The negative 

binomial distribution is closely related to the Poisson distribution in that the 

negative binomial is a measure of instances of an event until reaching a 

concluding event. The formula for the negative binomial distribution is: 

 


  
Γ( )

( ) (1 )      0,1,2...
!Γ( )

r yr y
f y p p y

y r
 (27) 

with 

 





 2

( )
1

( )
(1 )

pr
E y

p

pr
Var y

p

 (28) 

where r>0 and, when it is an integer, r can be interpreted as the number of 

failures and y is the number of successes required to get exactly r failures and p 

is the probability of a success. The function Γ( )x is the gamma function and is a 

continuous version of the choose function: 

 
   1

0
Γ( )= z tx t e dt  (29) 

To use the negative binomial for regression and make the distribution 

comparable to the Poisson regression, some adjustments to the distribution must 

be made. Let  ( )μ E y . Then: 
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   
 1

pr μ
μ p

p μ r
 (30) 

Substituting p and 1-p for functions of μ  and r in (28) gives: 

 

          
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    
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 

Γ( ) Γ( )
( ) 1

!Γ( ) !Γ( )

Γ( ) Γ( ) 1

!Γ( ) ! Γ( )( )
1

r y r y

r y y

y r

r y μ μ r μ μ r μ μ
f y

y r μ r μ r y r μ r μ r
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r

 (31) 

Further, to see the relationship between the negative binomial and 

Poisson distributions, let  and 0r y . This implies no chance of a success 

and continual counting of failures and leads to: 
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 (32) 

which leads back to the Poisson distribution. 

Estimating the parameters for the negative binomial regression, which 

also uses the log link function, is similar to estimating the parameters for Poisson 

regression: 

    1( ) ( )
T
iT T

i i i ig u u g ex βx β x β  (33) 

Now, the MLE for the negative binomial can be found by first expressing 

the likelihood of observing y and equivalently the log-likelihoood as: 
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Now, to find the MLEs β̂  for β , take the derivative with respect to β : 
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As with the Poisson regression, there is no closed-form solution to this 

equation, leading to the use of a numerical method to solve for the parameters 

for the regression equation. 

In this study, the negative binomial regression is a means to expand upon 

the Poisson regression. When a negative binomial regression was used, a 

Poisson model was first fit to the data. The Poisson coefficients were then used 

as the starting values for the numeric computation of the negative binomial 

regression coefficients. 

E. CROSS VALIDATION 

Cross validation is a method used to ensure a regression model of any 

type is not overfit. An overfit model will only work for the observed regressors and 

will not be as useful for predicting future outcomes of the data set. This is a 

danger when many independent variables are available to predict the dependent 

variables and n is small and moderate. To cross validate a regression, the 

observed response values are randomly broken into m subgroups. The 

regression is then refit to m-1 of the original subgroups and the values for the 

mth group is estimated. In the extreme version of cross validation, called jack-

knife, m=n. The regression model is fit to n-1 observations and used to predict 

the one observation that is left out. This is repeated n times. Let ( )
ˆ 1,...,iy i n  

represent the predicted value of the ith observation obtained in this manner. The 

residuals of the estimated group are calculated, giving the cross-validation score 

of 

 

 2
( ) ( )
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i i
i

y y
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 (36) 
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This score is compared to the residual standard error (RSE) for the 

complete model described in equation (17). 

If the cross-validation score is much higher than for the equated model, 

the model is said to be overfit. An overfit model may have too many variables or 

too many interactions, giving the regression the illusion of a very good fit when, in 

fact, the model is very good, but only for the given observation and not good for 

other data. 

For this study, the linear regression and Poisson models were both 

checked for overfitting. Because the negative binomial regressions are fit after 

each Poisson regression and use the same regressors as do the corresponding 

Poisson regression, they are not cross validated to check for overfitting. 
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III. DATA ANALYSIS 

The data collected and researched in this study is specific to Salinas, 

California and thus any conclusions made about the data will be specific to that 

region of California. 

A. DATA COLLECTION 

In an effort to continue the work of Clark and Onufer, the data assessed in 

this research closely resembles the variables used in their 2009 thesis. The data 

has been updated to use any more current statistics pertaining to Salinas. All 

available 2010 data was added to the past data. 

All of the other data was collected from online federal resources. The 

purpose of this research was to give Salinas Police Department (SPD) an easily 

accessible tool to estimate crime levels with readily accessible data. Therefore, 

all data used in this research is publicly accessible. 

It is also important to note that inflation was taken into account with the 

study, but did not significantly affect the trend of the financial data and was 

therefore not input into the calculations. 

In order to estimate Salinas violence trends, two different types of 

variables are needed. Independent variables are the environmental factors 

effecting violence, such as Salinas Police Department budget, unemployment 

level, and prison statistics. The dependent variable is what is to be predicted, in 

this case, violence levels. 

A 2006 study by the Department of Justice showed that aggravated 

assault, auto theft, burglary, drug sales, theft, and robbery are the most likely 

criminal offences perpetrated by youth gangs (Egley & O’Donnell, 2008). 

Therefore, this study uses a summation of reported homicides, aggravated 

assaults, and robberies as reported yearly from Salinas to the Federal Bureau of  
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Investigation to predict future crime trends. This data is easily obtained from 

either the Salinas Police Department web page or the Federal Bureau of 

Investigation web page. 

B. CORRELATION OF VARIABLE ANALYSIS 

In order to accurately formulate a regression for prediction, the correlation 

between all of the variables was explored. The variables with the highest 

correlation to the dependent variable were used for regression formulation. 

Because the study is a time-based regression, there is a possibility that some of 

the variables will affect other variables one or even two years later. Therefore, 

not only was direct correlation explored, but also correlation with violence shifted 

one and two years in the future. Table 1 shows the resulting correlations. 

 No Shift One Year Shift Two Year Shift 
Population 0.687 0.635 0.572 
Drop Outs 0.310 0.09993 0.311 
Drop Out Rate 0.478 0.283 0.482 
SPD Budget 0.459 0.423 0.403 
SPD Employees 0.272 0.194 0.133 
Sworn Police -0.552 -0.705 -0.373 
CDCR Capacity 0.791 0.729 0.655 
CDCR Population 0.776 0.712 0.644 
CDCR Overpopulation 
Percentage 

0.834 0.804 0.799 

Parole Population 0.815 0.767 0.713 
Parks and Recreation 
Budget 

0.242 0.298 0.352 

Library Budget 0.572 0.550 0.549 
Unemployment Percentage 0.516 0.701 0.776 
Number of Vacant Units -0.526 -0.631 -0.724 
Personnel Per Household -0.242 -0.399 -0.651 

Table 1.   Correlation of Independent Variables and Violence 

Examining the correlation led to the use of population, SPD Budget, sworn 

police with a one year shift, CDCR Overpopulation Percentage, parole 

population, unemployment percentage with a two year shift, number of vacant 

units with a two year shift and personnel per household with a two year shift. 

With the choice of variables, it was necessary to examine the correlation 
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between the variables. If two variables are highly correlated, only one of the 

variables will assist in the regression. The correlation between variables is 

described in Table 2. 

 P S O Pa SP U N H 

Population (P) 1.000 0.891 0.866 0.948 0.66 -0.80 0.92 0.963
SPD Budget (S) 0.891 1.000 0.684 0.769 0.93 -0.83 0.96 0.714
CDCR 
Overpopulation 
Percentage (O) 0.866 0.684 1.000 0.909 -0.07 -0.41 0.64 0.832
Parole 
Population (Pa) 0.948 0.769 0.909 1.000 -0.10 -0.61 0.69 0.850
Sworn Police 
(SP) 0.659 0.934 -0.065 -0.10 1.000 -0.665 0.86 0.350
Unemployment 
Percentage (U) -0.80 -0.827 -0.408 -0.61 -0.67 1.000 -0.89 -0.70
Number of 
Vacant Units (N) 0.922 0.963 0.643 0.686 0.864 -0.89 1.000 0.844
Personnel Per 
Household (H) 0.963 0.714 0.832 0.850 0.350 -0.70 0.844 1.000

Table 2.   Correlation between Independent Variables for OLS Regression to 
Predict Violence 

Examining the correlation between pairs of dependent variables led to the 

removal of population and parole population from the regression formulation. 

Those two variables were highly correlated with other variables and were 

accounted for by the other variables. 

A graphical depiction of the correlation for the chosen variables was also 

examined in Figure 5:  
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Figure 5.   Graphical Representation of Correlation between Independent 
Variables and Violence. Violence in Red 

In each of the panes in Figure 5, violence (red) is plotted against time. 

Each of the blue lines represents an independent variable (as labeled in each 

panel) plotted against time.  

Most of the variables for the study, be it budgets or manpower, increased 

over time. This trend similarity indicates that many of the variables will not assist 

in a regression because of the similarity of correlation between independent 

variables. 

It is also of interest to the City of Salinas to predict future homicide rates 

using the economic variables. Therefore, the correlation between the variables 

and Salinas homicide rates with shifts in years was also calculated and displayed 

in Table 3. 
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 No Shift One Year Shift Two Years Shift 
Population 0.610 0.593 0.582
Drop Outs 0.065 0.209 0.154
Drop Out Rate -0.052 0.171 0.213
SPD Budget 0.586 0.618 0.618
SPD Employees 0.502 0.561 0.556
Sworn Police 0.103 0.250 0.215
CDCR Capacity 0.614 0.625 0.641
CDCR Population 0.596 0.613 0.625
CDCR Overpopulation Percentage 0.470 0.504 0.523
Parole Population 0.588 0.651 0.671
Parks and Recreation Budget 0.557 0.541 0.333
Library Budget 0.773 0.568 0.329
Unemployment Percentage 0.248 0.002 -0.259
Number of Vacant Units 0.262 0.219 0.169
Persons Per Household 0.340 0.161 -0.076

Table 3.   Correlation between Dependent Variables and Homicide Events in 
Salinas 

An inspection of the correlation lead to the use of population, SPD Budget, 

CDCR Overpopulation Percentage, parks and recreation budget, and library 

budget. None of the variables  were shifted because there was not enough of a 

correlation disparity to warrant a shift. The correlation between these variables 

were also explored and displayed in Table 4. 

 P S O R L 
Population (P) 1.000 0.898 0.879 0.638 0.841
SPD Budget (S) 0.898 1.000 0.700 0.745 0.746
CDCR 
Overpopulation 
Percentage (O) 0.879 0.700 1.000 0.537 0.734
Parks and 
Recreation 
Budget (R) 0.638 0.745 0.537 1.000 0.751
Library Budget 
(L) 0.841 0.746 0.734 0.751 1.000

Table 4.   Correlation between Independent Variables for Homicide Regression 

All of the independent variables of the homicide regression are highly 

correlated, but all variables were kept for the initial exploration of regression for 
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homicide prediction. A graphical representation of the correlation between the 

variables and homicide is displayed in Figure 6. 

 

Figure 6.   Graphical Correlation between Homicide and Independent Variables. 
Homicides in Red 

Assaults, defined in this study and reported to the FBI, are defined as 

aggravated assaults and consist of assaults with a weapon involved. These 

crimes could have easily escalated into homicides. Because of this, regression 

analysis was used to predict the amount of assaults and homicides in Salinas. 

The correlations of the independent variables against homicide and 

assault numbers with one and two-year shifts are in Table 5. 
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 No Shift One Year  
Shift 

Two Year  
Shift 

Population 0.589 0.520 0.436
Drop Outs 0.362 0.276 0.152
Drop Out Rate 0.498 0.441 0.343
SPD Budget 0.370 0.325 0.288
SPD Employees 0.156 0.063 -0.028
Sworn Police -0.479 -0.521 -0.194
CDCR Capacity 0.693 0.610 0.507
CDCR Population 0.684 0.596 0.501
CDCR Overpopulation Percentage 0.827 0.766 0.729
Parole Population 0.728 0.649 0.564
Parks and Recreation Budget 0.245 0.257 0.309
Library Budget 0.493 0.435 0.399
Unemployment Percentage 0.575 0.690 0.773
Number of Vacant Units -0.672 -0.676 -0.685
Personnel Per Household -0.486 -0.522 -0.602

Table 5.   Correlation of Variables against Assaults and Homicides 

Examination of the correlation of assaults and homicides against the 

possible regressors led to the use of CDCR Overpopulation percentage, parole 

population, unemployment percentage with a two year shift, number of vacant 

units, and person per household with a two year shift. The correlation between 

these possible variables is displayed in Table 6. 

  O Pa U N H 
CDCR Overpopulation  
Percentage (O) 

1.000 0.909 -0.408 0.770 0.832 

Parole Population (Pa) 0.909 1.000 -0.605 0.805 0.850 
Unemployment Percentage (U) -0.408 -0.605 1.000 -0.859 -0.701
Number of Vacant Units (N) 0.770 0.805 -0.859 1.000 0.909 
Personnel Per Household (H) 0.832 0.850 -0.701 0.909 1.000 

Table 6.   Correlation between Independent Variables for Homicide and 
Assault Regression 

With an examination of the inter-correlation between possible regressor 

variables, it was decided to not use personnel per household or number of 

vacant units in the formulation of the regression to predict assaults and 

homicides. The graphical depiction of correlation between the chosen regressors 

and assaults and homicides is graphed in Figure 7. 
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Figure 7.   Graphical Correlation between Homicide and Assaults and 
Independent Variables. Homicides and Assaults in Red 

After all variables were chosen, all three of the dependent variables, 

violence, homicides, and assaults and homicides, were input into linear, Poisson, 

and negative binomial models in an attempt to predict possible future criminal 

activity levels in Salinas. 

C. REGRESSION ANALYSIS 

In order to estimate violence levels for Salinas, California, the regression 

techniques outlined in Chapter II were applied to the data used in the Onufer and 

Clark (2009) thesis.  

1. Violence Prediction using Ordinary Least Squares 

The initial regression for all three variables was ordinary least squares 

(OLS), or general linear regression. The method used to find the optimal 

regression was backward elimination, wherein all of the variables of interest 

identified in the previous section were included in the regression and removed if 

the variable did not add to the quality of the regression. 

An initial regression included person per household included and it was 

found that person per household added nothing to the model and was therefore 

taken out of the initial model. The second regression equation for violence 

prediction with OLS regression was:  
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3 6

2

ŷ=-1.827x10 +9.384x10 (SPD Budget)

-8.354x10 (CDCR Overpopulation Percentage)

+50.62(Unemployment with Two Year Shift)

+1.712(Number of Vacant Units with Two Year Shift)

-13.93(SPD Sworn Police with One Year Shift)

 (37) 

This initial regression seems to be a decent fit for the violence levels. The 

p-values for the coefficients are given in Table 7. 

  Estimates Standard Error P-value 

Intercept 1.83x103 9.46 x102 0.09465

SPD Budget 9.38 x10-6 5.87 x10-6 0.154

CDCR Over Population Percentage -8.35 x102 4.01 x102 0.076

Unemployment -1.39 x10 2.75 0.0381

Number Vacant Units 5.06 x10 1.99 x10 0.125

SPD Badged Police 1.71 9.82 x10-1 0.00147

Table 7.   P-Values for the initial OLS regression 

This regression equated an R2 value of 0.8449. This also coincides with a 

good OLS fit for violence prediction. 

With five variables being included into the model, there is worry that the 

regression may overfit the regression. Therefore, cross-validation was used on 

this model and will be used on all subsequent models to check for overfitting. The 

RSE for this model was 34.8 and the cross-validation score was 42.59. The 

model may be slightly overfit, but is still within acceptable means and will be used 

to predict violence future violence levels in Salinas. 

Although a good fit for the data was quickly derived from the initial values, 

there was interest in attempting to fit another OLS regression with other variables 

of interest and a more complete data set. The regression in equation (42) was 

limited by the observations of SPD Badged Police, being only recorded from 

1997–2010. 

This new regression fit consisted of SPD budget and CDCR 

Overpopulation percentage. The formula for this regression is: 
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2 6

2

-4.259x10 -6.239x10 (SPD Budget)

+9.036x10 (CDCR Overpopulation Percentage)
 (38) 

with the following p-values displayed in Table 8. 
 
   Estimates Standard Error P-value 
Intercept -3.34x102 1.73x102 0.0635
SPD Budget -3.23x10-6 3.14x10-6 0.0858
CDCR Over Population Percentage 8.22x102 1.18x102 6.21x10-8

Table 8.   Second Fit OLS Regression for Violence P-Values 

With an R2 of 0.7285.  Although the R2 for this regression is not as high, 

this model emphasizes different variables, which may be useful to the City of 

Salinas. The RSE for this model was 143.5 with a cross-validation score of 

149.4174. These two scores are very close together so this model is not overfit. 

A graphical depiction of the fit of the two different models is shown in 

Figures 8 and 9. 

 

 

Figure 8.   Regression Fit for Formula (39) 
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Figure 9.    Regression Fit for Formula (40) 

With an inspection of the regression fit through the actual data and 

examination of the RSE for each of the models, it was determined that formula 

(39) was the best fit for the OLS prediction of violence levels in Salinas. A 

Poisson model was then formulated to see if Poisson regression would be a 

better means of predicting violence. 

2. Violence Prediction using Poisson Regression 

As stated by Osgood (2000), Poisson regression is often useful for 

exploring crime rates. Therefore, in this study, all response variables were 

analyzed with Poisson regression, in addition to OLS regression. 

The starting method to Poisson regression was similar to OLS regression. 

The initial Poisson model used the same regressors as the OLS model: 

 











9

2

1

2

3

ˆ y=exp( 7.679-8.695x10 (SPD Budget)

-1.287x10 (SPD Sworn Police)

-7.743x10 (CDCR Overpopulation Percentage)

+4.666x10 (Unemployment)

+1.582x10 (Number of Vacant Units))

 (39) 

with the p-values for the regressors displayed in Table 9.  
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   Estimate Standard Error P-value 
Intercept 7.68 8.30x10-1 2.00x10-16

SPD Budget 8.70x10-9 5.14x10-9 0.091
CDCR Over Population Percentage -7.74x10-1 3.51x10-1 0.0276
Number Vacant Units -1.29x10-2 2.44x10-3 0.0637
Unemployment 4.67x10-2 1.73x10-2 0.00701
SPD Badged Police 1.58x10-3 8.5x10-4 1.28x10-7

Table 9.   Initial Poisson Regression for Violence 

Ideally, for a Poisson regression, the residual deviance should be close to 

the degrees of freedom. For this regression, the deviance was 7.48 for 7 degrees 

of freedom. This shows not only is this a good fit using the Poisson regression, 

but that the data is not overdispersed. 

This regression was also tested for over fitting. The cross-validation score 

for the data was 1646.29 and the RSE for the model was 1217.46.  These 

numbers suggest overfitting, but the numbers are within acceptable means. A 

graphical representation of this fit is shown in Figure 10. 

 

 

Figure 10.   Poisson Regression fit for Violence Prediction 
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The Poisson regression seems to predict violence well and there is no 

evidence of overdispersion. However, for completeness the negative binomial 

was also explored. 

3. Violence Prediction using Negative Binomial Regression 

Osgood states that Poisson regression is valid for crime rate exploration, 

but that negative binomial regression can also be used and may be more efficient 

with the ability of negative binomial to reduce the error caused by overdispersion 

with which a Poisson model cannot compensate. The initial model for the 

negative binomial regression was identical to the final model for the Poisson 

regression. The coefficients from the Poisson regression were also used as the 

initial guess for the numerical method to determine the coefficients for the 

negative binomial model. The resulting model was exactly same model as the 

Poisson model. This indicates that the negative binomial regression is not an 

improvement over the Poisson model and was not used to predict violence in this 

study. 

4. Homicide Prediction using Ordinary Least Squares 

With homicide levels almost five times the national average, the 

leadership in Salinas is constantly finding ways to decrease the violence levels in 

their city. To do this, it would be useful to see the factors that influence homicide 

levels in Salinas. Clarke and Onufer did this in their 2009 thesis, showing the 

economic factors correlated with violence. Taking this a step further, the city can 

predict future homicide levels and estimate the change on homicide levels by 

focusing on different economic variables. 

The initial regression method to predict homicides is the same as violence 

levels. However, different regressors were more highly correlated with homicides 

than violence. The initial OLS model was: 



 

 40

 









5

1

6

6

ˆ y=1.152-7.363x10 (Population)

+1.805x10 (SPD Budget)

-3.959(CDCR Overpopulation Percentage)

-1.745x10 (Parks and Rec Funding)

+8.184x10 (Library Funding)

 (40) 

This equation was not a very good fit to predict homicide rates in Salinas, 

as shown by the p-values for the coefficients in the regression. Only the p-value 

for library funding is small enough for a good regression fit. The p-values for the 

regression are given in Table 10. 

   Estimate Standard Error P-value 

Intercept 1.15x10 9.78 0.2505

Population -7.36x10-5 1.57x10-4 0.64332

SPD Budget 1.81x10-7 2.46x10-7 0.47005  

CDCR Over Population Percentage -3.96 6.85 0.56862

Parks and Rec Fund -1.75x10-6 2.42x10-6 0.47756

Library Fund 8.18 x10-6 2.33x10-6 0.00177

Table 10.   P-values for Initial OLS Model to Predict Homicide Rates 

Although the regression equated an R2 of 0.6288 some of the variables 

are not needed with the presence of other variables in the regression. Exploring 

the model in greater detail and eliminating unnecessary variables find that the 

only independent variable necessary to predict future homicide rates based on 

the trends of past homicide rates is, surprisingly, the Salinas library funding. The 

model derived from this is: 

 6ˆ y=-0.5852+6.130x10 (Library Funding)  (41) 

Although the R2 is slightly reduced from the previous model at 0.5969, it is 

still high enough to show an adequate fit. R2 will increase with more variables, 

whether or not the variables are necessary. The p-value for library funding in the 

model was 5.67x107. This model is not overfit. The RSE for the model was 4.21 

and the cross-validation score was 4.33. A graphical depiction of the fit of this 

model to the homicide levels is displayed in Figure 11. 
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Figure 11.   Graphical Depiction of OLS Regression to Predict Homicide Rates in 
Salinas 

The OLS fit for homicide is good, but homicides could easily have a count 

based distribution, so an exploration of a Poission fit for homicide prediction is 

advisable and is covered in the next section. 

5. Homicide Prediction using Poisson Regression 

The Poisson model derived for homicide prediction started with the same 

variables the OLS model started with. The initial Poisson model was: 

 









6

1

7

7

ˆ y= exp(2.040-2.433x10 (Population)

+4.777x10 (SPD Budget)

-0.1496(CDCR Overpopulation Percentage)

-1.437x10 (Parks and Rec Funding)

+ 5.718x10 (Library Funding))

 (42) 

 

Much like the OLS model, this first fit for the Poisson regression to predict 

homicide levels was not a very good fit. The p-values for the regression are given 

in Table 11. 
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   Estimate Standard Error P-value 

Intercept 2.04 6.22x10-1 0.001048

Population -2.43x10-6 9.15x10-6 0.790286

SPD Budget 4.78x10-9 1.33x10-8 0.720189

CDCR Over Population Percentage -1.50x10-1 4.74x10-1 0.752115

Parks and Rec Fund -1.44x10-7 1.54x10-7 0.349927

Library Fund 5.72x10-7 1.56x10-7 0.000235

Table 11.   P-values for Poisson Regression for Homicide Levels 

The Poisson model, just like the OLS model, reduced to a regression with 

Salinas library funding as the single regressor. The model derived was: 

 7ˆ y=exp(1.522+4.417x10 (Library Funding))  (43) 

The regression was checked for overfitting, but was found to not be overfit 

with a cross-validation score of 17.557 and a model RSE of 16.96. The graphical 

interpretation of the model is shown in Figure 12. 

 

 

Figure 12.   Poisson Regression fit for Homicide 

The Poisson regression fit was an acceptable fit for the data, but there is 

the possibility of overdispersion. The residual deviance for the model is 41.196 

with 28 degrees of freedom. Therefore, the negative binomial regression was 

explored as an alternative to the Poisson regression. 
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6. Homicide Prediction using Negative Binomial Regression 

The starting point for the negative binomial regression for homicide 

prediction was the fit for the Poisson regression. This gave an equation of: 

 7ˆ y=exp(1.520+4.425x10 (Library Funding))  (44) 

This model is similar to the Poisson model with a lower residual deviance. 

The residual deviance of the negative binomial model was 34.36. This is a 

significant decrease from the Poisson model and suggests a better fit than the 

Poisson model for predicting homicide levels. The graphical fit is displayed in 

Figure 13. 

 

Figure 13.   Negative Binomial Fit for Homicide 

7. Assault and Homicide Prediction using Ordinary Least 
Squares 

The initial fit to predict assaults and homicides was: 

 

ˆ y= 548.549-115.333(CDCR Overpopulation Percentage)

-0.002447(Parole Population)

+27.882(Unemployment with two year shift) 

 (45) 

with p-values of: 
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   Estimate Standard Error P-value 

Intercept 5.49x102 4.31x102 0.22266

CDCR Over Population Percentage 1.15x102 2.98x102 0.70399

Parolee Population -2.45x10-3 2.27x10-3 0.29801

Unemployment with 2 year shift 2.79x10 8.85 0.00662

Table 12.   P-values for OLS Regression for Assault and Homicide prediction 

The R2 for the initial regression fit was 0.635. Although this seems to be a 

good fit, the regression to predict assault and homicide levels was dominated by 

unemployment with a 2-year shift, much like homicides and library funding. 

However, unlike the homicide regression, this equation benefited from an 

addition of a squared unemployment term.  The ideal OLS regression equation 

was: 

 
2

ˆ y=1330.385 -155.163(Unemployment with two year shift)

+9.593(Unemployment with two year shift)
 (46) 

 

This regression was not overfit, having a cross-validation score of 56.82 

and an RSE for the model of 52.31. This equation resulted in an R2 of 0.7117 

and a graphical interpretation shown in Figure 14. 

 

Figure 14.   OLS Regression for Assaults and Homicides 
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This was a good fit for the prediction. Poisson and negative binomial 

models were also explored. 

8. Assault and Homicide Prediction using Poisson Regression 

The initial fit for the Poisson regression to predict assaults and homicides 

was: 

 







1

6

2

ˆ y= exp(6.324-1.690x10 (CDCR Overpopulation Percentage)

-3.226x10 (Parole Population)

+3.622x10 (Unemployment with two year shift))

 (47) 

with p-values of: 

   Estimate Standard Error P-value 

Intercept 6.32 2.55x10-1 2.00x10-16

CDCR Over Population Percentage 1.69x10-1 1.78x10-1 0.3413

Parolee Population -3.23x10-6 1.36x10-6 0.0174

Unemployment with 2 year shift 3.62x10-2 5.25x10-3 5.42x10-12

Table 13.   P-values for OLS Regression for Assault and Homicide prediction 

This model suggests that CDCR Overpopulation does not add to the 

regression. This variable was taken out. A squared term of unemployment was 

added to the model to give the following equation for the optimal Poisson 

regression fit: 

 











6

1

2 2

ˆ y= exp( x10 (Parole Population)

x10 (Unemployment with two year shift)

+ x10 (Unemployment with

7.4

 tw

70 1.7

o yea

91

1.730

r shif1.06 t)3 )

 (48) 

The model is not overfit, with a cross-validation score of 3056.97 and a 

model RSE of 2639.76. A graphical representation of the model is given by 

Figure 15. 
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Figure 15.   Poisson Fit for Assaults and Homicides 

This equation has a residual deviance of 52.856 with 15 degrees of 

freedom. There is strong evidence of overdispersion, which will be remedied with 

the negative binomial regression. 

9. Assault and Homicide Prediction using Negative Binomial 
Regression 

The initial fit, using the Poisson regression as a basis for the negative 

binomial regression was: 

 











6

1

2 2

ˆ y= exp( x10 (Parole Population)

x10 (Unemployment with two year shift)

+ x10 (Unemployment with 

7.448 1.771

1.

two year shi

687

1. 4 ft)0 )

 (49) 

This model also seems very close to the Poisson model but reduces the 

residual deviance from 52.856 to 19.16, implying a much better fit for the data 

using the negative binomial over the Poisson regression. The visual for the fit is 

depicted in Figure 16. 
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Figure 16.   Negative Binomial Fit for Assault and Homicides 

D. PREDICTION RESULTS USING REGRESSION MODELS 

To test the validity of the models, 2011 data was gathered or, if the data 

was not yet published, estimated with the best available knowledge and past 

trends. 2011 and 2012 were both predicted, with the 2012 prediction results 

using model equated using 2011 data and is detailed in Appendix B. Although 

the models will predict as many years in the future as data is input, it is unwise to 

attempt to predict too far into the future with a regression model as changes to 

policy or environmental factors could change at any time. None of these models 

should be used to estimate more than one or two years of violence levels in 

Salinas. 

Violence prediction for 2011 is detailed in Table 14. 

   Salinas Violence 

OLS Regression Model 1810.954

Poisson Regression Model 2117.753

Negative Binomial Regression Model 2117.753

Table 14.   2011 Violence Prediction based on the Derived Models 

 



 

 48

Homicide prediction is displayed in Table 15. 

   Salinas Homicides 

OLS Regression Model 22.64106

Poisson Regression Model 24.43126

Negative Binomial Regression Model 24.45902

Table 15.   2011 Homicide Prediction based on the Derived Models 

Finally, assaults and homicide predictions for 2011 are in Table 16. 

   Salinas Assaults  
and Homicides 

OLS Regression Model 835.2094

Poisson Regression Model 836.4053

Negative Binomial Regression Model 836.1911

Table 16.   2011 Homicide and Assault Prediction based on the Derived Models 

The actual counts for 2011 are detailed in Table 17. 

Violence 1083

Homicides 15

Assaults and Homicides 709

Table 17.   Observed 2011 Crime Statistics 

The predicted numbers are higher than the actual numbers for 2011 crime 

statistics in Salinas. 
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IV. CONCLUSION AND FUTURE WORK 

All three of the model types had similar predictions, with the exception 

being the model for violence. The different types of regression for predicting 

violence yielded varying results. The linear model for violence gave a closer 

prediction to the 2011 crime rates than the other two models. The Poisson and 

negative binomial models assume that the data has a Poisson distribution and, 

should the data not have a Poisson distribution, OLS regression will be as good, 

if not better, at prediction. This being the case, this study found that ordinary 

least squares models are adequate to predict crime trends in Salinas for all three 

of the explored dependent variables.  

Several economic variables are highly correlated with crime statistics in 

Salinas. These variables could be used to predict future crime rates in Salinas 

based on past trends and observations in the city. However, these numbers do 

not take into account policy changes enacted in the city, such as Operation 

Ceasefire. These operations are difficult to numerically quantify in a study, and 

can very well be responsible for the reduction in crime levels in Salinas. 

According to all of the models derived in this study, crime in Salinas 

should be on the rise in all categories. Salinas saw an increase in crime statistics 

from 2008-2010, but a reduction in crime in 2011. The most obvious conclusion 

to draw between the disparity between the statistical models and the actual crime 

levels is that Salinas is moving in the correct direction for crime prevention and 

gang reduction. 

These results lend heavy credence to a continuation to the current crime 

prevention methods in Salinas to include the gang task force, Operation Ceasfire, 

coordination with CASP, and any other methods of crime reduction. 

Although the 2011 predictions were incorrect, the 2012 calculations seem 

quite feasible and are listed in Appendix B. These numbers were derived from 

models that took into account 2011 economic and violence levels. The 2011 
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violence levels and environmental data may have aided in future predications 

and have included the efforts of the crime prevention tactics employed by 

Salinas. 

A. FUTURE WORK 

Future work in this area would apply the equated models of this thesis in 

different communities with smaller and larger populations to see if the models 

predict violence in communities other than Salinas. All of the variables in the 

study are present in any community, with the difference being the large gang 

presence in Salinas. It could be a significant study to see if the level of 

environmental variables effect crime levels, no matter the type of population. 

Another topic for future work is further exploration of the prison 

overpopulation problem compared to crime rates in California. As of the date of 

this thesis, prison overcrowding is a very important governmental topic and 

California prison population and crime could be compared to neighboring states 

prison population and crime rates to see if there are correlations between crime 

rates and prison populations. 

B. RECOMMENDATIONS 

Salinas California should maintain its current level of diligence in crime 

deterrence. There is some variable not taken into account in this study that must 

account for the drop in crime rates from 2010 to 2011 in Salinas. Currently, 

Salinas’s budget predictions for 2013 show a considerable reduction to the police 

force, down to 88 patrol police. This will decrease the police presence in Salinas 

to from 157 about 143 police officers. The population of Salinas does not show 

any sign of decreasing. This reduction in officers will equate to a ratio of around 1 

officer per 1050 people in Salinas. For a city Salinas’s size, the Bureau of Justice 

Statistics estimates the average to be 1.9 officers per 1000 residents (Reaves, 

2007, p. 9). 
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A reduction in police force can have a devastating effect on crime rates in 

an already crime ridden community. In September of 2011, Governor Chris 

Christie of New Jersey balanced the New Jersey budget. The consequences of 

the balance were a reduction by 103 officers from the Trenton, NJ police force. 

As a result, Trenton PD has seen a drastic increase in crime rates, having almost 

a shooting a day, up from one a week, as reported from Sergeant Mark Kieffer, a 

16-year veteran of Trenton PD (Glass, 2012). Although the proposed cuts in 

Salinas are not as drastic, the repercussions could be as dire as in Trenton. 

No single variable in the study should be concentrated on as the fix to the 

crime problem. It may seem preposterous to think that increasing the Salinas 

library budget will increase the number of homicides and this could well be a 

case of correlation having little or no link to causation. However, the statistically 

observed correlation of homicides and library funding could also be an artifact of 

perceptions by the citizens of Salinas concerning city funding policies. The 

leadership of Salinas would be wise to consider possible second or third order 

effects during budget negotiations.  

Many times in the study, the overpopulation of the California prison 

system was a variable of great concern. Overcrowding in prisons means early 

parole for prisoners. The parolees, when released, go back to their previous 

residence, which is also the place they committed the crime to lead to their prison 

sentence in the first place. The unemployment level in Salinas is currently around 

15% and the recidivism rate for California is around 70%. These factors point 

towards a continual high level of crime in Salinas. 

Finally, all findings from this study will be given to the Salinas leadership in 

an effort to assist Salinas’s crime problem in any way possible. Although the 

predictions are just that, predictions, these tools can be used to help guide the 

administration and the budgeting department for Salinas into the future. 

 



 

 52

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 53

LIST OF REFERENCES 

Actions CDCR Has Taken to Reduce Overcrowding. (2012). Retrieved 4/27, 
2012 from http://www.cdcr.ca.gov/News/docs/FS-Actions-
ReduceInmatePop.pdf. 

Boba, R. (2005). Crime Analysis and Crime Mapping. Thousand Oaks: Sage 
Publications, Inc. 

Braga, A. A., & Pierce, G. L. (2005). Disrupting Illegal Firearms Markets in 
Boston: The Effects of Operation Ceasefire on the Supply of New 
Handguns to Criminals. Criminology & Public Policy, 4(4), 717. 

Burke, M., & Cavanaugh, M. (2011). New Calif. Prison Plan. Retrieved 4/27, 
2012, from http://www.kpbs.org/news/2011/jun/07/new-calif-prison-plan/. 

Cate, M. (2010). Corrections Year at a Glance. Sacramento, CA: California 
Department of Corrections and Rehabilitation. 

Chapman, B. (1982). 1980 Census of Population. U.S. Department of 
Commerce. 

Dobson, A. J., & Barnett, A. G. (2008). An Introduction to Generalized Linear 
Models Third Edition. Boca Raton: Taylor & Francis Group, LLC. 

Egley, A. J., & O’Donnell, C. E. (2008). Highlights of the 2006 National Youth 
Gang Survey. OJJDP, 5. 

Ehlers, D., & Pimstone, G. (1998). Predicting crime: A statistical glimpse of the 
future? Nedbank ISS Crime Index, 2(2). 

Fetherolf, L. (2009). 90-day Report to the Community. Salinas, California: Salinas 
Police Department. 

Fetherolf, L. (2010). Report to the Community. Salinas, CA: City of Salinas. 

Glass, I. (2012). What Kind of Country. This American Life, 459, 4/27/2012. 

Gorr, W., & Olligschlaeger, A. (2002). Crime Hot Spot Forecasting: Modeling and 
Comparative Evaluation, Final Project Report. (No. 195167).U.S. 
Department of Justice. 

Grassie, R. P., Waymire, R. V., Burrows, J. W., Anderson, C. L., & Wallace, W. 
D. (1977). Integrated Criminal Apprehension Program - Crime Analysis - 
Executive Manual [Abstract]. 



 

 54

Hennessey, V. (2003). An End to the Cycle. Monterey Herald. 

History of Salinas. (2009). Retrieved 4/27, 2012, from 
http://www.ci.salinas.ca.us/visitors/history.cfm. 

Kennedy, D. M., Braga, A. A., & Piehl, A. M. (2001). Reducing Gun Violence The 
Boston Gun Project's Operation Ceasefire. U.S. Department of Justice. 

Mamalian, C. A., & LaVigne, N. G. (1999). The Use of Computerized Crime 
Mapping by Law Enforcement: Survey Results. National Institute of 
Justice Research Preview, 

McFarlane, A. M. (2012). SOCDS Census Data: Output for Monterey city, CA. 
Retrieved 4/27, 2012, from 
http://socds.huduser.org/Census/Census_java.html. 

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). Introduction to Linear 
Regression Analysis (4th ed.). Hoboken: John Wiley & Sons, Inc. 

Morales, G., Eways, A., Novotny, B., & Schoville, C. (2008). Sureños 2008: EME. 
Phoenix, AZ: Rocky Mountain Information Network. 

Omnibus Crime Control and Safe Streets act of 1968, P.L. 90-351, (1968). 

Onufer, T. L., & Clark, J. A. (2009). Understanding Environmental Factors that 
Affect Violence in Salinas, California. (Unpublished Master of Science in 
Defense Analysis). Naval Postgraduate School, Monterey, CA. 

Osgood, W. D. (2000). Poisson-Based Regression Analysis of Aggregate Crime 
Rates. Journal of Quantitative Criminology, 16(1). 

O'Shea, T. C., & Nicholls, K. (2003). Crime Analysis in America Finding and 
Recommendations. U.S. Department of Justice. 

Pepper, J. V. (2007). Forecasting Crime: A City Level Analysis. University of 
Virginia. 

Record on Research About Criminal Behavior Corrected. (2009). Retrieved 4/27, 
2012, from http://www.rand.org/news/press/2009/07/24.html. 

Reaves, B. A. (2007). Local Police Departments, 2007. Bureau of Justice 
Statistics. 

Reynolds, J. (2011, 25 May). Operation Knockout: Gang raid targets Nuestra 
Familia in Salinas. Monterey Herald. 



 

 55

San Francisco Citizen. (2010, 22 April). Jerry Brown Takes Down: “Operation 
Knockout” Arrests 94 Norteños and Sureños in Salinas. Message posted 
to http://sfcitizen.com/blog/2010/04/22/jerry-brown-takes-down-operation-
knockout-arrests-94-in-the-salinas-area. 

Seavey, K. (2010). A Short History of Salinas, California. Retrieved 5/19, 2010, 
from http://www.mchsmuseum.com/salinasbrief.html. 

Simple Linear Regression Analysis. (2012). Retrieved 4/27, 2012, from 
http://www.weibull.com/DOEWeb/simple_linear_regression_analysis.htm. 

Solana, K. (2010). Salinas Ceasefire call-in draws 30 gang members, a few 
juveniles. Retrieved 4/27, 2012, from 
http://www.thecalifornian.com/article/20100506/NEWS09/5060301/Salinas
-Ceasefire-call-draws-30-gang-members-few-juveniles. 

Stahl, Z. (2009). Saving Salinas. Retrieved 4/27, 2012, from 
http://donohueformayor.com/node/97. 

State & County QuickFacts: Salinas, California. (2012). Retrieved 4/27, 2012, 
from http://quickfacts.census.gov/qfd/states/06/0664224.html. 

Success Stories. (2012). Retrieved 4/27, 2012, from 
http://www.guncite.com/success.htm. 

Sureños. (2005). Retrieved 05/03, 2012, from 
http://www.sampsonsheriff.com/otherforms/20051011_surenos.pdf. 



 

 56

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 57

APPENDIX A. DATA 

All data in the study was taken from government sources, when available, 

and from the past research from Clark and Onufer, when the government 

sources did not have the data. All of the links to data sources are listed below the 

table. 

Year Population Homicides Robbery Assault Violence 
1980 80479 9 208 283 500
1981 82700 9 191 344 544
1982 85300 11 179 356 546
1983 87600 2 200 372 574
1984 91100 8 159 362 529
1985 94600 10 167 424 601
1986 98300 9 204 672 885
1987 100800 7 192 633 832
1988 103900 4 217 722 943
1989 105400 7 217 734 958
1990 108777 11 262 778 1051
1991 111184 7 253 805 1065
1992 114736 17 388 722 1127
1993 116686 15 560 844 1419
1994 120885 24 414 846 1284
1995 121960 15 494 950 1459
1996 124972 8 412 884 1304
1997 127369 18 348 895 1261
1998 132449 17 440 661 1118
1999 136797 13 346 737 1096
2000 142685 18 443 734 1195
2001 144728 15 399 799 1213
2002 146659 20 367 692 1079
2003 148117 19 399 725 1143
2004 149838 17 452 678 1147
2005 149626 7 335 645 987
2006 148707 7 383 683 1073
2007 148782 14 378 711 1103
2008 150898 25 334 633 992
2009 150215 29 359 678 1066
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2010 150441 19 365 755 1139
2011 150441 15 374 694 1083

 

Year Drop Outs 
Drop Out 
Rate SPD Budget 

SPD 
Employees 

Sworn 
Police 

1980 NA NA 5342123 NA NA 
1981 NA NA 5726778 NA NA 
1982 NA NA 6170072 173 NA 
1983 NA NA 6645438 177 NA 
1984 NA NA 7715577 180.5 NA 
1985 NA NA 8331832 180.5 NA 
1986 NA NA 9315054 184 NA 
1987 NA NA 9607781 180 NA 
1988 NA NA 10177311 184 NA 
1989 NA NA 10649699 184 NA 
1990 NA NA 11456256 186 NA 
1991 NA NA 13144292 186 NA 
1992 157 2.6 13634881 187 NA 
1993 237 3.7 15683718 181 NA 
1994 157 2.4 13612478 179 NA 
1995 198 2.9 14471238 188 NA 
1996 330 4.7 16393545 193 NA 
1997 281 3.8 16929407 198 147
1998 342 4.5 17575700 198 144
1999 256 3.2 18852899 199 143
2000 203 2.5 19288170 213 145
2001 225 2.6 21713995 221 149
2002 204 2.3 22040439 222 145
2003 75 0.08 24224300 224 154
2004 124 1.3 25241659 222 167
2005 85 0.9 29704910 232 164
2006 124 1.3 33356709 238 161
2007 180 2.6 35416564 255 174
2008 147 1.5 38380314 251 177
2009 264 2.8 41187794 251 164
2010 276 2.9 37360500 230 157
2011 276 2.9 39852481 210 157
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Year 
CDCR 
Capacity CDCR Population 

CDCR 
Overpopulation 
Percentage 

Parole 
Population 

1980 23534 23371 0.99307385 14650
1981 23800 26372 0.99307385 13952
1982 24611 31319 1.07155337 16072
1983 25703 35965 1.2184959 22202
1984 26792 40524 1.34237832 27000
1985 29042 45528 1.39535845 30726
1986 32097 53620 1.67056111 34771
1987 36465 62949 1.72628548 43355
1988 44124 69695 1.57952588 52788
1989 47120 79849 1.69458829 61665
1990 51013 90405 1.77219532 73096
1991 54042 95930 1.77510085 85470
1992 57986 98386 1.6967199 89453
1993 61983 109654 1.76909798 88858
1994 66183 118968 1.79756131 92958
1995 70717 125585 1.77588133 96110
1996 73121 135294 1.85027557 100934
1997 75952 146656 1.93090373 105449
1998 79877 150731 1.88703882 111875
1999 79873 154440 1.93356954 117612
2000 80272 154014 1.91865158 121414
2001 80467 153649 1.90946599 121820
2002 79957 151579 1.89575647 117138
2003 80187 153783 1.91780463 114136
2004 80980 157895 1.94980242 113768
2005 81008 158837 1.96075696 115001
2006 87370 166547 1.90622639 121808
2007 84653 166277 1.96421863 126906
2008 84066 160169 1.90527681 123597
2009 84241 154749 1.83697962 109026
2010 84596 168830 2.00413101 108656
2011 84130 136619 1.623903483 100490
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Year 
Parks and 
Rec Fund 

Library  
Fund Unemployment

Number of 
Vacant Units 

Person 
Per 
Household

1980 NA NA NA NA NA 
1981 1443405 1032802 NA NA NA 
1982 1533507 1077642 NA NA NA 
1983 1704186 1203748 NA NA NA 
1984 1734921 1278394 NA NA NA 
1985 1956253 1410963 NA NA NA 
1986 2257021 1584859 NA NA NA 
1987 2223182 1518322 NA NA NA 
1988 2674380 1748197 NA NA NA 
1989 2768221 1825048 NA NA NA 
1990 2178310 1955405 9.7 1228 3.21
1991 2587574 2059120 11.4 1227 3.24729
1992 2785467 2180700 12.5 1230 3.33079
1993 1992787 2121146 13.1 1234 3.36624
1994 1966659 2119116 12.4 1240 3.46189
1995 1542992 2191539 12.3 1251 3.45003
1996 1850056 2263639 11.3 1269 3.47405
1997 1871278 2489376 11 1281 3.49622
1998 2048408 2589735 10.8 1305 3.56309
1999 2131408 2799503 9.7 1314 3.60341
2000 2296515 2868795 7.4 1360 3.662
2001 2817339 3020075 7.8 1370 3.69
2002 2974138 3316832 8.9 1385 3.702
2003 3081427 3423623 9 1400 3.7
2004 2795909 3170427 8.3 1418 3.699
2005 2285817 2614595 7.3 1433 3.654
2006 2082617 1278414 6.9 1441 3.614
2007 3153973 2207708 7.1 1450 3.601
2008 3893586 3440113 8.4 1452 3.637
2009 3976221 4061128 11.8 1463 3.643
2010 3302147 3587431 12.8 1462 3.685
2011 1571796 3788695 12.4 1462 4
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All links verified as of 20 April 2012 
 
Salinas Population 1980. 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-4/1971–
80/counties-cities/ 
 
Salinas Population 1981–1989. Retreived 20 April 2012: 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-4/1981–90/ 
  
Salinas Population 1981–1990 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-4/1981–90/ 
 
Salinas population 1990–2000 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-8/ 
 
Salinas population 2000–2010 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-5/2001-
10/view.php 
 
Vacant Houses: 1990–2000. Used total houses minus Occupied houses 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-8/ 
 
Vacant Houses: 2001–2010. Used total houses minus occupied houses 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-5/2001–
10/view.php 
 
Person Per Household 1990–2000 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-8/ 
 
Person per household 2001–2010 
http://www.dof.ca.gov/research/demographic/reports/estimates/e-5/2001–
10/view.php 
 
Prison and parolee populations: 1980–2009: 
http://www.cdcr.ca.gov/Reports_Research/Offender_Information_Services_Branc
h/Annual/CalPrisArchive.html 
 
Prison and parolee Population: 2009–2011 
http://www.cdcr.ca.gov/Reports/CDCR-Annual-Reports.html 
 
Police, Library, and Parks and Recreation 1981–2004: 
Clark and Onufer thesis 
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Police, Library, and Parks and Recreation 2005-2011: Taken from column 
labeled “Actual.” 2011 taken from column labeled “Budget.” 2012 taken from 
column labeled “Adopted.” 
http://www.ci.salinas.ca.us/services/finance/budget.cfm 
SPD Employee and SPD Sworn Police numbers taken from Clark and Onufer 
Thesis. 
 
Crime Stats 1985–2010: 
http://www.ucrdatatool.gov/Search/Crime/Local/RunCrimeJurisbyJurisLarge.cfm 
 
Crime statistics 2011: 
http://www.salinaspd.com/statistics.html 
 
School drop-out information 1991–2010. Taken from column Grade 9-12 total 
drop-outs. 2011–2012 not currently published and estimated to be approximately 
2010 level: 
http://dq.cde.ca.gov/dataquest/DropoutReporting/DropoutsByGrade.aspx?cDistri
ctName=SALINAS%20UNION%20HIGH%20%20%20%20%20%20%20%20%20
%20%20%20&cCountyCode=27&cDistrictCode=2766159&cSchoolCode=00000
00&Level=District&TheReport=GradeOnly&ProgramName=All&cYear=2009-
10&cAggSum=DTotGrade&cGender=B 
 
Unemployment 1990-2011. 2012 estimated from current 2012 data: 
http://www.calmis.ca.gov/file/lfhist/LabForce-CAMSACo.txt 
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APPENDIX B. DERIVED MODELS AND PREDICTIONS 

There were nine different models derived in the study. The models were 

all equated using the data found in Appendix I. All of the models were equated in 

R. 

A. VIOLENCE MODELS 

OLS Model 3 6

2

ŷ=1.827x10 +9.384x10 (SPD Budget)

-8.354x10 (CDCR Overpopulation Percentage)

+50.62(Unemployment with Two Year Shift)

+1.712(Number of Vacant Units with Two Year Shift)

-13.93(SPD Sworn Police with One Year Shift)

 

Poisson Model 









9

2

1

2

3

ˆ y=exp(7.679-8.695x10 (SPD Budget)

-1.287x10 (SPD Sworn Police with one year shift)

-7.743x10 (CDCR Overpopulation Percentage)

+4.666x10 (Unemployment with two year shift)

+1.582x10 (Number of Vacant Units with two year shift))

Negative Binomial 

Model 

Same as Poisson Model 

B. HOMICIDE MODELS 

OLS Model 6ˆ y=-0.5852+6.130x10 (Library Funding)  

Poisson Model 7ˆ y=exp(1.522+4.417x10 (Library Funding))  

Negative Binomial Model 7ˆ y=exp(1.520+4.425x10 (Library Funding))  
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C. HOMICIDE AND ASSAULT MODELS 

OLS Model .. 

Poisson Model 









6

1

2 2

ˆ y= exp( x10 (Parole Population)

x10 (Unemployment with two year shift)

+ x10 (Unemployment with

7.4

 tw

70 1.7

o yea

91

1.730

r shif1.06 t)3 )

 

Negative Binomial Model 









6

1

2 2

ˆ y= exp( x10 (Parole Population)

x10 (Unemployment with two year shift)

+ x10 (Unemployment with 

7.448 1.771

1.

two year shi

687

1. 4 ft)0 )

 

D. PREDICTIONS USING MODELS: 

The predictions for 2011 were made with the derived models. The 

prediction for 2012 were made with models reformulated using the available 

2011 data. 

2011 OLS Poisson Negative 

Binomial 

Recorded 

Levels 

Violence 1789.337 2077.991 2077.991 1083 

Homicides 22.64 24.43 24.46 15 

Homicides and 

Assaults 

881.40 879.80 879.02 664 

 

2012 OLS Poisson Negative 

Binomial 

Recorded 

Levels 

Violence 1093.26 1094.10 1094.10 NA 

Homicides 21.64318 22.92571 23.03067 NA 

Homicides and 

Assaults 

901.64993 916.76166 914.25029 NA 
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APPENDIX C. R-CODE 

s=read.table("clipboard",header=T) 

############Correlation for Violence Level 

corallvio=setcor(s$Violence,s,2) 

names(corallvio)=c("NoShift","OneYear","TwoYears") 

###Correlation between possible regressors for Violence#### 

##This consists of: Population, SPD Budget,  

###sworn police with a one year shift, CDCR Overpopulation Percentage,  

###parole population, unemployment percentage with a two year shift, 

###number of vacant units with a two year shift  

###personnel per household with a two year shift.  

cormat=data.frame(s$Population[3:31],s$SPDBudget[3:31],s$CDCRPercentage[
3:31], 

s$ParolePop[3:31], 

s$Police[2:30],s$Unemployment[1:29], 

s$Vacant[1:29],s$PersonPerHouse[1:29]) 

corbetween=cor(cormat,use="pairwise.complete.obs") 

######It is cleaner to work with the a new dataframe used only for violence. The 
big dataset can be used 

viodata=data.frame(s$Violence[3:31],s$SPDBudget[3:31],s$CDCRPercentage[3:
31], 

s$Police[2:30],s$Unemployment[1:29], 

s$Vacant[1:29]) 

names(viodata)=c("Violence","SPDBudget","CDCRPercentage","Police","Unempl
oyment","Vacant") 

######Correlation for Homidices 

corallhom=setcor(s$Homicide,s,iter=2) 

colnames(corallhom)=c("NoShift","OneYear","TwoYears") 

###Correlation between possible regressors for Homicide#### 

##This consists of: Population, SPD Budget,  

###CDCR Overpopulation Percentage,  

###Parks and Recreation budget 
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###library budget  

##homdata will be used for the regression 

homdata=data.frame(s$Homicide,s$Population,s$SPDBudget,s$CDCRPercenta
ge, 

s$ParksandRec,s$Library) 

names(homdata)=c("Homicide","Population","SPDBudget","CDCRPercentage","
ParksandRec","Library") 

homcorbetween=cor(homdata,use="pairwise.complete.obs") 

######Correlation for Assaults and Homicide 

HA=s$Homicide+s$Assault 

corallHA=setcor(HA,s,iter=2) 

colnames(corallhom)=c("NoShift","OneYear","TwoYears") 

###Correlation between possible regressors for Homicide and Assaults#### 

##This consists of: CDCR Overpopulation Percentage, 

###parole population  

###unemployment percentage with a two year shift 

###number of vacant units 

###person per household with a two year shift 

##HAdata will be used for he regression 

HA=s$Homicide+s$Assault 

HAdata=data.frame(HA[3:31],s$CDCRPercentage[3:31],s$ParolePop[3:31],s$Un
employment[1:29], 

s$Vacant[3:31],s$PersonPerHouse[1:29]) 

HAcorbetween=cor(HAdata,use="pairwise.complete.obs") 

###Since we are not going to use Vacant Units or Person Per Household, lets 
put the first 2 obs back into the data set 

HAdata=data.frame(HA[3:31],s$CDCRPercentage[3:31],s$ParolePop[3:31],s$Un
employment[1:29]) 

names(HAdata)=c("HA","CDCRPercentage","ParolePop","Unemployment") 

############Regression fitting for Violence 

###Linear to start 

### SPD Budget, Sworn Police (1 year Shift), CDCR Overpopulation Percentage 

## Unemployment (2 year shift), Vacant Units (2 year shift), Person per 
household (2 year shift) 
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###first fit: 

violm=lm(Violence~., data=viodata) 

###To cross-validate, all of the rows with NAs must be taken out. this is the first 
16 rows for this data set 

crossviodata=viodata[17:29,] 

violm=lm(Violence~.-PersonPerHouse,data=crossviodata) 

###I like to run cross validation 10 times and take the mean 

xstat=1:10 

for(i in 1:10){ 

xstat[i]=xval(violm)} 

mean(xstat) 

###Second fit: 

vio2lm=lm(Violence~SPDBudget+CDCRPercentage,data=s) 

xstat=1:10 

for(i in 1:10){ 

xstat[i]=xval(vio2lm)} 

mean(xstat) 

#####Predictions for the graphing of the two fits: 

pviolm=as.matrix(predict(violm)) 

pvio2lm=as.matrix(predict(vio2lm)) 

####Violence Poisson Regression 

viopoiss=glm(Violence~.-PersonPerHouse,data=viodata,family=poisson) 

crossglm(viopoiss) 

pviopoiss=as.matrix(predict(viopoiss,type='response')) 

####Violence NB Regression 

vionb=glm.nb(Violence~.-
PersonPerHouse,data=viodata,link=log,start=viopoiss$coefficients) 

############Regression fitting for Homicide######################### 

###Linear to start 

###first fit: 

homlm=lm(Homicide~., data=homdata) 

####Final Fit: 
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homlm=lm(Homicide~Library,data=homdata) 

###Cross-validate 

###I like to run cross validation 10 times and take the mean 

xstat=1:10 

for(i in 1:10){ 

xstat[i]=xval(homlm)} 

mean(xstat) 

#####Predictions for the graphing of the linear model: 

phomlm=as.matrix(predict(homlm)) 

####Violence Poisson Regression## 

hompoiss=glm(Homicide~.,data=homdata,family=poisson) 

###First one is no good 

##Here is the final model 

hompoiss=glm(Homicide~Library,data=homdata,family=poisson) 

crossglm(hompoiss) 

phompoiss=as.matrix(predict(hompoiss,type='response')) 

####Violence NB Regression 

homnb=glm.nb(Homicide~Library,data=homdata,link=log,start=hompoiss$coeffici
ents) 

phomnb=as.matrix(predict(homnb,type="response")) 

############Regression fitting for Homicide and 
Assaults######################### 

###Linear to start 

###first fit: 

HAlm=lm(HA~., data=HAdata) 

####Final Fit: 

HAdata=HAdata[complete.cases(HAdata[,]),] 

HAlm=lm(HA~Unemployment+I(Unemployment^2),data=HAdata) 

###To cross-validate, all of the rows with NAs must be taken out. 

###I like to run cross validation 10 times and take the mean 

xstat=1:10 

for(i in 1:10){ 
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xstat[i]=xval(HAlm)} 

mean(xstat) 

#####Predictions for the graphing of the linear model: 

pHAlm=as.matrix(predict(HAlm)) 

####Homicide and Assault Poisson Regression## 

HApoiss=glm(HA~.,data=HAdata,family=poisson) 

###First one is no good 

##Here is the final model 

 

HApoiss=glm(HA~ParolePop+Unemployment+I(Unemployment^2),data=HAdata,
family=poisson) 

crossglm(HApoiss) 

pHApoiss=as.matrix(predict(HApoiss,type='response')) 

####Violence NB Regression 

HAnb=glm.nb(HA~ParolePop+Unemployment+I(Unemployment^2),data=HAdata
,link=log,start=HApoiss$coefficients) 

pHAnb=as.matrix(predict(HAnb,type="response")) 

#########This is the future predictions 

s2011=read.table("clipboard",header=T) 

plmvio2011=predict(violm,newdata=data.frame(SPDBudget=s2011$SPDBudget,
CDCRPercentage=s2011$CDCRPercentage, 

Police=s2011$Police,Unemployment=s2011$Unemployment,Vacant=s2011$Vac
ant, PersonPerHouse=s2011$PersonPerHouse)) 

pviolm2011=predict(violm,newdata=s2011) 

pviopoiss2011=predict(viopoiss, newdata=s2011,type='response') 

phomlm2011=predict(homlm,newdata=s2011) 

phompoiss2011=predict(hompoiss,newdata=s2011,type='response') 

phomnb2011=predict(homnb,newdata=s2011,type='response') 

pHAlm2011=predict(HAlm,newdata=s2011) 

pHApoiss2011=predict(HApoiss,newdata=s2011,type='response') 

pHAnb2011=predict(HAnb,newdata=s2011,type='response') 

###########Here are the models with 2011 data added in and regenerated: It 
doesn't change the models very much 
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s=rbind(s,s2011) 

viodata=data.frame(s$Violence[3:32],s$SPDBudget[3:32],s$CDCRPercentage[3:
32], 

s$Police[2:31],s$Unemployment[1:30], 

s$Vacant[1:30]) 

names(viodata)=c("Violence","SPDBudget","CDCRPercentage","Police", 

"Unemployment","Vacant") 

viodata=viodata[complete.cases(viodata[,]),] 

homdata=data.frame(s$Homicide,s$Library) 

names(homdata)=c("Homicide","Library") 

homdata=homdata[complete.cases(homdata[,]),] 

HA=s$Homicide+s$Assault 

HAdata=data.frame(HA[3:32],s$ParolePop[3:32],s$Unemployment[1:30]) 

names(HAdata)=c("HA","ParolePop","Unemployment") 

HAdata=HAdata[complete.cases(HAdata[,]),] 

violm=lm(Violence~.,data=viodata) 

viopoiss=glm(Violence~.,data=viodata,family=poisson) 

vionb=glm.nb(Violence~.,data=viodata,link=log,start=viopoiss$coefficients) 

homlm=lm(Homicide~Library,data=homdata) 

hompoiss=glm(Homicide~Library,data=homdata,family=poisson) 

crossglm(hompoiss) 

homnb=glm.nb(Homicide~Library,data=homdata,link=log,start=hompoiss$coeffici
ents) 

HAlm=lm(HA~Unemployment+I(Unemployment^2),data=HAdata) 

HApoiss=glm(HA~ParolePop+Unemployment+I(Unemployment^2),data=HAdata,
family=poisson) 

HAnb=glm.nb(HA~ParolePop+Unemployment+I(Unemployment^2),data=HAdata
,link=log,start=HApoiss$coefficients) 

#Code for 2012 predictions. There are no 2012 actual numbers yet. most of the 
2012 data is estimated 

s2012=read.table('clipboard',header=T) 

pviolm2012=predict(violm,newdata=s2012) 

pviopoiss2012=predict(viopoiss, newdata=s2012,type='response') 
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phomlm2012=predict(homlm,newdata=s2012) 

phompoiss2012=predict(hompoiss,newdata=s2012,type='response') 

phomnb2012=predict(homnb,newdata=s2012,type='response') 

pHAlm2012=predict(HAlm,newdata=s2012) 

pHApoiss2012=predict(HApoiss,newdata=s2012,type='response') 

pHAnb2012=predict(HAnb,newdata=s2012,type='response') 

predictions=as.matrix(c(pviolm2012,pviopoiss2012,phomlm2012,phompoiss2012
,phomnb2012, 

pHAlm2012,pHApoiss2012,pHAnb2012)) 
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