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ABSTRACT OF DISSERTATION 
 
 
 
 

BIFUNCTIONAL BISPHOSPHONATES FOR DELIVERING BIOMOLECULES TO 
BONE 

 

Active targeting with controlled delivery of therapeutic agents to bone is an ideal 
approach for treatment of several bone diseases. Since bisphosphonates (BPs) are known 
to have high affinity to bone mineral and are being widely used in treatment of 
osteoporosis, they are well-suited for drug targeting to bone. For this purpose, 
bifunctional hydrazine-bisphosphonates (HBPs) with spacers of various lengths and 
lipophilicity were synthesized and studied. Crystal growth inhibition assays demonstrated 
that the HBPs with shorter spacers bound more strongly to bone mineral, hydroxyapatite 
(HA), than did alendronate. HBPs were also demonstrated to be non-toxic to MC3T3-E1 
pre-osteoblasts. The targeted delivery of the HBP-conjugated model drug, 4-
nitrobenzaldehyde, was demonstrated through hydrolysis of the hydrazone linkage at the 
low pH of bone resorption and wound healing sites.  

 
 
In another series of experiments, a method to orient proteins on HA surfaces was 

developed to improve protein bioactivity. Enhanced green fluorescent protein (EGFP) 
and β-lactamase were used as model proteins. These proteins have a Ser or Thr at their N-
terminus, which was oxidized to obtain a single aldehyde group that was subsequently 
used for bonding HBPs of various length and lipophilicity through formation of a 
hydrazone bond. The amount of protein immobilized through various HBPs was 
determined and found not to be exclusively dependent on the length of HBPs. The 
enzymatic activity of HBP-immobilized β-lactamase, measured with cefazolin as 
substrate, was found to be higher than β-lactamase that was simply adsorbed on HA. 

 
 
In a third set of studies, HBPs were evaluated for delivering parathyroid hormone 

(PTH) to bone mineral to enhance cell responses for bone formation. PTH was oxidized 
and conjugated to HBPs, followed by targeting to bone wafers. In vitro bioassays 
demonstrated that HBP-targeted PTH stimulated greater synthesis of cAMP in pre-
osteoblasts compared to surfaces with simply adsorbed PTH. HBPs were also found to 
have similar pro-apoptotic activity to widely used alendronate.  



Overall, HBPs can be used for drug delivery to bone and oriented immobilization 
of proteins and peptides, with or without anti-osteoclastic action, for a variety of 
applications including bone tissue engineering. 

 
 

KEYWORDS: Bisphosphonate, Bone Regeneration, Hydroxyapatite, Oriented Protein 
Immobilization, Targeted Drug Delivery 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                              Jivan N. Yewle 

                                                                             

                                                                                                 01/13/2012 

                                                   



BIFUNCTIONAL BISPHOSPHONATES FOR DELIVERING BIOMOLECULES TO 
BONE 

 
 
 

By 
 

Jivan N. Yewle 
 
 
 
 
 
 
 
 
 
                     Dr. Leonidas Bachas 

                     Director of Dissertation 
 

                                                     Dr. David Puleo                                                        

                         Director of Dissertation 
 

                                                                            Dr. John Anthony 

                       Director of Graduate Studies 
 
                                                                                                      02/13/2012 

                                                                                 



Dedicated to my parents 
Meera & Namdeo 

 
 
  
 



 iii 

ACKNOWLEDGMENTS 

 

 This dissertation would not have been completed without the support of a number 

of individuals. First of all, I would like to express my most sincere gratitude and 

appreciation to Dr. Leonidas Bachas, my Dissertation Chair, for the continued support, 

guidance, and freedom to grow into an independent researcher over the extent of my 

graduate career. I would like to thank Dr. David Puleo, my Dissertation co-Chair, for the 

constant support, guidance, encouragement, and always being there throughout my 

graduate career. I would like to thank Dr. Sylvia Daunert, my Dissertation co-Chair, for 

the guidance, encouragement, and motivation to attain best in me. Finally, I would like to 

thank a remaining member of my advisory committee, Dr. Mark Watson, for his time and 

inputs on the work.  

I am grateful to Dr. Yinan Wei for her time, inputs, and introducing me to 

molecular biology world. I thank Dr. Vivek Rangnekar for his inputs and collaboration 

on the cancer project. I also thank to Dr. Arthur Cammers for resourceful insights and 

discussions. I am also grateful to past and present fellow members of Bachas, Daunert, 

and Puleo research groups, including Karthik, Amol, Anjali, Robin, Santosh, Smita, 

Nilesh, Sanja, Elsayed, Nitin, Emre, Xin, Ayca, Brad, Leslie, Megan, Ramesh, Adam, 

Sharath, Sandeep, Amanda, Matt, and Bryan for their support and friendship.  

My family has always been a driving force in my success. I am extremely 

thankful to my parents, Meera and Namdeo, the reason for my existence. Without their 

sacrifice, blessings, encouragement, and unconditional love it would have been 

impossible to reach this stage. I would like to thank my beloved wife, Rashmi, for always 



 iv 

standing by me and supporting me no matter what we were going through. I also thank 

my sisters, Jyoti and Jwala, and my friends, Ajit, Manoj, and Sachin, who are like my 

brothers, for their constant support, care, and encouragement.  

My special thanks to my friends Nitin, Sarita, Abhay, Kunal, Karthik, Amol, 

Sandeep, Vasu, Anjali, Hari, Gauri, Shriram, Smita, Nilesh, Shankar, Raghu, and Pramod 

for their supportive, warm and fun-filled company. Finally, I want to thank the University 

of Kentucky for a Research Challenge Trust Fund fellowship (RCTF), US Army Medical 

Research and Materiel Command (W81XWH-09-1-0461) and the National Institutes of 

Health (AR048700) for the financial support to this work. 



 v 

TABLE OF CONTENTS 

 
Acknowledgments……………………………………………………………………….iii 
 
List of Tables……………………………………………………………………….........ix 
 
List of Figures…………………………………………………………………………….x 
 
List of Schemes…………………………………………………………………………xiv 
 
Chapter One: Introduction……………………………………………………………...1 
 Skeletal System……………………………………………………………………1 
  Bone Remodeling………………………………………………………….2 
  Bone Diseases……………………………………………………………..5 

Bisphosphonates…………………………………………………………………..6 
  Mechanism of Action…………………………………………………….10 
 BPs and Targeted Delivery of Therapeutic Agents to Bone……………………..16 
 BP Conjugates for Drug Delivery……………………………………………….17 
 Bone Fractures and Bone Loss…………………………………………………..18 
 Bone Implant Materials………………………………………………………….20 
 BPs and Bone Tissue Engineering……………………………………………….21 
 Immobilization of Proteins………………………………………………………23 
 Statement of Research……………………………………………………………28 
 Research Hypotheses…………………………………………………………….30 
 
Chapter Two: Synthesis and Characterization of Bifunctional Bisphosphonates….31 

Experimental Section……………………………………………………….……38 
  Reagents………………………………………………………………….38 
  Apparatus………………………………………………………………...38 

Synthesis of (4-Amino-1-hydroxybutylidene)bisphosphonic Acid 
Monosodium Salt (8)……………………………...……………………..39 
Synthesis of tri-tert-butyl 2-(2-oxo-2-(2,3,5,6-
tetrafluorophenoxy)ethyl)hydrazine-1,1,2-tricarboxylate (10)………..…41 
Synthesis of Compound 1………………………………………………..41 
General Procedure for Synthesis of Compounds 13a-13f……………….44 
Compound 13a…………………………………………………………...44 
Compound 13b…………………………………………………………..44 
Compound 13c…………………………………………………………...45 
Compound 13d…………………………………………………………..45 
Compound 13e………………………………………………………...…45 
Compound 13f…………………………………………………………...46 
General Procedure for Synthesis of Compounds 14a-14f……………….46 
Compound 14a…………………………………………………………...47 
Compound 14b……………………………………………………..……47 
Compound 14c…………………………………………………………...47 



 vi 

Compound 14d…………………..………………………………………48 
Compound 14e………………………..………………………………….48 
Compound 14f…………………………..……………………………….48 
General Procedure for Synthesis of Compounds 15a-15f……………….49 
Compound 15a…………………………………………………...………49 
Compound 15b…………………………………………………………..49 
Compound 15c………………………………………………………..….50 
Compound 15d……………………………………………………….….50 
Compound 15e……………………………………………………….…..51 
Compound 15f……………………………………………………….…..51 
General Procedure for Synthesis of Compounds 2-7…………………….51 
Compound 2…………………………………………………………...…52 
Compound 3………………………...……………………………………52 
Compound 4……………………………………………………………...52 
Compound 5…………………………………………………………..….53 
Compound 6……………………………………………………………...53 
Compound 7…………………………………………………………...…53 
Synthesis of 4-ethoxy-4-oxobutanoic acid (20)………………………….57 
Synthesis of ethyl (2,3,5,6 tetrafluorophenyl) succinate (21).…………...57 
Synthesis of 4-(4-ethoxy-4-oxobutanamido)butanoic acid (22)…………58 
Synthesis of ethyl 4-oxo-4-((4-oxo-4-(2,3,5,6-
tetrafluorophenoxy)butyl)amino)butanoate (23)………..……………….58 
Synthesis of (4-((ethoxycarbonyl)amino)-1-hydroxybutane-1,1-
diyl)diphosphonic acid (16)……………………………..……………….59 
Synthesis of (4-(4-ethoxy-4-oxobutanamido)-1-hydroxybutane-1,1-
diyl)diphosphonic acid (17)……………………………….……………..59 
Synthesis of (4-(4-(4-ethoxy-4-oxobutanamido)butanamido)-1-
hydroxybutane-1,1-diyl)diphosphonic acid (18)………………………...60 
Synthesis of pent-4-enoyl chloride (26)…………………………………62 
Synthesis of diethyl pent-4-enoylphosphonate (27)…………………......62 
Synthesis of tetraethyl (1-hydroxypent-4-ene-1,1-diyl)bis(phosphonate) 
(28)……………………………………………………………………….62 
Synthesis of tetraethyl (1-hydroxy-4-oxobutane-1,1-diyl)bis(phosphonate) 
(29)……………………………………………………………………….63 

Results and Discussion…………………………………………………………..63  
Conclusions………………………………………………………………………73 

  
Chapter Three: Enhanced Affinity Bifunctional Bisphosphonates for Targeted 
Delivery of Therapeutic Agents to Bone ……………………………………………...74 
 Experimental Section………………………………………………….…………76 
  Materials…………………………………………………………………76 
  Apparatus………………………………………………………………..77 

Crystal Growth Inhibition Assay for Binding Affinity Study…………..78 
Cell Culture…………………………………………………….………...78 
Intracellular Protein Quantification……………………………………...79 
Cell Cytotoxicity Assay...…………………………………….………….79 



 vii 

Apoptosis Assay...…………………………………….…………………80 
Synthesis of Compound 32……………………………………………....80 
Synthesis of Compound 35……………………………………………....82 
Synthesis of Compound 36…………………………………...………….82 
In vitro Studies of Drug Targeting and Drug Release………….………..83 

 Results and Discussion…………………………………………………………..84 
 Conclusions………………………………………………………………………97 
 
Chapter Four: Oriented Immobilization of Proteins on Hydroxyapatite Surface 
Using Bifunctional Bisphosphonates as Linkers………………….…………………..98 
 Experimental Section……………………...……………………………………101 
  Materials………………………………………………………………..101 
  Apparatus……………………………………………………………….102 
  Substrate and Linkers Used for Protein Immobilization………………102 
  Modification of Proteins……………………………………………..…103 

Measurement of Fluorescence and Enzyme Activity of Modified 
Proteins…………………………………………………………………105 

  Surface Modification with HBPs…………………………………….....106 
  Immobilization and Quantification of Protein ……………………........106 

Enzymatic Activity of β-Lactamase and Determination of Kinetic 
Constants………………………………………………………………..107 
Statistical Analysis……………………………………………………...108 

 Results and Discussion…………………………………………………………108 
 Conclusions……………………………………………………………………..124 
 
Chapter Five: Bifunctional Bisphosphonates for Delivering PTH (1-34) to Bone 
Mineral with Enhanced Bioactivity…………………………………………………..125 
 Experimental Section…………………………………………………………...128 
  Materials………………………………………………………………..128 
  Hydrazine-Bisphosphonates (HBPs)…………………………………...129 
  In vitro activity of HBPs…………………….………………………….129 
  Intracellular Protein Quantification………………....………………….130 
  Fluorescence Microscopy………………………………………………130 
  Apoptosis Assay….……………………………………………….……131 

Selective Oxidation of PTH and Site-specific Conjugation of HBPs to 
PTH………………………………………….………………………….131 

  Bioactivity of HBP-PTH Conjugates…………………………………...132 
  In vitro Mineral Binding Affinity of HBP-PTH Conjugates and PTH...133 

Immobilization and bioactivity of PTH on bone surface...…………..…135 
Statistical Analysis……………………………………………………...138 

 Results……………………………………………….………………………….138 
  HBPs and Their In vitro Anti-resorptive Activities……………………138 
  In vitro Bioactivity of HBP-PTH Conjugates………….……………….139 
  In vitro Mineral Binding Affinity of HBP-PTH Conjugates and PTH…144 
  Amount of PTH Immobilized on the Bone Wafers……………………144 
  Bioactivity of PTH Immobilized on the Bone Wafers……….………...147 



 viii 

Discussion………………………………………………………………………149 
Conclusions……………………………………………………………………..154 

 
Chapter Six: Conclusions and Future Research…………………………………….155 
 
Appendix One: Anticancer Drug Potency of Bifunctional Bisphosphonates……...161 
 Experimental Section ….………………………...…….………………….……162 
  Materials………………………………………………………………..162 
  Hydrazine-Bisphosphonates (HBPs)...……………………………...….163 
  In vitro activity of HBPs………………………………………..………163 
  Cell Proliferation Assay………………………………………………..164 
  Apoptosis Assay………………………………………………….….....164 
  Statistical Analysis……..………………………………………….……165 
 Results and Discussion…………………………………………………………165 
 Conclusions……………………………………………………………………..172 
  
References…………………………………………………………………………..….173 
 
Vita……………………………………………………………………………………..197 
 



 ix 

LIST OF TABLES 
 
Table 4.1 Kinetic parameters describing the enzymatic activity of free β-lactamase 

in solution, adsorbed β-lactamase, and immobilized β-lactamase through 
HBPs .……………………………………………………….………….123 

 
 



 x 

LIST OF FIGURES 
 
Figure 1.1 Bone remodeling cycle, showing sequential osteoclastic bone resorption, 

osteoblastic bone formation, followed by mineralization………….……...4 
 
Figure 1.2 A) Structure of pyrophosphate. B) General structure of 

bisphosphonate……………………………………………….……….…...7 
 
Figure 1.3 Classification of BPs showing representative structures for first, second, 

and third generation BPs…………….……….……………………………9 
 
Figure 1.4 Mechanism of action of BP. A) BP binds to bone mineral in body and 

exposes to osteoclast at the resorption site. B) BP is taken up 
intracellularly by the osteoclast during bone resorption. C) Absorbed BP 
causes inhibition of osteoclast function and apoptosis…………….....12 

 
Figure 1.5 Primary mechanism of inhibition of bone resorption. Clodronate forms a 

methylene-containing (AppCCl2p type) analogues of ATP in osteoclasts 
and causes inhibition of bone resorption..……………………………….13 

 
Figure 1.6 Inhibition of the mevalonate pathway by N-BPs. N-BPs inhibit FPP 

synthase and prevent the synthesis of FPP and geranylgeranyl diphosphate 
(GGPP) required for protein prenylation and causes inhibition of bone 
resorption.………………………………………………………………..15 

 
Figure 1.7 Types of protein immobilization. A) Coating or physical adsorption of 

protein; B) Random immobilization of protein; C) Oriented 
immobilization of protein…......................................................................25 

 
Figure 2.1 Structures of hydrazine-bisphosphonates (HBPs) (1-7)…………………37 
 
Figure 2.2 Structures of ester BPs……………………………….…………..………55 
 
Figure 3.1 Plots of HA crystal growth in presence of varying concentrations of 

alendronate and HBPs (1-3) at pH 7.4 and 37 °C (seed mass = 5 mg); ●, ■, 
▲, ♦, +, ▼ represent the concentrations of HBPs, 0, 1.0 × 10-7, 2.5 × 10-7, 
5.0 × 10-7, 7.5 × 10-7, and 10 × 10-7 M, respectively……………………87 

 
Figure 3.2 Plots of HA crystal growth in presence of varying concentrations of HBPs 

(4-7) at pH 7.4 and 37 °C (seed mass = 5 mg); ●, ■, ▲, ♦, +, ▼ represent 
the concentrations of HBPs, 0, 1.0 × 10-7, 2.5 × 10-7, 5.0 × 10-7, 7.5 × 10-7, 
and 10 × 10-7 M, respectively……………………………………………88 

 
Figure 3.3 Relative adsorption affinity constants (KL) of alendronate (1) and HBPs 2-

8 measured at varying concentrations of BPs (C=1.0 × 10-7, 2.5 × 10-7, 



 xi 

5.0 × 10-7, and 7.5 × 10-7 M) at pH 7.4 and 37 °C. Data are the average ± 
one standard deviation (n = 4)………………………………..………….89 

 
Figure 3.4 Intracellular protein contents showing MC3T3-E1 cell growth for 72 h 

after HBP treatment. Plots A, B, and C show results for exposure to HBPs 
at 1 × 10-6, 1 × 10-5, and 1 × 10-4 M, respectively. Error bars denote 
standard deviations………………………………………………………92 

 
Figure 3.5 MC3T3-E1 cell viability measured after 72 h of incubation with no HBP 

(CON) and HBPs 1-7 at different concentrations (1 × 10-6, 1 × 10-5, and 1 
× 10-4 M). The data are expressed as percentage of the control. The white, 
blue, orange, and green bars represent treatment of no HBP (control), 1 × 
10-6, 1 × 10-5, and 1 × 10-4 M HBPs, respectively. Error bars denote 
standard deviations………………………………………………………93 

 
Figure 3.6 Apoptosis of MC3T3-E1 cells measured 72 h following addition of no 

HBP (CON) and HBPs 2-8 at three different concentrations (1 × 10-6, 1 × 
10-5, and 1 × 10-4 M). The data are expressed as percentage of the control. 
The white, blue, orange, and green bars represent treatment of no HBP 
(control), 1 × 10-6, 1 × 10-5, and 1 × 10-4 M HBPs, respectively. Error bars 
denote standard deviations………………………………………………94 

 
Figure 3.7 Percent release of 4-NBA (percentage of cleaved hydrazone bonds) from 

the immobilized conjugate on HA surface at 37 °C. Solid line and dotted 
line represent 4-NBA release from 17 and 21, respectively….................96 

 
Figure 4.1 Fluorescence of the equal amount of EGFP and oxidized-EGFP in 

phosphate buffer (10 mM sodium phosphate, pH 7.0, 200 mM NaCl) at 
RT. Data are average ± one standard deviation (n = 3).………….…….112 

 
Figure 4.2 Enzyme activity of β-lactamase and oxidized β-lactamase on 100 µM 

cefazolin in HEPES buffer (50 mM HEPES, pH 7.4); ●, ■ represent β-
lactamase, and oxidized β-lactamase. Data are the average ± one standard 
deviation (n = 3). Some error bars are obstructed by the points and are 
overlapped with each others…………………………………………….113 

 
Figure 4.3 Surface density of hydrazine groups on HA surfaces modified with seven 

different HBPs (1-7) by TNBS assay. An amount of 1 mg HA particles 
was treated with 1 × 10-4 M of the corresponding HBP (1-7). HA refers to 
unmodified HA. Data are the average ± one standard deviation (n = 9). (* 
indicates the values are significantly different from others p<0.05)…...117 

 
Figure 4.4 Immobilization of EGFP on HA surfaces determined by fluorescence. 

EGFP was immobilized on HA surfaces via seven different HBPs (1-7) 
and by simple adsorption. The corresponding EGFP is denoted as HA-1-
EGFP through HA-7-EGFP. HA-EGFP refers to EGFP physically 



 xii 

adsorbed on HA in the absence of HBP. The Y-axis is normalized relative 
to the amount of EGFP immobilized by adsorption (HA-EGFP). Data are 
the average ± one standard deviation (n = 3). (* indicates the values are 
significantly different from others p<0.05)………………….................118 

 
Figure 4.5 Immobilization of β-lactamase on HA surfaces determined by the BCA 

protein assay. β-Lactamase was immobilized on HA surfaces via seven 
different HBPs (1-7) (HA-1-BL through HA-7-BL) and by simple 
adsorption (HA-BL). The Y-axis is normalized relative to the amount of β-
lactamase immobilized by adsorption (HA-BL). Data are the average ± 
one standard deviation (n = 6). (** indicates the values are significantly 
different from HA-1-BL and HA-5-BL p<0.05)…………………….....120 

 
Figure 5.1 Quantification of apoptosis of osteoclastic RAW 264.7 cells by caspase-3 

measurement. The cells were lysed and caspase-3 produced by cells was 
measured after 24 h of incubation with no BP (CON), HBPs (1-7) and 
alendronate (Alen) at different concentrations (1 × 10-6, 1 × 10-5, and 1 × 
10-4 M). Error bars denote standard deviations (n≥3). (* indicates the 
values are significantly different from others p<0.001)......……………140 

 
Figure 5.2 Quantification of apoptosis and the necrosis of osteoclastic RAW 264.7 

cells by fluorescent microscopy. The cells were stained using PI and 
Hoechst 33258 after 24 h of incubation with no BP (CON) and HBPs (1-7) 
at different concentrations (1 × 10-6, 1 × 10-5, and 1 × 10-4 M). The 
apoptotic and necrotic cells were determined by fluorescence microscopy 
and quantified using Image J software. The data are expressed as fold 
increase relative to the control. Error bars denote standard deviations 
(n≥3). (* indicates the values are significantly different from others, and 
*** indicates the values are significantly different from others and each 
other p<0.05)……………….…………………………………………...141 

 
Figure 5.3 Percent cell viability and apoptosis of osteoblastic MC3T3-E1 cells. For 

all experiments, the cell were measured after 72 h of incubation with no 
HBP-PTH (CON) and HBP-PTH conjugates at different concentrations 
(7.3 × 10-10, 7.3 × 10-9, and 7.3 × 10-8 M). Error bars denote standard 
deviations (n≥3)……………………………………………..………….142 

 
Figure 5.4 Percent cell viability and apoptosis of osteoclastic RAW 264.7 cells. For 

all experiments, the cell were measured after 72 h of incubation with no 
HBP-PTH (CON) and HBP-PTH conjugates at different concentrations 
(7.3 × 10-10, 7.3 × 10-9, and 7.3 × 10-8 M). Error bars denote standard 
deviations (n≥3)……………………………………………..……….…143 

 
Figure 5.5 In vitro mineral affinity of HBP-PTH conjugates and PTH expressed in 

percent HA binding. The protein and protein conjugates were immobilized 
on HA. Immobilized protein was determined using Micro BCA assay. 



 xiii 

Error bars denotes standard deviations (n≥3). (* and ** indicates the 
values are significantly different from others p<0.05) ………......…….145 

 
Figure 5.6 Quantification of PTH immobilized through HBP or PTH adsorbed on 

surfaces of bone wafers determined by the Micro BCA protein assay. PTH 
was immobilized on HA surfaces via seven different HBPs (1-7) (B-1-
PTH through B-7-PTH) and by simple adsorption (B-PTH). Error bars 
denote standard deviations (n≥3). (*** indicates the values are 
significantly different from others p<0.05)………………………….….146 

 
Figure 5.7 Intracellular cAMP content in MC3T3-E1 cells cultured on surfaces of 

bone wafers with immobilized or adsorbed PTH (1-34). PTH was 
immobilized via seven different HBPs (1-7) (B-1-PTH through B-7-PTH) 
and by simple adsorption (B-PTH). The amount of cAMP was normalized 
by DNA content and the mass of the PTH present on the surface of bone 
wafer. Error bars denote standard deviations (n≥3). (* indicates the values 
are significantly different from others except PTH immobilized through 
HBP 1 and PTH adsorbed. ** indicates the values are significantly 
different from PTH immobilized through HBP 4, 6, and 7 p<0.05)...….148 

 
Figure 7.1 Percent cell viability and apoptosis of MCF-7 cells. For all experiments, 

the cell were measured after 72 h of incubation with no HBP (CON) and 
HBP 1-7 at different concentrations (1.0 × 10-6, 1.0 × 10-5, 1.0 × 10-4 M, 
and 1.0 × 10-3 M). Error bars denote standard deviations (n≥3)………168 

 
Figure 7.2 Percent cell viability and apoptosis of H460 cells. For all experiments, the 

cell were measured after 72 h of incubation with no HBP (CON) and HBP 
1-7 at different concentrations (1.0 × 10-6, 1.0 × 10-5, and 1.0 × 10-4 M). 
Error bars denote standard deviations (n≥3)…………………………..170 

 
Figure 7.3 Percent cell viability and apoptosis of PC3 cells. For all experiments, the 

cell were measured after 72 h of incubation with no HBP (CON) and HBP 
1-7 at different concentrations (1.0 × 10-6, 1.0 × 10-5, 1.0 × 10-4 M, and 1.0 
× 10-3 M). Error bars denote standard deviations (n≥3)………………...171 

 
 
 
 
 
 
 
 
 
 
 
 



 xiv 

LIST OF SCHEMES 
 
Scheme 2.1 Synthesis of bisphosphonates I……………….………….………….…...33 
 
Scheme 2.2 Synthesis of bisphosphonates II………………………………………….33 
 
Scheme 2.3 Synthesis of bisphosphonates III………………………………………..34 
 
Scheme 2.4 Synthesis of bisphosphonates IV………………………………………..34 
 
Scheme 2.5 Synthesis of bisphosphonates V………………………………………….35 
 
Scheme 2.6 Synthesis of bisphosphonates VI………………………………………...35 
 
Scheme 2.7 Synthesis of monosodium alendronate (8)…….………….……….……..39 
 
Scheme 2.8 Synthesis of HBP 1……………………………………….………….…..40 
 
Scheme 2.9 Synthesis of HBP 2-7…………………………………….………….…...43 
 
Scheme 2.10 Synthesis of ethoxy-bisphosphonates (16-18)…………………………...56 
 
Scheme 2.11 Synthesis of aldehyde-bisphosphonate………….....................................61 
 
Scheme 3.1 Synthesis, immobilization of model drug-BP conjugate, and incubation at 

37 °C in acetate solutions of various pH. Hatched area represents HA 
particles. Synthesis of aldehyde-bisphosphonate……...............................81 

 
Scheme 4.1 Oriented immobilization of β-lactamase and EGFP on HA through 

HBPs……………………………………………………………………111 
 
Scheme 5.1 Selective oxidation of N-terminal serine of PTH and site-specific 

conjugation of the oxidized PTH to HBPs though hydrazone linkage…134 
 
Scheme 5.2 In vitro targeting the HBP-PTH conjugates to bone surface. The 

conjugates were immobilized on bone wafers by simple mixing of 
conjugate solution to the bone wafers…………………………………..136 



 1 

CHAPTER ONE 

 

INTRODUCTION  

 

Skeletal System 

The skeletal system is one of the most important organ systems of the human 

body. It is made up of many bones, cartilage, and joints. The adult human body has 206 

bones, while a baby has 300. Bone tissue is an integral part of the body providing 

mechanical support, movement, protection, and various physiological functions. It is a 

dynamic tissue that maintains the mineral balance and facilitates hematopoiesis in bone 

marrow.  It stores fatty acids and various growth factors (1, 2). It helps maintain the 

systemic acid-base balance and provides a defense mechanism against acid-base 

disorders (3). Overall, bone is an active tissue with both mechanical and metabolic 

functions.  

Bone is a rigid and dense connective tissue consisting of water, inorganic matter, 

and organic material. Inorganic matter mostly contains calcium phosphate in the form of 

hydroxyapatite (HA) (Ca10(PO4)6(OH)2). Bone tissue contains more than 99% of the 

calcium in the body. Organic material is composed of collagen, extracellular matrix, and 

cell protein. Collagen, which is the major component of the organic material of bone 

tissue, is composed of three strands of protein structured into left-handed helices. These 

helices are coiled together into a right-handed helix of procollagen. The procollagen 

strands aggregate further to form tropocollagen. Tropocollagen assembles in an orderly 

fashion to form fibrils, which further bundle to form collagen fibers. About 90% of total 
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protein in bone is type I collagen fibers, which interlink and orient in a preferential 

direction giving lamellar bone its shape, structure, and lightweight nature. Deposition of 

inorganic mineral in the empty spaces of the collagen network provides strength, 

rigidness, and density to bone tissue (4, 5).  

Other than biological apatite, bone enfolds bone marrow, nerves, blood vessels, 

endosteum, periosteum, cartilage, and cells. Bone contains of several types of cells, such 

as mesenchymal stem cells, hematopoietic stem cells, preosteoblasts, and mature cells of 

osseous tissue. Osteoblasts, osteoclasts, and osteocytes are three main types of mature 

osseous cells that maintain the dynamic nature of bone. Osteoblasts are mononucleate 

bone forming cells. They deposit a protein matrix for bone regeneration and/or bone 

growth. Osteoclasts are multinucleate bone resorbing cells. They are responsible for bone 

dissolution and function by secreting hydrogen ions and a variety of proteolytic enzymes. 

Osteoblasts migrate to the surface of bone where they can become entrapped through the 

deposition of bone matrix around them. In the formed lacunae, they mature into 

osteocytes. Osteoblasts and osteoclasts are very important cells in the bone remodeling 

cycle. They maintain bone health by balancing bone-formation and bone-resorption 

through the bone remodeling cycle (4-7).  

 

Bone Remodeling 

Bone tissue is constantly undergoing renewal called bone remodeling. It is a life-

long and complex process, where bone formation via osteoblasts and bone resorption via 

osteoclasts are coupled. In general, osteoclasts release lysosomal enzymes through their 

ruffled border and cause matrix resorption. The pit formed by matrix resorption is called 
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the resorptive pit or Howship’s lacuna. Bone resorption is followed by bone formation. 

Osteoblasts fill the resorptive pits by forming an osteoid, which subsequently mineralizes 

to form new bone matrix. Bone resorption followed by bone formation constitutes a bone 

remodeling unit (BMU). Figure 1.1 demonstrates a bone remodeling cycle showing one 

BMU. The balanced bone remodeling is essential for various bodily functions, such as 

blood-calcium level, acid-base balance, hematopoiesis or blood cell formation, repair of 

micro-damaged bones, etc. Any disturbance in the bone remodeling cycle (e.g., any 

change in the rate of bone resorption or formation) leads to net bone change (gain or loss) 

(8).  

Bone remodeling can be altered by various parameters. Various factors, such as 

PTH, calcitonin, vitamin D, growth hormones, steroids, and cytokines, are also actively 

involved in bone remodeling. Imbalance in any of the above factors may cause a 

disturbance in bone remodeling and affect bone health (9, 10). As a result of disease, 

bone resorption could exceed bone formation and cause brittleness in bone (11). 

Postmenopausal estrogen depletion, transplantation surgeries, drug therapies such as 

glucocorticoids, and other unrelated diseases may interrupt the bone remodeling cycle. 

Usually, menopause is one of the major reasons behind disturbed bone remodeling. 

Typically, after the age of 60s, bone resorption becomes dominant over bone formation 

and leads to weaker bone, which could in turn lead to bone-related diseases, such as 

osteoporosis (12).  
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Figure 1.1. Bone remodeling cycle, showing sequential osteoclastic bone resorption, 

osteoblastic bone formation, followed by mineralization.    
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Bone Diseases 

Osteoporosis is the most frequently diagnosed disease among bone diseases. In 

2000, around 10 million people had been diagnosed with osteoporosis in the United 

States alone (13). It is a progressive disease in which the mineral density of bone 

decreases. Normally, when the person grows older, osteoblast activity decreases and 

osteoclast activity increases. Osteoporosis primarily affects women after menopause (11). 

In general, menopause limits estrogen, which has an anti-resorptive characteristic, in the 

body and causes increase in bone resorption (14, 15). Thus, increased age and menopause 

are both additive factors of osteoporosis. Since the longevity of the average person is 

increasing, osteoporosis has become more prevalent. Moreover, diseases such as 

rheumatic arthritis and spinal cord injuries, which alter the bone turnover, may lead to 

osteoporosis (16). Overall, increased bone resorption with decreased bone formation is 

the primary cause of osteoporosis.  

Osteoporotic bone is characterized by high porosity and increased brittleness. It 

also becomes smaller and thinner. The total amount of protein decreases in osteoporotic 

bone and causes weakening of bone. Overall, bone mineral density decreases with 

disruption in bone micro-architecture compared to healthy normal bone. Therefore, 

osteoporotic bone becomes fragile and very prone to fracture. Fractures in hip, spine, 

wrist, and proximal humerus, as well as vertebral compressions, are more common in the 

osteoporotic patient. The actual bone strength and bone fractures depend on the quality as 

well as quantity of bone tissue, and it was observed that both, quality and quantity 

diminish in osteoporosis (17). Potential risk of osteoporosis can be reduced by promoting 

healthy life style with regular exercise, and calcium and vitamin D enriched diet (18). 
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Since hormonal deficiency could lead to osteoporosis, hormone replacement therapy is a 

well-known treatment for osteoporosis. BPs, small organic molecules with two 

phosphonates, are widely prescribed therapeutic agents for treatment of osteoporosis (19).  

 

Bisphosphonates 

BPs have been widely explored because of their clinical applications. BPs are 

chemical analogues of naturally occurring pyrophosphate. Pyrophosphate is an excellent 

complexing agent, and it is present throughout living organisms. The unstable P-O-P 

backbone of pyrophosphate has an affinity towards biological apatite, which is a 

carbonated form of stoichiometric HA. Therefore, pyrophosphate also acts as a poisoning 

agent to the growing crystal of HA. Conversely, pyrophosphate, coated on the HA 

surface, prevents the dissolution of HA crystal. Overall, pyrophosphate prevents aberrant 

calcification in the body and suppresses the dissolution of the calcified bodies. However, 

due to the unstable nature of P-O-P linkage in the pyrophosphate, it is unable to prevent 

dissolution of the biological apatite effectively (20). The shortcomings of pyrophosphate 

are overcome by BP, replacing the unstable P-O-P bond of pyrophosphate with the stable 

P-C-P bond of BP. Therefore, BPs are capable of preventing the dissolution of the 

biological apatite as well as preventing pathological aorta calcification.  
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BP has two phosphonates on its geminal carbon, which causes BP to have high 

affinity for HA or bone mineral. The distance between the two deprotonated hydroxyls of 

the two phosphonates in BP (2.9-3.1 Å) is similar to the distance between the two 

calcium-chelating oxygen atoms in HA. Therefore, BP could have an ideal situation for 

bidentate binding to the Ca2+ in HA, showing an affinity to HA. In addition to two 

phosphonates, BP has two substituents (R1 and R2) on its geminal carbon (Figure 1.2). 

The presence of -OH or -NH2 groups at R1 position provides an extra hand for chelation 

of the Ca2+ in HA. This extra hand offers tridentate binding over bidentate binding and 

shows enhanced affinity for HA (21, 22). Hydrophobicity or lipophilicity of the R2 

substituent affects the bone affinity of BP (23-25). In recent studies it was found that an 

R2 substituent having pKa greater than 7 shows higher binding affinity under 

physiological conditions (20). Overall, it can be stated that, along with the two 

phosphonates and R1 substituent, the R2substituent also contributes to the binding affinity 

of BP (26-28). Therefore, BP could be structurally modified to obtain higher affinity.   

The structural variations of R1 and R2 allow a wide range of BP structures with 

varying degrees of drug potency (29). In general, there are three generations of BPs. 

Medronate, clodronate, and tiludronate are examples of first generation BPs. The first 

generation BPs mostly have hydrogen as R1 substituent. They generally have a small and 

simple R2 substituent, and are not very effective at inhibiting bone resorption (27). The 

second generation BPs generally have a hydroxyl group as R1 substituent and a nitrogen 

containing group on their R2 substituent. As a result they show improved affinity and 

anti-resorptive properties over the first generation BPs (26-28, 30).  
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The third generation BPs have a hydroxyl group as R1 and nitrogen containing 

ring structures at R2; these BPs show improved anti-resorptive function over second 

generation BPs. Some of these BPs have shown the highest anti-resorptive effects over 

any other BPs (27). BPs can also be classified into two classes: Amino-BPs (N-BPs) and 

non-amino-BPs. N-BPs have nitrogen in their structure, while non-amino-BPs are simple 

BPs without nitrogen. N-BPs generally posses higher drug potency than simple BPs. The 

first generation BPs belong mostly to the non-amino-BPs class, while second and third 

generation BPs are categorized into the amino-BPs class. The classification of BPs with 

their structures can be seen in Figure 1.3.  

Several BPs show anti-resorptive properties and are prescribed in the treatment of 

various skeletal diseases (31-33). Alendronate, ibandronate, risendronate, and zoledronate 

are some of the currently prescribed BPs in the treatment of osteoporosis, and are 

marketed under the names of Fosamax, Boniva, Actonel, and zometa by Merck, Roche 

Pharmaceuticals, Procter & Gamble, and Novartis, respectively. Clodronate and 

pamidronate are also used in the treatment of Paget’s disease, whereas zoledronate is 

being explored for the treatment of prostate cancer.    

 

Mechanism of Action 

The molecular mechanism of BPs vary with the structure of BPs. At the tissue 

level, BP controls bone dissolution and increases bone mineral density by decreasing 

bone resorption. At the cellular level, BP causes apoptosis of the bone resorbing cells, 

osteoclasts. The bone resorption by BPs has been detected by several methods, including 

the decrease in the secretion of bone resorption markers such as CTx (bone type I 
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collagen C-telopeptide). CTx is generally produced by osteoclasts in the bone 

degradation process and can be detected in blood or urine. BP treatment also reduces the 

osteocalcin or bone-specific alkaline phosphatase, which are bone formation biochemical 

markers. The reduction of bone formation is an ultimate effect of the reduction of bone 

resorption or bone turnover. In other words, reduction in bone formation is not a direct 

effect of BP treatment (17). A couple of mechanisms of apoptosis of osteoclasts by BP 

have been discovered. After administration, BPs are primarily attracted to bone and bind 

to the mineral surface. BPs on the bone surface get internalized into osteoclasts through 

the ruffled border and prevent their resorptive function (34). The general mechanism of 

BPs can be seen in Figure 1.4. 

The first generation BPs, which are also non-amino-BPs, form methylene-

containing (AppCp type) analogues of ATP in osteoclasts. The toxic analogues of ATPs 

accumulate in the cytosol of osteoclasts. Their accumulation in high concentration causes 

apoptosis of osteoclasts. Presumably, AppCp-type analogues inhibit ATP-dependent 

enzymes, such as the adenine nucleotide translocase (a component of the mitochondrial 

permeability transition pore) and cause cell apoptosis followed by inhibition of 

resorption. This is a primary mechanism of inhibition of bone resorption, generally 

shown by simple BPs, such as clodronate and etidronate, as shown in Figure 1.5 (35-37).  
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Figure 1.4. Mechanism of action of BP. A) BP binds to bone mineral in body and 

exposes to osteoclast at the resorption site. B) BP is taken up intracellularly by the 

osteoclast during bone resorption. C) Absorbed BP causes inhibition of osteoclast 

function and apoptosis.   
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Figure 1.5. Primary mechanism of inhibition of bone resorption. Clodronate forms a 
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N-BPs are several orders of magnitude more potent at inhibiting bone resorption 

than the simple BPs (38-41). They interfere in the mavalonate pathway of osteoclasts by 

inhibiting fernesyl diphosphate (FPP) synthase (Figure 1.6). In particular, N-BPs bind in 

the geranyl diphosphate (GPP) binding site of the FPP synthase by forming a stable 

complex between the nitrogen moiety of the N-BP and conserved threonine and lysine 

residues in the FPP synthase. This prevents the synthesis of FPP and geranylgeranyl 

diphosphate (GGPP) that is required for protein prenylation. Overall, N-BPs stop the 

biosynthesis of isoprenoid lipids, which are necessary for the prenylation of small 

GTPase signaling proteins, and discontinue the cell signaling, causing apoptosis of 

osteoclasts (35, 36, 38-41). Thus, apoptosis of osteoclasts is necessary to control the bone 

resorption by first generation BPs. However, the second and third generation N-BPs are 

capable of  stopping cell signaling/functions including bone resorption, and they do not 

need to induce apoptosis of osteoclasts to control bone resorption (37, 42). Therefore, N-

BPs are more effective than simple BPs.   

Since the molecular mechanism of inhibition of bone resorption by BP has been 

discovered, a variety of BPs have been studied for better drug potency. Moreover, 

because of the high mineral affinity, several BPs have been utilized for drug targeting and 

drug delivery to bone tissue. Basic strategies of the synthesis of BPs and synthesis of 

bifunctional BPs are discussed in Chapter Two.  
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Figure 1.6. Inhibition of the mevalonate pathway by N-BPs. N-BPs inhibit FPP synthase 

and prevent the synthesis of FPP and geranylgeranyl diphosphate (GGPP) required for 

protein prenylation and causes inhibition of bone resorption. 
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BPs and Targeted Delivery of Therapeutic Agents to Bone 

There are number of skeletal diseases, such as osteoporosis, bone metastasis, 

Paget’s disease, hypercalcemia, osteoarthritis, etc. Similarly, there are many therapeutic 

agents and procedures known to treat these diseases, and the discovery process is 

continuous (43). However, there is no universal solution or drug treatment for all bone 

related diseases. Each disease or condition requires treatment with a specific therapeutic 

agent or a combination of several drugs (31). Several factors need to be considered when 

treating a particular disease, such as the type and amount of drug, mode of 

administration, time frame of treatment, etc. However, the main concern regarding the 

treatment of any disease is selecting the most appropriate type of drug administration that 

circumvents unwanted absorption of the drug at non-desired sites. Because of the uptake 

of drugs at non-desired sites of the body, treatments sometimes involve higher drug 

dosages than required, which may lead to toxic side effects (11). Therefore, most of the 

skeletal diseases require a targeted delivery of therapeutic agents to bone tissue or 

diseased tissue.  

In general, targeted delivery of therapeutic agents to the desired site is an ideal 

approach for the treatment of any disease. It has enormous benefits and, therefore, it has 

been widely explored. It can deliver the drug at the desired site (diseased site) with 

prolonged drug action. Targeted drug delivery reduces the frequency of drug dosage and 

gives more uniform drug action compared to conventional drug delivery methods. It 

reduces the side effects of the drug and gives a localized drug effect at the diseased site. 

Therefore, it is also known as ‘Smart drug delivery’. However, it requires a drug delivery 

vehicle which could direct the drug at the desired site. In the case of skeletal diseases, it 
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requires a vehicle that could direct and/or deliver the drug molecules to bone tissue. This 

can be achieved by using molecules that have a natural attraction or affinity to bone 

tissue.  

There are several bone-seeking molecules, such as BPs, D-aspartic acid 

octapeptide (44, 45), polymalonic acid (46), tetracycline (47, 48), strontium, rhenium, 

lead, and fluoride (10). However, most of these molecules cannot be used for drug 

delivery because of several reasons, such as toxicity, heterogeneous distribution on the 

skeleton, sex dependency, inability to be conjugated to drugs, and poor affinity to bones. 

Among the above bone-seeking molecules, BPs are the most studied agents because of 

their bone affinity and anti-resorptive properties (31-33). Therefore, BPs could be the 

most suitable candidates for drug targeting and drug delivery applications for bone 

diseases. 

 BPs have been studied widely for drug delivery. Since BP has two substituents 

(R1 and R2), which can be modified to introduce a selective functional group for the 

attachment of a drug molecule, a variety of strategies of BP-drug conjugation have been 

explored by us and others (16, 49-52). Moreover, there are various linkers commercially 

available, which are being used for BP and drug conjugation. Overall, formation of the 

BP-drug conjugate has been a subject of prime importance for targeted drug delivery.     

  

BP Conjugates for Drug Delivery 

BPs have been conjugated to several types of therapeutic agents, such as 

radioisotopes, imaging agents, anti-neoplastic drugs, anti-inflammatory drugs, anti-

resorptive drugs, and bone regenerative drugs. Zhang et al. have reviewed the recently 
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reported delivery of drugs through BP (20). A variety of conjugates with various bonds 

have been reported to link BPs with therapeutic agents. The conjugates can be designed 

to be labile or non-labile in nature and can be classified into two general classes: stable 

conjugates and unstable conjugates. Amide, ester, thioester, thioether, disulfide, and 

hydrazone bonds have been commonly used as linkages for BP conjugation. In stable 

conjugates, BPs are conjugated to drugs via stable linkages, such as C-C, C-N, amide, 

etc. The stable conjugation is crucial for applications such as bone imaging and 

radiotherapy of skeletal sites. Moreover, stable linkages are more valuable in the case of 

drugs that remain active in their conjugated form. For other applications, a link between 

BP and a therapeutic agent could be designed to be cleavable under certain conditions, 

such as temperature, pH, specific proteases, etc. Some drugs remain active in their BP 

conjugated form and, therefore, there is no need to release them from BPs. However, 

most drugs are not fully active in their conjugated form and need to be cleaved from BPs 

in order to maximize their pharmacological activity. For delivery of such drugs, a 

cleavable linkage between BP and the drug needs to be designed in a way so that it gets 

cleaved at the required site in the body; this should take place with a specific cleavage 

rate to deliver the required amount of drug in a sustained manner. We have developed a 

strategy to deliver drug molecules to the bone resorption and wound healing sites using 

bifunctional BPs, which is discussed in detail in Chapter Three.  

 

Bone Fractures and Bone Loss  

Apart from the effective treatment of skeletal diseases, efficient treatment of bone 

fractures and bone loss is crucial and requires serious attention. Other than osteoporotic 
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bone fractures, other bone diseases, such as osteosarcoma and osteoarthritis, also require 

a surgical replacement of bone. Osteosarcoma is a bone disease in which cancer cells are 

found in the bone. It is a frequently detected bone cancer. Osteosarcoma usually develops 

in growing bones and commonly in children of age of 10-25. Chemotherapy, radiation, 

and surgery are the common therapies for bone cancer. Although the mode of treatment 

depends on various factors, such as the age of the patient, location, stage of cancer, etc., 

surgery is often the main and most effective treatment for osteosarcoma.  

Osteoarthritis, a degenerative joint disease, involves degradation of joints. 

Mechanical stress or heavy use of joints usually leads to a loss of synovial fluid, which 

lubricates the joints. It often damages the cartilage that lines the subchondral bone surface 

and exposes the bone surface. Since cartilage acts as a protective cushion and prevents 

wear and tear of the joints, the loss of cartilage causes pain and inflammation in the 

joints. It may lead to local joint destruction and systemic bone loss (53, 54). The load 

bearing joints, such as hips and knees, suffer most with osteoarthritis. Osteoarthritis also 

occurs in the feet, spine, shoulders, and hands (55). Although several pharmaceutical 

therapies are being used in the treatment of osteoarthritis, joint replacement surgery 

remains the most effective option. 

In the USA, around 10.8 million car accidents were reported in 2009 (according 

to US government 2010 census report). In addition, explosions by terrorist or military 

practices and wars around the world are persistently increasing and causing severe bone 

injuries or loss (56). The annual bone fracture rate in USA is about 6.5 million per year, 

and about 550,000 cases requires bone grafting (5). Furthermore, there are several causes, 

such as bone infections and bone defects, where the whole bone or part of the bone  
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requires bone replacement surgery. However, in the case of major bone loss or critical-

size bone defects, the bone tissue is unable to bridge the defects on its own. Such cases 

are typically treated by bone implant surgery with various types of drug treatment. 

Therefore, various techniques and materials have been developed for successful bone 

implant surgeries (56).  

 

Bone Implant Materials 

The most useful technique to replace damaged bone or to fill a large section of 

lost bone is bone grafting. It is a surgical procedure in which missing bone is replaced by 

autografts, allografts, xenografts, or other bone graft substitutes. Autograft is an 

implantation of bone harvested from another part of the same patient, while allograft is an 

implantation of bone obtained from another individual. In xenografts, bone grafts are 

harvested from non-human species. The drawbacks in utilizing allografts, and xenografts 

include a risk of disease transmission, a limited number of donors, etc. (57, 58). 

Remaining techniques (such as bone graft substitutes) have been explored widely.    

From an ancient age, various artificial materials have been explored as bone or 

tooth implants. Artificial tooth implants, made up of sea shells and iron, were used by 

Mayans and Europeans from ~600 A.D. and ~200 A.D., respectively (59). Currently, 

there are several types of materials used as implants including synthetic polymers, natural 

polymers, ceramics, metals, and their combinations. Polymeric material has limited 

applications for bone implants because of their low strength, high wear and tear, and poor 

bone attachment. Metals are preferred over polymeric material because of their high 

strength, low flexibility and low wear and tear. Currently, various types of metals and 
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their alloys, such as stainless steel, cobalt-chromium alloys, and titanium and its alloys, 

are being used for implant applications. Titanium and its alloys are strong, chemically 

stable and fairly biocompatible. Titanium is a reactive metal and forms oxides in the 

presence of air, water, and other electrolytes. Since titanium oxide is a good insulator, it 

acts as a protective layer on the implant surface, and no metal ion reaches the implant 

surface, whereas conductive materials could start redox reactions on the implant surface 

and denature the surrounding macromolecules (60). 

On the contrary, ceramic materials, such as HA and tricalciumphosphate, are 

brittle and hard. They are bioactive and biodegradable. These materials have a similar 

composition as that of bone mineral, and they are not cytotoxic to the body. Moreover, 

they are very suitable for temporary mechanical support and fixation devices. Since 

ceramic materials are biodegradable, they are expected to degrade gradually and be 

replaced by new tissue. Because of all the above qualities, ceramic materials are 

advantageous over other types of material (61). Moreover, the chemical composition of a 

few ceramic materials, such as HA, is similar to bone mineral. HA has also been used as 

a coating material for other types of implants. Overall, ceramic materials have great 

potential for bone tissue engineering applications.   

 

BPs and Bone Tissue Engineering 

Although a variety of materials have been explored as bone implant materials 

(62), because of their similar composition to bone mineral a naturally occurring HA has 

been widely used for bone implants and as coating material for other implants. Several 

advances have been made in implant materials and devices; however, biocompatibility is 
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a major issue faced by the current medical society. In general, tissue engineering has 

become an interdisciplinary field for development of artificial smart material for 

biological substitutes. It is expected that these substitutes restore, maintain, or improve 

the tissue function of a whole organ (63). However, after implant surgery, the body 

identifies the implant as a foreign object and produces, among others, an inflammatory 

response. Therefore, the interactions between the implant material and the surrounding 

tissue play an important role. 

There are several ways to overcome problems associated with the 

biocompatibility of the implants. The ultimate solution to overcome the biocompatibility 

issue is to achieve a good cell/tissue response. Since cells/tissue interact with the implant 

surface and their behavior changes with the physical and chemical properties of the 

implant surface, several advances have been made to improve implant surfaces. Implant 

surface can be improved physically by optimizing surface topography, as well as 

chemically, by incorporating bioactive material on the surface (64-66).  

One of the effective ways to achieve a good cell response is to apply a bioactive 

protein on the surface of the implant. Protein immobilization could improve cell-implant 

interactions (67-69). Moreover, immobilization of proteins is an essential step in creating 

protein-based functional materials for various applications, such as protein microarrays, 

biosensors, biotechnology, chemical manufacturing, nanotechnology, single molecule 

enzymology, and drug discovery.   
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Immobilization of Proteins 

 Immobilization of proteins on surfaces enables the localization and retention of 

the proteins on the surface. Several methods have been explored for protein 

immobilization on solid surfaces (70-73). Protein immobilization can be classified into 

three main categories: coating or physical adsorption, random immobilization, and site-

specific or oriented immobilization. Figure 1.7 is a pictorial representation of the general 

types of immobilization. Coating or physical adsorption is the most straightforward 

method of protein fixation on the surface. It can be simply accomplished by submerging 

the implant surface in the protein solution. In coating or physical adsorption methods, a 

protein is generally attached to the surface through non-covalent interactions. Therefore, 

the attached protein could be washed out or leached out easily from the surface. Since 

there is no linker between the protein and the surface, protein can be denatured because 

of surface interactions. Moreover, there is no direct control on the orientation and the 

amount of the protein attached on the surface and the active site of the protein may not be 

available for bioactivity (74). Therefore, coating or physical adsorption is not the best 

way of protein immobilization.  

 In random immobilization, a protein is attached to the surface through a strong 

linkage, such as a covalent bond. However, this immobilization method has limited 

control on the orientation of the protein on the surface. In general, proteins have several 

functionalities such as, amines, carboxylates, thiols or hydroxyls. These functional groups 

could be used for the fixation of the protein on the surface. However, there could be 

multiple numbers of the same functional group on a single molecule of a protein. This 

makes the protein fixation non-selective, which results in random immobilization of the 
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protein. In random immobilization, the active site of the protein may be blocked, which 

results in decrease in the bioactivity of the immobilized protein. Moreover, it is difficult 

to control the amount of bioactive protein on the surface in random immobilization (75).  

Site-specific or oriented immobilization of proteins is advantageous over physical 

adsorption and random immobilization. This immobilization method utilizes a single 

functional group of the protein for fixation of the protein on the surface through a 

covalent linkage. Since it is rare to have a single functionality of one kind on a protein, a 

selective chemical reaction or protein engineering can be done to obtain a unique 

functional group on the protein (75). Bioaffinity between two biomolecules is frequently 

used for the oriented immobilization of proteins. A typical example of immobilization 

through affinity interactions is the immobilization of antibodies on a surface modified by 

protein A or G. In oriented immobilization, the orientation of the protein can be 

predetermined so that a reactive site of the protein could become available for specific 

action. Moreover, the amount of protein and bioactivity can also be controlled. 

Overall, oriented immobilization has several benefits over coating, physical 

adsorption and random immobilization of protein; therefore, it has been explored for 

various applications (75, 76). However, oriented immobilization has only occasionally 

been investigated for bone implant modifications. Since, ceramic materials are widely 

used as implants or coating material, we have developed a novel approach of oriented 

immobilization of proteins through bifunctional BPs on ceramic material and discussed it 

in Chapter Four.             
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Figure 1.7.  Types of protein immobilization. A) Coating or physical adsorption of 

protein; B) Random immobilization of protein; C) Oriented immobilization of protein.  
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On the whole, bone related diseases and bone surgeries have a large economical 

and health impact on society, which needs to be addressed at the bone level. Targeted 

delivery of therapeutic agents to bone tissue for treatment of skeletal diseases and surface 

modification of bone implants for tissue-engineering applications could provide solutions 

toward these needs. Tissue engineering is a multidisciplinary field that unites engineering 

and biology for replacement and/or regeneration of damaged tissues. In other words, 

polymeric, metallic, or ceramic engineering materials are combined with biological 

elements, such as proteins, cells, etc., to create a biological material. Since growth factors 

are responsible for growth and numerous functions of various systems in the body, they 

have great importance in tissue engineering. Therefore, for bone tissue engineering 

applications, localized treatment of bone forming molecules could regenerate bone tissue 

in a faster and selective manner. Similarly, for treatment of bone diseases such as 

osteoporosis, unlike several other treatments that focus on controlling bone resorption, 

delivery of bone forming molecules can be a more effective treatment.        

 In general, growth factors are protein, peptide, or hormone molecules made by the 

body. Growth factors can stimulate various cellular events, such as adhesion, migration, 

proliferation, differentiation, etc. They are used for intercellular or intracellular signaling 

by various cells in the body. There are several families and super-families of growth 

factors belonging to a number of molecules that are structurally or evolutionarily related. 

Bone morphogenetic proteins (BMP), fibroblast growth factors (FGF), insulin-like 

growth factors (IGF), vascular endothelial growth factors (VEGF), and platelet-derived 

growth factors (PDGF) are some of the growth factors present in the skeletal system and 

can be useful for bone regeneration.  
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 Parathyroid hormone (PTH) is also an important peptide related to bone 

remodeling. It can have anabolic as well as catabolic effects, which depend on its 

concentration and mode of administration in the body. High and sustained doses of PTH 

lead to bone resorption, whereas, intermittent doses of higher amounts or infusion of low 

doses leads to bone formation (77, 78). Overall, growth factors related to the skeletal 

system and other molecules, such as PTH, are the most promising molecules for treating 

bone diseases or bone tissue engineering. Oriented immobilization on bone implants or 

targeted delivery at a bone site while maintaining intact the bioactivity of PTH is crucial 

for bone formation. We discuss a targeted delivery of PTH through a single molecule of 

bifunctional BPs for enhanced cell/tissue interactions in Chapter Five.  
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STATEMENT OF RESEARCH 

 

The overall goal of this work was to develop a method of delivering therapeutic 

agents to sites of bone resorption and wound healing, and to develop a method of oriented 

immobilization of bioactive therapeutic proteins on mineralized surfaces. The presented 

work relates the varying aspects of bifunctional BPs and their applications towards bone 

tissue regeneration through the targeted delivery of drugs to bone and through the 

oriented immobilization of therapeutic proteins on bone implant surfaces. The 

advancement in the treatment of bone diseases and replacement of bone lost due to illness 

or injury are discussed.  

Chapter Two discusses basic methods of synthesis of BPs, followed by synthesis 

of several bifunctional BPs such as, aldehyde-BPs, hydrazide-BPs, and hydrazine-BPs 

(HBPs). Synthesis and characterization of bifunctional HBPs of varying length and 

lipophilicity are discussed in detail. Moreover, the probable reasons of failure of 

synthesis of aldehyde-BPs and hydrazide-BPs are discussed herein.  

BPs have high affinity to bone mineral and have been used for delivering 

therapeutic agents to bone for various purposes. The drug delivery through HBPs and its 

related aspects are discussed in Chapter Three. The binding affinities of HBPs were 

determined using crystal growth inhibition assays and compared with a widely used BP 

drug, alendronate. HBPs were also studied for their non-cytotoxicity towards pre-

osteoblasts. Conjugation of a model drug, 4-nitrobenzaldehyde, to HBP and its in vitro 

targeted delivery to bone mineral were demonstrated.   

Oriented or site-specific immobilization of a protein/peptide to the surface of  
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implantable-biomaterial has several benefits because of the importance to maintain the 

bioactivity of proteins during and after its immobilization for its specific action. A 

method for oriented immobilization of proteins was developed using HBPs. Genetically 

engineered EGFP and β-lactamase were used as model proteins. Oriented immobilization 

of proteins and their bioactivities are discussed in Chapter Four. 

 Targeted delivery of bone growth proteins is very difficult, but has many 

advantages in treatment of various bone diseases and in tissue engineering applications. 

Targeted delivery of bone stimulatory proteins, such as PTH, to bone mineral can 

facilitate bone regeneration and treat numerous skeletal diseases. PTH was selectively 

oxidized and conjugated to HBPs followed by delivery to bone mineral. The anti-

resorptive properties of HBPs and HBP-PTH conjugates were demonstrated. The 

osteoblast interactions with the PTH delivered/immobilized to bone surface are discussed 

in Chapter Five.       

 The overall research presented in this dissertation concludes with a discussion on 

additional future research in Chapter Six. 
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RESEARCH HYPOTHESES 

 

Hypothesis of Dissertation: Bifunctional BPs can be utilized for the targeted 

delivery of therapeutic agents to bone mineral and for oriented immobilization of 

proteins/peptides on bone implant surfaces for improved bioactivity of proteins/peptides 

towards bone formation.    

Hypothesis One: Structural modifications of BP by introducing a hydrazine 

functionality at R2 substituent can improve the drug potency of the BP.   

Hypothesis Two: HBPs can be conjugated to therapeutic agents having aldehyde 

functionality through the hydrazone linkage, and the HBP-attached drug molecule can be 

released by hydrolysis of the hydrazone linkage at acidic environment.  

Hypothesis Three: Proteins with N-terminal serine or threonine can be 

selectively oxidized to obtain a unique amino-terminal aldehyde functionality that can be 

used for site-directed immobilization of proteins through HBPs.  

Hypothesis Four: A single molecule of HBP can be used to target the 

protein/peptide molecule to the bone mineral surface and improve the bioactivity of the 

targeted protein.  
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CHAPTER TWO 

 

SYNTHESIS AND CHARACTERIZATION OF BIFUNCTIONAL 

BISPHOSPHONATES 

 

Bisphosphonates (BPs) have been widely explored because of their various 

clinical applications. Several BPs show anti-resorptive properties and, therefore, used in 

the treatment of various skeletal diseases (31-33). BPs also show anti-scaling, anti-

corrosive, and complexing characteristics. Therefore, they are used in oil, fertilizer, and 

textile industries.  

In general, BPs are structurally similar to pyrophosphates, except the hydrolysis 

prone P-O-P moiety of pyrophosphate is replaced by the stable P-C-P. BPs have two 

phosphonates attached to the geminal (α) carbon (Figure 2.1), which are mainly 

responsible for the bone affinity of BPs by exhibiting bidentate binding to Ca2+ of the 

bone matrix. BPs could also have two more substituents, R1 and R2, which contribute to 

their bone affinity and pharmacological activity. BPs with R1 substituents containing 

hydroxyl or amine groups show enhanced affinity to bone through tridentate binding to 

the bone matrix (31). Recent studies showed that the R2 substituent may also influence 

the bone affinity of BP (32, 33). Overall, the anti-resorptive property and bone-seeking 

ability of BPs as well as their clearance from the body depend on the structure of BPs, 

and slight structural changes can significantly affect these properties (7). Because of their 

therapeutic importance in bone diseases, various BP analogues have been synthesized and 

studied in order to improve their anti-resorptive properties. However, limited research has 



 32 

been focused on the synthesis of drug-carrying BPs. Overall, BPs show great affinity to 

bone and have been widely used in the treatment of various bone diseases; therefore, they 

are the most suitable candidates for drug targeting and drug delivery to bone.   

BPs have been known for more than a century. In the past, they were called 

diphosphonates and were mainly used in textiles, fertilizers and oil industries as anti-

scaling agents (79). The first biological characteristics of BPs were reported in 1968 by 

the Fleisch group (80). Since then, BPs have been explored widely for their synthesis and 

their applications in various fields. Several methods of synthesis of BPs have been 

reported to date. In what follows we describe some major methods for synthesis of 1-

hydroxy-1,1-bisphosphonate. The direct method for synthesis of 1-hydroxy-1,1-

bisphosphonate from carboxylic acid is shown in Scheme 2.1. The treatment of 

carboxylic acid with phosphorous trichloride and phosphorous acid, followed by 

hydrolysis gives 1-hydroxy-1,1-bisphosphonic acid. The reaction requires a solvent, 

which could dissolve all the starting materials, especially phosphorous acid. Most of the 

commonly used solvents are not suitable for this reaction. Ethereal solvents, such as 

ether, THF, and dioxane form a homogenous mixture. However, as the reaction proceeds, 

it separates into two layers, and the denser layer gets solidified. It was reported that the 

use of methanesulfonic acid as a solvent allows the reaction to remain in the fluid state. 

Moreover, the complete conversion of carboxylic acid into α-hydroxy bisphosphonic acid 

was possible with an excellent yield (81, 82).   
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Scheme 2.1. Synthesis of bisphosphonate I  
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The first base catalyzed synthesis of 1-hydroxy-1,1-bisphosphonic acid was 

reported in 1956 (82-84). In this synthesis, an acyl halide reacts with trialkyl phosphate to 

give dialkyl acylphosphonate. Further addition of dialkyl phosphate in a neutral medium 

gives 1-hydroxy-1,1-bisphosphonate (Scheme 2.2). The first step of the synthesis is a 

Michaelis-Arbuzov reaction, where trialkyl phosphite reacts with acyl halide in SN2 

manner to give dialkyl acylphosphonate. Aryl and vinyl halides are less reactive in SN2 

reactions. In the second step, dialkyl acylphosphonate undergoes an addition reaction 

with dialkyl phosphite to give the 1-hydroxy-1,1-bisphosphonic ester. It was also 

reported that the yield of this reaction varies with the choice of the reaction solvent.    

 

Scheme 2.2. Synthesis of bisphosphonate II 
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Another one-pot method for synthesis of the symmetrical 1-hydroxy-1,1-

bisphosphonate ester without use of dialkyl phosphite was reported, in which an acyl 

halide reacts with trialkyl phosphite at -10 to 0 °C and gives dialkyl α-ketophosphonate. 

This is an exothermic and fast reaction. The use of 0.5 equivalents protic reagents, such 
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as MeOH, converts dialkyl α-ketophosphonate into dialkyl phosphite. Under the same 

reaction conditions, α-keto-phosphonate reacts with dialkyl phosphite to give 1-

hydroxybisphosphonate ester (Scheme 2.3) (85, 86). 

 

Scheme 2.3. Synthesis of bisphosphonate III 
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Scheme 2.4 shows a standard way of synthesis of α-hydroxybisphosphonate ester. 

This avoids the formation of an intermediate dialkyl α-ketophosphonate. This is also a 

one-pot synthesis, which can produce symmetrical as well as unsymmetrical esters in 

good yield. An acyl halide reacts with a mixture of trialkyl phosphite and dialkyl 

phosphite at 50-60 °C and gives 1-hydroxy-1,1-bisphosphonate. This method is also 

suitable for preparation of dihydroxy tetraphosphonates.  

 

Scheme 2.4. Synthesis of bisphosphonate IV   
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Acetyl chloride or benzyl chloride reacts with tris(trimethylsilyl) phosphate to 

give the corresponding silylated ester, which after alcoholysis gives acyl phosphonic acid 
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as shown in Scheme 2.5. Alcoholysis with a mixture of methanol and aniline gives the 

monoanilinium salt of acyl phosphonic acid with a good yield. 

 

Scheme 2.5. Synthesis of bisphosphonate V  
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Bromotrimethyl silane or chlorotrimethyl silane on treatment with α-

hydroxybisphosphonate ester, replaces the alkyl group of the ester with trimethyl silane 

to obtain tetrakis(trimethylsilyl) ester. These silylated esters on alcoholysis give 1-

hydroxy-1,1-bisphosphonic acid (87, 88). This is a gentle method of hydrolysis to obtain 

α-hydroxybisphosphonic acid as shown in Scheme 2.6. Several methods for hydrolysis of 

the esters are known including acid hydrolysis and base hydrolysis. However, the 

treatment of trimethylsilylbromide is an ideal method for hydrolysis of α-

hydroxybisphosphonate ester.    

  

Scheme 2.6. Synthesis of bisphosphonate VI     
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Overall, there are several synthetic methods for synthesis of BPs, however one-

pot methods of synthesis have been widely used. The synthesis shown in Scheme 2.1 is a 
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one-pot synthesis that gives an excellent yield. Using the above synthetic methods, 

several derivatives of BPs have been synthesized for a wide range of applications, such as 

the treatment of bone diseases, drug targeting, and drug delivery to bone (49, 89-93). BPs 

are also synthesized and used in the administration of radiopharmaceuticals and imaging 

agents to bone for diagnostic applications (50, 94-97). Moreover, using various strategies, 

several BPs have been conjugated to therapeutic agents or targeting agents. However, the 

BPs, which were used for the targeted delivery of the attached drug to the bone, did not 

have a stable linkage, which could survive in systemic circulation, but gets cleaved at 

bone sites. Most of the reported BP conjugates for drug delivery applications are highly 

stable or too unstable. On the other hand, protein therapeutics and conjugation of proteins 

to BPs have also been explored, but the site-specific conjugation of BPs to protein has 

hardly been achieved. In most of the cases, BPs were attached to multiple sites of 

proteins, which lead to a random orientation of proteins on the surface (51).  In this study, 

our objective was to synthesize bifunctional BPs which are capable to conjugate proteins 

in a site specific manner, and capable to conjugate therapeutic agents with labile linkage. 

Towards this goal, we synthesized and structurally characterized several bifunctional 

hydrazine bisphosphonates (HBPs) of varying length and hydrophobicity (Figure 2.1). 

Furthermore, other attempts of synthesis of bifunctional BPs, such as hydrazide 

bisphosphonates and aldehyde bisphosphonates, are also described.  
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Figure 2.1. Structures of hydrazine-bisphosphonates (HBPs) (1-7) 
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EXPERIMENTAL SECTION 

 

Reagents. 4-Aminobutanoic acid (12a), 6-aminohexanoic acid (12b), 8-

aminooctanoic acid (12c), glycine (12d), glycylglycine (12e), glycylglycylglycine (12f), 

succinic anhydride (19), Ethyl chloroformate (24), methanesulfonic acid, phosphorous 

acid, phosphorous trichloride, and 3,5,6-tetrafluorophenol (TFP) were purchased from 

Alfa Aesar (Ward Hill, MA, USA). Triethylamine (TEA), tri-BOC-hydrazinoacetic acid 

(TBHA), 3-butenoic acid, 4-pentenoic acid, 6-heptenoic acid, 10-undecenoic acid, 

succinic anhydride, and sodium hydroxide, were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Hydrochloric acid, and potassium dihydrogen phosphate were 

obtained from EMD chemicals (Gibbstown, NJ, USA). Acetonitrile, chloroform, 

dichloromethane (DCM), diethyl ether, dimethyl sulfoxide (DMSO), hexane, and 

phosphoric acid were purchased from Mallinckrodt (Hazelwood, MO, USA). NMR 

solvents, deuterium oxide, and deuterated chloroform were purchased from Cambridge 

Isotope Laboratories (Andover, MA, USA). 

 

Apparatus: 1H NMR, 31P NMR, and 13C NMR spectra were obtained on a Varian 

INOVA 400 MHz spectrometer (Palo Alto, CA, USA). Electrospray ionization mass 

spectrometry was performed on a ThermoFinnigan LCQ mass spectrometer (Waltham, 

MA, USA). UV-vis spectroscopy was performed with an Agilent 8453 UV-visible 

spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). Deionized water was 

produced using a Milli-Q water purification system (Millipore, Bedford, MA). 
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Scheme 2.7. Synthesis of monosodium alendronate (8) 
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Synthesis of (4-Amino-1-hydroxybutylidene)bisphosphonic Acid Monosodium Salt 

(8) 

A 25-mL flask was fitted with an addition funnel and a reflux condenser. Ice cold water 

was circulated through the condenser. The system was flushed with nitrogen and 4-

aminobutyric acid (12a) (4.0 g, 38.7 mmol), phosphorous acid (3.18 g, 38.7 mmol), and 

methanesulfonic acid (16 mL) was added to the flask. The mixture was heated for 5 min 

at 65 °C. PCl3 (9.0 mL, 85.3 mmol) was added over 20 min, and the mixture was stirred 

for 18 h at 65 °C. The solution was cooled to 25 °C and quenched into 0-5 °C water (40 

mL) with vigorous stirring. The reaction flask was rinsed with additional 16 mL of water, 

and the combined solution was refluxed for 5 h at 110 °C. The solution was cooled to 23 

°C, and the pH was adjusted to 4-4.5 with 50% (v/v) NaOH. The resulting mixture was 

let react for 10-12 h at 0-5 °C. The white solid obtained was filtered and washed with 

cold water (20 mL) and 95% ethanol (20 mL). The solid was dried under vacuum at room 

temperature (RT) to obtain compound 8 in yield 87.1% (9.22 g), as the monosodium salt. 

1H NMR (D2O): δ 3.02 (t, 2H), δ 2.00 (m, 4H). 13C NMR (MeCN/D2O): δ 72.9 (t), δ 

39.33 (s), δ 29.94 (s), δ 21.48 (t). 31P NMR (H3PO4/D2O): δ 18.53. MS (MALDI-

TOFMS): [M + H+ + Na+] calculated for C4H13NO7P2Na+: 272, found 272. 
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Scheme 2.8. Synthesis of HBP 1 
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Synthesis of tri-tert-butyl 2-(2-oxo-2-(2,3,5,6-tetrafluorophenoxy)ethyl)hydrazine-

1,1,2-tricarboxylate (10) 

Tri-BOC-hydrazinoacetic acid (9) (90.0 mg, 0.231 mmol) and TFP (42.1 mg, 

0.254mmol) were dissolved in 5 mL chloroform. DCC (52.3 mg, 0.254 mmol) in 5 mL 

chloroform was added dropwise to the reaction mixture and stirred at RT. The progress of 

the reaction was followed by TLC. After complete consumption of 9 (3 h), the 1,3-

dicyclohexyl urea formed in the reaction mixture was removed by filtration, and the 

filtrate was evaporated in vacuo. The residue was then suspended in an adequate amount 

of hexane, the remaining 1,3-dicyclohexyl urea was removed by filtration, and the filtrate 

was evaporated in vacuo to obtain the crude compound 10. The crude material was 

purified by column chromatography (hexane/acetone 85/15 v/v) to give the pure 

compound as a pale yellow liquid in 97% (120.5 mg) yield. 1H NMR (CD3CN): δ 7.25 

(m, 1H), δ 3.20 (s, 2H) δ 1.45 (m, 27H). 13C NMR (CDCl3): δ 168.01 (s), δ 154.35 (s), δ 

153.75 (s), δ 150.54 (s), δ 148.70 (s), δ 147.10 (s), δ 146.40 (s), δ 102.10 (s), δ 84.22 (s), 

δ 83.27 (s), δ 82.21 (s), δ 54.33 (m), δ 28.20 (s). 

 

Synthesis of Compound 1 

Compound 8 (50.0 mg, 0.154 mmol) was suspended in 1 mL of distilled water, and 

triethylamine (TEA) (93.2 mg, 0.923 mmol) was added to the suspension. After a few 

seconds of stirring at RT, the suspension became clear. The reaction was stirred at RT for 

5 min. The compound 10 (124.3 mg, 0.231 mmol) was dissolved in 1.5 mL of acetonitrile 

and added to the reaction mixture. TEA (15.5 mg, 0.154 mmol) was added, and the 

reaction mixture was stirred at RT for 12 h. The reaction mixture was washed with 



 42 

diethyl ether (10 mL) and evaporated in vacuo. The obtained solid was treated with 2 mL 

of 2.5 M HCl, and the solution was stirred at RT for 24 h. The solvent was removed in 

vacuo, and the crude product was sonicated twice in ethanol at RT for 2 h and filtered to 

obtain a white solid of pure compound 1 in 62% (31 mg) yield. 1H NMR (D2O): δ 3.78 (s, 

2H), δ 3.28 (t, 2H), δ 1.99 (m, 2H), δ 1.84 (m, 2H). 13C NMR (MeCN/D2O): δ 170.41 (s), 

δ 74.17 (t), δ 51.58 (s), δ 40.50 (s), δ 31.75 (s), δ 24.17 (s). 31P NMR (H3PO4/D2O): δ 

19.08. MS (+ ESI) : [M + H]+ calculated for C6H18N3O8P2: 322, found 322.  
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Scheme 2.9. Synthesis of HBP 2-7 
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General Procedure for Synthesis of Compounds 13a-13f 

Compound 12a-12f (0.334 mmol, 1.0 equiv.) was suspended in 1 mL of distilled water, 

and TEA (0.668 mmol, 2.0 equiv.) was added to the suspension. After a few seconds of 

stirring at RT, the suspension became clear. The reaction was stirred at RT for 5 min. The 

compound 10 (0.401 mmol, 1.2 equiv.) was dissolved in 1.5 mL of acetonitrile, and the 

solution was added to the reaction mixture. TEA (0.167 mmol, 0.5 equiv.) was added, 

and the reaction mixture was stirred at RT for 12 h. The reaction mixture was washed 

with diethyl ether, and solvent was evaporated in vacuo to obtain crude compound 13a-

13f. The crude product 13a-13f was used in the next reaction without further purification. 

 

Compound 13a 

Following the procedure shown for 13a-13f, compound 13a was obtained by amide 

coupling of compound 10 and 4-aminobutenoic acid (12a) as a semi solid in 97% yield. 

1H NMR (CDCl3): δ 4.10 (s, 2H), δ 3.60 (d, 2H), δ 2.35 (m, 2H), δ 1.30 (m, 2H), δ 1.45 

(m, 27H). 13C NMR (CDCl3): δ 182.70 (s), δ 170.70 (s), δ 154.30 (s), δ 153.40 (s), δ 

150.56 (s) δ 84.24 (s), δ 83.56 (s), δ 82.10 (s), δ 54.30 (m), δ 39.41 (m), δ 35.60 (m), δ 

28.41 (s), δ 23.42 (m).  

 

Compound 13b 

Following the procedure shown for 13a-13f, compound 13b was obtained by amide 

coupling of compound 10 and 6-aminohexanoic acid (12b) as a semi solid in 96% yield. 

1H NMR (CDCl3): δ 4.03 (s, 2H), δ 3.33 (d, 2H), δ 2.21 (t, 2H), δ 1.61 (m, 2H), δ 1.45 

(m, 27H), δ 1.28 (m, 2H). 13C NMR (CDCl3): δ 178.04 (s), δ 170.20 (s), δ 154.44 (s), δ 



 45 

153.34 (s), δ 151.84 (s), δ 85.11 (s), δ 83.24 (s), δ 83.48 (s), δ 54.35 (m), δ 38.92 (m), δ 

34.32 (m), δ 29.15 (s), δ 28.40 (s), δ 26.37 (s), δ 24.75 (s). 

 

Compound 13c 

Following the procedure shown for 13a-13f, compound 13c was obtained by amide 

coupling of compound 10 and 8-aminooctanoic acid (12c) as a semi solid in 95% yield. 

1H NMR (CDCl3): δ 4.02 (s, 2H), δ 3.23 (m, 2H), δ 2.22 (t, 2H), δ 1.59 (m, 4H), δ 1.45 

(m, 27H), δ 1.25 (m, 6H). 13C NMR (CDCl3): δ 178.40 (s), δ 170.05 (s), δ 154.14 (s), 

151.25 (s), 151.19 (s), δ 85.17 (s), δ 85.39 (s), δ 83.89 (s), δ 38.90 (m), δ 34.00 (t), δ 

30.10 (m), δ 29.12 (s), δ 29.65 (s), δ 26.58 (s), δ 24.54 (s).  

 

Compound 13d 

Following the procedure shown for 13a-13f, compound 13d was obtained by amide 

coupling of compond 10 and glycine (12d) as a semi solid in 95% yield. 1H NMR 

(CDCl3): δ 4.10 (s, 2H), δ 3.98 (s, 2H), δ 1.45 (m, 27H). 13C NMR (CDCl3): δ 174.56 (s), 

δ 168.46 (s), δ 154.46 (s), δ 153.86 (s), δ 150.65 (s) δ 84.52 (s), δ 83.16 (s), δ 82.45 (s), δ 

54.93 (m), δ 45.91 (m), δ 28.22 (s).  

 

Compound 13e 

Following the procedure shown for 13a-13f, compound 13e was obtained by amide 

coupling of compond 10 and glycylglycine (12e) as a semi solid in 94% yield. 1H NMR 

(CDCl3): δ 4.02 (s, 2H), δ 3.99 (s, 2H), δ 3.80 (s, 2H), δ 1.45 (m, 27H). 13C NMR 
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(CDCl3): δ 174.44 (s), δ 169.24 (s), δ 168.43 (s), δ 154.34 (s), δ 153.55 (s), δ 151.20 (s), δ 

85.12 (s), δ 83.66 (s), δ 83.05 (s), δ 55.15 (m), δ 45.24 (m), δ 43.31 (m), δ 28.15 (s).  

 

Compound 13f 

Following the procedure shown for 13a-13f, compound 13f was obtained by amide 

coupling of compound 10 and glycylglycylglycine (12f) as a semi solid in 93% yield. 1H 

NMR (CDCl3): δ 4.01 (s, 2H), δ 3.98 (d, 2H), δ 3.91 (d, 2H), δ 3.80 (d, 2H), δ 1.42 (m, 

27H). 13C NMR (CDCl3): δ 174.45 (s), δ 169.75 (s), δ 169.51 (s), δ 168.01 (s), δ 154.55 

(s), 151.40 (s), 151.14 (s), δ 85.40 (s), δ 85.29 (s), δ 83.51 (s), δ 55.49 (m), δ 45.30 (m), δ 

43.77 (m), δ 43.34 (s), δ 28.19 (s).  

 

General Procedure for Synthesis of Compounds 14a-14f 

Compound 13a-13f (0.386 mmol, 1.0 equiv.) and TFP (0.425 mmol, 1.1 equiv.) were 

dissolved in 15 mL chloroform. DCC (0.425 mmol, 1.1 equiv.) in 10 mL chloroform was 

added dropwise to the reaction mixture and stirred at RT. The progress of the reaction 

was followed by TLC. After complete consumption of 13a-13f, the 1,3-dicyclohexyl urea 

formed in the reaction mixture was removed by filtration, and the filtrate was evaporated 

in vacuo. The residue was then suspended in an adequate amount of hexane, the 

remaining 1,3-dicyclohexyl urea was removed by filtration, and the filtrate was 

evaporated in vacuo to obtain the crude compound 14a-14f. The crude product was 

purified by column chromatography (DCM/MeOH 90/10 v/v) to obtain the pure 

compound as a pale yellow liquid.  
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Compound 14a 

Following the procedure shown for 14a-14f, compound 14a was obtained from 13a by 

treatment of TFP and DCC, as a sticky liquid. 1H NMR (CDCl3): δ 6.60 (s, 1H), δ 4.05 (s, 

2H), δ 3.20 (d, 2H), δ 2.67 (m, 2H), δ 1.97 (m, 2H), δ 1.42 (m, 27H). 13C NMR (CDCl3): 

δ 182.47 (s), δ 170.12 (s), δ 154.10 (s), δ 153.45 (s), δ 151.10 (s), δ 148.69 (d), δ 147.23 

(d), δ 146.80 (s), δ 102.10 (s), δ 84.58 (s), δ 83.74 (s), δ 82.36 (s), δ 54.33 (m), δ 39.45 

(m), δ 33.56 (m), δ 23.47 (s), δ 28.56 (s). 

 

Compound 14b 

Following the procedure shown for 14a-14f, compound 14b was obtained from 13b by 

treatment of TFP and DCC, as a sticky liquid. 1H NMR (CDCl3): δ 6.97 (s, 1H), δ 4.05 (s, 

2H), δ 3.95 (s, 2H), δ 2.31 (m, 2H), δ 2.62 (m, 4H), δ 1.80 (m, 2H), δ 1.45 (m, 27H). 13C 

NMR (CDCl3): δ 177.12 (s), δ 170.89 (s), δ 154.69 (s), δ 153.78 (s), δ 151.11 (s), 148.60 

(d), δ 147.05 (d), δ 146.44 (s), δ 102.10 (s), δ 85.25 (s), δ 83.73 (s), δ 83.92 (s), δ 54.33 

(m), δ 38.96 (m), δ 33.56 (m), δ 29.78 (s), δ 28.40 (s), δ 26.58 (s), δ 24.45 (s).  

 

Compound 14c 

Following the procedure shown for 14a-14f, compound 14c was obtained from 13c by 

treatment of TFP and DCC, as a sticky liquid. 1H NMR (CDCl3): δ 6.98 (s, 1H), δ 4.05 (s, 

2H), δ 3.95 (s, 2H), δ 2.40 (s, 2H), δ 1.65 (m, 4H), δ 1.38 (m, 6H), δ 1.45 (m, 27H). 13C 

NMR (CDCl3): δ 178.58 (s), δ 170.89 (s), δ 154.45 (s), 151.69 (s), 151.51 (s), 148.72 (d), 

δ 147.20 (d), δ 146.40 (s), δ 102.10 (s), δ 85.93 (s), δ 85.54 (s), δ 83.12 (s), δ 38.95 (m), δ 

33.50 (t), δ 30.32 (m), δ 29.45 (s), δ 29.10 (s), δ 26.70 (s), δ 25.73 (s). 
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Compound 14d 

Following the procedure shown for 14a-14f, compound 14d was obtained from 13d by 

treatment of TFP and DCC, as a sticky liquid. 1H NMR (CDCl3): δ 6.60 (s, 1H), δ 4.25 (s, 

2H), δ 4.10 (s, 2H), δ 1.42 (m, 27H). 13C NMR (CDCl3): δ 174.02 (s), δ 168.32 (s), δ 

154.21 (s), δ 153.14 (s), δ 150.78 (s), δ 148.72 (d), δ 146.89 (d), δ 146.10 (s), δ 101.80 

(s), δ 84.12 (s), δ 83.85 (s), δ 82.64 (s), δ 54.41 (m), δ 45.00 (m), δ 28.44 (s). 

 

Compound 14e 

Following the procedure shown for 14a-14f, compound 14e was obtained from 13e by 

treatment of TFP and DCC, as a sticky liquid. 1H NMR (CDCl3): δ 6.98 (s, 1H), δ 4.38 (s, 

2H), δ 4.11 (s, 2H), δ 3.41 (s, 2H), δ 1.45 (m, 27H). 13C NMR (CDCl3): δ 170.28 (s), δ 

169.52 (s), δ 167.00 (s), δ 156.00 (s), δ 151.12 (s), δ 150.02 (s), 148.23 (d), δ 147.45 (d), 

δ 146.69 (s), δ 102.47 (s), δ 85.67 (s), δ 85.00 (s), δ 83.90 (s), δ 55.87 (s), δ 45.65 (s), δ 

43.06 (m), δ 28.14 (s). 

 

Compound 14f 

Following the procedure shown for 14a-14f, compound 14f was obtained from 13f by 

treatment of TFP and DCC, as a sticky liquid. 1H NMR (CDCl3): δ 6.75 (s, 1H), δ 4.42 

(d, 2H), δ 4.10 (m, 4H), δ 3.85 (d, 2H), δ 1.50 (m, 27H). 13C NMR (CDCl3): δ 170.81 (s), 

δ 170.10 (s), δ 170.05 (s), δ 165.87 (s), δ 156.00 (s), 154.80 (s), 151.20 (s), 148.48 (d), δ 

147.23 (d), δ 146.10 (s), δ 103.76 (s), δ 85.79 (s), δ 85.51 (s), δ 84.07 (s), δ 55.96 (m), δ 

49.46 (s), δ 43.61 (s), δ 40.82 (s), δ 28.11 (s). 
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General Procedure for Synthesis of Compounds 15a-15f 

Compound 1 (0.154 mmol, 1.0 equiv.) was suspended in 1 mL of distilled water, and 

TEA (1.077 mmol, 7.0 equiv.) was added to the suspension. After a few seconds of 

stirring at RT, the suspension became clear. The reaction was stirred at RT for 5 min. The 

crude compound 14a-14f (0.231 mmol, 1.5 equiv.) was dissolved in 1.5 mL of 

acetonitrile and added to the reaction mixture. TEA (0.154 mmol, 1.0 equiv.) was added, 

and the reaction mixture was stirred at RT for 12 h. The reaction mixture was washed 

with diethyl ether (10 mL) and evaporated in vacuo to obtain crude compound 15a-15f. 

The crude product 15a-15f was used in the next reaction without further purification. 

 

Compound 15a 

Following the procedure shown for 15a-15f, compound 15a was obtained by amide 

coupling of monosodium alendronate and compound 14a in the basic condition as a white 

solid in 99% yield. 1H NMR (D2O): δ 4.12 (s, 2H), δ 3.27 (t, 2H), δ 3.12 (t, 2H), δ 2.28 

(m, 2H), δ 1.95 (m, 2H), δ 1.80 (m, 4H), δ 1.42 (s, 27H). 13C NMR (MeCN/D2O): δ 

177.50 (s), δ 171.22 (s), δ 154.56 (s), δ 153.48 (s), δ 151.94 (s), δ 85.08 (s), δ 75.40 (s), δ 

74.00 (s), δ 71.40 (s), δ 52.33 (s), δ 49.17 (s), δ 41.65 (s), δ 34.78 (s), δ 32.66 (s), δ 31.42 

(m), δ 29.15 (s), δ 25.02 (s). 

 

Compound 15b 

Following the procedure shown for 15a-15f, compound 15b was obtained by amide 

coupling of monosodium alendronate and compound 14b in the basic condition as a 

white solid in 97% yield. 1H NMR (D2O): δ 4.09 (s, 2H), δ 3.15 (m, 4H), δ 2.23 (t, 2H), δ 
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1.98 (m, 2H), δ 1.83 (m, 2H), δ 1.58 (t, 2H), δ 1.51 (m, 2H), δ 1.45 (s, 27H), δ 1.31 (m, 

2H). 13C NMR (MeCN/D2O): δ 178.47 (s), δ 170.85 (s), δ 159.5 (s), δ 15+6.50 (s), δ 

151.08 (s) δ 108.32 (s), δ 75.30 (s), δ 75.00 (s), δ 71.38 (s), δ 52.33 (s), δ 49.03 (s), δ 

41.56 (s), δ 40.76 (s), δ 37.25 (s), δ 32.54 (s), δ 29.53 (s), 29.05 (m), δ 26.56 (s), δ 25.04 

(s). 

 

Compound 15c 

 
Following the procedure shown for 15a-15f, compound 15c was obtained by amide 

coupling of monosodium alendronate and compound 14c in the basic condition as a white 

solid in 97% yield. 1H NMR (D2O): δ 4.09 (s, 2H), δ 3.15 (m, 4H), δ 2.21 (t, 2H), δ 1.95 

(m, 2H), δ 1.81 (m, 2H), δ 1.55 (d, 4H), δ 1.45 (m, 27H), δ 1.25 (m, 6H). 13C NMR 

(MeCN/D2O): δ 178.74 (s), δ 159.55 (s), δ 148.80 (s), δ 144.25 (s), δ 142.98 (s), δ 85.08 

(d) δ 76.75 (s), δ 75.42 (s), δ 71.37 (s), δ 48.90 (s), δ 47.55 (s), δ 41.63 (s), δ 40.94 (s), δ 

37.45 (s), 32.67 (s), 31.38 (d), 29.70 (m), δ 29.04 (m), δ 27.45 (m), δ 26.99 (s), δ 25.01 

(s).  

 

Compound 15d 

Following the procedure shown for 15a-15f, compound 15d was obtained by amide 

coupling of monosodium alendronate and compound 14d in the basic condition as a 

white solid in 98% yield. 1H NMR (D2O): δ 4.21 (m, 2H), δ 3.95 (s, 2H), δ 3.21 (m, 2H), 

δ 1.95 (t, 2H), δ 1.82 (m, 2H), δ 1.47 (m, 27H). 13C NMR (MeCN/D2O): δ 163.50 (s), δ 

160.50 (s), δ 151.10 (s), δ 148.00 (s), δ 146.20 (s), δ 84.50 (s), δ 79.15 (s), δ 78.56 (s), δ 

74.50 (s), δ 51.25 (t), δ 43.65 (s), δ 33.75 (m) δ 29.54 (m), δ 24.30 (s), δ 22.50 (s).  
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Compound 15e 

Following the procedure shown for 15a-15f, compound 15e was obtained by amide 

coupling of monosodium alendronate and compound 14e in the basic condition as a white 

solid in 98% yield. 1H NMR (D2O): δ 4.21 (s, 2H), δ 4.05 (s, 2H), δ 3.92 (s, 2H), δ 3.12 

(t, 2H), δ 1.95 (m, 2H), δ 1.82 (m, 2H). 13C NMR (MeCN/D2O): δ 171.25 (s), δ 170.89 

(s), δ 169.55 (s), 157.00 (s), δ 155.22 (s), δ 151.45 (s), δ 96.58 (s), δ 84.26 (s), δ 83.87 (s) 

δ 81.05 (s), δ 53.60 (s), δ 42.50 (s), δ 41.08 (s), δ 38.90 (s), δ 31.50 (s), δ 29.50 (m), δ 

23.24 (s). 

 

Compound 15f 

Following the procedure shown for 15a-15f, compound 15f was obtained by amide 

coupling of monosodium alendronate and compound 14f in the basic condition as a white 

solid in 99% yield. 1H NMR (D2O): δ 4.22 (s, 2H), δ 4.06 (s, 2H), δ 4.01 (s, 2H), δ 3.92 

(s, 2H), δ 3.15 (t, 2H), δ 1.92 (m, 2H), δ 1.81 (m, 2H), δ 1.45 (s, 27H). 13C NMR 

(MeCN/D2O): δ 175.54 (s), δ 173.75 (s), δ 173.61 (s), δ 172.72 (s), δ 160.01 (s), δ 159.23 

(s), δ 158.25 (s), δ 84.79 (s), δ 76.72 (s), δ 75.39 (s), δ 71.36 (s), δ 55.48 (s), δ 44.07 (s), δ 

41.55 (s), δ 32.48 (s), δ 31.30 (s), δ 31.21 (s), δ 29.09 (s).δ 25.03 (s). 

 

General Procedure for Synthesis of Compounds 2-7 

The crude solid of compound 15a-15f (0.231 mmol, 1.5 equiv.) was treated with 2 mL of 

2.5 M HCl, and the solution was stirred at RT for 24 h. The solvent was removed in 

vacuo, the crude product was sonicated twice in ethanol at RT for 2 h for purification. 

The white solid was filtered to obtain fine powder of pure compounds 2-7.  
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Compound 2 

Following the procedure shown for 2-7, compound 15a was obtained by acid treatment as 

a white solid in 63% yield. 1H NMR (D2O): δ 3.73 (s, 2H), δ 3.22 (t, 4H), δ 2.25 (t, 2H), 

δ 1.95 (m, 2H), δ 1.80 (m, 4H). 13C NMR (MeCN/D2O): δ 176.87 (s), δ 170.46 (s), δ 

74.16 (t), δ 51.54 (s), δ 40.66 (s), δ 39.52 (s), δ 34.04 (s), δ 31.84 (s), δ 25.66 (t), δ 24.16 

(s). 31P NMR (H3PO4/D2O): δ 19.32. MS (+ ESI) : [M + H]+ calculated for 

C10H25N4O9P2: 407.10, found 407. 

 

Compound 3 

Following the procedure shown for 2-7, compound 15b was obtained by acid treatment as 

a white solid in 59% yield. 1H NMR (D2O): δ 3.73 (s, 2H), δ 3.22 (q, 4H), δ 2.25 (t, 2H), 

δ 1.98 (m, 2H), δ 1.82 (m, 2H), δ 1.59 (t, 2H), δ 1.52 (t, 2H), δ 1.30 (m, 2H). 13C NMR 

(MeCN/D2O): δ 177.70 (s), δ 169.94 (s), δ 73.95 (t), δ 51.36 (s), δ 40.43 (s) δ 39.86 (s), δ 

36.37 (s), δ 31.64 (s), δ 28.62 (s), δ 26.15 (s), δ 25.68 (s), δ 23.99 (s). 31P NMR 

(H3PO4/D2O): δ 19.14. MS (+ ESI) : [M + H]+ calculated for C12H29N4O9P2: 435.13, 

found 435. 

 

Compound 4 

Following the procedure shown for 2-7, compound 15c was obtained by acid treatment as 

a white solid in 57% yield. 1H NMR (D2O): δ 4.06 (s, 2H), δ 4.0 (s, 2H), δ 3.92 (s, 2H), δ 

3.86 (s, 2H), δ 3.25 (t, 2H), δ 1.98 (m, 2H), δ 1.84 (m, 2H). 13C NMR (MeCN/D2O): δ 

173.19 (s), δ 172.01 (s), δ 172.17 (s), δ 171.92 (s), δ 74.15 (t), δ 51.45 (s) δ 43.73 (s), δ 
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43.49 (s), δ 43.15 (s), δ 40.60 (s), δ 31.67 (s), δ 24.15 (s). 31P NMR (H3PO4/D2O): δ 

19.15. MS (+ ESI) : [M + H]+ calculated for C14H33N4O9P2: 463.16, found 463. 

 

Compound 5 

Following the procedure shown for 2-7, compound 15d was obtained by acid treatment as 

a white solid in 55% yield. 1H NMR (D2O): δ 3.95 (s, 2H), δ 3.84 (s, 2H), δ 3.26 (t, 2H), 

δ 1.98 (m, 2H), δ 1.84 (m, 2H). 13C NMR (MeCN/D2O): δ 172.10 (s), δ 171.74 (s), δ 

74.15 (t), δ 51.40 (s), δ 47.62 (s) δ 40.60 (s), δ 31.70 (s), δ 24.09 (s). 31P NMR 

(H3PO4/D2O): δ 19.16. MS (+ ESI) : [M + H]+ calculated for C8H21N4O9P2: 379.07, 

found 379.  

 

Compound 6 

Following the procedure shown for 2-7, compound 15e was obtained by acid treatment as 

a white solid in 56% yield. 1H NMR (D2O): δ 4.04 (s, 2H), δ 3.92 (s, 2H), δ 3.86 (s, 2H), 

δ 3.25 (t, 2H), δ 1.96 (m, 2H), δ 1.84 (m, 2H). 13C NMR (MeCN/D2O): δ 171.55 (s), δ 

170.79 (s), δ 170.62 (s), δ 72.82 (t), δ 50.04 (s), δ 42.15 (s) δ 41.88 (s), δ 39.26 (s), δ 

30.06 (s), δ 22.71 (s). 31P NMR (H3PO4/D2O): δ 19.08. MS (+ ESI) : [M + H]+ calculated 

for C10H24N5O10P2: 436.09, found 436. 

 

Compound 7 

Following the procedure shown for 2-7, compound 15f was obtained by acid treatment as 

a white solid in 54% yield. 1H NMR (D2O): δ 3.73 (s, 2H), δ 3.22 (q, 4H), δ 2.25 (t, 2H), 

δ 2.00 (m, 2H), δ 1.82 (m, 2H), δ 1.55 (t, 2H), δ 1.45 (t, 2H), δ 1.30 (s, 6H). 13C NMR 
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(MeCN/D2O): δ 178.82 (s), δ 170.70 (s), δ 74.58 (t), δ 52.25 (s), δ 49.01 (s), δ 41.25 (s), δ 

40.95 (s), δ 37.36 (s), δ 32.54 (s), δ 29.73 (s), δ 29.57 (s), δ 27.41 (s), δ 26.88 (s), δ 24.81 

(s). 31P NMR (H3PO4/D2O): δ 19.38. MS (+ ESI) : [M + H]+ calculated for 

C12H27N6O11P2: 493.11, found 493. 
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Figure 2.2. Structures of ester BPs (16-18) 
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Scheme 2.10. Synthesis of ethoxy-bisphosphonates (16-18) 
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Synthesis of 4-ethoxy-4-oxobutanoic acid (20) 

Succinic anhydride (19) (1.0 g, 10.0 mmol) was dissolved in 25 mL THF. Ethanol (0.51 

g, 11.0 mmol) was added to the reaction mixtute and refluxed it at 90 °C for 12 h. The 

progress of the reaction was followed by TLC. After complete consumption of succinic 

anhydride, the solvent was evaporated in vacuo. The product was purified by column 

chromatography (hexane/acetone 80/20 v/v) to obtain the pure 4-ethoxy-4-oxobutanoic 

acid as a white solid. Yield: 95% (1.4 g). 1H NMR (CDCl3): δ 4.07 (q, 2H), δ 2.61 (m, 

4H), δ 1.21 (t, 3H). 13C NMR (CDCl3): δ 178.50 (s), δ 172.23 (s), δ 61.3 (s), δ 29.1 (d), δ 

14.2 (s).  

 

Synthesis of ethyl (2,3,5,6 tetrafluorophenyl) succinate (21) 

Compound 20 (1.00 g, 6.859 mmol) and TFP (1.25 g, 7.534 mmol) were dissolved in 20 

mL chloroform. DCC (1.55 g, 7.534 mmol) was dissolved in 10 mL chloroform and the 

solution was added dropwise to the reaction mixture. The reaction was stirred at RT, and 

the progress of the reaction was followed by TLC. After complete consumption of 

starting material, the solid formed in the reaction mixture was removed by filtration, and 

the filtrate was evaporated in vacuo to obtained crude product. The crude material was 

purified by column chromatography (hexane/acetone 80/20 v/v) to give the pure 

compound as a white solid in 99% (0.99 g) yield. 1H NMR (CDCl3): δ 6.97 (m, 1H), δ 

4.18 (q, 2H) δ 3.00 (t, 2H), δ 2.78 (t, 2H), δ 1.21 (t, 3H). 13C NMR (CDCl3): δ 171.00 (s), 

δ 169.30 (s), δ 149.23 (m), δ 143.80 (m), δ 138.20 (s), δ 102.10 (t), δ 60.80 (s), δ 29.1 (d), 

δ 14.2 (s). 
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Synthesis of 4-(4-ethoxy-4-oxobutanamido)butanoic acid (22) 

4-Amino butanoic acid (0.35 g, 3.394 mmol) was suspended in 15 mL distilled water, and 

TEA (1.03 g, 10.182 mmol) was added to the suspension. After a few seconds of stirring 

at RT, the suspension became clear. The reaction was stirred at RT for 5 min. Compound 

21 (1.10 g, 3.734 mmol) was dissolved in 10 mL of acetonitrile, and the solution was 

added dropwise to the reaction mixture. TEA (0.34 g, 3.394 mmol) was added, and the 

reaction mixture was stirred at RT for 12 h. The reaction mixture was washed with 

diethyl ether, and solvent was evaporated in vacuo. The crude product was purified by 

column chromatography (DCM/MeOH 80/20 v/v) to give the pure compound 22 as a 

sticky solid in 62% (0.48 g) yield. 1H NMR (CDCl3): δ 6.58 (bs, 1H), δ 4.82 (bs, 1H), δ 

4.11 (q, 2H), δ 3.47 (t, 2H), δ 3.10 (m, 2H), δ 2.62 (t, 2H), δ 2.25 (t, 2H), δ 1.83 (m, 2H), 

δ 1.25 (t, 3H). 

 

Synthesis of ethyl 4-oxo-4-((4-oxo-4-(2,3,5,6-

tetrafluorophenoxy)butyl)amino)butanoate (23) 

Compound 22 (0.78 g, 3.377 mmol) and TFP (0.62 g, 3.714 mmol) were dissolved in 15 

mL chloroform. DCC (0.76 g, 3.714 mmol) was dissolved in 7 mL chloroform, and the 

solution was added dropwise to the reaction mixture. The reaction was stirred at RT, and 

the progress of the reaction was followed by TLC. After complete consumption of 

starting material, the solid formed in the reaction mixture was removed by filtration, and 

the filtrate was evaporated in vacuo to obtained crude product. The crude material was 

purified by column chromatography (hexane/acetone 75/25 v/v) to give the pure 

compound 23 as a white solid in 95% (1.2 g) yield. 1H NMR (CDCl3): δ 6.97 (m, 1H), δ 
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5.90 (bs, 1H), δ 4.18 (q, 2H) δ 3.40 (q, 2H), δ 2.70 (m, 4H), δ 2.42 (t, 2H), δ 1.95 (t, 2H), 

δ 1.22 (t, 3H).  

 

Synthesis of (4-((ethoxycarbonyl)amino)-1-hydroxybutane-1,1-diyl)diphosphonic 

acid (16) 

Compound 1 (0.50 g, 1.832 mmol) was dissolved in 2 mL of 0.5N NaOH. Ethyl 

chloroformate (24) (0.397 g, 3.663 mmol) was dissolved in 1 mL THF, and the solution 

was added dropwise to the reaction mixture. The reaction was stirred at RT for 12 h. The 

reaction mixture was washed with diethyl ether and evaporated in vacuo to obtain the 

product as a sodium salt, which was then used in the next reaction without further 

purification. 1H NMR (D2O): δ 3.85 (q, 2H), δ 2.92 (t, 2H), δ 1.75 (m, 2H), δ 1.60 (m, 

2H), δ 1.00 (t, 3H). 13C NMR (MeCN/D2O): δ 161.8 (s), δ 76.38 (t), δ 64.60 (s), δ 43.73 

(s), δ 33.63 (s), δ 26.65 (s), δ 16.67 (s).    

 

Synthesis of (4-(4-ethoxy-4-oxobutanamido)-1-hydroxybutane-1,1-diyl)diphosphonic 

acid (17) 

Compound 1 (0.40 g, 1.465 mmol) was suspended in 10 mL of distilled water, and TEA 

(1.036 g, 10.256 mmol) was added to the suspension. After a few seconds of stirring at 

RT, the suspension became clear. Ethyl (2,3,5,6 tetrafluorophenyl) succinate (0.47 g, 

1.612 mmol) was dissolved in 15 mL of acetonitrile, and added into the reaction mixture. 

TEA (0.15 g, 1.465 mmol) was added, and the reaction mixture was stirred at RT for 12 

h. The reaction mixture was washed with diethyl ether and evaporated in vacuo to obtain 

crude product (0.38 g) as a white solid, which was then used in the next reaction without 



 60 

further purification. 1H NMR (D2O): δ 4.16 (q, 2H), δ 3.21 (t, 2H), δ 2.65 (t, 2H), δ 2.55 

(t, 2H), δ 1.90 (m, 4H), δ 1.25 (q, 3H). 13C NMR (MeCN/D2O): δ 173.80 (s), δ 168.20 

(s), δ 64.50 (t), δ 53.30 (s), δ 31.80 (s), δ 22.20 (s), δ 21.50 (s), δ 20.85 (s), δ 14.80 (s), δ 

4.75 (s). MS (MALDI TOFMS) : [M - H]+ calculated for C10H20NO10P2: 376, found 376.   

 

Synthesis of (4-(4-(4-ethoxy-4-oxobutanamido)butanamido)-1-hydroxybutane-1,1-

diyl)diphosphonic acid (18) 

Compound 1 (0.70 g, 2.564 mmol) was suspended in 10 mL of distilled water, and TEA 

(1.813 g, 17.949 mmol) was added to the suspension. The reaction mixture was stirred for 

5 min at RT. After a few seconds of stirring at RT, the suspension became clear. Ethyl 4-

oxo-4-((4-oxo-4-(2,3,5,6-tetrafluorophenoxy)butyl)amino)butanoate (1.068 g, 2.821 

mmol) was dissolved in 15 mL of acetonitrile and added to the reaction mixture. TEA 

(0.258 g, 2.564 mmol) was added, and the reaction mixture was stirred at RT for 12 h. 

The reaction mixture was washed with diethyl ether (10 mL) and evaporated in vacuo to 

obtain crude compound (4-(4-(4-ethoxy-4-oxobutanamido)butanamido)-1-

hydroxybutane-1,1-diyl)diphosphonic acid (0.65 g) as a white solid, which was then used 

in the next reaction without further purification. 1H NMR (D2O): δ 4.18 (q, 2H), δ 3.55 (t, 

2H), δ 3.25 (m, 2H), δ 2.65 (dd, 4H), δ 2.30 (t, 2H), δ 2.02 (m, 2H), δ 1.90 (m, 4H), δ 

1.29 (t, 3H). 13C NMR (MeCN/D2O): δ 182.81 (s), δ 175.55 (s), δ 175.02 (s), δ 72.48 (t), 

δ 62.92 (s), δ 40.69 (s), δ 39.50 (s), δ 39.00 (s), δ 33.39 (s), δ 28.20 (s), δ 26.05 (s), δ 

24.50 (s), δ 24.00 (s), δ 13.80 (s).  
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Scheme 2.11. Synthesis of aldehyde-bisphosphonate 
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Synthesis of pent-4-enoyl chloride (26) 

4-Pentenoic acid (25) (1.00 g, 9.988 mmol) was dissolved in 10 ml of DCM, and thionyl 

chloride (1.42 g, 11.985 mmol) was added dropwise at RT. The reaction mixture was 

refluxed at 80 °C for 2 h. The solvent was removed by evaporated in vacuo to obtain the 

product as a liquid, which was then used in the next reaction without further purification.   

 

Synthesis of diethyl pent-4-enoylphosphonate (27)  

4-Pentenoic acid chloride (26) (1.00 g, 8.439 mmol) was dissolved in 10 mL DCM, and 

the reaction flask was cooled at 0 °C. Triethyl phosphite (1.40 g, 8.439 mmol) was added 

dropwise in the reaction mixture with rapid stirring. After addition was complete, the 

reaction mixture was allowed to warm to RT. The reaction mixture was stirred at RT for 

overnight, and the solvent was removed under reduced pressure to obtain the product 

(27). The product was purified with column chromatography (hexane/acetone 85/15 v/v), 

and the pure product 27 was isolated as a liquid in 81% (1.5 g) yield.  

 

Synthesis of tetraethyl (1-hydroxypent-4-ene-1,1-diyl)bis(phosphonate) (28) 

Hydrogen diethyl phosphite (0.63 g, 4.545 mmol) and di-n-butylamine (0.59 g, 4.545 

mmol) were dissolved in 20 mL diethyl ether, and the reaction mixture was stirred at RT 

for 5 min. The reaction mixture was cooled at 0 °C. Compound 27 (1.0 g, 4.545 mmol) 

was slowly added in the reaction mixture with a rapid stirring at 0 °C. After addition was 

complete, the reaction was allowed to warm to the RT, and then was stirred overnight. 

The solvent was removed under reduced pressure to obtain a crude product. The 

purification was done with column chromatography (hexane/acetone 80/20 v/v) to obtain 
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the pure product 28 in 93% (1.50 g) yield. 1H NMR (CDCl3): δ 5.8 (m, 1H), δ 5.1 (m, 

1H), δ 4.6 (m, 1H), δ 4.2 (m, 8H), δ 2.22 (m, 2H), δ 1.82 (m, 2H), δ 1.28 (m, 12H). 

 

Synthesis of tetraethyl (1-hydroxy-4-oxobutane-1,1-diyl)bis(phosphonate) (29)  

Compound 28 (0.20 g, 0.559 mmol) was dissolved in 2 mL distilled water and 2 mL 

diethyl ether, and K2OsO4.2H2O (0.01 g, 0.028 mmol) was added into reaction mixture. 

The reaction was stirred for 2 min, and NaIO4 (0.30 g, 1.397 mmol) was added in aliquots  

over 30 min with vigorous stirring. The reaction was stirred vigorously at RT overnight. 

The organic and aqueous layers were separated from each other.  The aqueous layer was 

extracted with diethyl ether, and all organic layers were combined together. The organic 

layer was washed with brine, dried over Na2SO4, filtered, and concentrated. The residue 

was purified with column chromatography (hexane/acetone 80/20 v/v) to obtain the pure 

product 28 in 70% (140 mg) yield. 1H NMR (CDCl3): δ 4.78 (m, 1H), δ 4.18 (m, 8H), δ 

2.6 (t, 2H), δ 2.23 (m, 2H), δ 1.28 (m, 12H). 

 

RESULTS AND DISCUSSION 

  

Our goal was to design novel BPs that demonstrate high binding affinity to bone 

mineral and contain a functional group that could be used to conjugate therapeutic agents 

to BPs through an acid-labile linkage. In addition to the above goal, our other goal was to 

synthesize the bifunctional BPs which could conjugate to the proteins in a selective 

manner, and immobilize them on solid surface for tissue engineering applications. 

Substituents (R1 and R2) at the geminal carbon of the BP contribute toward the bone 
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affinity; in particular, the presence of a hydroxyl at R1 enhances bone affinity by enabling 

tridentate binding to HA (20, 98, 99). In that regard, we chose 1-hydroxy-1,1-

bisphosphonic acid as the basic backbone of bifunctional BPs.  

The designed 1-hydroxy-1,1-bisphosphonic acid backbone has a hydroxyl at R1, 

while the R2 substituent was used to introduce a different functional group that could be 

subsequently used for attachment of therapeutic agents. The attachment of a therapeutic 

agent to BP is possible through several reversible and irreversible linkages, such as 

amide, ester, imine, hydrazone, ether, and thioether coupling. Ester and thioester linkages 

are too labile and are not capable of surviving in systemic circulation (90). However, 

esterase activity in the plasma readily hydrolyzes esters and thioesters. Moreover, the rate 

of hydrolysis of ester and thioester could vary with the concentration of esterase 

interacting with the conjugate and the steric hindrance around the linkage (16, 90). The 

disulfide is also a too-labile bond, and readily gets reduced in presence of glutathione 

(100). The current approaches that employ cleavable linkages are either too labile to 

ensure delivery of the drug to the desired site, or show limited release providing 

inadequate availability of drug for action (90, 91). A strategy that involves labile 

conjugation to one of the phosphonate groups of BP could compromise the affinity of the 

corresponding BP-drug conjugate toward bone, because it is through the phosphonate 

groups that BPs bind to the mineral matrix (91). However for drug delivery at wound 

healing sites and resorption sites, where the pH is acidic (101, 102), acid-labile linkages 

such as those provided by hydrazones and imines are more appropriate. Imine hydrolyses 

rapidly at pH ≤ 7.0 (103), while hydrazone is stable at physiological pH. Further, the rate 

of hydrolysis of the hydrazone linkage increases gradually with decrease in pH from 7.4 
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(104, 105). Therefore, the hydrazone linkage presents advantages over the imine linkage 

when sustained drug release is desired at the bone surface. Hence, the hydrazine 

functionality was introduced in 1-hydroxy-1,1-bisphosphonic acid at R2 to obtain 

bifunctional HBPs. 

The attachment of protein to BPs is possible by several methods of conjugation. 

Amide, ester, thioester, ether, thioether, and disulfide coupling are commonly used 

methods for protein conjugation. Since proteins generally have several amine and 

carboxylate groups, which could participate in amide coupling, the selective conjugation 

is difficult by amide coupling. Similarly, there could be more than one thiol group in the 

protein, and therefore, disulfide and thioether couplings are also in general not selective 

ways of conjugation. Moreover, thiols in the protein are generally involved in formation 

of secondary or tertiary structure through disulfide linkages. As a result, BP attachment 

via thiol conjugation could disturb the protein conformation and result in loss of protein 

bioactivity. The ester, thioester, and imine linkages are fairly unstable, and could not 

serve the purpose of protein immobilization. However, the hydrazone linkage seems very 

promising due to its strong and stable nature at physiological pH. The hydrazone linkage 

could be achieved by reaction of aldehyde and hydrazine functionality. It is a 

nucleophilic substitution reaction, and feasible under slightly acidic pH (less than 

physiological pH). Under such acidic conditions, other nucleophilic groups of proteins 

(amines, thiols, hydroxyls) are protonated and remain nonreactive. The hydrazone 

linkage between BP and protein could be achieved by reacting hydrazine of the BP with 

an aldehyde on the protein (the latter can be obtained by periodate treatment of N-

terminal serine or threonine). In other words, BPs with a hydrazine functional group 
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could be conjugated to protein via hydrazone linkage. In that regard and in order to 

achieve selective conjugation of proteins for their immobilization on solid surfaces as 

well as conjugation of therapeutic agents for their targeted delivery to bone, bifunctional 

BPs with the hydrazine functionality at their R2 substituent were designed.    

Retention of protein activity after its immobilization on a solid surface is essential 

for its successful application in the design of biomaterials and tissue engineering. The 

protein could lose its activity by a small change in its conformation (106). Therefore, a 

proper distance between the immobilized protein and the immobilization surface is 

necessary. With a very small distance between the immobilized protein and the 

immobilization surface, the protein may interact with the surface and lose its bioactivity. 

Similarly, too-large of a distance may cause a lining of the protein on the surface, which 

could lose the bioactivity of protein. Moreover, for the targeted delivery of a drug to 

bone, the HBP-drug conjugate should not only be the stable during systemic circulation, 

but should also get cleaved at the desired site. On one hand, drug conjugation or the 

unwanted folding of the conjugate could create steric hindrance and prevent the release of 

the drug at the bone site. On the other hand, the attached drug might lose its activity or 

drug potency due to the steric interactions between the BP and the bone surface. 

Therefore, to optimize the distance between the immobilized protein and the 

immobilization-surface, as well as to avoid a loss of drug activity due to its steric 

interactions with bone surface, we have designed and synthesized HBPs with several 

spacers of varying length.  

 Similar to the length of the spacer, the hydrophobicity of the spacer, used for 

conjugation of BP to the therapeutic agent might change the drug potency of the 
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conjugated therapeutic agent. BP-conjugated protein might interact with the spacer used 

for the conjugation and cause a change in its conformation and bioactivity. However, the 

interactions between the spacer and conjugated therapeutic agent or protein might vary 

with the nature of the immobilized protein and the hydrophobicity of the spacer. 

Moreover, the bioavailability of the conjugate may vary with the change in 

hydrophobicity of the BP or the BP-conjugate. Therefore, various spacers of different 

hydrophobicity are introduced between two functional units of bifunctional BPs.  

Considering the factors mentioned above, we have synthesized seven bifunctional 

hydrazine-bisphosphonates (HBPs) (1-7). These novel BPs with hydroxyl group as R1 

substituent, could bind Ca2+ of HA in a tridentate manner, and show an enhanced affinity 

to HA. The R2 substituent has a hydrazine functionality attached through various spacers 

of varying length and hydrophobicity. The list of synthesized HBPs is shown in Figure 

2.1.     

All seven HBPs were synthesized from the monosodium alendronate (8), which is 

a widely prescribed drug in the treatment of osteoporosis. Monosodium alendronate was 

synthesized by one pot synthesis method according to a previously reported procedure 

(Scheme 2.7) (81, 107). The reaction was done in an inert atmosphere, where 4-

aminobutanoic acid was treated with phosphorous acid, and phosphorous trichloride in 

methanesulfonic acid, followed by subsequent hydrolysis. The reaction either starts with 

nucleophilic addition of the phosphorous of H3PO3 to the carbonyl carbon of the 4-

aminobutanoic acid, or 4-aminobutanoic acid reacts with PCl3 and forms an acid chloride 

and then undergoes nucleophilic addition of H3PO3. The carbonyl group gets reformed 

after the attachment of one phosphonate, and allows a second nucleophilic attack by 
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H3PO3. The hydrolysis of the reaction allows the formation of two phosphonates with one 

hydroxyl group at the alpha carbon of the product. Methanesulfonic acid was used as a 

solvent in the reaction, which keeps the reaction mixture in the liquid state and allows the 

complete conversion of 4-aminobutanoic acid to α-hydroxy-bisphosphonic acid. The pH 

adjustment at 4.4 with addition of NaOH allows the formation of monosodium salt of the 

α-hydroxy-bisphosphonic acid. The white solid of monosodium salt of α-hydroxy-

bisphosphonic acid was treated with 95% ethanol and filtered to remove the excess 

starting materials and reagents from the reaction mixture. The resultant white product 

was dried under vacuum to obtain a pure white powder of monosodium alendronate. The 

product was recovered with an excellent yield of 87% and characterized with 1H NMR, 

31P NMR, 13C NMR, and mass spectrometry.         

The synthesis of HBP 1 is outlined in Scheme 2.8. Compound 10 was prepared by 

dropwise addition of N,N´-dicyclohexylcarbodiimide (DCC) in chloroform to a mixture 

of tri-BOC-hydrazinoacetic acid (9) and 3,5,6-tetrafluorophenol (TFP) in chloroform at 

room temperature (RT). Compound 10 is the tetrafluorophenol ester of tri-BOC-

hydrazinoacetic acid. The four fluorines attached to phenol increased the electrophilicity 

of the carbonyl carbon of compound 10. Therefore, compound 10 became very reactive 

towards nucleophiles such as amines. Monosodium alendronate was then coupled with 

compound 10 in the presence of triethylamine (TEA) at RT. Since monosodium 

alendronate is not soluble in non-aqueous solvents, distilled water was used as a solvent 

for the amide coupling reaction. TFP is a side product of the amide coupling reaction, 

which was removed by washing the reaction mixture with diethyl ether. Some of the TEA 

in the reaction mixture was eliminated with diethyl ether extraction, while the remaining 
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TEA was removed by in vacuo evaporation of the reaction mixture. The product obtained 

after in vacuo evaporation was a sticky solid, which was then dissolved in 2.5 M HCl and 

kept stirred at RT for 24 h. HCl treatment removed the BOC groups from the hydrazine 

and formed a chloride salt of HBP 1. The solvent was removed in vacuo, and the crude 

product was sonicated twice in ethanol at RT for 2 h and filtered to obtain pure HBP 1 

(Scheme 2.8).   

HBPs 2-7 are synthetic analogues of HBP 1, in which length and hydrophobicity 

of the HBPs was varied by introducing various spacers, such as 4-aminobutyric acid 

(12a), 6-aminohexanoic acid (12b), 8-aminooctanoic acid (12c), glycine (12d), 

glycylglycine (12e), and glycylglycylglycine (12f), respectively (Scheme 2.9). The 

spacers 12d, 12e, and 12f are poly-glycines, which are multiple glycines coupled with 

amide linkages. Poly-glycine spacers are hydrophilic, which were introduced in between 

alendronate and hydrazinoacetic acid to increase the length and hydrophilicity of HBPs. 

The spacers 12a, 12b, 12c are aliphatic long chain amino acids, which were introduced in 

between alendronate and hydrazinoacetic acid to increase the length and hydrophobicity 

of HBPs. All the spacers are amino acids, having a carboxylate functionality at one end 

and an amine functionality at the other end. These spacers were coupled with compound 

10 in the presence of TEA at RT. The solvent used was CH3CN because of the solubility 

of both the starting materials, and its ease of in vacuo evaporation. The reaction mixture 

was washed with diethyl ether and the solvent was removed with in vacuo evaporation to 

obtain compounds 13a-13f. Compounds 14a-14f are activated esters, which were 

prepared by treatment of 13a-13f with TFP, and DCC in CHCl3. Using similar strategies 

as those employed in the synthesis of HBP 2, compounds 14a-14f were coupled with 
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monosodium alendronate, followed by the removal of hydrazine protection with the 

treatment of HCl to obtain HBPs 2-7. All HBPs were purified by sonication in ethanol 

and characterized with 1H NMR, 31P NMR, 13C NMR, and elemental analysis. The 

general scheme of synthesis of HBPs 2-7 is shown in Scheme 2.9.    

Other than the method used for the synthesis of HBPs 1-7, we designed the 

method for the synthesis of hydrazide-BPs from ester-BPs. In particular, we synthesized 

several spacers having acid functionality at one terminal and ester functionality at the 

other terminal. These bifunctional spacers were conjugated to the alendronate (8) to 

obtain several ester-BPs of different length. The structures of the synthesized ester-BPs 

are shown in Figure 2.2.  

The ester-BPs of various length spacers were treated with hydrazine monohydrate 

to obtain hydrazide-BP (Scheme 2.4). In brief, the five-membered ring of succinic 

anhydride was opened with 1.1 equivalent of ethanol to obtain monoester (20) 

selectively. The acid functionality of monoester was activated by treatment of TFP and 

DCC to obtain its tetraflurophenol ester (21), which is reactive towards amines at basic 

conditions. The activated ester was coupled with 4-aminobutanoic acid to get compound 

22. This elongated spacer (22) having a carboxylate functionality at one end, was 

activated by TFP and DCC to obtain its tetraflurophenol ester (compound 23). Both the 

spacers (21 and 23) were coupled to alendronate with amide coupling to get ester-BPs 17 

and 18. The shortest ester-BP (16) was synthesized by treatment of ethyl chloroformate 

with alendronate. Ethyl chloroformate is highly nucleophilic, and reacts immediately with 

the amine of alendronate. The ester-BPs (16, 17, and 18) were obtained in good yield. 

The ester-BPs were refluxed with hydrazine monohydrates in methanol to obtain 
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bifunctional hydrazide-BPs according to the previously reported procedure (108), 

however only traces of the desired product were detected.  

Using a previously reported procedure, we could not isolate the hydrazide-BPs as 

a major product, even when the reaction was repeated several times by varying reaction 

conditions, such as moles of reagent, solvent, temperature, and time of the reaction. In 

most of the attempted reactions, we could not obtain hydrazide-BP. After the reaction 

workup, the 1H NMR analysis of the reaction mixture showed the alendronate as a major 

product. Hydrazine monohydrate, used for conversion of ester to hydrazine, is also an 

alkali, and has similar properties to ammonia. Therefore, it is highly possible that 

hydrazine monohydrate hydrolyzed the amide linkage in ester-BP, and decomposed it 

into smaller molecules like alendronate. In addition, the starting materials of the reaction 

were only soluble in water or highly polar solvents. The monitoring of the reaction by 

thin layer chromatography (TLC) was also a difficult task due to the solubility properties 

of the reactant or the product. It was also challenging to remove the excess of hydrazine 

monohydrate from the reaction mixture. Overall, due to the reversible nature of the 

reaction and other difficulties in the synthesis, we did not pursue the synthesis of 

hydrizide-BPs any further; however, we could synthesized bifunctional ester-BPs with 

different length spacers.  

We also designed aldehyde-BPs considering the reactivity of aldehydes toward 

hydrazines and amines. Aldehyde reacts with amine at a neutral or basic environment to 

form an imine. Aldehyde also reacts with hydrazine at acidic conditions to form a 

hydrazone. Since aldehyde-BPs could be coupled to proteins through imine or hydrazone 

linkages, we designed a method for synthesis of aldehyde-BPs as shown in Scheme 2.11.  
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The α-hydroxy-bisphosphonic acid is hydrophilic and difficult to purify; 

therefore, we designed α-hydroxy-bisphosphonate esters, which are easier to purify and 

can be hydrolyzed back to bisphosphonic acid. The synthesis was started with various 

length aliphatic acids, such as 3-butenoic acid, 4-pentenoic acid, 6-heptenoic acid, and 

10-undecenoic acid. These acids have a terminal double bond at one end, which could be 

oxidized to an aldehyde. The synthesis of aldehyde-BPs was performed according to a 

previously reported procedure (109), and is shown in scheme 2.11. In brief, the synthesis 

was started with formation of pent-4-enoyl chloride (26) by refluxing 4-pentenoic acid 

(25) with thionyl chloride in DCM under nitrogen at 80 °C. Since, compound 26 is very 

reactive and moisture sensitive, it was used in the next reaction without further 

purification. The triethyl phosphate was added to the crude compound 26, and the 

reaction was stirred overnight to obtain compound 27. The crude product 27 was purified 

by column chromatography, and then treated with hydrogen diethyl phosphite to obtain 

BP 28. The ethylene bond of 28 was oxidized with potassium osmate dihydrate and 

sodium meta periodate to obtain compound 29. Compound 29 has an aldehyde at one 

terminal and ethyl phosphate groups at the other terminal. The last step of hydrolysis of 

compound 29 for conversion of ethyl phosphate into phosphoric acid was tried in several 

ways, such as by refluxing in 6M HCl, stirring in concentrated HCl, refluxing in 

concentrated HCl, as well as treatment with trimethyl silyl bromide and water; however, 

the isolation of the desired product (compound 30) was found difficult.  

Compound 30 was the desired product of the hydrolysis of compound 29, which 

has two phosphoric acid groups at one terminal and an aldehyde at other terminal. The 

failure of the reaction could be due to the hydrolysis conditions. The aldehyde is a very 
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reactive species, and even the oxygen in air slowly oxidizes it. Moreover, in the aqueous 

acidic environment the rate of oxidation of aldehyde is much faster than at a neutral 

environment. Therefore, it is highly possible that the aqueous acidic environment of 

hydrolysis oxidized the aldehyde of compound 29, and might have prevented the 

formation of compound 30.     

        

CONCLUSIONS 

 

 Overall, we attempted three different methods for synthesis of various 

bifunctional BPs, such as hydrazide-BP, aldehyde-BP, and hydrazine-BP. The synthesis 

of hydrazide-BP failed in the last step of synthesis, in which hydrazine monohydrate 

hydrolyzed the ester-BP into the starting material instead of hydrazide formation. The 

isolation of the aldehyde-BP failed due to the instability of aldehyde in an acidic 

environment. However, we have reported the straightforward synthesis of novel, 

bifunctional HBPs having two phosphonates at one terminal and a hydrazine at the other 

terminal. The seven derivatives of HBPs (1-7), having various spacers of different length 

and hydrophobicity, were synthesized and characterized by 1H NMR, 13C NMR, 31P 

NMR, and mass spectrometry. The therapeutic agents with aldehyde or ketone functional 

groups could be conjugated to the HBPs and immobilized on bone or HA surface to 

explore further applications. 
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CHAPTER THREE 

 

ENHANCED AFFINITY BIFUNCTIONAL BISPHOSPHONATES FOR 

TARGETED DELIVERY OF THERAPEUTIC AGENTS TO BONE 

 

 

 

Active targeting of therapeutic agents to bone reduces drug toxicity and improves 

drug bioavailability at the desired site (110). Bone tissue is characterized by constant 

remodeling, whereby it continuously undergoes formation and resorption; perturbations 

in bone remodeling are associated with several metabolic bone diseases, such as 

osteoporosis (6, 8, 111). Therefore, molecules that inhibit bone resorption or stimulate 

bone formation show drug activity against various skeletal disorders (112). Although a 

range of therapeutic agents is available to treat skeletal disorders (31), their clinical 

application is hampered by their uptake in non-targeted sites and the consequent 

undesired side effects (11).  

Several bisphosphonates (BPs) show anti-resorptive properties and are being 

prescribed in the treatment of skeletal diseases (31-33). BPs are stable analogues of 

naturally occurring pyrophosphate and have high affinity to bone and hydroxyapatite 
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(HA) (20). Besides the two phosphonate groups, BPs have two other substituents (R1 and 

R2) on their geminal carbon (Figure 1.2). BPs with a hydroxyl or an amine group at R1 

facilitate tridentate binding to bone and HA, and show an increased affinity to these 

materials (98, 99). The overall nature of the R2 substituent also contributes toward 

enhancing the bone-seeking ability and pharmacological properties of BPs (20, 113).  

Recently, a number of drug targeting and drug delivery strategies have been 

reported using a range of delivery vehicles, such as polymer scaffolds, liposomes, 

dendrimers, micelles, hydrogels, peptides, and antibodies (44, 45, 114-119). However, 

drug targeting to bone sites requires molecules that have high affinity to bone. Besides 

BPs, other molecules, such as D-aspartic acid octapeptide,(44, 45) polymalonic acid,(46) 

and tetracycline(47, 48) show affinity to bone. BPs have advantage over other molecules 

because their affinity can be tuned by changing their R1 and R2 substituents. Moreover, in 

addition to being prescribed as drugs, BPs are also being studied for drug targeting, and 

drug delivery to bone (49, 89-93), including the administration of radiopharmaceuticals 

and imaging agents to bone for diagnostic applications (50, 94-97). For the purpose of 

drug targeting to bone, various strategies of BP-drug conjugation have been investigated 

by us and others (16, 49-52). Ideally, for targeted drug delivery to bone, BP-drug 

conjugates should have a stable linkage between the BP and drug molecule that can 

survive during systemic circulation of the conjugate following parenteral administration, 

and at the same time be labile at the bone surface to release the drug locally. Most of the 

strategies mentioned above employ agents that are conjugated to BPs through stable, non-

cleavable linkages resulting in the administration of the complete conjugate to the 

treatment site (49, 50, 89, 94-96). Current approaches that employ cleavable linkages are 
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either too labile to ensure delivery of the drug to the desired site (90, 91), or show limited 

release providing inadequate availability of drug for action (90). A strategy that involves 

labile conjugation to one of the phosphonate groups of BP could compromise the affinity 

of the corresponding BP-drug conjugate toward bone, because it is through the 

phosphonate groups that BPs bind to the mineral matrix (91). 

Herein, we report a novel strategy for targeted delivery of therapeutic agents to 

sites of low pH, such as bone resorption lacunae and areas of wound healing, through 

their conjugation to enhanced affinity bifunctional BPs with a pH-triggered cleavable 

linkage. In particular, we have used seven novel hydrazine-bisphosphonates (HBPs) (1-

7), which have a hydroxyl group as R1, while R2 contains a hydrazine functionality 

attached through spacers of various length and hydrophobicity (Figure 2.1). Furthermore, 

experiments were performed to explore the binding affinity, cytotoxicity, drug 

conjugation, and pH triggered drug release of HBPs.    

 

EXPERIMENTAL SECTION 

 

Materials: The osteoblastic cell line MC3T3-E1 was obtained from American 

Type Culture Collection (CRL-2593; ATCC, Rockville, MD). Alpha minimum essential 

medium (αMEM) and fetal bovine serum (FBS) were purchased from GIBCO-Invitrogen 

(Carlsbad, CA). The BCA protein assay kit was obtained from ThermoFisher Scientific 

(Rockford, IL). The cell proliferation reagent WST-1 was purchased from Roche 

(Mannheim, Germany). Ac-DEVD-AFC was obtained from Enzo Life Sciences 

(Plymouth Meeting, PA). 4-Aminobutanoic acid and 2,3,5,6-tetrafluorophenol (TFP) 
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were purchased from Alfa Aesar (Ward Hill, MA). N,N′-Dicyclohexylcarbodiimide 

(DCC), triethylamine (TEA), tri-BOC-hydrazinoacetic acid (TBHA), reagent grade 

hydroxyapatite powder, potassium hydroxide, sodium acetate, sodium chloride, sodium 

hydroxide, etoposide, tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 3-[(3-

cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS), 

ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA), sodium fluoride (NaF), 

sodium orthovanadate, leupeptin hemisulfate salt, aprotinin bovine, 

phenylmethylsulfonylfluoride, DL-dithiothreitol (DTT), glycerol, and triton X-100 were 

purchased from Sigma-Aldrich (St. Louis, MO). Calcium chloride, hydrochloric acid, and 

potassium dihydrogen phosphate were obtained from EMD Chemicals (Gibbstown, NJ). 

Acetonitrile, chloroform, dichloromethane (DCM), diethyl ether, dimethyl sulfoxide 

(DMSO), hexane, and phosphoric acid were purchased from Mallinckrodt (Hazelwood, 

MO). The NMR solvents deuterium oxide and deuterated chloroform were purchased 

from Cambridge Isotope Laboratories (Andover, MA).    

 

Apparatus: 1H NMR, 31P NMR, and 13C NMR spectra were obtained on a Varian 

INOVA 400 MHz spectrometer (Palo Alto, CA). HA crystal growth experiments were 

performed using an Isotemp Refrigerated Circulator and pH meter (Fisher Scientific, 

Pittsburgh, PA). UV-vis spectra were obtained with an Agilent 8453 UV-visible 

spectrophotometer (Agilent Technologies, Santa Clara, CA). Deionized water was 

produced using a Milli-Q water purification system (Millipore, Bedford, MA). 
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Crystal Growth Inhibition Assay for Binding Affinity Study. As BPs target 

bone surfaces under active formation and resorption of HA (120), a crystal growth 

inhibition assay was performed to measure the affinities of HBPs to HA. This method has 

commonly been used to examine BP binding affinity.(24, 121) Kinetic experiments of 

HA crystal growth were performed in a nitrogen atmosphere in magnetically stirred (400 

rpm) double-jacketed vessels at pH 7.4 and 37.0 ± 0.1 °C, as described in a previously 

reported procedure (24, 121). In brief, the reaction solution with final ionic strength of 

0.15 M was prepared by mixing calcium chloride (2.0 mmol), potassium dihydrogen 

phosphate (2.0 mmol) and sodium chloride (132.0 mmol) followed by degassing and 

filtration. The titrant with final ionic strength of 0.15 M was prepared by mixing calcium 

chloride (2.0 mmol), potassium hydroxide (10.0 mmol) and sodium chloride (134.0 

mmol) followed by degassing and filtration. The reaction was initiated by adding 5 mg 

seed mass of HA crystallites into 100 mL of reaction solution. The constant 

thermodynamic driving force for growth of HA crystal was maintained by keeping the 

pH constant at 7.4 with addition of titrant. The volume of titrant added was recorded as a 

measure of HA crystal growth. Crystal growth inhibition experiments were performed in 

presence of at least six different concentration of each of HBPs (1-7). For a positive 

control, experiments were performed in presence of six different concentration of 

alendronate (8), whereas for a negative control, experiments were performed in absence 

of any BP.   

  

Cell Culture. The MC3T3-E1 cells were cultured in pre-warmed αMEM medium 

that was supplemented with 10% FBS at 37 °C in a humidified atmosphere composed of 
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5% CO2. The cells were seeded into 96-well plates at a density of 1 × 104 cells/well for in 

vitro quantification of intracellular protein and caspase activity. One day after seeding, 

the cultures were treated with various concentrations (10-6, 10-5, 10-4 M) of HBPs. Cells 

without HBPs were used as a negative control, while cells treated with 10-6, 10-5, or 10-4 

M of etoposide were used as positive controls. The plates were incubated again for 24, 

48, 72 h before use for further analysis. The experiments were conducted in triplicate and 

repeated at least three times to ascertain the reproducibility of the results.  

  

Intracellular Protein Quantification. Intracellular protein was measured using a 

commercially available BCA assay kit. Briefly, the medium was removed, and the 

adherent cells were washed with PBS. The cultures were lysed by 10-min incubation in 

50 µL of lysate buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1mM EDTA, 10mM 

NaF, 1mM sodium orthovanadate, 5 μg/ml leupeptin, 0.14 U/ml aprotinin, 1mM 

phenylmethylsulfonylfluoride, and 1% (v/v) Triton X-100), followed by 2 s of sonication. 

Volumes of 10 µL of the cell lysate samples and standards (solutions of known 

concentrations of bovine serum albumin) were added to the wells of a 96-well microtiter 

plate followed by addition of 200 µL of the working reagent; the well contents were 

mixed thoroughly by shaking the plate for 2 min. The plate was incubated at 37 °C for 30 

min and then cooled to RT. The absorbance of the samples was measured at 562 nm on a 

plate reader. The amount of protein in the sample was calculated using a standard plot. 

 

Cell Cytotoxicity Assay. The cytotoxicity of the HBPs was determined using a 

colorimetric WST-1 assay. The assay was conducted after 72 h of HBP treatment in 
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accordance with the manufacturer’s instructions. In brief, cultures in 96-well plates were 

incubated with 10 µL/well of cell proliferation reagent WST-1 at 37 °C for 60 min in a 

humidified atmosphere composed of 5% CO2. The plate was cooled to RT, and the 

absorbance of the samples was measured at 450 nm on a plate reader. 

 

Apoptosis Assay. Apoptosis was determined by measuring the intracellular 

caspase-3 activity. The cultures were lysed by 10 min of incubation in 50 µL of lysate 

buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1mM EDTA, 10mM NaF, 1mM sodium 

orthovanadate, 5 μg/ml leupeptin, 0.14 U/ml aprotinin, 1mM 

phenylmethylsulfonylfluoride, and 1% (v/v)Triton X-100), followed by 2 s of sonication. 

The cell lysate was treated with 50 μM Ac-DEVD-AFC in 50 mM HEPES buffer (pH 

7.4, 100 mM NaCl, 0.1% CHAPS, 10 mM DTT, 1mM EDTA, and 10% (v/v) glycerol) at 

RT for 60 min in the dark. The caspase-3 activity was determined by measuring the 

fluorescence at λem=510 nm (λex=485).          

 

Synthesis of Compound 32. Compound 1 (10.0 mg, 0.028 mmol) was suspended 

in 10 mL of distilled water. The reaction mixture was acidified with 10 µL of acetic acid. 

4-Nitro benzaldehyde (31) (8.4 mg, 0.056 mmol) was dissolved in DMSO and added to 

the above suspension. The reaction was stirred at RT for 48 h. The solvent was 

evaporated in vacuo to obtain crude product 32. Compound 32 was dissolved in water 

and washed with ethyl acetate to remove excess reactant 31. The water layer containing 

32 was used in the next reaction without further purification. 
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Scheme 3.1. Synthesis, immobilization of model drug-BP conjugate, and incubation at 37 

°C in acetate solutions of various pH. Hatched area represents HA particles. 
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Synthesis of Compound 35. 4-Nitro benzoic acid (34) (100.0 mg, 0.598 mmol) 

and TFP (109.3 mg, 0.658 mmol) were dissolved in 5 mL acetone. DCC (135.8 mg, 

0.658 mmol) in 5 mL acetone was added drop-wise to the reaction mixture and stirred at 

RT. The progress of the reaction was followed by TLC. After complete consumption of 

34 (3 h), the 1,3-dicyclohexyl urea formed in the reaction mixture was removed by 

filtration, and the filtrate was evaporated in vacuo. The residue was then suspended in an 

adequate amount of acetonitrile, the remaining 1,3-dicyclohexyl urea was removed by 

filtration, and the filtrate was evaporated in vacuo to obtain crude compound 35. 

Compound 35 was used in the next reaction without further purification. 

 

Synthesis of Compound 36. Compound 8 (60.0 mg, 0.185 mmol) was suspended 

in 1 mL of distilled water and TEA (111.9 mg, 1.108 mmol) was added to the suspension. 

After a few seconds of stirring at RT, the suspension became clear. The reaction was 

stirred at RT for 5 min. Crude compound 35 (92.2 mg, 0.277 mmol) was dissolved in 1.5 

mL of acetonitrile and added to the reaction mixture. TEA (18.7 mg, 0.185 mmol) was 

added, and the reaction mixture was stirred at RT for 12 h. The reaction mixture was 

washed with 10 mL diethyl ether several times and the water layer was lyophilized to 

obtain a sticky solid. The reaction product was then sonicated twice in ethanol for 2 h at 

RT and filtered to obtain pure compound 36. 1H NMR (D2O): δ 8.33 (d, 2H), δ 7.95 (d, 

2H), δ 3.45 (t, 2H), δ 1.98 (m, 4H). 31P NMR (H3PO4/D2O): δ 18.23. MS (- ESI) : 397 

[M-H]-.   
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In vitro Studies of Drug Targeting and Drug Release. Compound 32 is a HBP-

drug conjugate, where a model drug (4-NBA) was conjugated to HBP 2 via hydrazone 

linkage. The conjugate was immobilized on HA surface and studied for its release at 

various pH solutions. In brief, compound 32 (1 mg) in water was equally distributed into 

three Eppendorf tubes and diluted to get 1.0 mL of total volume each. Excess of HA 

(50.0 mg) was added to each Eppendorf tube, and the tubes were stirred at RT for 0.5 h. 

After centrifugation at 1000 rpm for 5 min, the supernatant was discarded. The HA was 

washed twice with 1.0 mL water, followed by centrifugation, and the supernatant was 

discarded. A volume of 1.0 mL acetate solution (0.1 M sodium acetate, 0.05 M sodium 

chloride) of pH 5.0, 6.0, and 7.4 was added in three Eppendorf tubes, respectively. The 

Eppendorf tubes were incubated at 37 °C with continuous shaking. The suspensions were 

centrifuged at particular time points, and the absorbance of the supernatants was 

measured (λ = 265 nm, 1-cm cuvette) to calculate the amount of 4-NBA released from 

the immobilized conjugate. 

For the control studies, the above experiment was repeated with compound 36. 

Compound 36 was a BP-drug conjugate, where the model drug (4-NBA) was conjugated 

to alendronate via amide linkage. The conjugate was immobilized on the HA surface and 

studied for its release at various pH solutions. In brief, compound 36 (1 mg) in water was 

equally distributed into three Eppendorf tubes and diluted to get 1.0 mL of total volume 

each. Excess of HA (50.0 mg) was added to each Eppendorf tube, and the tubes were 

stirred at RT for 0.5 h. After centrifugation at 1000 rpm for 5 min, the supernatant was 

discarded. The HA was washed twice with 1 mL water, followed by centrifugation, and 

the supernatant was discarded. A volume of 1.0 mL acetate solution (0.1 M sodium 
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acetate, 0.05 M sodium chloride) of pH 5.0, 6.0, and 7.4 was added in three Eppendorf 

tubes, respectively. The Eppendorf tubes were incubated at 37 °C with continuous 

shaking. The suspensions were centrifuged at particular time points, and the absorbance 

of the supernatants was measured (λ = 265 nm, 1-cm cuvette) to calculate the amount of 

4-NBA released from the immobilized conjugate. 

 

RESULTS AND DISCUSSION 

  

Over the last two decades, several BPs have been widely used in clinical setting 

for the treatment of various bone diseases. After administration of BPs, they bind to bone 

surfaces where they are internalized into osteoclasts and cause their apoptosis (36, 41, 

122). In other words, BPs control the bone resorption by executing osteoclasts. However, 

this could be a drawback of the BP treatment because it disturbs the bone remodeling 

cycle. In general, bone remodeling is the life-long process, where osteoblasts and 

osteoclasts work simultaneously for bone formation and bone resorption, respectively. 

Bone formation and bone resorption are interdependent processes and therefore, 

osteoblastic function of bone formation is also gets affected by controlling osteoclastic 

bone resorption. Along with controlling bone resorption, subsequent bone formation at 

resorption sites is crucial; this can be achieved by delivering therapeutic agents to bone 

resorption sites using bisphosphonates. Active drug targeting at sites of bone metastases 

and calcified neoplasms using polymeric carrier was reported previously. Alendronate 

and an anti-angiogenic agent, TNP-470, were conjugated to N-(2-

hydroxypropyl)methacrylamide (HPMA) through a cathepsin K sensitive tetrapeptide 
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(Gly-Gly-Pro-Nle) (36, 123). Because of alendronate conjugation, HPMA was found to 

be distributed to bone tumors and the endothelial compartments of bone metastases with 

a good antitumor efficacy. However, one could eliminate the polymeric carrier and make 

a simpler and smaller conjugate by coupling drugs directly to high affinity BPs via 

hydrolyzable bonds. Therefore, we used HBPs (1-7), whose synthesis have been 

described in Chapter Two, for demonstration of delivery of drug molecules, including 

bone growth factors, at bone resorption sites.  

 HBPs have two phosphonates at one terminal and a hydrazine at other terminal. In 

general, hydrazine reacts with aldehyde at lower pH at which aliphatic amines are not 

reactive. Therefore, a selective reaction of HBPs with an aldehyde-containing drug 

molecule could be possible to obtain a HBP-drug conjugate. However for the targeted 

drug delivery at bone, it is important that the HBP-drug conjugate should not only be 

stable during systemic circulation, but also bind to the bone surface before releasing the 

drug at the desired site. The attached drug may sterically affect this interaction between 

the BP and the bone surface. Therefore, HBPs (1-7) with several spacers of varying 

length and hydrophobicity were designed for this type of the drug delivery application.    

In general, BPs have high affinity to bone mineral. Moreover, after administration 

of BPs, they tend to target bone over other parts of the body. However, not all BPs have 

the same binding affinity, which varies with their structural characteristics. The two 

phosphonates are the most important because of their mineral affinity, but the mineral 

affinities of BPs change with their other two substituents (R1 and R2). Specifically, BPs 

having hydroxyl or amine group at their R1 substituent show increased affinity to bone. 

Similarly, the R2 substituent might affect the bone affinity of BPs. Therefore, the binding 
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affinities of the HBPs were measured and compared with alendronate, which is a 

commercially available BP having high affinity to HA. BPs  are known to inhibit the 

crystal growth of HA and target bone surfaces under active formation and resorption of 

HA (120). Therefore, a crystal growth inhibition assay, which is a widely used method 

for determination of binding affinity of BP,(24, 121) was performed to measure the 

affinities of HBPs to HA. During the experiments, a favorable environment for crystal 

growth of HA was maintained. The crystal growth of HA was measured in presence of 

various concentration HBPs. The pH was maintained at 7.4 by addition of titrant, and the 

volume of titrant added was recorded as a measure of HA crystal growth. A range of 

experiments were performed in presence of various concentrations of HBPs and 

alendronate. For every experiment of HA crystal growth, a plot of the volume of titrant 

added vs time was generated. A typical set of plots is depicted in Figure 3.1. The growth 

rate (R) at any instant can be described by 

𝑅𝑅 = 𝛽𝛽
d𝑉𝑉
dt

                                                                                  (S1) 

where dV/dt is the rate of titrant addition, and β is a constant whose value reflects the 

titrant concentration with respect to the surface area of HA during crystal formation;  β 

was considered as constant for all experiments.   
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Figure 3.1. Plots of HA crystal growth in presence of varying concentrations of 

alendronate and HBPs (1-3) at pH 7.4 and 37 °C (seed mass = 5 mg); ●, ■, ▲, ♦, +, ▼ 

represent the concentrations of HBPs, 0, 1.0 × 10-7, 2.5 × 10-7, 5.0 × 10-7, 7.5 × 10-7, and 

10 × 10-7 M, respectively. 
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Figure 3.2. Plots of HA crystal growth in presence of varying concentrations of HBPs (4-

7) at pH 7.4 and 37 °C (seed mass = 5 mg); ●, ■, ▲, ♦, +, ▼ represent the concentrations 

of HBPs, 0, 1.0 × 10-7, 2.5 × 10-7, 5.0 × 10-7, 7.5 × 10-7, and 10 × 10-7 M, respectively. 
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Figure 3.3. Relative adsorption affinity constants (KL) of alendronate (Alen) and HBPs 

1-7 measured at varying concentrations of BPs (C=1.0 × 10-7, 2.5 × 10-7, 5.0 × 10-7, and 

7.5 × 10-7 M) at pH 7.4 and 37 °C. Data are the average ± one standard deviation (n = 4). 
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It can be noted from Figure 3.1 and 3.2 that the HA crystals appear to grow non-

linearly during the early stage of the experiment due to initial seeding of the HA crystals. 

The flat line parallel to the X-axis indicates the complete prevention of crystal growth.  A 

pseudo-Langmuir adsorption isotherm can be used to describe the rates of HA crystal 

growth and can be expressed by 

𝑅𝑅0

𝑅𝑅0 −  𝑅𝑅𝑖𝑖
= 1 +

1
𝐾𝐾𝐿𝐿𝐶𝐶

                                                                    (S2) 

where C is the concentration of BP added, and R0 and Ri are the rates of HA crystal 

growth in the absence and presence of BP, respectively.  

By rearranging equations S1 and S2, the relative adsorption affinity constants (KL) 

can be described by 

𝐾𝐾𝐿𝐿 =
𝑑𝑑𝑑𝑑0
𝑑𝑑𝑑𝑑 −

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

𝐶𝐶 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

                                                                         (S3)    

where dV0/dt and dVi/dt are the rates of titrant addition at early stage of the experiment in 

the absence and presence of BP, respectively. 

 The relative trend of binding affinities of alendronate (1) and HBPs (1-7) at 

various concentrations of BPs is shown in Figure 3.3. The shorter length HBPs (2 and 3) 

showed significantly higher binding affinities than alendronate (p<0.05). Overall, all 

seven HBPs showed high binding affinities to HA, which makes them suitable for drug 

targeting.  

 Apart from its targeting ability, the ideal drug-carrier should not induce 

unnecessary toxic effects, especially against bone-forming cells (osteoblasts). HBPs 

could also have toxic affects towards other cells and tissues or affect cell differentiation, 

which could cause substantial morbidity (124). The primary purpose of this study was to 
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demonstrate the potential of HBPs for targeted delivery of the attached drugs at bone-

resorption sites through in vitro experiments. Therefore, HBPs at various concentrations 

(10-6 - 10-4 M) were evaluated for their possible cytotoxicity and apoptotic effect against 

pre-osteoblasts. The intracellular protein measured after 24, 48, and 72 h treatment of 

HBPs, showed no abnormal changes in cell proliferation (Figure 3.4). The amount of 

protein in the HBP-treated cells was similar to the control over the period of 72 h. Cell 

viability studies were performed and metabolic activity was quantified using the 

commercially available WST-1 kit. MC3T3-E1 cells exposed to HBPs for 72 h showed 

activity similar to that of control (Figure 3.5). Although, the metabolic activity of cells 

exposed to 10-4 M HBPs for 72 h showed 10% decrease in cell viability, the difference 

was not statistically significant.  

Because caspases are required for cell apoptosis, the possibility of HBP-induced 

cell apoptosis was evaluated by measuring caspase-3 activity. Caspase-3 is a cysteine-

aspartic acid protease and cleaves Ac-DEVD-AFC releasing the fluorogenic AFC, which 

can be quantified by fluorescence spectroscopy (125). Apoptosis of MC3T3-E1 pre-

osteoblasts was confirmed by treatment with 10-6, 10-5, or 10-4 M etoposide for 72 h, 

which resulted in 2-3 fold increase in caspase-3 activity (results not shown). As shown in 

Figure 3.5, however, HBPs did not induce apoptosis in MC3T3-E1 pre-osteoblasts after 

72 h of exposure; all treatments resulted in statistically similar levels of caspase activity. 

Because HBPs showed no apoptotic and cytotoxic effects on pre-osteoblasts, HBPs could 

be utilized as a vehicle for drug delivery applications.  
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Figure 3.4. Intracellular protein contents showing MC3T3-E1 cell growth for 72 h after 

HBP treatment. Plots A, B, and C show results for exposure to HBPs at 1 × 10-6, 1 × 10-5, 

and 1 × 10-4 M, respectively. Error bars denote standard deviations.  
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Figure 3.5. MC3T3-E1 cell viability measured after 72 h of incubation with no HBP 

(CON) and HBPs 1-7 at different concentrations (1 × 10-6, 1 × 10-5, and 1 × 10-4 M). The 

data are expressed as percentage of the control. The white, blue, orange, and green bars 

represent treatment of no HBP (control), 1 × 10-6, 1 × 10-5, and 1 × 10-4 M HBPs, 

respectively. Error bars denote standard deviations. 
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Figure 3.6. Apoptosis of MC3T3-E1 cells measured 72 h following addition of no HBP 

(CON) and HBPs 1-7 at three different concentrations (1 × 10-6, 1 × 10-5, and 1 × 10-4 M). 

The data are expressed as percentage of the control. The white, blue, orange, and green 

bars represent treatment of no HBP (control), 1 × 10-6, 1 × 10-5, and 1 × 10-4 M HBPs, 

respectively. Error bars denote standard deviations. 
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HBP 1 was used to demonstrate the targeted delivery of therapeutic agents to 

bone. In particular, in vitro drug targeting to HA and drug release from the HA surface 

was demonstrated using 4-NBA as a model drug. 4-NBA was conjugated with HBP 1 in 

DMSO/water, and then the conjugate was immobilized on HA by adding excess of HA 

particles to the reaction mixture at RT. HA with the attached conjugate was separated by 

centrifugation and washed thoroughly with water to remove unconjugated 4-NBA 

(Scheme 3.1). The triggered release of 4-NBA from the immobilized 4-NBA-HBP 

conjugate on HA was demonstrated at various pH as shown in Figure 3.7. HA with the 

attached conjugate was resuspended in 0.1 M sodium acetate (pH 5.0, 6.0 or 7.4) and 

incubated at 37 °C. The suspensions were centrifuged at particular time points, and the 

absorbance of the supernatants was measured at 265 nm using a UV-vis 

spectrophotometer to calculate the amount of released 4-NBA. It was observed that in the 

first 12 h of incubation, there was approximately 60%, 30% and 20% of 4-NBA released 

from the immobilized conjugate at pH 5.0, 6.0, and 7.4, respectively. 

 To confirm that release of 4-NBA occurs via hydrazone cleavage rather than 

through desorption of the conjugate from the HA surface, 4-NBA was conjugated to 

alendronate (8) through formation of an amide bond. The conjugate was immobilized on 

HA surface by adding excess of HA particles, and then the particles were washed 

thoroughly with water to remove unconjugated 4-NBA and non-specifically adsorbed 

conjugate molecules. HA with the attached conjugate was treated similarly as described 

above, and the amount of released 4-NBA was measured by UV-vis spectroscopy 

(Scheme 3.1). From the control experiments, it was observed that there was no significant 

release of 4-NBA through desorption from the immobilized conjugate 37 (Figure 3.7).  
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Figure 3.7. Percent release of 4-NBA (percentage of cleaved hydrazone bonds) from the 

immobilized conjugate on HA surface at 37 °C. Solid line and dotted line represent 4-

NBA release from 33 and 37, respectively. 
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CONCLUSIONS 

   

In conclusion, we have reported the use of bifunctional HBPs (1-7) for targeted 

delivery of therapeutic agents to bone. Through the HA crystal growth inhibition assays, 

some of the HBPs showed significantly higher binding affinities to HA than alendronate. 

Through in vitro experiments, HBPs demonstrated no apoptotic and cytotoxic effects on 

MC3T3-E1, a pre-osteoblast cell. 4-NBA, a model drug, was bound to HA through a 

HBP, and its in vitro release at various pH was recorded. It was observed that hydrolysis 

of hydrazone bonds in the conjugate and subsequent release of 4-NBA was slow at 

physiological pH, but much faster at pH lower than physiological, such as the pH in bone 

resorption sites and sites of wound healing (101, 102). Consequently, HBP-drug 

conjugates could be useful in locally delivering attached drugs to the resorptive 

microenvironment of bone tissue. Overall, this approach should improve the therapeutic 

index by boosting pharmacological efficacy and diminishing undesirable side effects. 
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CHAPTER FOUR 

 

ORIENTED IMMOBILIZATION OF PROTEINS ON HYDROXYAPATITE 

SURFACE USING BIFUNCTIONAL BISPHOSPHONATES AS LINKERS 

 

HBP
Protein

 

 

Approaches to immobilize proteins are widely investigated because of their 

diverse applications in various fields such as protein microarrays, biosensors, 

biotechnology, chemical manufacturing, nanotechnology, single molecule enzymology, 

and drug discovery (126). Oriented immobilization methods that maintain the native 

structure and proper orientation of the target protein are desirable because through 

oriented immobilization the proteins can be predisposed in a manner that is optimal for 

binding to their respective ligands. Proteins have been immobilized on surfaces via three 

different approaches: physical adsorption, bioaffinity binding, and covalent bonding. 

Physical adsorption is the most straightforward type of immobilization in which proteins 

are adsorbed on the surface with weak non-covalent interactions. Conversely, because of 

the random and weak nature of the attachment, proteins may lose their activity as a result 

of blocking of the active site or leaching from the surface after immobilization (74). 

Bioaffinity immobilization of proteins is mainly based on the specific interaction between 
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two biomolecules, such as enzymes binding to surfaces modified with their 

corresponding substrates, cofactors, or inhibitors. The use of bioaffinity for 

immobilization may result in blockage of the active site of the protein and reduction of its 

activity. In addition, bioaffinity is usually a reversible interaction under specific 

conditions, and therefore it may lead to reversible immobilization (127, 128). Covalent 

immobilization yields proteins bound to a solid surface through a strong covalent linkage. 

Functional groups, such as amines, carboxylates, thiols or hydroxyls, in the side chain of 

exposed amino acids in the protein have been used in the formation of irreversible 

linkages with surfaces (74). Since multiple copies of the same functional group usually 

exist on the protein’s surface, covalent immobilization is usually not selective. Oriented 

immobilization is achieved only when the protein contains just one copy of the reactive 

functional group, which is usually realized through selective chemical reactions or by 

protein engineering (75). Several methods, such as Staudinger ligation, thiol-ene reaction, 

thiazolidine ring formation, cycloaddition, and Diels-Alder product formation, have been 

explored for oriented immobilization of proteins and small molecules for various 

applications (75, 76, 129). However, they have not been adequately explored for bone 

implant applications. 

A host of materials, such as titanium, stainless steel, cobalt-based alloys, and HA, 

have been explored as bone implant materials (62). Naturally occurring HA has similar 

composition to bone mineral and, therefore, it has been widely used for orthopedic 

implants as well as an implant coating material. The interface between implants and the 

body plays a crucial role in determining success or failure of the prosthesis. Stability of 

the bone-to-implant interface can be improved chemically by incorporating organic 
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material and physically by optimizing the surface topography of implants (64-66). 

Covering the implant surface with biomolecule is one of the most effective ways of 

stimulating specific cell and tissue response at the bone-implant interface (67-69). 

Moreover, oriented immobilization of therapeutic biomolecules on HA could provide 

additional benefits to implants, such as faster osseointegration, prevention of infection, 

etc.  Herein, a novel, versatile approach of oriented immobilization of proteins is 

described, by employing rationally designed bifunctional bisphosphonates.  

Bisphosphonates (BPs) are chemical analogues of endogenous pyrophosphate and 

have been investigated for protein immobilization applications on natural and artificial 

biomaterials, such as bone and HA (51, 130-132). BPs are bone-seeking molecules, 

having high affinity to bone and HA. They are organic molecules with, typically, two 

substituents (R1 and R2) in their structure, along with two phosphonate groups attached to 

their geminal carbon. Various BP analogues and their conjugates have been utilized in 

treatment of skeletal diseases, such as osteoporosis, bone metastasis, and hypercalcemia 

(33, 133). Further, BPs have been used to administer radiopharmaceuticals and imaging 

agents for diagnostic purposes (94). Studies have also focused on determining the affinity 

to bone and HA of BPs conjugated with protein (130-132). However, to date, BPs have 

not been conjugated site-selectively to proteins. In the aforementioned studies, BPs were 

attached non-specifically to multiple sites of proteins, which led to random orientation of 

proteins on the surface (51).  In this study, our objective was to demonstrate that 

bifunctional BPs could facilitate the oriented immobilization of proteins on HA. Toward 

this goal, we used seven bifunctional HBPs, with various length and lipophilicity, as 

linkers between the protein and the HA surface. All seven HBPs, whose synthesis have 
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been described in Chapter Two, were demonstrated to have high affinity towards HA 

surface (described in Chapter Three) (134). EGFP with an N-terminal serine and β-

lactamase with an N-terminal threonine were used as model proteins to demonstrate their 

site-specific immobilization on the HA surface. Specifically, both proteins were oxidized 

selectively to obtain an N-terminal aldehyde and immobilized on the HA surface through 

HBPs. The overall purpose of the present studies was to investigate the feasibility of 

oriented immobilization of protein on HA through HBPs and to evaluate the bioactivity 

of HBP-immobilized protein. Such biomaterials should find application in bone 

regeneration and targeted protein delivery therapies. 

 

EXPERIMENTAL SECTION 

 

Materials. Reagent grade HA powder, 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid sodium salt (HEPES), tris(hydroxymethyl)aminoethane 

hydrochloride (Tris-HCl), ampicillin, isopropyl-1-β-D-thiol-1-galactopyranoside (IPTG), 

ethylenediaminetetraacetic acid (EDTA), 2,4,6-trinitrobenzenesulfonic acid (TNBS), 

sodium borate decahydrate, potassium hydroxide, sodium acetate, sodium chloride, 

sodium hydroxide, sodium periodate, ethylene glycol, agarose, β-lactamase from 

Enterobacter cloacae, Luria Bertani (LB) broth were purchased from Sigma-Aldrich (St. 

Louis, MO). Calcium chloride, hydrochloric acid, potassium dihydrogen phosphate, and 

sodium phosphate were obtained from EMD Chemicals (Gibbstown, NJ). The pEGFP 

vector was obtained from Clontech Laboratories (Mountain View, CA). The pTWIN1 

vector and all restriction endonucleases were obtained from New England BioLabs 
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(Ipswich, MA). Oligonucleotide primers used in PCR were custom-synthesized by 

Integrated DNA Technologies (Coralville, IA). The BCA assay kit was purchased from 

Pierce Chemical (Rockford, IL). All solutions and buffers were prepared using deionized 

water, which was produced using a Milli-Q water purification system (Millipore, 

Bedford, MA). All chemicals were reagent grade or better.      

 

Apparatus. All UV-vis spectroscopy experiments were performed with an 

Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, Santa Clara, CA). All 

UV-vis spectroscopy readings are background-subtracted. Fluorescence measurements 

were performed on a Cary Eclipse fluorescence spectrophotometer (Varian, Walnut 

Creek, CA). Polymerase chain reactions (PCR) were performed in a Perkin-Elmer 

GeneAmp PCR system 2400 (Norwalk, CT). Cell lysates were centrifuged using an 

Avanti J-25I centrifuge (Beckman Coulter, Brea, CA). HA samples were centrifuged 

using centrifuge-5417R (Eppendorf, Wesseling-Berzdorf, Germany). 

 

Substrate and Linkers Used for Protein Immobilization. Reagent grade HA 

powder was used as solid support for immobilization experiments. Slurries of HA in 

various buffers were used without any pretreatment for protein immobilization. Seven 

HBPs (1-7) of various length and lipophilicity, whose synthesis have been described in 

Chapter Two (134), were used as linkers between the HA and the protein for 

immobilization of proteins (Figure 2.1).         
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Modification of Proteins. Two different proteins were used as model proteins, 

EGFP and β-lactamase. EGFP and β-lactamase were oxidized at their N-terminus, which 

was a serine and threonine, respectively.       

The gene encoding EGFP was cloned by PCR using plasmid pEGFP as the 

template and the primers, GGT GGT TGC TCT TCC AAC TCG ACT CTA GAG GAT 

CCC CGG GTA CCG (forward) and GGT CTG CAG TTA CTT GTA CAG CTC GTC 

CAT GCC GAG (reverse). The restriction enzymes SapI (forward primer) and PstI 

(reverse primer) digestion sites are underlined. The PCR product was purified with 

agarose gel electrophoresis, and then doubly digested with SapI and PstI. The pTWIN1 

vector was similarly digested with the same pair of enzymes. After digestion, the PCR 

product and the vector were gel-purified and ligated to yield plasmid pTWIN1-EGFP. In 

this construct, a stretch of 12 residues “STLEDPRVPVAT” was added to the N-terminus 

of EGFP. This sequence serves two purposes. First, it introduced a serine at the N-

terminus of the protein after internal self-splicing, which can be used after oxidation (vide 

infra) for immobilization. Second, it worked as a spacer between the surface and EGFP to 

reduce the risk of compromising fluorescence emission. The DNA sequence of the 

pTWIN1-EGFP was confirmed by DNA sequencing (Davis Sequencing, Davis, CA). 

Plasmid pTWIN1-EGFP was then transformed into E. coli cells for protein expression. 

Cells were grown in cultures of LB broth containing 100 μg/mL of ampicillin at 37 °C 

with shaking at 250 rpm. When the OD600 of the culture reached 0.6-0.7, expression was 

induced with the addition of 100 μg/mL of IPTG. Cultures were incubated for an 

additional four hours under the same conditions. The cells were harvested by 

centrifugation at 6000 rpm for 20 min at 20 °C. The supernatant was discarded, and the 
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pellet was resuspended in 5 mL of Tris-HCl buffer (20 mM Tris-HCl, 500 mM NaCl, 1 

mM EDTA, pH 8.5). Resuspended bacteria were sonicated on ice for 5 min with 10-s 

on/off pulses to lyse the cells. The cellular debris was removed by centrifugation for 25 

min at 10,000 rpm and 20 °C. The protein in the supernatant was purified using affinity 

chromatography according to the manufacturer’s recommendations (Green Fluorescent 

Protein Purification Kit, BIO-RAD Laboratories, Hercules, CA). Briefly, the supernatant 

containing the protein was added to the binding buffer (4 M (NH4)2SO4, pH 7.0) to obtain 

a protein-buffer solution (2 M (NH4)2SO4, pH 7.0). The disposable column was 

equilibrated with 2 M (NH4)2SO4, pH 7.0, and then loaded with the protein-buffer 

solution. The column was washed for a total of three times with a wash buffer (1.3 M 

(NH4)2SO4, pH 7.0). The bound EGFP protein was eluted with a low salt elution buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 7.0). The purity of the eluting fractions was 

evaluated by SDS-PAGE using 12.5% polyacrylamide PhastGels (GE Healthcare, 

Piscataway, NJ) followed by gel development using silver staining. The protein 

concentration was measured using the BCA protein assay with bovine serum albumin 

(BSA) as the standard.      

EGFP was oxidized using a sodium periodate treatment, which converts the N-

terminal serine to an N-terminal aldehyde moiety (135). Purified EGFP at a concentration 

of 1.0 mg/mL in phosphate buffer (10 mM sodium phosphate, 200 mM NaCl, pH 7.0) 

was used for the reaction. Sodium periodate was prepared freshly in water and added into 

the EGFP solution at 5-fold molar excess. The mixture was incubated for 20 min at room 

temperature (RT). The reaction was quenched by the addition of 7-fold molar excess of 

ethylene glycol over sodium periodate (Scheme 4.1). The reaction mixture was then 
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dialyzed against the same buffer (10 mM sodium phosphate, 200 mM NaCl, pH 7.0) 

overnight at 4 °C.  

β-Lactamase was treated with sodium periodate to convert the N-terminal 

threonine to a N-terminal aldehyde (Scheme 4.1). The reaction mixture was dialyzed 

against HEPES buffer (50 mM HEPES, pH 7.4) overnight at 4 °C. The concentration of 

the proteins was determined using the BCA protein assay with BSA as the standard. 

 

Measurement of Fluorescence and Enzyme Activity of Modified Proteins. 

Equal amounts of EGFP and oxidized EGFP in phosphate buffer (10 mM sodium 

phosphate, 200 mM NaCl, pH 7.0) were used for fluorescence measurement to determine 

the change in fluorescence after oxidation. The fluorescence of EGFP and oxidized EGFP 

were measured at excitation and emission wavelengths of 485 and 520 nm, respectively, 

under the same conditions.   

Enzymatic activities of β-lactamase and oxidized β-lactamase were measured to 

determine the effect of oxidation on protein activity. Equal amount of β-lactamase and 

oxidized β-lactamase were used for kinetic experiments. The enzymatic activity of β-

lactamase and oxidized β-lactamase was measured using the substrate cefazolin. β-

Lactamase catalyzes the hydrolysis the β-lactam ring of cefazolin, leading to a decrease 

in absorbance at 263 nm. In particular, β-lactamase and oxidized β-lactamase in HEPES 

buffer (50 mM HEPES, pH 7.4) were incubated with a 100 µM cefazolin solution freshly 

prepared in the same buffer for 20, 40, 60, 80, and 100 s at RT. The absorbance at 263 

nm was measured for each sample, and the absorbance vs time was plotted. 
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Surface Modification with HBPs. HBPs were immobilized on HA particles and 

quantified by reaction with TNBS, which reacts with hydrazine groups to form 

trinitrophenyl derivatives (136-138). HA particles (1.0 mg) were treated with 1 x 10-4 M 

HBPs in HEPES buffer (50 mM HEPES, pH 7.4) for 1 h at RT. The samples were 

washed thoroughly with the same buffer followed by deionized water (Scheme 4.1). HA 

particles without treatment with HBP were used as control. HBP-treated samples along 

with the control were incubated with 0.1% (w/v) TNBS in 3% (w/v) sodium borate at 70 

°C for 5 min. The samples were washed with deionized water and then hydrolyzed with 1 

M NaOH at 70 °C for 10 min. The released yellow product was proportional to the 

number of hydrazine groups. The amount of immobilized HBPs was measured indirectly 

by measuring the absorbance of the hydrolyzed reaction products at 410 nm. Standard 

curves were prepared by direct hydrolysis of TNBS in 1 M NaOH. 

 

Immobilization and Quantification of Protein. EGFP was immobilized on HA 

particles using seven HBPs (1-7). HBP-modified HA particles (1.0 mg) were treated with 

0.1 mg of oxidized EGFP in phosphate buffer (10 mM sodium phosphate, 200 mM NaCl, 

pH 7.0) for 1 h at 4 °C (Scheme 4.1). For the control studies, oxidized EGFP was simply 

adsorbed on HA particles under the same conditions. The samples were centrifuged for 5 

min at 3,000 rpm, and the amount of immobilized EGFP was determined by measuring 

the fluorescence of the supernatant at excitation and emission wavelengths of 485 and 

520 nm, respectively.  

β-Lactamase was immobilized on HA particles using seven HBPs (1-7). For 

immobilization on the HA particles, 1.0 mg of HBP-modified HA particles were treated 
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with 0.3 mg of oxidized β-lactamase in HEPES buffer (50 mM HEPES, pH 6.5) for 1 h at 

RT (Scheme 4.1). For the control studies, β-lactamase was simply adsorbed on HA 

particles under the same conditions. The samples were thoroughly washed with HEPES 

buffer (50 mM HEPES, pH 7.0) and deionized water. The amount of β-lactamase 

immobilized on HA was measured using the BCA protein assay with BSA as the standard 

by a slight modification in the manufacturer’s protocol. β-Lactamase immobilized HA 

samples were incubated directly in the working reagent of BCA assay for 1 h at 37 °C. 

The samples were centrifuged for 5 min at 3,000 rpm, and the absorbance of the 

supernatants was measured at 570 nm.    

 

Enzymatic Activity of β-Lactamase and Determination of Kinetic Constants. 

The enzymatic activity of β-lactamase immobilized on HA particles, adsorbed β-

lactamase, and free β-lactamase in solution was measured using the substrate cefazolin 

and monitoring the hydrolysis reaction at 263 nm. Briefly, cefazolin solutions were 

prepared at different concentrations (0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 µM) 

in HEPES buffer (50 mM HEPES, pH 7.4). A fixed volume of β-lactamase immobilized 

HA particles was added to each cefazolin solution and treated for 15 s at RT. Similarly, 

HA particles with adsorbed β-lactamase and free β-lactamase in solution were exposed to 

various concentrations of cefazolin for 15 s at RT. Each reaction mixture was centrifuged 

immediately, and the absorbance of the supernatant was measured at 263 nm. The 

reaction rates were calculated from the change in absorbance. The substrate saturation 

curves of various β-lactamase samples with cefazolin were fitted into Michaelis-Menten 
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kinetics using GraphPad, and the corresponding KM, kcat, and kcat/KM values were 

calculated.       

 

Statistical Analysis. Data presented are mean ± standard deviation. A minimum 

of three replicates were used for each experiment. One-way analysis of variance 

(ANOVA) was conducted using GraphPad software (San Diego, CA). The results were 

considered significantly different when p< 0.05. 

 

RESULTS AND DISCUSSION 

 

Immobilization of biomolecules has been the subject of active investigation. To 

ensure activity, factors such as the interaction between the biomolecule and the 

immobilization surface, and the orientation of the biomolecule on the surface need to be 

considered (139). Various methods have been explored for immobilization of proteins on 

solid surfaces, including several bone implant interfaces (70-73). However, the majority 

of the methods employed are based on linking the protein covalently to the implant 

surface via surface-exposed functional groups on the protein, including amino, 

carboxylate, and thiol groups. Such methods result in linkages that are mostly random, 

and multiple bonds may form between each protein molecule and the surface. Therefore, 

such immobilization approaches may compromise the activity of the protein. In addition, 

the active site of the immobilized protein may be blocked during random immobilization, 

which may lead to drastically decreased bioactivity. In addition, the structure of the 

protein may also be affected by protein-surface interactions and/or steric hindrance. 
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Oriented immobilization may minimize or overcome the drawbacks of random 

orientation. Successful oriented immobilization requires selective functionalization of 

biomolecules, tailoring of the surface, or both (136). Various approaches have been 

explored for oriented immobilization of biomolecules. Most of these approaches rely on 

the formation of a specific covalent linkage between the protein and the target surface or 

a specific interaction between two biomolecules (76). However, oriented immobilization 

has been rarely reported for immobilization of biomolecules on biomaterials.  

In this study, EGFP and β-lactamase were used as model proteins to develop an 

oriented immobilization method of proteins on mineralized biomaterials, such as HA. 

EGFP is a green fluorescent protein, which was modified genetically to contain an N-

terminal serine. On the other hand, β-lactamase is an enzyme produced by a broad 

spectrum of bacteria that hydrolyzes β-lactam antibiotics to produce a change in the 

absorption spectrum, which can be used to monitor enzymatic activity. It is a very 

efficient catalyst and instills resistance to β-lactam antimicrobial agents, such as 

penicillins, cephalosporins, and cefamycins, by breaking their four-member ring 

structure. β-Lactamase from Enterobacter cloacae has a threonine at its N-terminus. 

Serine and threonine are the only amino acids that have a vicinal amino alcohol. Vicinal 

diols and amino alcohols can be oxidized with periodate to obtain an aldehyde functional 

group that can be used for attachment. In our work, the N-terminal serine and threonine 

in EGFP and β-lactamase, respectively, were oxidized with periodate to obtain a single 

aldehyde, which was used to attach the proteins to the HA surface. The rate of oxidation 

of vicinal diol is 100-1000 fold slower than vicinal amino alcohol (140). Therefore, this 
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method of generating N-terminal aldehydes could also be applied to glycoproteins 

without degrading the carbohydrate region.  

The fluorescence emission at 520 nm of EGFP and oxidized EGFP were 

measured and compared. No significant change in fluorescence was observed after 

oxidation of EGFP. To evaluate the effect of oxidation of β-lactamase, the enzymatic 

activities of the same amount of β-lactamase and oxidized β-lactamase were determined 

using 100 µM cefazolin as the substrate. The enzymatic activity of β-lactamase was 

reduced by about 30% upon periodate treatment, indicating that oxidation has some effect 

on the protein. Therefore, it can be stated that sodium periodate oxidation of the N-

terminus serine or threonine of a protein might affect the activity of the protein, and this 

could vary from protein to protein. Other than vicinal amino alcohols and diols, amino 

acids that can be oxidized by periodate treatment are methionine, cysteine, tyrosine, 

tryptophan and histidine. However, these amino acids are much less reactive toward 

periodate. Under the mild experimental conditions used for the oxidation of N-terminal 

serine and threonine of EGFP and β-lactamase, respectively, damage to other periodate-

reactive groups of the proteins is limited, which is manifested by no change in the 

fluorescence of EGFP and limited change in the activity of β-lactamase.   

 

 

 

 

 

 



 111 

Scheme 4.1. Oriented immobilization of β-lactamase and EGFP on HA through HBPs 
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Figure 4.1. Fluorescence of the equal amount of EGFP and oxidized-EGFP in phosphate 

buffer (10 mM sodium phosphate, pH 7.0, 200 mM NaCl) at RT. Data are average ± one 

standard deviation (n = 3). 
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Figure 4.2. Enzyme activity of β-lactamase and oxidized β-lactamase on 100 µM 

cefazolin in HEPES buffer (50 mM HEPES, pH 7.4); ●, ■ represent β-lactamase, and 

oxidized β-lactamase. Data are the average ± one standard deviation (n = 3). Some error 

bars are obstructed by the points and are overlapped with each others. 
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In this study, HA was used as a solid surface for protein immobilization. The unit 

cell of HA has a chemical formula of Ca10(PO4)6(OH)2, with two primary sites capable of 

binding, namely, Ca2+ for anions and PO4
3- for cations (20). HA has a similar 

composition as that of the mineral component of bone, and is a bioactive prosthetic 

material, which can undergo in vivo bone bonding (141, 142). Because of these 

properties, HA has been widely used in bone implant applications. Moreover, as a result 

of the development of several effective coating techniques, such as direct current plasma 

spraying, radio frequency plasma spraying, and suspension plasma spraying, HA has 

been broadly used as a coating material for various metal implants (142, 143). Given the 

extensive use of HA in bone implant applications, the focus in this study was the site-

specific immobilization of proteins on the HA surface. Since BPs have a high affinity 

toward HA, bifunctional BPs were used as linkers between proteins and the HA surface.       

BPs have been approved for the treatment of various skeletal diseases and, 

therefore, are biocompatible and could be used for implant modification. BPs have 

excellent anti-resorptive properties and affinity to bone. The two phosphonates of BPs 

account for their bone-seeking ability via Ca2+ chelation.  However, the R1 and R2 groups 

of BPs also contribute to their bone affinity. Since, BPs with hydroxyl or amine at R1 

demonstrate tridentate binding and, thus, higher affinity to bone or HA (20), for this 

study we chose a series of hydrazine-BP (HBP) derivatives previously reported by our 

laboratory. The enhanced affinity of HBPs was measured using a crystal growth 

inhibition study (24, 134). HBPs have a hydrazine on their R2 substituent that is linked 

with various length and lipophilicity spacer arms to the bisphosphonate group. Hydrazine 

reacts with aldehyde at low pH (4.5 to 7.4) (144-147), where the lysine amine groups of 
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the protein are protonated, rendering them unreactive. Moreover, hydrazines react faster 

than amines to aldehydes and ketones, and reaction of hydrazines with aldehydes results 

in the formation of a stable hydrazone bond. In that regard, HBPs are well-suited 

bifunctional linkers for the oriented immobilization of proteins containing an aldehyde, 

and were used to target and immobilize proteins on the surface of HA particles.  

It has been observed that several factors affect the bioactivity of immobilized 

proteins, including the surface density of functional groups as well as the length and 

lipophilicity of the spacer between the surface and the protein (148-150). Higher density 

of functional groups on the surface could cause a higher number of immobilized 

biomolecules, which may result in steric hindrance as a result of crowding, thus blocking 

the active site of biomolecules. A lower density of functional groups should result in a 

lower number of the immobilized biomolecules, but this does not necessarily cause 

improvement in the accessibility and activity of the biomolecule (151); the latter could 

occur if the site from which the biomolecule is immobilized misorients the protein in a 

way that its binding/active site is blocked by the immobilization surface. In other words, 

the activity of the biomolecule does not solely depend on the density of the functional 

groups on the surface or the number of biomolecules immobilized on the surface. The 

objective was to investigate the effect of the above-mentioned factors on the accessibility 

and activity of the immobilized protein. Therefore, HBPs of various length and 

lipophilicity were used for immobilization of proteins. The surface density of hydrazines 

on the HA surface following treatment with various HBPs was determined with a TNBS 

assay as shown in Figure 4.3. The TNBS assay is generally used for the detection of 

amine groups, however, it has also been used for quantification of hydrazines (137, 138). 
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The results of the TNBS assay show that neither the length nor the lipophilicity of the 

spacer affects significantly the surface density of the hydrazine on the surface of HA.  

Oxidized EGFP was immobilized on the HBP-modified HA particles, and the 

amount of immobilized EGFP was measured using fluorescence. The extent of binding 

was determined by measuring the difference between the fluorescence of the supernatant 

before and after the immobilization of oxidized EGFP on HA (Figure 4.4). The change in 

length and lipophilicity of HBPs had no statistically significant effect on the amount of 

EGFP immobilized. However, it was observed that the use of HBPs as linkers for the 

immobilization of EGFP increased significantly the amount of EGFP immobilized over 

EGFP that was simply adsorbed on HA (p<0.05). The lower amount of adsorbed EGFP 

can be explained by the tendency of HA to adsorb proteins with an overall positive 

charge while repelling proteins that are overall negatively charged (152, 153). EGFP has 

a pI of 5.7 and possesses an overall negative charge at pH of 7.0, which is the pH at 

which the experiments were conducted. On the contrary, bisphosphonates have high 

affinity for HA.  Consequently, modification with HBP results in higher amounts of 

immobilized EGFP. 
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Figure 4.3. Surface density of hydrazine groups on HA surfaces modified with seven 

different HBPs (1-7) by TNBS assay. An amount of 1 mg HA particles was treated with 1 

× 10-4 M of the corresponding HBP (1-7). HA refers to unmodified HA. Data are the 

average ± one standard deviation (n = 9). (* indicates the values are significantly 

different from others p<0.05). 

 

 

 

 

 

 

 

 

 



 118 

HA-1-
EGFP

HA-2-
EGFP

HA-3-
EGFP

HA-4-
EGFP

HA-5-
EGFP

HA-6-
EGFP

HA-7-
EGFP

HA-E
GFP

0

200

400

600

800

1000

1200

1400

1600

R
el

at
iv

e 
Im

m
ob

ili
za

tio
n 

of
 E

G
FP

 (%
 )

*

 

Figure 4.4. Immobilization of EGFP on HA surfaces determined by fluorescence. EGFP 

was immobilized on HA surfaces via seven different HBPs (1-7) and by simple 

adsorption. The corresponding EGFP is denoted as HA-1-EGFP through HA-7-EGFP. 

HA-EGFP refers to EGFP physically adsorbed on HA in the absence of HBP. The Y-axis 

is normalized relative to the amount of EGFP immobilized by adsorption (HA-EGFP). 

Data are the average ± one standard deviation (n = 3). (* indicates the values are 

significantly different from others p<0.05). 
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Oxidized β-lactamase was also immobilized on the HBP-modified HA particles 

through a stable hydrazone linkage between the aldehyde at the N-terminus of oxidized 

β-lactamase and surface hydrazines. The amount of immobilized β-lactamase was 

measured using the BCA assay (Figure 4.5). The lowest binding was observed when β-

lactamase was attached to HA through the shorter chain HBP 1 and 5 (p<0.05). β-

Lactamase that was simply adsorbed on HA and immobilized through HBP 2, 3, 4, 6, and 

7 gave statistically indistinguishable results in terms of the amount of immobilized 

enzyme (p<0.05). In general, HA has an elevated affinity to proteins that possess a 

positive charge (152, 153). β-Lactamase from Enterobacter cloacae has a pI of 7.8 (154), 

and therefore the protein has an overall positive charge at pH 6.5, which is the pH at 

which the experiments were conducted. This explains why β-lactamase adsorbs readily 

on HA. From Figure 4.5, it can also be stated that the lipophilicity of the HBPs does not 

show any significant effect on the amount of immobilized β-lactamase. 
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Figure 4.5. Immobilization of β-lactamase on HA surfaces determined by the BCA 

protein assay. β-Lactamase was immobilized on HA surfaces via seven different HBPs 

(1-7) (HA-1-BL through HA-7-BL) and by simple adsorption (HA-BL). The Y-axis is 

normalized relative to the amount of β-lactamase immobilized by adsorption (HA-BL). 

Data are the average ± one standard deviation (n = 6). (** indicates the values are 

significantly different from HA-1-BL and HA-5-BL p<0.05). 
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The enzymatic activities of HBP-immobilized β-lactamase and adsorbed β-

lactamase were determined through the hydrolysis of the substrate cefazolin. For 

comparison purposes, the activity of free β-lactamase in solution was also measured 

using the same substrate under similar reaction conditions. The hydrolysis of cefazolin 

was also determined in the presence of “bare” HA and HBP-modified HA as negative 

controls. The reaction data were fitted to a Michaelis-Menten kinetic model. The 

Michaelis constant (KM) and the maximum velocity (Vmax) were calculated using 

GraphPad. The turnover number of β-lactamase (kcat), which represents the maximum 

number of the substrate molecules that undergoes hydrolysis per catalytic site of the 

active enzyme per unit time, was also calculated using the following equation.   

𝑘𝑘cat =
𝑉𝑉max  
 [𝐸𝐸]                                                                                                                              S1 

 

where [E] is the enzyme concentration. The catalytic efficiency, kcat/KM, of immobilized 

β-lactamase, adsorbed β-lactamase, and free β-lactamase in solution were calculated. In 

general, the catalytic efficiency of the enzyme indicates how fast the chemical reaction 

proceeds in the forward direction.  

The kinetic parameters obtained with cefazolin and surface-immobilized β-

lactamase, adsorbed β-lactamase, and free β-lactamase in solution are shown in Table 1. 

The KM values of the immobilized β-lactamase were all higher than free β-lactamase in 

solution. The kcat and kcat/KM values of immobilized β-lactamase were all lower than free 

β-lactamase in solution. From these findings, it can be concluded that the enzymatic 

activity of immobilized β-lactamase is reduced compared to free β-lactamase in solution. 

This is consistent with prior literature that indicates higher KM and lower kcat values when 
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enzymes are immobilized (155, 156). However, the KM values for immobilized β-

lactamase are significantly lower than that of adsorbed β-lactamase (p<0.05). The kcat 

values of immobilized β-lactamase, which indicate the number of cefazolin molecule 

hydrolyzed per β-lactamase molecule per second, were also significantly higher than that 

of adsorbed β-lactamase (p<0.05). Therefore, β-lactamase immobilized through HBPs 

hydrolyzed the substrate more effectively than adsorbed β-lactamase. Specifically, the 

catalytic efficiencies of β-lactamase immobilized through HBP 1, 2, 5, and 6 were 

significantly higher than those of adsorbed β-lactamase (p<0.05). As stated above, 

statistically equivalent amounts of the enzyme were attached on HA when β-lactamase 

was simply adsorbed or immobilized through HBP 2, 3, 4, 6, and 7. Despite having the 

same amount of immobilized enzyme, the lowest turnover number was observed with 

adsorbed β-lactamase. This is because direct adsorption of the protein leads to random 

orientation on the surface, which may result in loss of structural integrity and activity 

because of steric hindrance and interactions with the HA surface (157, 158). Overall, 

HBP-immobilized β-lactamase showed higher kcat than adsorbed β-lactamase.  

Further work will be necessary to determine the actual orientation of the 

immobilized protein on the HA surface. Since this strategy of oriented immobilization of 

proteins was developed using HA, which is widely used as a bone implant material, the 

next logical step would be to orient bone-related proteins on the HA implant surface to 

improve cell/tissue interactions with the implant surface. 
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Table 4.1. Kinetic parameters describing the enzymatic activity of free β-lactamase in 

solution, adsorbed β-lactamase, and immobilized β-lactamase through HBPsa 

 

β-Lactamase in various form 
KM 

(10-6 M) 
kcat 

(10-3 s-1) 
kcat/KM

 

(s-1 M-1) 

Free β-lactamase in solution  24.2 ± 3.8 7.43 ± 0.47 310 ± 34 

Adsorbed  β-lactamase 124 ± 25 1.36 ± 0.26 11.1 ± 1.2 

β-Lactamase immobilized through HBP 1 70.7 ± 5.0 3.73 ± 0.03 52.9 ± 3.2 

β-Lactamase immobilized through HBP 2 81.2 ± 8.9 2.88 ± 0.10 35.6 ± 2.6 

β-Lactamase immobilized through HBP 3 85.0 ± 5.0 1.90 ± 0.07 22.3 ± 0.7 

β-Lactamase immobilized through HBP 4 82.3 ± 8.3 1.82 ± 0.07 22.3 ± 1.5 

β-Lactamase immobilized through HBP 5 77.3 ± 4.1 3.84 ± 0.14 49.8 ± 4.2 

β-Lactamase immobilized through HBP 6 80.9 ± 5.2 2.64 ± 0.04 32.7 ± 2.4 

β-Lactamase immobilized through HBP 7 89.7 ± 6.4 2.02 ± 0.00 22.8 ± 1.6 

 

a Data are represented by mean values (n = 3) ± standard deviation. 
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CONCLUSIONS 

 

Oriented immobilization of proteins on solid surfaces anchors them at preferred 

locations enhancing their usefulness for a target desired application. Immobilization of 

proteins in their bioactive as well as accessible state is critical for inducing their specific 

biological actions. The objective of the present work was to demonstrate the ability of 

bifunctional HBPs to immobilize a target protein in an oriented manner on HA surfaces, a 

type of biomaterial widely used in orthopedic implants.  It was expected that such 

functionalization of the HA surface with a protein would result in improved bioactivity 

compared to simply adsorption.  Our data demonstrate that the length or lipophilicity of 

HBPs have no significant effect on the amount of protein (EGFP and β-lactamase) 

immobilized on HA surface.  Regarding the study of β-lactamase immobilized through 

various HBPs, we demonstrated that the immobilized enzyme had enhanced bioactivity 

compared to adsorbed β-lactamase. In summary, we showed that HBPs could be used for 

effective and bioactive immobilization on HA of any protein that has an intrinsic N-

terminal serine or threonine or onto which either of these amino acids can be introduced 

at the N-terminus. It is envisioned that the proposed approach of oriented immobilization 

of bioactive proteins will broaden the possibility of immobilizing a wide variety of 

therapeutic proteins and peptide agents onto biomaterial surfaces, thus, potentially 

improving the biocompatibility of orthopedic implants. 
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CHAPTER FIVE 

 

BIFUNCTIONAL BISPHOSPHONATES FOR DELIVERING PTH (1-34) TO 

BONE MINERAL WITH ENHANCED BIOACTIVITY 

 

Targeted drug delivery has been widely studied and is of high importance in 

medical technology (116).  It reduces systemic drug toxicity by targeting the delivery of 

drugs to the desired site. It distributes the drug with a more uniform effect at the desired 

site and reduces the frequency of drug dosage (110). Because of the benefits of targeted 

delivery over conventional delivery of drugs, various drug delivery vehicles, such as 

nano/micro particles (159-161), dendrimers, polymeric micelles (162), liposomes (163, 

164), and hydrogels (165, 166), have been explored. Drug delivery to bone tissue requires 

a vehicle that could direct the drug-containing system or drug itself to bone mineral. This 

has been explored by using molecules that have a high affinity to bone mineral, such as 

BPs (16, 20), D-aspartic acid octapeptide (44, 45), polymalonic acid (46), and 

tetracycline (47, 48). 

  Delivering drug molecules to bone for enhancing bone regeneration or treating 

osteogenesis is a topic of prime importance. Various bioactive macromolecules, such as 

bone morphogenetic proteins (BMPs), basic fibroblast growth factor (FGF), insulin-like 

growth factors (IGFs), platelet-derived growth factor (PDGF), transforming growth 

factor-β (TGF-β), and vascular endothelial growth factor (VEGF), have been found to 

stimulate proliferation and differentiation of bone forming cells and could be used for 

bone regeneration (167). These biomolecules bind to cell surface receptors to initiate 
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such effects. A challenge in the targeted delivery of the therapeutic protein or 

macromolecule to bone through conjugation to a bone-seeking agent is the effect of the 

latter on bioactivity. For example, the conjugate upon binding to bone should orient the 

therapeutic agent in a manner that makes it available for optimal binding to its cell 

surface receptor. Delivery of macromolecules using multiple BPs has been reported 

before (52, 130, 132, 168-170). Since proteins have multiple reactive functional groups, 

their selective attachment to the delivery vehicle through a single amino acid residue is 

difficult. Non-selective attachment of the delivery vehicle and/or attachment of multiple 

delivery vehicles to a single protein molecule could cause a loss of bioactivity of the 

protein. On the other hand, selective attachment of the therapeutic protein through a 

single amino acid residue to a single molecule of the delivery vehicle should be more 

favorable as maintaining the bioactivity of the protein.    

In general, BPs are chemical analogues of pyrophosphate that have high affinity 

to bone mineral. Several BPs are widely used as anti-resorptive agents in the treatment of 

several bone diseases (171, 172). BPs are also being explored for targeting of therapeutic 

agents to bone tissue, including radiopharmaceuticals and imaging agents (49, 50, 89-97). 

Although protein conjugation to BPs has been studied, the interactions of the resultant 

conjugates with bone-related cells or tissue have not been adequately explored. Further, 

delivering therapeutic protein in its bioactive form could be possible by its selective 

attachment through a single amino acid residue on the protein to a high affinity BP 

molecule, and this has not been adequately explored. Herein, we propose to deliver an 

osteogenic peptide, parathyroid hormone (PTH), to bone by designing a conjugate in 

which a single molecule of BP is attached to the N-terminus of PTH. 
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PTH is an 84 amino acid peptide hormone that plays important physiological 

roles, including calcium regulation and bone remodeling. PTH (1-34), a 34 amino acid 

peptide derived from the N-terminus of the PTH, retains most of the functions of PTH of 

the hormone. Depending on the concentration and mode of administration, PTH (1-34) 

can have anabolic or catabolic effects. In general, high and sustained doses of PTH result 

in bone resorption, but  intermittent doses of higher amounts or infusion of low doses 

leads to bone formation (77, 78). PTH (1-34) was used in all of the studies described 

herein and is denoted as PTH throughout for simplicity. Oral delivery of PTH as well as 

many other therapeutic peptides is not useful because of their degradation in the 

gastrointestinal (GI) track. Therefore, PTH is generally administered through injections. 

However, the injected PTH gets distributed throughout the body and does not become 

selectively adsorbed in bone tissue for bone regeneration. However, attachment of a high 

affinity BP to the N-terminus of PTH could deliver the peptide to bone in a selective 

manner and orient the molecules on the bone surface for enhanced cell interactions. 

Herein, we report a novel strategy for delivering PTH to bone tissue through 

conjugation to a single molecule of high affinity bifunctional BP. In particular, we have 

conjugated PTH to HBPs of varying length and lipophilicity, whose synthesis has been 

described in Chapter Two (134). The conjugates were immobilized on bone wafers, and 

the cell responses to the immobilized PTH were assessed using pre-osteoblast, MC3T3-

E1 cells. Furthermore, experiments were performed to explore the binding affinity of the 

HBP-PTH conjugates (or ability of HBPs to deliver the attached PTH to bone) and drug 

potency of the HBPs toward controlling osteoclastic bone resorption using 

macrophagic/pre-osteoclastic RAW 264.7 cells. 
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EXPERIMENTAL SECTION 

 

Materials. The pre-osteoblastic MC3T3-E1 (CRL-2593) and macrophagic/pre-

osteoclastic RAW 264.7 (TIB-71) cell lines were obtained from American Type Culture 

Collection (ATCC, Rockville, MD). Alpha minimum essential medium (αMEM), 

Dulbecco's Modified Eagle's Medium (DMEM), and fetal bovine serum (FBS) were 

purchased from GIBCO-Invitrogen (Carlsbad, CA). The bicinchoninic acid (BCA) and 

Micro BCA protein assay kits were obtained from ThermoFisher Scientific (Rockford, 

IL). The cell proliferation reagent WST-1 was purchased from Roche (Mannheim, 

Germany). Ac-DEVD-AFC was obtained from Enzo Life Sciences (Plymouth Meeting, 

PA). Bovine aprotinin, 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate 

(CHAPS), DL-dithiothreitol (DTT), etoposide, ethylenediaminetetraacetic acid disodium 

salt dihydrate (EDTA), glycerol, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 

(HEPES), Hoechst 33258,  isobutylmethylxanthine (IBMX), leupeptin hemisulfate salt, 

orthovanadate, PTH (1-34), phenylmethylsulfonylfluoride, potassium hydroxide, 

propidium iodide, reagent grade hydroxyapatite powder, sodium acetate, sodium 

chloride, sodium hydroxide, sodium fluoride (NaF), sodium 

tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), and Triton X-100 were 

purchased from Sigma-Aldrich (St. Louis, MO). Calcium chloride, hydrochloric acid, and 

potassium dihydrogen phosphate were obtained from EMD Chemicals (Gibbstown, NJ). 

Centrifugal filter units with a nominal molecular weight limit (NMWL) of 3 kDa were 

purchased from Millipore (Billerica, MA).  
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Hydrazine-Bisphosphonates (HBPs). Seven HBPs (1-7) of various length and 

lipophilicity were synthesized according to the previously reported procedure (81, 107, 

134) (Figure 2.1). Although each HBP has the same terminal functional groups, they have 

spacers of varying length and lipophilicity between the phosphonate and hydrazine 

functionalities. These HBPs were selectively conjugated to oxidized PTH through a 

hydrazone linkage and used as vehicle for delivering PTH to bone in an oriented manner 

(further described in subsequent sections). 

 

In vitro Activity of HBPs. BPs are used in clinical settings for treatment of bone 

diseases as well as various types of cancers. Since HBPs are structural derivatives of the 

alendronate, which is widely used as anti-resorptive agent in the treatment of various 

skeletal diseases, and have never been studied for their drug potency, the in vitro 

activities of HBPs were studied on preosteoclastic RAW 264.7 cells.   

To study the in vitro proapoptotic activity of HBPs, RAW 264.7 cells were 

cultured in pre-warmed DMEM medium that was supplemented with 10% FBS at 37 °C 

in a humidified atmosphere composed of 5% CO2. The cells were seeded into 24-well 

plates at a density of 40 × 104 cells/well for in vitro quantification of intracellular protein 

and caspase-3 activity. One day after cell seeding, the cultures were treated with various 

concentrations (10-6, 10-5, 10-4 M) of HBPs. Cells without HBPs were used as a negative 

control, while cells treated with 10-6, 10-5, or 10-4 M of etoposide were used as positive 

controls. The plates were incubated again for 24, 48, and 72 h before their use for further 

analysis. The experiments were conducted in triplicate and repeated at least three times to 

ascertain the reproducibility of the results. 
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Intracellular Protein Quantification. Intracellular protein was measured using a 

commercially available BCA assay kit. Briefly, the medium was removed, and the 

adherent cells were washed with PBS. The cultures were lysed by 10-min incubation in 

50 µL of lysate buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1mM EDTA, 10 mM 

NaF, 1 mM sodium orthovanadate, 5 μg/ml leupeptin, 0.14 U/ml aprotinin, 1mM 

phenylmethylsulfonylfluoride, and 1% (v/v) Triton X-100), followed by 2 s of sonication. 

Volumes of 10 µL of the cell lysate samples and standards (solutions of known 

concentrations of bovine serum albumin) were added to the wells of a 96-well microtiter 

plate followed by addition of 200 µL of the working reagent; the well contents were 

mixed thoroughly by shaking the plate for 2 min. The plate was incubated at 37 °C for 30 

min and then cooled to room temperature (RT). The absorbance of the samples was 

measured at 562 nm on a plate reader. The amount of protein in the sample was 

calculated using a standard curve prepared with albumin. 

 

Fluorescence Microscopy. The number of apoptotic and necrotic cells was 

determined by staining the cultures with propidium iodide and Hoechst 33258. Propidium 

iodide is membrane impermeant for live cells and stains only dead cells by binding to 

their DNA. A stock solution of 1.5 mM propidium iodide was made by dissolving 1 mg 

of propidium iodide in 1 mL of deionized water and storing in the dark at 2–6 °C. For cell 

staining, cultures were treated with propidium iodide at a final concentration of 0.5 µM 

while kept on ice for 20-30 min. The cultures were analyzed using fluorescent 

microscopy. The apoptotic cells were quantified using Hoechst 33258 reagent. The 

cultures were treated with 5 µg/mL of Hoechst 33258 and incubated for 10 min at 37 °C. 
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The apoptotic cells were determined using fluorescent microscopy in the dark. The 

necrotic cells were determined by subtracting the number of apoptotic cells (quantified by 

Hoechst staining) from the total number of dead cells (quantified by propidium iodide 

staining). The cell images were processed using ImageJ software (A public domain Java 

image processing and analysis program inspired by National Institutes of Health). 

 

Apoptosis Assay. Apoptosis was determined by measuring the intracellular 

caspase-3 activity. The cultures were lysed by 10 min of incubation in 50 µL of lysate 

buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 10 mM NaF, 1 mM 

sodium orthovanadate, 5 μg/ml leupeptin, 0.14 U/ml aprotinin, 1 mM 

phenylmethylsulfonylfluoride, and 1% (v/v) Triton X-100), followed by 2 s of sonication. 

The cell lysate was treated with 50 μM Ac-DEVD-AFC in 50 mM HEPES buffer (100 

mM NaCl, 0.1% CHAPS, 10 mM DTT, 1 mM EDTA, and 10% (v/v) glycerol, pH 7.4) at 

RT for 60 min in the dark. The caspase-3 activity was determined by measuring the 

fluorescence at λem=510 nm (λex=485).          

 

Selective Oxidation of PTH and Site-specific Conjugation of HBPs to PTH. 

To facilitate the selective conjugation of PTH to HBP, the N-terminal serine residue of 

PTH was selectively oxidized to an aldehyde functionality (Scheme 5.1) (135, 173-175). 

In brief, PTH was dissolved in HEPES buffer (50 mM, pH 7.0) at 41 µg/mL of 

concentration. Freshly dissolved sodium periodate in deionized water was added to the 

PTH solution at 2-fold molar excess. The mixture was incubated in the dark for 10 min at 

RT. The reaction was quenched by the addition of 10-fold molar excess of glycerol over 
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sodium periodate. The reaction mixture was then filtered through centrifugal filter units 

of 3 kDa NMWL to remove the byproduct of the reaction and excess reagents. The 

oxidized PTH was diluted in HEPES buffer (50 mM, pH 7.0) to a final concentration of 

41 µg/mL. The oxidized PTH was conjugated to HBPs in a site-specific manner through 

the generated N-terminal aldehyde. In particular, PTH was treated with 10-fold molar 

excess of HBPs in acetate buffer (100 mM sodium acetate, 50 mM NaCl, pH 6.0) for 2 h 

at RT. The reaction mixtures were purified and concentrated using centrifugal filter units 

to obtained pure HBP-PTH conjugates.         

 

Bioactivity of HBP-PTH Conjugates. The viability and apoptotic effects of the 

HBP-PTH conjugates on pre-osteoblastic cells (MC3T3-E1) and pre-osteoclastic cells 

(RAW 264.7 cells) were also determined. In brief, MC3T3-E1 and RAW 264.7 cells 

were cultured in αMEM and DMEM medium, respectively, at 37 °C in a humidified 

atmosphere containing 5% CO2. Both media were supplemented with 10% FBS. The 

cells were seeded into 96-well plates at a density of 0.5 × 104 cells/well and incubated for 

24 h, followed by addition of various concentrations (7.3 × 10-10, 7.3 × 10-9, 7.3 × 10-8 M) 

of PTH and HBP-PTH conjugates along with positive and negative controls. After 24, 48, 

and 72 h of incubation of the cultures, cell viability, intracellular protein content, and 

caspase-3 activity of the cells were measured according to the procedure described above 

(in section ‘In vitro activity of HBPs’). The cell viability of the HBP-PTH conjugates was 

determined using a colorimetric WST-1 assay in accordance with the manufacturer’s 

instructions. The cultures in 96-well plates were incubated with 10 µL/well of cell 

proliferation reagent WST-1 at 37 °C for 60 min in a humidified atmosphere composed 
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of 5% CO2. The plate was cooled to RT, and the absorbance of the samples was measured 

at 450 nm on a plate reader. The experiments were conducted in triplicate and repeated at 

least three times to ascertain the reproducibility of the results.  

 

In vitro Mineral Binding Affinity of HBP-PTH Conjugates and PTH. The 

mineral affinity of the HBP-PTH conjugates and PTH were determined using an HA 

binding assay according to a previously reported procedure (52, 168, 170). In brief, 100 

µL samples (HBP-PTH conjugates and PTH) were diluted to 800 µL with HEPES buffer 

(50 mM, pH 7.0) to obtain a peptide or peptide conjugate concentration in the range of 

10-30 µg/ mL. The diluted samples were then added to microcentrifuge tubes containing 

1 mg of HA (in triplicate). For a positive control (i.e., 0% binding), the samples were 

incubated in microcentrifuge tubes without HA. As a negative control, HEPES buffer 

without peptide or conjugates were incubated in microcentrifuge tubes. All samples were 

shaken for 2 h at RT and centrifuged to separate non-bound peptide from bound peptide. 

The concentration of the non-bound peptide or peptide conjugate was determined using 

the Micro BCA assay according to the manufacturer’s protocol. In a typical experiment, 

150 µL of the supernatant and BSA standards were added to 150 µL of working reagent 

in a 96-well plate and mixed thoroughly by shaking the plate for 2 min. The plate was 

incubated for 30 min at 37 °C and then cooled to RT, followed by measuring the 

absorbance at 562 nm on a plate reader. The peptide concentration of the supernatant was 

determined using the Micro BCA standard plot. The percent HA binding was calculated 

using the following equation: 

% HA binding =
[(Peptide conc. with HA) − (Peptide conc. without HA)]

(Peptide conc. with HA)  × 100 
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Scheme 5.1. Selective oxidation of N-terminal serine of PTH and site-specific 

conjugation of the oxidized PTH to HBPs though hydrazone linkage 
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Immobilization and Bioactivity of PTH on Bone Surface. The HBP-PTH 

conjugates were immobilized on bone wafers (Scheme 5.2). Bone wafers were prepared 

from the midshaft cortical bone of a bovine femur. Cortical bone was first machined into 

a rod with 5 mm × 5 mm square cross-section and then sliced into 500 μm thick wafers. 

The bone wafers were thoroughly washed with deionized water and HEPES buffer (50 

mM, pH 7.0). One hundred µL of sample aliquots (HBP-PTH conjugates and PTH) were 

diluted to 800 µL with HEPES buffer (50 mM, pH 7.0) to obtain a peptide or peptide 

conjugate concentration in the range of 10-30 µg/ mL. The diluted samples were then 

added to a 48-well plate containing a single bone wafer per well (in triplicate). The plate 

was incubated for 2 h at RT with continuous shaking. The supernatant was removed from 

each well, and the concentration of unattached protein was determined using the Micro 

BCA assay. The concentration of the immobilized or adsorbed peptide on bone wafers 

was calculated by subtracting the peptide concentration of the supernatant from the total 

peptide concentration added to bone wafer.   
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Scheme 5.2. In vitro targeting the HBP-PTH conjugates to bone surface. The conjugates 

were immobilized on bone wafers by simple mixing of conjugate solution to the bone 

wafers.    
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The bone wafers were washed twice with HEPES buffer (50 mM, pH 7.0) 

followed by a single wash with phenol red-free αMEM (supplemented with 10% FBS and 

0.5 mM IBMX). The bioactivity of the adsorbed PTH and immobilized PTH through 

various HBPs on bone wafers were determined by measuring the intracellular cAMP 

contents in cells cultured on the bone wafers. In a typical experiment, pre-osteoblastic 

MC3T3-E1 cells were cultured in phenol red-free αMEM supplemented with 10% FBS. 

The cells were pretreated with 0.5 mM IBMX and seeded on each bone sample of the 

prepared 48-well plate at a density of 50,000 cells/well. The average amount of PTH 

immobilized per bone wafers (determined using the Micro BCA assay) was calculated, 

and the same amount of PTH and oxidized PTH were added to cell culture as a positive 

control. The plate was incubated for 15 min at 37 °C in a humidified atmosphere 

containing 5% CO2, and the cultures were lysed directly in the medium with 0.1 M HCl. 

Intracellular cAMP was measured using a commercially available immuno-assay kit 

following the manufacturer’s instructions. The cAMP data were normalized by the 

amount of DNA in each well, using a Hoechst assay as described in a previously reported 

procedure. In brief, standard solutions of DNA were prepared by serial dilution of calf 

thymus DNA with phenol red-free αMEM supplemented with 10% FBS and 0.5 mM 

IBMX. The cell lysates and the DNA standards were treated with Hoechst 33258 (0.5 

µg/mL of a final concentration) in the dark for 10 min, followed by fluorescence 

measurement (λex = 356 nm, λem = 458 nm). The data were corrected by subtracting the 

amount of cAMP/DNA produced by unstimulated (no PTH) cell cultures. The amount of 

cAMP/DNA produced by the immobilized and adsorbed PTH was determined. 
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 Statistical Analysis. Data presented are mean ± standard deviation. A minimum 

of three replicates were used for each experiment. One-way analysis of variance 

(ANOVA) was conducted using GraphPad software (San Diego, CA). The results were 

considered significantly different when p< 0.05. 

 

RESULTS  

 

 HBPs and Their In vitro Anti-resorptive Activities. The structures of HBPs (1-

7) having spacers of different length and hydrophobicity are shown in Figure 2.1. These 

HBPs have not been studied for their anti-resorptive / proapoptotic properties. Therefore, 

in vitro activities of HBPs were determined using pre-osteoclast, RAW 264.7 cells. 

Results from the caspase-3 activity assay showed that, except for HBP 4, HBPs at 

concentrations from 10-6 to 10-4 M did not have apoptotic effects on pre-osteoclasts as 

shown in Figure 5.1. HBP 4 did not show a significant apoptotic affect at the 

concentration range of 10-6 to 10-5 M, however at higher concentration (10-4 M), it 

showed about 3-4 fold higher apoptotic effect than control (p< 0.05). Similarly, 

alendronate also showed a significantly higher apoptotic affect than control (p< 0.05). 

Alendronate at 10-4 M concentration showed 1.5-2 fold higher apoptotic effect than HBP 

4 at 10-4 M concentration (p< 0.05).       

Results obtained by fluorescent microscopy support the data obtained from the 

caspase-3 experiments. As shown in Figure 5.2, no significant apoptosis of RAW 264.7 

cells in response to HBPs was observed except for HBP 4. HBP 4 at 10-4 M concentration 

resulted in significant numbers of apoptotic RAW 264.7 cells similar to alendronate (p< 
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0.05). HBP 4 at 10-4 M concentration caused almost 4- to 5-fold more apoptosis than did 

the control. Figure 5.2 also compares necrosis vs. apoptosis. Overall, necrosis caused by 

treatment with HBP or alendronate was much smaller than apoptosis. Similar to control, 

HBPs did not induced significant necrosis in RAW 264.7 cells. However, alendronate at 

10-4 M concentration caused significantly higher necrosis than did the control and the 

other HBPs (p< 0.05). 

In vitro Bioactivity of HBP-PTH Conjugates. By measuring the metabolic 

activity of the cells after 72 h of treatment with HBP-PTH, it was found that pre-

osteoblastic and pre-osteoclastic cells proliferated similar to the controls, where no 

conjugate was added. Moreover, the apoptosis assays also supported the results obtained 

from the viability assay and showed no significant apoptosis of pre-osteoclastic and pre-

osteoblastic cells following HBP-PTH treatment for 72 h (Figures 5.3 and 5.4). Overall, 

the viability and apoptosis assays after 72 h of treatment with HBP-PTH on RAW 264.7 

and MC3T3-E1 cells showed no significant difference in comparison to the control. 

Moreover, there was no significant effect of length and lipophilicity of the HBPs in the 

HBP-PTH conjugates in terms of cell metabolic activity and cytotoxicity. 
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Figure 5.1. Quantification of apoptosis of osteoclastic RAW 264.7 cells by caspase-3 

measurement. The cells were lysed, and caspase-3 produced by the cells was measured 

after 24 h of incubation with no BP (CON), HBPs (1-7) and alendronate (Alen) at 

different concentrations (1 × 10-6, 1 × 10-5, and 1 × 10-4 M). Error bars denote standard 

deviations (n≥3). (* indicates the values are significantly different from others p<0.001).  
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Figure 5.2. Quantification of apoptosis and necrosis of osteoclastic RAW 264.7 cells by 

fluorescent microscopy. The cells were stained using propidium iodide and Hoechst 

33258 after 24 h of incubation with no BP (CON) and HBPs (1-7) at different 

concentrations (1 × 10-6, 1 × 10-5, and 1 × 10-4 M). The apoptotic and necrotic cells were 

determined by fluorescence microscopy and quantified using Image J software. The data 

are expressed as fold increase relative to the control. Error bars denote standard 

deviations (n≥3). (* indicates the values are significantly different from others, and *** 

indicates the values are significantly different from others and each other p<0.05). 
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Figure 5.3. Percent cell viability and apoptosis of osteoblastic MC3T3-E1 cells measured 

after 72 h of incubation with no HBP-PTH (CON) and HBP-PTH conjugates at different 

concentrations (7.3 × 10-10, 7.3 × 10-9, and 7.3 × 10-8 M). Error bars denote standard 

deviations (n≥3).   
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Figure 5.4. Percent cell viability and apoptosis of osteoclastic RAW 264.7 cells 

measured after 72 h of incubation with no HBP-PTH (CON) and HBP-PTH conjugates at 

different concentrations (7.3 × 10-10, 7.3 × 10-9, and 7.3 × 10-8 M). Error bars denote 

standard deviations (n≥3).   
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In vitro Mineral Binding Affinity of HBP-PTH Conjugates and PTH. Mineral 

binding affinity of the HBP-PTH conjugates and PTH, determined using an HA binding 

assay, showed that the overall affinity of the PTH of HA increased after HBP 

conjugation. The results, expressed in percent HA binding in Figure 5.5, indicated 70-

80% mineral binding affinity of PTH conjugated to HBPs, with one exception.  

Conjugate 7-PTH showed about 55% of peptide binding, which was significantly lower 

than for all other HBP-PTH conjugates. Overall, all the conjugates showed significantly 

improved HA binding over non-conjugated PTH (p< 0.05). 

 

Amount of PTH Immobilized on Bone Wafers. By measuring the relative 

amount of PTH bound to the bone surface (Figure 5.6), it was found that the conjugation 

of HBP molecules significantly increased the amount of PTH immobilized on bone 

wafers (p<0.05). The amount of adsorbed PTH on bone wafers was significantly lower 

than the PTH immobilized through HBPs. The length or lipophilicity of the HBP did not 

have a significant effect on the amount of PTH attached on bone wafers.   
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Figure 5.5. In vitro mineral affinity of HBP-PTH conjugates and PTH expressed in 

percent HA binding. The protein and protein conjugates were immobilized on HA. 

Immobilized protein was determined using the Micro BCA assay. Error bars denote 

standard deviations (n≥3). (* and ** indicate values that are significantly different from 

others p<0.05).  
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Figure 5.6. Quantification of PTH immobilized through HBP or PTH adsorbed on 

surfaces of bone wafers determined by the Micro BCA protein assay. PTH was 

immobilized on HA surfaces via seven different HBPs (1-7) (B-1-PTH through B-7-

PTH) and by simple adsorption (B-PTH). Bone refers to the control experiment in the 

absence of any PTH or HBP-PTH. Error bars denote standard deviations (n≥3). (*** 

indicates the values are significantly different from others p<0.05). 
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Bioactivity of PTH Immobilized on Bone Wafers. Bioactivity of the 

immobilized PTH was determined by measuring the ability of the hormone fragment to 

stimulate the production of cAMP in pre-osteoblasts (MC3T3-E1 cells) (Figure 5.7). The 

amount of cAMP produced was normalized by the DNA content of the cell lysate. PTH 

immobilized through longer HBPs (4, 6, and 7) showed a significant increase in 

bioactivity compared to the adsorbed PTH, whereas PTH immobilized through shorter 

length HBPs (1, 2, 3, and 5) did not show a significant increase in bioactivity (p<0.05). 

The adsorbed PTH demonstrated higher bioactivity than the control, where no PTH was 

added, but the effect was not statistically significant.   
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Figure 5.7. Intracellular cAMP content of MC3T3-E1 cells cultured on surfaces of bone 

wafers with immobilized or adsorbed PTH (1-34). PTH was immobilized via seven 

different HBPs (1-7) (B-1-PTH through B-7-PTH) and by simple adsorption (B-PTH). 

The amount of cAMP was normalized by the DNA content and the mass of the PTH 

present on the surface of the bone wafer. Error bars denote standard deviations (n≥3). (* 

indicates values that are significantly different from others except for PTH immobilized 

through HBP 1 and adsorbed PTH. ** indicates the values are significantly different from 

PTH immobilized through HBP 4, 6, and 7 p<0.05). 
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DISCUSSION 

 

Targeted delivery of therapeutic agents to bone has been a subject of active 

investigation. Several methods have been explored, including use of D-aspartic acid 

octapeptide (44, 45), polymalonic acid (46), tetracycline  (47, 48), and BPs. Most of the 

reported systems explored the delivery of anti-catabolic agents that stop bone resorption 

but which do not promote bone formation. Anabolic molecules promote bone growth, and 

the majority are proteins and peptides. As such, these molecules have several types of 

functional groups, such as amines, carboxylates, thiols, and hydroxyls. Furthermore, each 

protein/peptide molecule likely has multiple copies of the same functional group. These 

commonly available functional groups can be useful for conjugation of the proteins with 

various drug delivery vehicles. Proteins can also be incorporated into polymeric scaffolds 

or micelles without any covalent bonding. Incorporation of anabolic molecules in drug 

delivery scaffolds might be good when materials are placed directly in the defect sites but 

not preferred for drug delivery through the systemic route. On the other hand, selective 

conjugation of protein/peptide molecules to a targeted delivery vehicle is challenging. It 

is critically important to retain the bioactivity of the protein/peptide after its conjugation 

and subsequent delivery to bone. A limited number of reports describe the delivery of 

anabolic protein biomolecule to bone tissue. In most of these reports, protein was 

modified through attachment of more than one targeting molecules, such as BPs, per 

protein molecule (52, 130, 132, 168-170).  

 We have explored the selective attachment of protein to a single molecule of 

bifunctional HBP, whose synthesis was discussed in Chapter Two (176). Because these 
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HBPs were reported to have enhanced affinity to bone mineral using a crystal growth 

inhibition assay and they are non-toxic to pre-osteoblasts (MC3T3-E1 cells) (176), they 

were deemed suitable candidate for delivery of biomolecules to bone mineral. HBPs have 

two phosphonates at one terminus causing affinity to bone mineral, while the other 

terminus, they have a hydrazine functionality, which can be conjugated to any aldehyde 

or ketone. In general, BPs are FDA-approved anti-resorptive agents and are being 

commonly prescribed for the treatment of bone diseases and cancer (171, 172). 

Therefore, HBPs, which are derivatives of a widely prescribed drug, alendronate, should 

be suitable candidate to deliver biomolecules to bone tissue. 

Alendronate has been sold by Merck under the brand name of Fosamax. Other 

commercially available BPs, such as risedronate, ibandronate, and zoledronate, are 

structurally similar to alendronate and HBPs except for their R2 substituent. These BPs 

are effective anti-resorptive agents used in the treatment of various skeletal diseases. BPs 

are generally divided into two groups: BPs without nitrogen, or simple BPs, and N-

containing BPs (N-BPs). N-BPs are more potent anti-resorptive agents than the simple 

BPs. Since HBPs are N-containing BPs and are structurally similar to alendronate, they 

could possess anti-resorptive properties. Therefore, we evaluated the toxicity and anti-

resorptive properties of the HBPs on pre-osteoclasts (RAW 264.7 cells). The amount of 

caspase-3 produced by RAW 264.7 cells upon action of HBPs was measured to 

determine the extent of cell apoptosis. Apart from HBP 4, all other HBPs induced no 

significant apoptosis or necrosis, thus demonstrating no anti-resorptive properties toward 

pre-osteoclasts. In general, nitrogen-containing BPs show higher drug potency (anti-

resorptive activity) than BPs with no nitrogen. Alendronate, ibandronate, and 
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risendronate are the nitrogen containing BP showing high anti-resorptive properties. BPs 

interfere with the mevalonate biosynthetic pathway and affect cellular activity. In 

particular, they inhibit farnesyl diphosphate (FPP) synthase and stop biosynthesis of 

isoprenoid lipids, which are necessary for the prenylation of small GTPase signalling 

proteins. Discontinuation in cell signalling results in apoptosis of osteoclasts (36, 177). 

Although HBPs are structural derivatives of alendronate, they did not show any apoptotic 

activity, the exception being HBP 4. This is not surprising because small structural 

changes can negatively affect drug activity. However, HBP 4 is the longest derivative of 

alendronate studied here, and it is possible that its terminal hydrazine might be able to 

reach the hydrophilic pocket of FPP synthase and inhibit it by forming additional 

hydrogen bonds in the FPP binding pocket. Presumably, therefore, HBP 4 showed pre-

apoptotic affects.        

 In the present studies, PTH (1-34) was used as an anabolic agent. PTH (1-34) is 

the truncated version of PTH (1-84) with intact bone forming properties (77). In general, 

proteins with an N-terminal serine or threonine can be oxidized using sodium periodate 

under controlled conditions to obtain proteins with N-terminal aldehyde (135, 173-175). 

Since PTH (1-34) has a serine at its N-terminal, it was oxidized using sodium periodate to 

obtain an aldehyde, which was selectively conjugated to hydrazine of the HBPs through a 

hydrazone linkage. The obtained HBP-PTH conjugates were studied in terms of their in 

vitro toxicity and pro-apoptotic/anti-resorptive properties (Figures 5.3 and 5.4). The 

conjugates were found to be non-toxic to pre-osteoclastic and pre-osteoblastic cells. 

Therefore, it can be stated that HBPs and HBP-PTH conjugates could be used for further 

investigation of drug delivery.   
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 Since HBPs demonstrate enhanced affinity to bone mineral, they should be able to 

deliver PTH to bone tissue. In other words, PTH should gain bone affinity after its 

conjugation to the HBPs. In general, it is reasonable to expect increased affinity when 

multiple BPs are attached to a single protein/peptide molecule. However, it was not 

known whether a single BP on PTH would substantially enhance binding relative to 

unconjugated PTH. HA binding of the HBP-PTH conjugates was found to be 

significantly higher than PTH. No significant effect of length or lipophilicity of HBPs 

was observed on the binding affinity of HBP-PTH conjugates except for 7-PTH. 

Conjugate 7-PTH was found to have significantly lower binding affinity than the 

remaining conjugates. However, the binding affinity of 7-HBP was found to be 

significantly higher than that of PTH (p<0.05). HBP 7 is the longest HBP with hydrophic 

spacer. It is possible that hydrophilic spacer interacts with PTH and makes the 

phosphonates functionalities of HBPs less available for mineral binding. Overall, all 

HBP-PTH conjugates had around 60 to 80% higher HA binding affinity over PTH. From 

these results it can be stated that the HBPs can be used to bind the conjugated PTH to 

bone tissue. 

 To determine the effect of the length or lipophilicity of the HBPs on the amount 

of PTH delivered to bone, HBP-PTH conjugates were mixed with bone wafers. The 

relative amount of the immobilized PTH on bone wafers through HBPs was found to be 

similar, which again proved the insignificant effect of length and lipophilicity of HBPs on 

the amount of protein delivered to bone. However, the amount of PTH immobilized 

through HBPs was significantly higher than adsorbed unconjugated PTH. These findings 

support the previously found increase in the bone affinity of PTH by HBP conjugation. 
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 The ultimate purpose of delivering an anabolic biomolecule to bone through 

attachment of a single HBP molecule per anabolic molecule was to avoid a loss of 

bioactivity. To determine the bioactivity of the delivered PTH to bone, the PTH 

immobilized on bone wafers through HBPs was incubated with MC3T3-E1 cells (pre-

osteoblasts), and the increase in the intracellular content of cAMP in the osteoblastic cells 

was measured. Overall, PTH delivered or immobilized through HBPs showed increased 

osteoblastic cell interactions compared to the adsorbed PTH and no PTH (control). In 

general, the effect of the immobilized (delivered) PTH on bone was mediated through the 

PTH/PTHrP (PTH related-protein) receptor of the cell. PTH/PTHrP is a G-protein 

coupled receptor, which binds to PTH at its N-terminal region (178, 179). Since the cell 

surface receptor binds to the N-terminal region of PTH, PTH immobilized through the 

longer HBPs might be expected to show higher bioactivity and vice versa. However, the 

bioactivity of the PTH immobilized through HBPs was not significantly affected by the 

length or lipophilicity of HBPs, which indicates that differences in the relative length of 

HBP are too small to alter the interactions between the immobilized PTH and receptor. In 

other words, HBPs are long enough to prevent interaction of the attached protein with the 

bone surface, or HBPs are not too long to prevent protein interactions with bone surface 

by folding of HBPs. In either case, protein might lose its bioactivity by interacting with 

bone surface. On the other hand, the N-terminus of the immobilized PTH, which is 

responsible for cell binding, appears to be accessible to the cell surface receptors, which 

is demonstrated by the production of cAMP. Overall, it can be stated that HBPs could 

deliver the attached protein to bone in a bioactive as well as accessible mode for 

improved cell interactions. It should be also noted that although PTH binds to its receptor 
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through its N-terminus, conjugation of HBPs at the N-terminus of PTH did not preclude 

peptide-receptor interaction.            

 

CONCLUSIONS 

Targeted delivery of therapeutic agents to bone reduces the drug toxicity and 

dosage frequency by distributing these agents with a more uniform effect at the bone 

surface. However, delivering therapeutic protein/peptide to bone is challenging because 

of their size and delicate nature. If the proteins are delivered to bone through a small 

delivery vehicle with minimum modification in the protein structure, the bioactivity and 

accessibility of the protein may be improved. The presented studies were intended to 

demonstrate the ability of improving the mineral affinity and delivery of the 

protein/peptide to bone through attachment of a single molecule of HBPs to the PTH to 

improve cell interactions at the bone surface. HBP 4 showed a significant drug potency 

(anti-resorptive/proapoptotic effects), similar to that of alendronate. PTH not only gained 

mineral binding affinity by its selective conjugation with HBPs, but conjugation also 

improved the cell interactions after its delivery to the bone surface; the observed effects 

were independent of the length and lipophilicity of the HBPs. Overall, the approach 

described for delivering PTH could be applicable to any therapeutic protein with an 

intrinsic N-terminal serine or threonine, and may improve cell/tissue responses for bone 

regeneration and/or faster recovery from a diseased state. It should be noted that even if a 

desired protein does not contain an intrinsic N-terminal serine or threonine, one could be 

introduced through conventional molecular biological methods.       

 
Copyright © Jivan N. Yewle 2012 
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CHAPTER SIX 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

Skeletal diseases, bone injuries, and bone loss have a major impact on the 

worldwide population and economy. Although several therapeutic agents and treatments 

are available for addressing bone diseases, they are not being fully utilized because of 

their uptake at non-targeted sites and related side effects. Similarly, several biomaterials 

are being explored for the replacement of diseased or lost bone; however, their 

biocompatibility and their efficient interactions with the surrounding cells/tissue for bone 

regeneration have hardly been achieved. Active targeting with controlled delivery is an 

ideal approach for the treatment of skeletal diseases, while the site-specific 

immobilization of a bioactive protein on the bone implant material would be one of the 

most preferred ways to achieve biocompatibility and enhanced cell/tissue interactions. 

Because BPs are known to have high affinity to bone and are being widely used in 

treatment of various skeletal diseases, they are well-suited for drug targeting to bone as 

well as for bone tissue engineering applications. In this work, we have described the 

synthesis of bifunctional BPs and their utilization for the targeted delivery of therapeutic 

agents to bone as well as for oriented immobilization of bioactive proteins/peptides on 

bone implant materials.  

Chapter Two and Three described the synthesis, characterization, and utilization 

of various bifunctional BPs for delivery of therapeutic agents. Crystal growth inhibition 

studies showed that the synthesized HBPs with spacers of varying length and lipophilicity 
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have high affinity to HA, while HBPs with shorter spacers bind stronger than alendronate 

to HA. Thus, the structural modifications improved the bone mineral affinities of BPs. 

HBPs were also evaluated for their non-cytotoxicity to the pre-osteoblast cells and by 

which they qualified for their in vivo applications. A model drug was conjugated to HBPs 

through hydrazone linkage, and its in vitro delivery to bone mineral was demonstrated at 

acidic pH. Overall, HBPs are non-toxic molecules with high affinity to bone mineral and 

could be used for targeted delivery of therapeutic agents to the sites of wound healing and 

bone resorption. Thus, the strategy of targeted delivery of drugs through HBP should 

improve the drug exposure to the diseased site and reduce the toxic effects due to their 

uptake at undesired sites.   

Future work with respect to the work described in Chapters Two and Three 

should include the evaluation of binding affinities of HBPs in actual body fluids serum. 

This would indirectly elucidate the behavior of HBPs in the body. Furthermore, a small 

fluorescent molecule with the aldehyde functionality could be conjugated to HBPs 

through hydrazone linkage and delivered to mice or rats through an intravenous injection. 

Because of their bone affinity, HBPs would direct the attached fluorophore to bone sites, 

which could be analyzed by measurement of fluorescence. Moreover, the rate of release 

of fluorescent molecules could be detected.  

Oriented immobilization of proteins is an important step in creating protein-based 

functional materials because it anchors the protein at a preferred location and enhances 

the usefulness of the protein for the desired application. However proteins are generally 

very complex molecules with various functional groups and it is critical to demonstrate a 

selective reaction of protein. Moreover, a small variation in the structure of protein could 
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result in the loss of bioactivity of the protein. Therefore, it is difficult to immobilize 

proteins with their bioactive and accessible state on the solid surface for specific 

biological actions. 

Chapter Four has described a method to orient proteins, through HBPs, on HA 

surfaces, a widely used bone implant material. EGFP and β-lactamase, which have a 

serine and threonine at their N-terminus, respectively, were used as model proteins. They 

were treated with sodium periodate and immobilized on the HA surface that was 

modified with HBPs of varying length and lipophilicity. Thus, the selective oxidation of 

proteins with N-terminal serine or threonine could lead to a unique amino-terminal 

aldehyde functionality. Since hydrazine of HBPs selectively reacts with aldehydes and/or 

ketones at acidic pH where other nucleophilic functionalities of protein are nonreactive, a 

site-specific orientation of the proteins through HBPs is possible. The data demonstrate 

that the length or lipophilicity of HBPs had no significant effect on the amount of 

hydrazine functionalities as well as the amount of protein immobilized on HA surface. 

Moreover, HBP-immobilized protein showed improved bioactivity compared to the 

adsorbed protein. Since proteins can be engineered to introduce serine or threonine at 

their N-terminus for subsequent oxidation to get a single aldehyde, HBPs could be used 

for effective and bioactive immobilization of any protein. Therefore, the strategy of 

oriented immobilization of bioactive proteins presented in Chapter Four could be used in 

tissue engineering applications to improve the biocompatibility of implant materials. It 

will also provide an insight in various applications such as protein microarrays, 

biosensors, biotechnology, chemical manufacturing, nanotechnology, single molecule 

enzymology, and drug discovery. 
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The work described in Chapter Four can be further extended to bone growth 

proteins, such as bone morphogenetic proteins (BMPs). In general, bone fracture and 

bone loss are serious and growing concerns of society. The major challenges facing the 

treatment of bone loss are selective regeneration of bone tissue and controlling the bone 

regeneration at a desired site. BMPs are osteoinductive growth factors. They differentiate 

stem cells into osteoblasts and promote bone formation. However, they could form bone 

tissue anywhere in the body. Therefore, the use of the exogenous BMPs is highly 

regulated, challenging and costly. However, using the strategy presented in Chapter Four, 

BMPs could be immobilized on bone implant and studied for their improved bioactivity. 

Briefly, BMPs can be genetically modified to obtain N-terminal serine or threonine, 

followed by their selective oxidation and immobilization on ceramic implants. The 

bioactivity of the immobilized BMPs can be demonstrated by the addition of stem cells 

on implant surfaces followed by its incubation for a few days. The oriented 

immobilization of BMPs on ceramic implants will modulate the surrounding stem cell 

behavior for controlled bone regeneration. The bone formation could be analyzed by the 

alkaline phosphatase (ALP) activity and osteopontin mRNA expression.  

There are several drugs available for osteoporosis, but most of the drugs (such as 

BPs) control bone resorption and do not promote bone formation. On the other hand, 

there are various therapeutic proteins/peptides, such as bone growth factors, PTH, etc., 

which could be used for bone formation. In general, delivery of bioactive therapeutic 

protein/peptide to bone is very difficult and hence use of therapeutic proteins in clinical 

settings is limited.  
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Chapter Five described a strategy to deliver the therapeutic protein/peptide using 

a single molecule of HBPs to improve the tissue/cell interactions at a bone surface. PTH 

(1-34), the only currently available anabolic agent for treatment of osteoporosis, was used 

as a model of bioactive macromolecule. PTH was selectively oxidized with periodate to 

obtain an N-terminal aldehyde that was then conjugated to HBPs of varying length and 

lipophilicity. The mineral binding study demonstrated that HBP conjugation improves the 

binding affinity of PTH independent of length and lipophilicity of the HBPs. PTH 

delivered through HBPs also showed the improved cell interactions. The approach 

presented in Chapter Five could be used for the delivery of therapeutic proteins/peptides 

to bone tissue and could potentially promote bone formation. 

Chapter Five also investigated the cytotoxicity and the pro-apoptotic/anti-

resorptive properties of HBPs and HBP-PTH conjugates with preosteoclastic cells (RAW 

264.7). The results showed that HBP 4 has significant drug potency, while other HBPs 

have zero drug potency. Thus, small modifications in BP structure could alter the anti-

resorptive properties of BP. Since BPs binds to FPP synthase causing inhibition of the 

resorptive function of osteoclasts, small changes in BP structure presumably alters the 

binding affinity of BP to FPP synthase and leads to a change in drug potency.   

The research work presented in Chapter Five could be extended to demonstrate 

the in vivo delivery of protein in animal models (such as mice or rats).  In brief, radio 

labeled PTH can be oxidized, conjugated to HBPs, followed by the intravenous injections 

of the HBP-PTH conjugates to mice. After a few hours of the injection, the mice can be 

analyzed for accumulation of PTH at skeletal sites. Furthermore, bioactivity of the 

delivered PTH can be measured by analyzing bone formation. This would require the 
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intermittent injections of higher amounts or infusion of low doses of the HBP-PTH 

conjugates. The bone formation could be analyzed after a few weeks. Scanning electron 

microscopy (SEM), FT-IR, X-ray Diffraction (XRD), and high-resolution X-ray 

computed tomography (micro-CT) could be used to determine the surface area, thickness 

or extent of mineralization of the mice bone.  

In conclusion, various bifunctional HBPs with varying length and lipophilicity, 

were synthesized. HBPs were demonstrated to have high binding affinity to bone mineral 

and zero cytotoxicity. The drug potency of HBPs were also demonstrated by cell 

apoptosis, cell proliferation, and fluorescence microscopy and found that HBP 4 has 

higher drug potency than control. Furthermore, HBPs were successfully used for the 

targeted delivery of a model drug to bone. HBPs were utilized for oriented 

immobilization of proteins (EGFP and β-lactamase) on bone implants for improved 

bioactivity. Moreover, targeted delivery of bioactive peptide (PTH) to bone mineral was 

demonstrated in vitro using a single molecule of HBPs. Overall, novel HBPs were 

developed for various bone related applications. This research should provide further 

insight towards potential applications of bifunctional BPs towards the targeted delivery of 

therapeutic agents to bone and bone tissue engineering applications.          

 

 

 

 

 

Copyright © Jivan N. Yewle 2012 
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APPENDIX ONE 

 

ANTICANCER DRUG POTENCY OF BIFUNCTIONAL BISPHOSPHONATES 

 

 Cancer is a debilitating disease that has a huge impact on world health and 

economy. It is the main reason of death in the United States, causing one in four deaths 

(180). Cancer is the uncontrolled growth of malignant cells in the body. The malignant 

cells divide, grow and form a malignant tumor by invading neighboring tissues/organs of 

the body. There are various types of cancers, such as prostate, colon, lung, breast, skin, 

etc. At the advanced stage, cancer can be spread to other parts of the body. Since the 

microenvironment of bone is suitable for tumor growth, cancer cells spread to bone tissue 

and develop bone metastases. Bone metastasis is a complex process, which could lead to 

osteolytic and/or osteoblastic lesions and causes many devastating events. Multiple 

myeloma, breast, lung, and prostate cancers are most likely to result in metastasis to bone 

(181-183). Therefore, along with anticancer therapies, treatment to prevent bone 

metastases is crucial. 

 In general, bone metastasis involves a series of steps: (a) angiogenesis in the 

primary tumor, (b) Invasion of malignant cells into circulation, (c) adhesion of malignant 

cells, (d) infiltration of malignant cells in the bone microenvironment, and (e) 

proliferation of malignant cells in bone. Bone metastasis could be avoided by controlling 

one of the above processes (184). Various therapies are being explored for the treatment 

of bone metastasis. Radiotherapy, chemotherapy, surgery, analgesics, and endocrine 

treatment are the conventional methods to treat cancer as well as skeletal complications 
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from bone metastasis. However, most of these treatments are not sufficient to control 

bone destruction or related complications by bone metastasis (181).  

Recently, BPs have demonstrated a great potency in the treatment of malignant 

bone diseases by reducing the symptoms and complications related to bone malignancy. 

In addition to the antiresorptive property, BPs also possess antitumor properties against 

many cancer types. Especially nitrogen containing BPs, such as zoledronate, have shown 

anti-proliferative and apoptotic effects in cancer cells (185-187). Herein, we have 

explored the anticancer properties of the bifunctional HBPs, which were synthesized for 

targeted delivery of therapeutic agents to bone (described in Chapter Three). HBPs have 

nitrogen atoms in the form of amide and hydrazine functionalities at their R2 substituent. 

Moreover, one of the HBPs showed apoptotic effects to preosteoclasts (described in 

Chapter Five). This has increased the possibility of HBPs to have anticancer properties. 

Therefore, we have explored the in vitro anticancer potencies of HBPs. In particular, 

HBPs were studied for breast, lung, and prostate cancers using MCF-7, H460, and PC-3 

cells, respectively. Anticancer drug potencies of HBPs were demonstrated by measuring 

proliferative and apoptotic effects of HBPs on cancer cells.            

  

EXPERIMENTAL SECTION 

 

Materials. The breast cancer (MCF-7), lung cancer (H460), and human prostate 

carcinoma (PC-3) cell lines were obtained from American Type Culture Collection 

(ATCC, Rockville, MD). Roswell Park Memorial Institute 1640 (RPMI 1640), 

Dulbecco's Modified Eagle's Medium (DMEM), and fetal bovine serum (FBS) were 
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purchased from GIBCO-Invitrogen (Carlsbad, CA). The cell proliferation reagent WST-1 

was purchased from Roche (Mannheim, Germany). Ac-DEVD-AFC was obtained from 

Enzo Life Sciences (Plymouth Meeting, PA). Aprotinin bovine, 3-[(3-

cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS), DL-dithiothreitol 

(DTT), etoposide, ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA), 

glycerol, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), leupeptin 

hemisulfate salt, orthovanadate, phenylmethylsulfonylfluoride, potassium hydroxide, 

sodium acetate, sodium chloride, sodium hydroxide, sodium fluoride (NaF), sodium 

tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), and Triton X-100 were 

purchased from Sigma-Aldrich (St. Louis, MO). Calcium chloride, hydrochloric acid, and 

potassium dihydrogen phosphate were obtained from EMD Chemicals (Gibbstown, NJ).  

 

Hydrazine-Bisphosphonates (HBPs). HBPs (1-7) of various length and 

lipophilicity were synthesized according to the previously reported procedure (81, 107, 

134) (Figure 2.1). All seven HBPs have terminal hydrazine and at least one amide group.  

 

In vitro Activity of HBPs. HBPs were explored for their proliferative and 

apoptotic effects using three different cancer cells (MCF-7, H-460, and PC-3). To study 

the in vitro proapoptotic activity of HBPs, MCF-7 and H460 cells were cultured in pre-

warmed RPMI medium, while PC-3 cells were cultured in pre-warmed DMEM medium 

at 37 °C in a humidified atmosphere composed of 5% CO2. Both the types of medium 

were supplemented with 10% FBS for the in vitro studies. The cells were seeded into 96-

well plates at density of 5 × 103 cells/well for in vitro quantification of cell proliferation 
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and caspase-3 activity. One day after the cell seeding, the cultures were treated with 

various concentrations (10-6, 10-5, 10-4, and/or 10-4 M) of HBPs. Cells without HBPs were 

used as a negative control, while cells treated with 10-6, 10-5, or 10-4 M of etoposide were 

used as positive controls. Cells were also treated with 10-8, 10-7, or 10-6 M of 

camptothecin for positive controls. The plates were incubated again for 24, 48, and 72 h 

before their use for further analysis. The experiments were conducted in triplicate and 

repeated at least three times to ascertain the reproducibility of the results. 

 

Cell Proliferation Assay. The cell proliferation in presence of HBPs was 

determined using a colorimetric WST-1 assay. The assay was conducted after 24, 48, and 

72 h of HBP treatment in accordance with the manufacturer’s instructions. In brief, 

cultures in 96-well plates were incubated with 10 µL/well of cell proliferation reagent 

WST-1 at 37 °C for 60 min in a humidified atmosphere composed of 5% CO2. The plate 

was cooled to RT, and the absorbance of the samples was measured at 450 nm on a plate 

reader. 

 

Apoptosis Assay. Cell apoptosis was determined by measuring the intracellular 

caspase-3 activity. The cultures were lysed by 10 min of incubation in 50 µL of lysate 

buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 10 mM NaF, 1 mM 

sodium orthovanadate, 5 μg/ml leupeptin, 0.14 U/ml aprotinin, 1 mM 

phenylmethylsulfonylfluoride, and 1% (v/v) Triton X-100), followed by 2 s of sonication. 

The cell lysate was treated with 50 μM Ac-DEVD-AFC in 50 mM HEPES buffer (pH 

7.4, 100 mM NaCl, 0.1% CHAPS, 10 mM DTT, 1 mM EDTA, and 10% (v/v) glycerol) 
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at RT for 60 min in the dark. The caspase-3 activity was determined by measuring the 

fluorescence at λem=510 nm (λex=485).    

 

Statistical Analysis. Data are presented are mean ± standard deviation. A 

minimum of three replicates were used for each experiment. One-way analysis of 

variance (ANOVA) was conducted using GraphPad software (San Diego, CA). The 

results were considered significantly different when p< 0.05. 

 

RESULTS AND DISCUSSION  

 

Bone tissue is the most preferential site for cancer metastasis. Breast, lung, and 

prostate cancers, are the common cancers primarily transmitted to bone tissue and cause 

bone metastases. In the United States, about 300,000 - 400,000 people die from bone 

metastasis each year (188). In bone metastasis, overall osteoclastic bone resorption 

increases and bone mineral density reduces rapidly. It causes several symptoms, such as 

extreme pain, multiple skeletal fractures, spinal-cord compression, etc. Since BPs have 

been widely used in clinical settings for treatment of skeletal diseases, they are also being 

explored for the treatment of bone metastases (189). As such, BPs control the osteoclast-

mediated bone resorption. Recent studies also suggested that BPs could influence the 

tumor growth by cell apoptosis or by inhibiting cell proliferation (181, 182, 190). In 

general, BPs could have direct or indirect antitumor effects in cancer. Direct apoptosis of 

breast, lung, and prostate cancer cells by BPs was demonstrated in a dose and time 

dependent manner (191). BPs also inhibit bone metastases by controlling the key steps 
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involved therein. Alendronate, clodronate, ibandronate, pamidronate, and zoledronic acid 

showed the dose-dependent inhibition of breast and prostate cancer cell adhesion to 

mineralized and non-mineralized bone matrices. The effect was not observed with normal 

cells (192, 193). In other words, BPs attached to the bone surface inhibit tumor cell 

adhesion and invasion, and control bone metastases. Zoledronic acid showed the 

inhibition of growth factor–stimulated proliferation of endothelial cells in vitro. It also 

demonstrated the dose-dependent inhibition of angiogenesis in vivo (194). Several direct 

or indirect antitumor effects of BPs have been discovered. 

Overall, nitrogen containing BPs are more efficient anticancer agents. Since HBPs 

have inbuilt nitrogen and had never been explored for their anticancer activities, here we 

have studied the anticancer drug potency of HBPs. Widely used colorimetric WST-1 

assay was demonstrated to determine the effect of HBPs on cell proliferation. Cell 

apoptosis by HBPs was determined by measuring the intracellular caspase-3 activity. 

Since breast, lung, and prostate cancers are mostly prone for bone metastases, MCF-7, 

H460 and PC-3 cells were chosen for this study. HBPs were tested at doses ranging from 

10-6 to 10-3 M. Studies were performed for 24, 48, and 72 h, and assays were done after 

every 24 h.  

Results of MCF-7 cell proliferation assays after 72 h of the addition of HBPs 

showed that the cell proliferation was significantly different for all four concentrations 

(1.0 × 10-6, 1.0 × 10-5, 1.0 × 10-4 M, and 1.0 × 10-3 M) of HBPs studied than for the 

control (p< 0.05). A dose dependent decrease of the survival of MCF-7 cells was 

observed (Figure 7.1). However, the results of the caspase-3 assay after 72 h of HBP 

addition showed no significant apoptosis at all four concentrations (1.0 × 10-6, 1.0 × 10-5, 
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1.0 × 10-4, and 1.0 × 10-3 M) of HBPs. A total of seven different analogues of HBPs of 

varying length and lipophilicity were studied. However, the cytotoxic affects of HBPs 

were found not to be dependent on the length or lipophilicity of HBPs. Overall, HBPs, at 

10-3 M concentration, were cytotoxic to MCF-7 cells and reduced cell proliferation, but 

did not exhibit cell apoptosis.   
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Figure 7.1. Percent metabolic activity and apoptosis of MCF-7 cells. For all experiments, 

the cell were measured after 72 h of incubation with no HBP (CON) and HBP 2-8 at 

different concentrations (1.0 × 10-6, 1.0 × 10-5, 1.0 × 10-4 M, and 1.0 × 10-3 M). Error bars 

denote standard deviations (n≥3). 
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In the case of lung cancer, cell proliferation and cell apoptosis was demonstrated 

at three different concentrations (1.0 × 10-6, 1.0 × 10-5, and 1.0 × 10-4 M) of HBPs. The 

results shown in Figure 7.2 indicate that the HBP-treated cells behave similar to the 

control. Overall, HBPs did not cause a cytotoxicity or apoptosis of H460 cells for 72 h. 

For prostate cancer, HBPs of four different concentrations (1.0 × 10-6, 1.0 × 10-5, 1.0 × 

10-4, and 1.0 × 10-3 M) were studied. It was observed that HBPs have no cytotoxic and 

apoptotic effects on PC-3 cells for 72 h. The results are shown in figure 7.3.    
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Figure 7.2. Percent metabolic activity and apoptosis of H460 cells. For all experiments, 

the cell were measured after 72 h of incubation with no HBP (CON) and HBP 2-8 at 

different concentrations (1.0 × 10-6, 1.0 × 10-5, and 1.0 × 10-4 M). Error bars denote 

standard deviations (n≥3). 
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Figure 7.3. Percent metabolic activity and apoptosis of PC3 cells. For all experiments, 

the cell were measured after 72 h of incubation with no HBP (CON) and HBP 2-8 at 

different concentrations (1.0 × 10-6, 1.0 × 10-5, 1.0 × 10-4 M, and 1.0 × 10-3 M). Error bars 

denote standard deviations (n≥3). 
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Overall, our study confirmed that HBPs could have anticancer activity and it 

might vary with the type of cancer. The presented study did not concern the molecular 

mechanism of action of BPs to cancer cells. However, most of the nitrogen containing 

BPs interfere with the mavalonate pathway and inhibit cell functioning and cause cell 

death. Since HBPs have nitrogen in the form of hydrazine and amide functionality, 

presumably, they might have inhibited the mavalonate pathway and caused toxicity to 

MCF-7 cells. At the same time, other mechanisms of cell toxicity cannot be denied.      

 

CONCLUSIONS 

 

 Skeletal tissue is the common metastatic site for various cancers. Breast, lung and 

prostate cancers are more invasive cancers and frequently cause bone metastases. BPs 

such as zolendronate are being used in the treatment of devastating cancers to control 

bone metastases. However, new BPs with higher anticancer drug potency need to be 

developed. The presented research is intended to demonstrate the anticancer drug 

potencies of the novel HBPs. All seven HBPs showed in vitro cytotoxic effects and no 

apoptotic effects to breast cancer cells. However, HBPs showed neither toxic nor 

apoptotic effects to lung and prostate cancer cells. Overall, anticancer drug potencies of 

HBPs vary with the type of cancer and therefore need to be studied for various other 

types of cancer cells.                  

 

 

Copyright © Jivan N. Yewle 2012
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