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ABSTRACT 
 

It is well known that transient backscatter response in the resonance region could provide useful 
information regarding the natural resonances of the scattering object, and such parameters are often 
referred to as the singularity expansion method (SEM) parameters (i.e. poles and residues). Poles and 
residues, which respectively represent the object’s complex natural frequencies and their corresponding 
amplitudes, can be estimated from the late-time response that is represented as a sum of damped sinusoids 
(pole series expansion in the Laplace domain).  Since the transient backscatter also consists of the early-
time response, which occurs before the late-time, it cannot be represented only with the damped 
sinusoids.  In the mathematical framework of the SEM, this means that the pole series converges only in 
the late-time. Here we consider the convergence of the pole series representation of the transient 
backscatter in terms of the stability in the estimated poles from the time domain response. Using a 
numerically simulated backscattered response of a thin wire, the temporal progression of the estimated 
pole series is examined by iteratively estimating them (using the Matrix Pencil Method) at different time-
window locations.  The results show a good agreement with the well established SEM theory (i.e. a stable 
set of poles are obtained after the theoretically defined time for convergence).  This iterative approach 
could allow for a more accurate estimation of the poles that represent the resonances of the object. We 
also consider the use of the “non-converging” poles estimated in the early-time to approximately 
represent the early-time specular response.  
 
 

  



 
 

PRACTICAL IMPLICATIONS OF POLE SERIES CONVERGENCE AND THE 
EARLY-TIME IN TRANSIENT BACKSCATTER   

 
 
INTRODUCTION 
 

According to the singularity expansion method (SEM), the transient backscattered response of an 
object can be represented in terms of two components, namely the early-time and the late-time responses 
[1].  The early-time response is a forced response generated while the incident pulse is still interacting 
with the object, and generally contains specular reflections of the incident pulse from different scattering 
centers of the object as well as the forced oscillation due to the traveling wave on the object [2].  The late-
time response is generated after the incident pulse has passed the target where there remains only the 
induced current oscillating at the natural resonance frequencies of the object, and can be represented as a 
sum of damping sinusoids (complex exponentials), in which the complex frequencies correspond to the 
natural resonances.  Figure 1 describes the transient backscatter response of an object in free space. 

 
 

 

 
Figure 1. Transient backscatter response of a finite-size object in free space and the definition of tL, 

which determines the early-time and late-time boundary. Waveforms launched and observed from the 
observation point. 
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The time-domain SEM representation of the transient backscattered response of an object is  

 

 ( ) ( ) ( )bs
e

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆE ( , , ) E ( , , ) ( , ) n Ls t ti i s i i s i i s
L n L

n
k e e t k e e t u t t R k e e e u t t−, = , − + , −∑  , (1) 

where the first term is the early-time response and the second terms is the late-time response. Here u(t) is 
the Heaviside step function.  In the late-time term, = 2n n ns j fσ π+  are the poles1 that correspond to the 
natural frequencies of the object, with nσ  and nf  respectively representing the damping constants and the 
oscillating frequencies, and nR  are the residues, which are the complex amplitudes of the corresponding 
poles.  In the Laplace domain, equation (1) is represented as  

 bs
e

ˆ ˆ ˆ( , )ˆ ˆˆ ˆ ˆ ˆE ( , , ) E ( , , ) n LL L

i i s
s tst sti i s i i s n

n n

R k e ek e e s k e e s e e e
s s

− − ,
, = , +

−∑   , (2) 

where ⋅ denotes the Laplace transform.  The early-time term in the Laplace domain is represented by an 
entire function, and the late-time term is represented by the expansion of the poles.  The poles are aspect-
independent, that is, they are determined only by the physical properties of the target (shape, size, and 
material property).  The residues, however, are aspect-dependent (direction of incidence, polarization of 
incidence and polarization of scattering, respectively shown as ˆ ˆi ik e, and ˆ se ) and related to the scattering 
pattern of the object. Equations (1) and (2) corresponds to the class-1 form of the SEM representation, in 
which the residue values are time-independent [3]. It should also be noted that a function continuous at tL, 
(rapidly decays afterwards) should better represent the early-time response. However, the “gated” early-
time should be sufficient for the purpose of describing the early/late-time boundary and the late-time pole 
series representation. 
 

Due to the aspect-independent poles, which can be used as distinctive features of a scattering object,  
the late-time response has been of particular interest in applications such as scatterer characterization [4] 
and target identification [5]. From the time-domain backscattered response the poles can be extracted by 
fitting the signal as a sum of complex exponentials [6,7].  For an accurate pole estimation in practical 
applications, a time window of the sampled backscattered response must be in the late-time (after Lt , see 
Figure 1), where the signal can be represented only by the second term in Equation  (1).  In the theoretical 
framework of the SEM, this means that the pole series solution is guaranteed to converge in the late-time 
[3].  If the time window starts before Lt (i.e. the windowed signal cannot be represented only by the 
convergent sum of decaying sinusoids), the estimated poles may also include the ones that do not 
contribute to the convergent pole series, hereafter referred to as the non-converging poles. 
 

In this paper, the pole series convergence is considered from a practical perspective in terms of the 
stability in the estimated SEM parameters from the time-domain backscattered response.  A numerically 
simulated backscattered response of a thin wire is used as an example.  Convergence is examined by 
estimating the poles at different locations of the time window in a consecutive manner, which provides a 
temporal progression of the pole series representation of the response.  This approach allows for more 
accurate estimation of the “true” poles (converging poles that correspond to the natural resonances), 
without requiring a priori knowledge of tL, since they can be determined from the time progression of the 

                                                           
1 This SEM representation assumes simple, first order poles only. 
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estimated poles.  A similar approach was used in the past to determine the resonant frequencies of buried 
mines [8], but was not investigated in much details.  Also considered in this paper, is the use of the non-
converging early time poles to represent the “entire function” corresponding to the early-time response, 
and its theoretical relevance. This could provide useful information in terms of the impulsive specular 
scattering part of the response, thus providing possible additional features for target characterization and 
identification. 

 
SIMULATED THIN WIRE BACKSCATTER 

 
The transient backscattered response of a thin wire model is simulated using SEMCAD, a finite 

difference time domain computer code [9].  In the model a 15cm long thin wire was assumed to be 
perfectly conducting and the backscattered response was obtained at 2.1 meters of distance by exciting a 
plane wave of 130-ps Gaussian2 pulse.  As indicated in Figure 2, backscatter responses from two different 
wire orientations, i.e. θ = 0 and 45 , are used. The computational domain is truncated with absorbing 
boundary condition. The simulated responses are shown in Figure 3.  
 

 
Figure 2. Thin wire simulation setup. The incident field is vertically polarized (θ = 0  ), and the wire is 
parallel to the plane of incidence. This configuration allows the backscattered field to be co-polarized 

with the incident field. 

 

    
 a) θ = 0  b) 45θ =   

Figure 3. Simulated backscattered thin wire responses 
                                                           
2 It is practically impossible to radiate a Gaussian pulse due to its DC component. However, it is used in the 
simulation to yield a response that is close to the true impulse response of the object.  
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CONVERGENCE OF ESTIMATED POLE SERIES 
 

The poles and the corresponding residues are estimated using the matrix pencil method (MPM), 
which has been known for its computational efficiency and effectiveness in the presence of noise[7,10]. 
In this process, time-windowed samples of the response are represented in terms of the sample index m 
and the sampling interval t∆ as 

 ( )bs m

1
E m  , for m=1, ,M

N

t n
n

R z
=

∆ ≈∑  , (3) 

where n tsz e ∆= , M is the number of samples in the time-windowed signal, and N is the maximum number 
of desired poles to estimate.  The poles are estimated by rearranging the samples into sequential matrices, 
and then solving a generalized eigenvalue problem.  Once the poles are found, the residues can be 
obtained using a least squares approach.  
 

Convergence of the pole series is examined by iteratively estimating the location of the SEM 
parameters in the Laplace domain at different time window locations as shown in Figure 4.  The width of 
the window (i.e. f ot t− )  was chosen to be 5ns so as to include at least a few periods of the fundamental 
resonance. The initial and final ot  of the iterative process were 14.4ns and 17.8ns, respectively.  A total 
of 34 different sets of pole series were estimated with the increment of 0.1ns.  In Figure 5, a temporal 
progression of the estimated poles ( nf  only) are shown as a function of ot  on the top of the original 
response (left), and the complex poles are shown in the Laplace domain (right).  In both cases, it is shown 
that the poles converge to a stable set of locations after Lt , which shows a good agreement with the SEM 
framework, where Lt is defined as the minimum time for the pole series convergence [3]. It is also 
observed that only the symmetric mode resonances are extracted for θ = 0 , whereas both symmetric and 
non-symmetric  modes are extracted for  45θ =  . The non-converging poles that are extracted before Lt  
vary in time and do not represent the natural resonances of the scatterer, since their values are the results 
of attempt to fit the early-time signal to the late-time representation. Some of these poles may be the 
result of the MPM’s attempt to estimate the poles in the second layer [1], which are very difficult to excite 
and estimate. Figure 6 also shows the temporal progression of the poles in terms of their corresponding 
residue amplitudes. In the figure, it is clearly seen that the residues of the non-converging poles vary in 
time more than that of the converging poles while that of the converging poles are relatively constant. 
 

 
Figure 4. Iterative pole extraction approach by sliding the sample time window 
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(a) 0θ = 

 

 
(b) θ = 45  

Figure 5. Estimated poles from the wire backscatter responses. The plots on the left show the poles 
(frequencies only, no damping constants) estimated at corresponding time window starting points as the 
window is shifted. The plots on the right show the same poles in the Laplace domain (damping constant 

vs. frequency). Convergent poles show stability in their values with time window shift. 
 

 

 
Figure 6. Estimated poles (frequencies only, no damping constants) plotted in terms of corresponding 

residue amplitudes, nR . (log scale) 
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Since the converging poles can be clearly determined from the temporal progression in Figure 5, this 
approach could be an effective way to accurately estimate resonant parameters without requiring an initial 
guess for the early-time/late-time boundary, especially if the scatterer is unknown.  
 
 
REPRESENTATION OF THE EARLY-TIME USING ESTIMATED POLE SERIES 

 
Another useful insight is made regarding the non-converging poles when ot  is in the early-time 

(before Lt ). Some additional target characteristics may be examining the non-converging poles.  Figure 7 
shows the estimated poles for θ = 0  when ot = 14.74ns. From the temporal progression plot in Figure 5, 
it is possible to distinguish the converging poles from non-converging ones based on the consistency of 
their locations in the Laplace domain as shown in Figure 7. Therefore this pole series can be separated 
into two different sums, namely np series and p series, corresponding to the non-converging and 
converging poles, respectively as follows: 

 ( ) ( ) ( )bs
r 14.74nsE ; ( ) ( )np o p os t t s t t

np o p o
np p

tot R e u t t R e u t t− −
= = − + −∑ ∑ . (4) 

 
Using equation (4), the response is reconstructed into two different signals as shown in Figure 8. The 

reconstructed signal from p series corresponds to the slowly-varying part in the early-time and continues 
into the late-time, closely matching the original response. The signal reconstructed from np series (dashed 
green line) is more impulsive than that reconstructed from p series (solid blue line) and vanishes after tL, 
which indicates that np series contributes to the early-time forced response.  

 
 

 
Figure 7. Estimated Poles for θ = 0  when ot =14.74ns. Using the data from Figure 5a, the converging and 

non-converging poles can be determined. 
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Figure 8. Reconstructed signals from two separate pole series (estimated using to=14.74ns): converging 
poles (solid blue), non-converging poles (dashed green). Original response is shown in dotted red. 

 
 
In the Laplace domain equation (4) can be expressed as3  

 ( )bs
rE np p

np pnp p

R R
s

s s s s
= +

− −∑ ∑  . (5) 

According to the SEM framework, the early-time representation should be an entire function, which means 
that the first term in equation (5) is not a valid representation.  However, we can relate the term to the 
generalized representation of an entire function in the left-half plane using the Cauchy integral [11], which 
is   

 
( )

where lim  (left-plane contour).
1( )  ,  

2entire
c

c c
R s

x s ds
j s sπ

∞

=∞ ∆→∞

′
′=

′−∫
         (6) 

The Cauchy integral in equation (6) can be considered as poles with continuous residue distribution 
( ')R s  at s →∞ , suggesting that the entire function can be regarded as a function with the singularities at 

infinity. Therefore, from this perspective the pole (or singularities) in the first term of equation (5) can be 
approximately represented as an “entire function” to describe the early-time forced response, which could 
provide useful information in the impulsive part of the response, thus providing possible additional 
features for target characterization and identification. 
 
  

                                                           
3  Shifted left in time by to for the simplicity of the expression without loss of generality 
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SUMMARY AND CONCLUSION 
 
In this paper, the convergence of the SEM pole series in transient backscatter was explored in terms 

of the stability in the estimated SEM parameters.  Using the simulated response of a thin wire, the pole 
series convergence was investigated through an iterative approach that provided the temporal progression 
of the estimated poles.  The analysis showed good agreement with the SEM theory, i.e. the pole series 
convergence was observed after the theoretically defined Lt , the minimum time for convergence.  The 
iterative pole extraction approach was also shown to be an effective method of accurately estimating SEM 
parameters, particularly when the scatterer is unknown.  

 
It was also suggested that the use of the non-converging early-time poles could approximately 

represent an “entire function” to describe the early-time forced response. This response could provide 
additional useful information about an unknown scattering object, e.g. the features extracted from the 
early-time forced response could be used to better characterize or identify unknown scatterers.  
 

This report only considered a simple object in a noiseless environment (simulated). It would be of an 
interest to investigate various types of objects in more complex environment (e.g. noisy responses, 
multiple scatters, etc.) for more practical examples. 

 
 

  



 
Practical Implications of Pole Series Convergence and the Early-time in Transient Backscatter  9 

ACKNOWLEDGEMENT  
 
This work was sponsored by JIEDDO. Authors would like to thank Drs. H. D. Ladouceur and James 
Smith for their feedback and comments.  
 
REFERENCES 
 

[1] C. E. Baum, "The Singularity Expansion Method," in Transient Electromagnetic Fields. Berlin, 
Germany: Springer-Verlag, 1976, pp. 129-179. 

[2] M. L. VanBlaricum, "A View of The Early Time Component in Impulsive Scattering," in Ultra-
Wideband Radar: Proceedings of the First Los Alamos Symposium, 1991, pp. 191-202. 

[3] C. E. Baum, "Representation of Surface Current Density and Far Scattering in EEM and SEM With 
Entire Functions," Phillips Laboratory Interaction Notes, 1992. 

[4] G. Joshi, "Ultra-Wideband Channel Modeling using Singularity Expansion Method," PhD 
Dissertation, Virginia Tech, Blacksburg, VA, 2006. 

[5] C. E. Baum, E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "The Singularity Expansion Method and 
its Applications to Target Identification," Proceedings of the IEEE, vol. 79, no. 10, pp. 1482-1492, 
Oct. 1991. 

[6] M. L. Van Blaricum and R. Mittra, "A Technique for Extracting the Poles and Residues of a System 
Directrly from its Transient Response," IEEE Transactions on Antenna and Propagation, vol. AP-
23, no. 6, pp. 777-781, Nov. 1975. 

[7] T. K. Sarkar and O. Pereira, "Using the Matrix Pencil Method to Estimate the Parameters for a Sum 
of Complex Exponentials," IEEE Ant. and Prop. Magazine, vol. 37, no. 1, pp. 48-55, Feb. 1995. 

[8] C. Chen and L. Peters, "Buried Unexploded Ordnance Identification via Complex Natural 
Resonances," IEEE Transaction on Antennas and Propagation, vol. 45, no. 11, pp. 1645-1654, Nov. 
1997. 

[9] SEMCAD X. EM Simulation Platform, http://www.semcad.com. 

[10] T. Y. Yang, W. A. Davis, and W. L. Stutzman, "Multipath Mitigation in Pattern Measurement of 
Small Directive Antennas Based on the Singularity Expansion Method," in IEEE International 
Workship on Antenna Technology, 2009, pp. 1-4. 

[11] C. E. Baum, "Towards an Engineering Theory of Electromagnetic Scattering: The Singularity 
Expansion and Eigenmode Expansion Methods," in Electromagnetic Scattering. New York: 
Academic Press, 1978, pp. 571-651. 

[12] W. A. Davis, "Prony, Matrix Pencil & Antennas," Virginia Tech Electromagnetics Seminar, 2008. 

 


	ABSTRAct
	Introduction
	Simulated Thin Wire Backscatter
	Convergence of Estimated Pole Series
	//
	Representation of THE Early-time using Estimated Pole Series
	Summary and conclusion
	Acknowledgement
	References



