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This document describes the MOOS-IvP autonomy software for unmanned marine vehicles and its use in large-
scale ocean sensing systems. MOOS-IvP is composed of two open-source software projects funded by the Office
of Naval Research. MOOS provides a core autonomy middleware capability, and the MOOS project additionally
provides a set of ubiquitous infrastructure utilities. The IvP Helm is the primary component of an additional
set of capabilities implemented to form a full marine autonomy suite known as MOOS-IvP. This software and
architecture are platform and mission agnostic and allow for a scalable nesting of unmanned vehicle nodes
to form large-scale, long-endurance ocean sensing systems composed of heterogeneous platform types with
varying degrees of communications connectivity, bandwidth, and latency. Published 2010 Wiley Periodicals, Inc.∗

1. INTRODUCTION

The growing desire for autonomy in unmanned marine sys-
tems is driven by several trends, including increased com-
plexity in mission objectives and duration, increased capa-
bility in onboard sensor processing and computing power,
and an increase in the number of users and owners of un-
manned vehicles. The MOOS-IvP project is an open-source
project designed and developed in this context. It is an im-
plementation of an autonomous helm and substantial sup-
port applications that aims to provide a capable autonomy
system out of the box. It also has an architecture, software
policy, documentation, and support network that allows
this newer generation of scientists, with newer vehicles and
mission ambitions, to be nimble to build innovative au-
tonomy algorithms to augment an existing set of capabil-
ities. This paper describes the MOOS-IvP autonomy archi-
tecture and software structure and describes how groups
of vehicles, each with different sensors, processing power,
and communications capabilities, may be combined to form
a nested autonomy architecture with identical core auton-
omy software running on each platform.

MOOS-IvP is composed of two distinct open-source
software projects. The Mission Oriented Operating Suite
(MOOS) is a product of the Mobile Robotics Group at the
University of Oxford and provides core middleware capa-
bilities in a publish–subscribe architecture, as well as sev-
eral applications ubiquitous in unmanned marine robotic
and land robotic applications using MOOS. Additional
MOOS applications, including the IvP Helm, are available
in the MOOS-IvP project. IvP stands for Interval Program-
ming and refers to the multiobjective optimization method
used by the IvP Helm for arbitrating between competing
behaviors in its behavior-based architecture.

The MOOS-IvP software is available on the web
via anonymous read-only access (Benjamin, Schmidt, &
Leonard, n.d.). It consists of more than 120,000 lines of
C++, comprising about 30 distinct applications and more
than a dozen vehicle behaviors. It represents about 20 work
years of effort or more from individual contributors. Auton-
omy configurations and missions in this environment have
been tested in several thousands of hours of simulation and
several hundred hours of in-water experiments, on plat-
forms including the Bluefin 21-in. unmanned underwater
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vehicle (UUV), the Hydroid REMUS-100 and REMUS-600
UUVs, the Ocean Server Iver2 UUV, the Ocean Explorer 21-
in. UUV, autonomous kayaks from Robotic Marine Systems
and SARA, Inc., and two larger unmanned surface vehicles
(USVs) from the NATO Underwater Research Center in La
Spezia, Italy.

1.1. Trends in Unmanned Marine Vehicles Relating
to Autonomy

The algorithms and software described in this paper have
their genesis in UUVs. Unlike unmanned sea-surface,
ground, and aerial vehicles, underwater vehicles cannot
be remotely controlled; they must make decisions au-
tonomously due to the low bandwidth in acoustic commu-
nications. Remote control, or teleoperation, in land, air, or
surface vehicles may be viewed as a means to allow con-
servative, risk-averse operation with respect to the degree
of autonomy afforded to the vehicle. In underwater vehi-
cles, similar conservative tendencies are realized by script-
ing the vehicle missions to be as predictable as possible.
Missions typical of early-model UUVs were composed of
a preplanned set of waypoints accompanied by depth and
perhaps speed parameters. The onboard sensors merely
collected data that were analyzed after the vehicle was re-
covered from the water.

Advances in sensor technologies include greater ca-
pabilities at lower cost, lower size, and lower power con-
sumption. The same is true for the onboard computing
components needed to process sensor data. Increasingly
underwater vehicles are able to see, hear, and localize ob-
jects and other vehicles in their environment and quickly

analyze an array of qualities in water samples taken while
underway. Likewise, the available mission duration at
depth has grown longer due to improvements in inertial
navigation systems (INSs), which have become cheaper,
smaller, and more accurate, and due to improvements in
platform battery life. Each of these trends has contributed
to making a UUV owner less satisfied with simply collect-
ing the data and analyzing the results in a postmission anal-
ysis phase. The information and analysis are available in
stride, in situ: Why not act on that information in stride to
the advantage of the mission objectives? Enter adaptive au-
tonomy.

The chart in Figure 1 conveys a rough timeline and
relationship between the evolution of UUV autonomy ca-
pabilities and the evolution of other critical UUV tech-
nologies. The notion of adaptive in adaptive autonomy is
a sliding scale and refers to the ability to allow increasing
amounts of sensor information to affect in-stride autonomy
decisions. On one end of the scale, even a vehicle that de-
terministically follows a set of waypoints may be adapting
its heading decisions based on an INS or global position-
ing system (GPS) sensor. However, sensors that are capa-
ble of perceiving qualities about the vehicle’s environment,
including water quality, bottom type, artifacts, and other
moving vehicles, are able to alter the flow of autonomy de-
cisions in a much more profound manner.

The notion of collaboration in collaborative autonomy
may be viewed as a sliding scale as well. At one end of
the spectrum are vehicles deployed alongside each other,
executing a mission independently but each contributing
to a joint mission. In this case, the collaboration occurs in
the predeployment mission planning process. When at least

Figure 1. UUV technologies and autonomy: A rough timeline and relationship between UUV autonomy and other critical UUV
technologies. Critical components include (a) the platform itself in terms of reliability, cost, and endurance; (b) onboard computing
power and sensor processing; (c) onboard sensors in terms of resolution, size, and cost; and (d) ACOMMS. Each of these maturing
technology trends affects what is possible and desired from the onboard autonomy system. The corresponding trend in autonomy
is from deterministic vehicles acting independently toward adaptive vehicles acting in collaboration.
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periodic communication between deployed vehicles is fea-
sible, a whole different kind of collaboration is possible,
especially when each vehicle is able to adapt components
of its mission to both its sensed environment and incom-
ing communications from other vehicles. Advances in un-
derwater acoustic communications (ACOMMS) in terms of
reliability, range, flexibility in defining message sets, and
bandwidth have enabled the development of adaptive, col-
laborative autonomy. This trend also occurs in the context
of declining cost and size of commercially available UUVs,
making it possible for even medium-sized organizations to
own and operate several vehicles.

The MOOS-IvP autonomy architecture has been devel-
oped and refined in this context of migration to adaptive,
collaborative autonomy. Mission structure is defined less in
terms of a sequence of tasks, but rather as a set of autonomy
modes with conditions, events, and field commands defin-
ing the transitions between modes. The modes correlate to
a set of one or more active behaviors, in which each behav-
ior may be its own substantial autonomy subcomponent.
An autonomy system that includes the ability to adapt its
mission to the environment, other collaborating vehicles,
and periodic messages from within a field-control hierar-
chy will inevitably need to balance competing objectives
in a way that reflects a singular mission focus. This paper
also discusses how multiobjective optimization is used at
the behavior coordination level in the helm to achieve this
design objective.

1.2. The Backseat Driver Design Philosophy

The main idea in the backseat driver paradigm is the sepa-
ration between vehicle control and vehicle autonomy. The ve-

hicle control system runs on a platform’s main vehicle com-
puter, and the autonomy system runs on a separate payload
computer. This separation is also referred to as the mission
controller–vehicle controller interface. A primary benefit is the
decoupling of the platform autonomy system from the ac-
tual vehicle hardware. The vehicle manufacturer provides
a navigation and control system capable of streaming vehi-
cle position and trajectory information to the payload com-
puter and accepting a stream of autonomy decisions such
as heading, speed, and depth in return. Exactly how the ve-
hicle navigates and implements control is largely unspeci-
fied to the autonomy system running in the payload. The
relationship is depicted in Figure 2.

The autonomy system on the payload computer con-
sists of a set of distinct processes communicating through
a publish–subscribe database called the MOOSDB (Mission
Oriented Operating Suite—Database). One such process is
an interface to the main vehicle computer, and another key
process is the IvP Helm implementing the behavior-based
autonomy system. The MOOS community is referred to as
the “larger autonomy” system, or the “autonomy system as
a whole” because MOOS itself is middleware, and actual
autonomous decision making, sensor processing, contact
management, etc., are implemented as individual MOOS
processes.

1.3. The Publish–Subscribe Middleware Design
Philosophy and MOOS

MOOS provides a middleware capability based on the
publish–subscribe architecture and protocol. Each process
communicates with the others through a single database
process in a star topology (Figure 3). The interface of a

Figure 2. The backseat driver paradigm: The key idea is the separation of vehicle autonomy from vehicle control. The autonomy
system provides heading, speed, and depth commands to the vehicle control system. The vehicle control system executes the
control and passes navigation information, e.g., position, heading, and speed, to the autonomy system. The backseat paradigm is
agnostic regarding how the autonomy system implemented, but in this figure the MOOS-IvP autonomy architecture is depicted.
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Figure 3. A MOOS community is a collection of MOOS applications typically running on a single machine, each with a separate
process ID. Each process communicates through a single MOOS database process (the MOOSDB) in a publish–subscribe manner.
Each process may be executing its inner loop at a frequency independent of the others and set by the user. Processes may all be
run on the same computer or distributed across a network.

particular process is described by what messages it pro-
duces (publications) and what messages it consumes (sub-
scriptions). Each message is a simple variable-value pair
in which the values are limited to either string or numeri-
cal values such as (STATE, "DEPLOY") or (NAV SPEED, 2.2).
Limiting the message type reduces the compile dependen-
cies between modules and facilitates debugging because all
messages are human readable.

The key idea with respect to facilitating code reuse
is that applications are largely independent, defined only
by their interface, and any application is easily replace-
able with an improved version with a matching interface.
Because MOOS Core and many common applications are
publicly available along with source code under an open-
source GNU Public License (GPL), a user may develop an
improved module by altering existing source code and in-
troduce a new version under a different name. The term
MOOS Core refers to (a) the MOOSDB application and
(b) the MOOS application superclass that each individual
MOOS application inherits from to allow connectivity to
a running MOOSDB. Holding the MOOS Core part of the
codebase constant between MOOS developers enables the
plug-and-play nature of applications.

1.4. The Behavior-Based Control Design
Philosophy and IvP Helm

The IvP Helm runs as a single MOOS application and uses
a behavior-based architecture for implementing autonomy.
Behaviors are distinct software modules that can be de-
scribed as self-contained mini-expert systems dedicated to
a particular aspect of overall vehicle autonomy. The helm
implementation and each behavior implementation expose
an interface for configuration by the user for a particular set
of missions. This configuration often contains particulars

such as a certain set of waypoints, search area, and vehicle
speed. It also contains a specification of mission modes
that determine which behaviors are active under which
situations and how states are transitioned. When multiple
behaviors are active and competing for influence of the
vehicle, the IvP solver is used to reconcile the behaviors
(Figure 4).

The solver performs this coordination by soliciting an
objective function, i.e., utility function, from each behav-
ior defined over the vehicle decision space, e.g., possible
settings for heading, speed, and depth. In the IvP Helm,
the objective functions are of a certain type—piecewise lin-
early defined—and are called IvP functions. The solver al-
gorithms exploit this construct to find a rapid solution to
the optimization problem composed of the weighted sum
of contributing functions.

The concept of a behavior-based architecture is often
attributed to Brooks (1986). Since then, various solutions to
the issue of action selection, i.e., the issue of coordinating
competing behaviors, have been put forth and imple-
mented in physical systems. The simplest approach is to
prioritize behaviors in such a way that the highest-priority
behavior locks out all others as in the subsumption archi-
tecture in Brooks (1986). Another approach is referred to
as the potential fields, or vector summation approach [see
Arkin (1987) and Khatib (1985)], which considers the aver-
age action between multiple behaviors to be a reasonable
compromise. These action-selection approaches have been
used with reasonable effectiveness on a variety of plat-
forms, including indoor robots, e.g., Arkin (1987), Arkin,
Carter, and Mackenzie (1993), Pirjanian (1998), and Riekki
(1999); land vehicles, e.g., Rosenblatt (1997); and marine
vehicles, e.g., Bennet and Leonard (2000), Carreras, Batlle,
and Ridao (2000), Kumar and Stover (2001), Rosenblatt,
Williams, and Durrant-Whyte (2002), and Williams,
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Figure 4. The IvP Helm. The helm is a single MOOS application running as the process pHelmIvP. It is a behavior-based architec-
ture in which the primary output of a behavior on each iteration is an IvP objective function. The IvP solver performs multiobjective
optimization on the set of functions to find the single best vehicle action, which is then published to the MOOSDB. The functions
are built and the set is solved on each iteration of the helm—typically one to four times per second. Only a subset of behaviors is
active at any given time, depending on the vehicle situation and the state space configuration provided by the user.

Newman, Dissanayake, Rosenblatt, and Durrant-Whyte
(2000). However, action selection via the identification of a
single highest-priority behavior and via vector summation
have well-known shortcomings later described in Pirjanian
(1998), Riekki (1999), and Rosenblatt (1997) in which the
authors advocated for the use of multiobjective optimiza-
tion as a more suitable, although more computationally
expensive, method for action selection. The IvP model is
a method for implementing multiobjective function-based
action selection that is computationally viable in the IvP
Helm implementation.

1.5. The Nested Autonomy Paradigm

For large-scale subsurface/surface ocean monitoring and
observation systems (100+ km2), no single unmanned plat-
form has the ability in terms of sensing, endurance, and
communications to achieve large-scale, long-endurance
(several days to several weeks) system objectives. Even if
multiple platforms are applied to the problem, effective-
ness may be substantially diminished if limited to a single
platform type. The nested autonomy paradigm, depicted in
Figure 5, is an approach to implementing a system of un-
manned platforms for large-scale autonomous sensing ap-
plications. It is based in part on the objective of making
seamless use of heterogeneous platform types using a uni-

form platform-independent autonomy architecture. It also
assumes that the platforms will have differing communica-
tions bandwidth, connectivity, and latency.

The vertical connectivity allows information to pass
from sensors to the onboard sensor processing and auton-
omy modules or from each node to other nodes in the clus-
ter or up to the field operator and thus forms the basis for
the autonomous adaptive control that is a key to the capa-
bility in compensating for the smaller sensor apertures of
the distributed nodes. Similarly, the horizontal connectivity
forms the basis for collaboration between sensors on a node
(sensor fusion) or between nodes (collaborative processing
and control).

The three layers of horizontal communication have
vastly different bandwidths, ranging from 100 bytes/min
for the internode acoustic modem communications
(ACOMMS) to 100 Mbytes/s for the onboard systems.
Equally important, the layers of the vertical connectivity
differ significantly in latency and intermittency, ranging
from virtually instantaneous connectivity of the onboard
sensors and control processes to latencies of 10–30 min
for information flowing to and from the field control
operators. This, in turn, has critical implications for the
timescales of the adaptivity and collaborative sensing and
control. Thus, adaptive control of the network assets with
the operator in the loop is at best possible on a hourly to

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. The nested autonomy paradigm: Field control operators receive intermittent information from field nodes as connec-
tivity and bandwidth allow. Elements of clusters may serve a heterogeneous role as a gateway communications agent. Likewise,
nodes receive intermittent commands and cues from field operators. Node autonomy compensates for and complements the spo-
radic connectivity to field control and other nodes in a cluster or network of clusters.

a daily basis, allowing the field operator to make tactical
deployment decisions for the network assets based on, e.g.,
environmental forecasts and reports of interfering ship-
ping distributions. Shorter timescale adaptivity, such as
autonomously reacting to episodic environmental events
or a node tracking a marine mammal acoustically, must
clearly be performed without operator intervention. On the
other hand, the operator can still play a role in cuing for-
ward assets in the path of the dynamic phenomenon, using
the limited communication capacity, taking advantage of
his own operational experience and intuition. Therefore,
as much as a centralized control paradigm is infeasible for
such systems, it is also unlikely that a concept of operations
based entirely on nodal autonomy is optimal. Instead,
some combination will likely be optimal, but in view of the
severe latency of the vertical communication channels, the
nested autonomy concept of operations described is heavily
tilted toward autonomy.

The MOOS-IvP autonomy implementation discussed
in this paper is situated primarily at the node level in
the nested autonomy structure depicted in Figure 5. How-
ever, aspects of the MOOS-IvP architecture are relevant to
the larger picture as well. A key enabling factor of the
nested autonomy paradigm is the platform independence
of the node-level autonomy system. The backseat driver de-
sign permits the decoupling of the vehicle platform from

the autonomy system to achieve platform independence.
The MOOS middleware architecture and the IvP Helm
behavior-based architecture also contribute to platform in-
dependence by allowing an autonomy system to be com-
posed of modules that are swappable across platform types.
Furthermore, collaborative and nested autonomy between
nodes is facilitated by the simple modal interface to the on-
board autonomy missions to control behavior activations.

2. A VERY BRIEF OVERVIEW OF MOOS

MOOS is often described as autonomy “middleware,”
which it can be argued is shorthand for the glue that
connects a collection of applications in which the “real”
work is going on. MOOS does indeed connect a collection
of applications, of which the IvP Helm is one. However,
each application inherits a generic MOOS interface whose
implementation provides a powerful, easy-to-use means
of communicating with other applications and controlling
the relative frequency at which the application executes
its primary set of functions. Owing to its combination of
ease of use, general extendability, and reliability, it has
been used in the classroom by students with no prior
experience, as well as on many extended field exercises
with substantial robotic resources at stake. To frame the
later discussion of the IvP Helm, the basic issues regarding

Journal of Field Robotics DOI 10.1002/rob
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MOOS applications are introduced here. For further
information on MOOS, see Newman (2003).

2.1. Interprocess Communication with
Publish/Subscribe

MOOS has a star-like topology as depicted in Figure 3. Each
application within a MOOS community (a MOOSApp) has
a connection to a single MOOS database (called MOOSDB)
that lies at the heart of the software suite. All communi-
cation happens via this central server application. The net-
work has the following properties:

• No peer-to-peer communication.
• All communication between the client and server is in-

stigated by the client, i.e., the MOOSDB never makes a
unsolicited attempt to contact a MOOSApp.

• Each client has a unique name.
• A given client need have no knowledge of which other

clients exist.
• A client has no way of transmitting data to a given

client—data can be sent only to the MOOSDB.
• The star network can be distributed over any number of

machines running any combination of supported oper-
ating systems.

This centralized topology is obviously vulnerable to bot-
tlenecking at the server regardless of how well written the
server is. However, the advantages of such a design are
perhaps greater than its disadvantages. First the network
remains simple regardless of the number of participating
clients. The server has complete knowledge of all active
connections and can take responsibility for the allocation
of communication resources. The clients operate indepen-
dently with interconnections. This prevents rogue clients
(badly written or hung) from directly interfering with other
clients.

2.2. Message Content

The communications API in MOOS allows data to be trans-
mitted between the MOOSDB and a client. The meaning
of the data is dependent on the role of the client. How-
ever, the form of the data is constrained by MOOS. Some-
what unusually, MOOS allows for data to be sent only
in string or double form. Data are packed into messages
(CMOOSMsg class) that contain other salient information
shown in Table I.

The fact that data are commonly sent in string
format is often seen as a strange and inefficient as-
pect of MOOS. For example, the string "Type=EST,Name=
AUV,Pos=[3x1]3.4,6.3,-0.23" might describe the posi-
tion estimate of a vehicle called “AUV” as a 3 × 1 column
vector. Typically string data in MOOS are a concatenation
of comma-separated “name = value” pairs. It is true that
using custom binary data formats does decrease the num-
ber of bytes sent. However, binary data are unreadable to

Table I. The contents of a MOOS message.

Variable Meaning

Name The name of the data
String value Data in string format
Double value Numeric double float data
Source Name of client that sent the data to the

MOOSDB
Auxiliary Supplemental message information,

e.g., IvP behavior source
Time Time at which the data were written
Data type Type of data (STRING or DOUBLE)
Message type Type of message (usually NOTIFICATION)
Source community The community to which the source

process belongs

humans and require structure declarations to decode them
and header file dependencies are to be avoided where pos-
sible. The communications efficiency argument is not as
compelling as one may initially think. The CPU cost in-
voked in sending a TCP/IP packet is largely independent
of size up to about 1,000 bytes. So it is as costly to send
2 bytes as it is 1,000. In this light there is basically no penalty
in using strings. There is, however, an additional cost in-
curred in parsing string data that is far in excess of that
incurred when simply casting binary data. Irrespective of
this, experience has shown that the benefits of using strings
far outweigh the difficulties. In particular,

• Strings are human readable.
• All data become the same type.
• Logging files are human readable (they can be com-

pressed for storage).
• Replaying a log file is a case of simply reading strings

from a file and “throwing” them back at the MOOSDB
in time order.

• The contents and internal order of strings transmitted
by an application can be changed without the need to
recompile consumers (subscribers to those data)—users
simply would not understand new data fields, but they
would not crash.

Of course, scalar data need not be transmitted in string
format—for example, the depth of a subsea vehicle. In this
case the data would be sent while setting the data type to
"MOOS DOUBLE" and writing the numeric value in the dou-
ble data field of the message.

2.3. Mail Handling—Publish/Subscribe—in MOOS

Each MOOS application is a client having a connection to
the MOOSDB. This connection is made on the client side,
and the client manages a private thread that coordinates the
communication with the MOOSDB. This thread completely
hides the intricacies and timings of the communications

Journal of Field Robotics DOI 10.1002/rob
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from the rest of the application and provides a small,
well-defined set of methods to handle data transfer. By
having this thread automatically available to each MOOS
application, the application can do the following:

1. Publish data—issue a notification on named data.
2. Register for notifications on named data.
3. Collect notifications on named data—reading mail.

Publishing data: Data are published as a pair—a variable
and value—that constitutes the heart of a MOOS message
describe in Table I. The client invokes the Notify(VarName,
VarValue) command where appropriate in the client code.
The above command is implemented for both string values
and double values, and the rest of the fields described in
Table I are filled in automatically. Each notification results
in another entry in the client’s “outbox,” which is emptied
the next time the MOOSDB accepts an incoming call from
the client.

Registering for notifications: Assume that a list of names
of data published has been provided by the author of a par-
ticular MOOS application. For example, an application that
interfaces to a GPS sensor may publish data called GPS X
and GPS Y. A different application may register its inter-
est in these data by subscribing or registering for them.
An application can register for notifications using a single
method Register specifying both the name of the data and
the maximum rate at which the client would like to be in-
formed that the data have been changed. The latter param-
eter is specified in terms of the minimum possible time be-
tween notifications for a named variable. For example, set-
ting it to zero would result in the client receiving each and
every change notification issued on that variable.

Reading mail: A client can inquire at any time whether it
has received any new notifications from the MOOSDB by
invoking the Fetch method. The function fills in a list of
notification messages with the fields given in Table I. Note
that a single call to Fetch may result in being presented
with several notifications corresponding to the same named
data. This implies that several changes were made to the
data since the last client–server conversation. However, the
time difference between these similar messages will never
be less than that specified in the Register function de-
scribed above. In typical applications the Fetch command
is called on the client’s behalf just prior to the Iterate
method, and the messages are handled in the user over-
loaded OnNewMail method. These methods are described
next.

2.4. Overloaded Functions in MOOS Applications

MOOS provides a base class called CMOOSApp, which
simplifies the writing of a new MOOS application as a de-
rived subclass. Beneath the hood of the CMOOSApp class

Figure 6. Key virtual functions of the MOOS application base
class: The flow of execution once Run() has been called on
a class derived from CMOOSApp. The scrolls indicate where
users of the functionality of CMOOSApp will be writing new
code that implements whatever it is that is wanted from the
new applications.

is a loop that repetitively calls a function called Iterate(),
which by default does nothing. One of the jobs as a writer
of a new MOOS-enabled application is to flesh this func-
tion out with the code that makes the application do what
we want. Behind the scenes this overall loop in CMOOS-
App is also checking to see whether new data have been
delivered to the application. If they have, another virtual
function, OnNewMail(), is called. This is the function within
which code is written to process the newly delivered data.

The roles of the three virtual functions in Figure 6
are discussed below. The pHelmIvP application does in-
deed inherit from CMOOSApp and overload these three
functions. The base class contains other virtual functions
(OnConnectToServer() and OnDisconnectFromServer())
not discussed here but discussed in Newman (2003).

The Iterate() method: By overriding the CMOOSApp::
Iterate() function in a new derived class, the author cre-
ates a function from which the work that the application
is tasked with doing can be orchestrated. In the pHelmIvP
application, this method will consider the next-best vehi-
cle decision, typically in the form of deciding values for the
vehicle heading, speed, and depth. One may configure the
rate at which the Iterate() method is called by invoking
the SetAppFreq() method or by specifying the AppTick
parameter in the mission file. Note that the requested
frequency specifies the maximum frequency at which
Iterate() will be called—it does not guarantee that it will
be called at the requested rate. For example, if you write
code in Iterate() that takes 1 s to complete, there is no
way that this method can be called at more than 1 Hz. If

Journal of Field Robotics DOI 10.1002/rob



842 • Journal of Field Robotics—2010

you want to call Iterate() as fast as is possible, simply re-
quest a frequency of zero—but you may want to reconsider
why you need such a greedy application.

The OnNewMail( ) method: Just before Iterate() is
called, the CMOOSApp base class determines whether new
mail is present, i.e., whether some other process has posted
data for which the client has previously registered, as de-
scribed above. If new mail is waiting, the CMOOSApp base
class calls the OnNewMail() virtual function, typically over-
loaded by the application. The mail arrives in the form of
a list of CMOOSMsg objects (see Table I). The programmer
is free to iterate over this collection, examining who sent
the data, what they pertains to, and how old they are, and
whether they are string or numerical data and to act on or
process the data accordingly.

The OnStartup( ) method: This function is called just be-
fore the application enters into its own forever-loop de-
picted in Figure 6. This is the application that implements
the application’s initialization code and in particular reads
configuration parameters (including those that modify the
default behavior of the CMOOSApp base class) from a
file.

2.5. MOOS Applications in the Public Domain

Below are very brief descriptions of MOOS applications in
the public domain. This is not a complete list. It does not
include applications outside MIT, Oxford, and the Naval
Undersea Warfare Center (NUWC), and it is not a complete
list of applications from those organizations. For a more in-
depth tour of MOOS applications, see Benjamin, Newman,
Schmidt, and Leonard (2009).

pAntler: A tool for launching a collection of
MOOS processes given a mission file. See
Newman (n.d., 2003).

pMOOSBridge: A tool that allows messages to pass be-
tween MOOS communities and allows
for the renaming of messages as they
are shuffled between communities. See
Newman (n.d., 2003).

pLogger: A logger for recording the activities of
a MOOS session. It can be configured
to record a fraction or all publications
of any number of MOOS variables. See
Newman (n.d.).

pScheduler: A simple tool for generating and re-
sponding to messages sent to the
MOOSDB by processes in a MOOS
community. See Newman (n.d.).

uMS: A graphical user interface (GUI)-based
MOOS scope for monitoring one or
more MOOSDBs. See Newman (n.d.).

uPlayback: A cross-platform GUI application that
can load in log files and replay them
into a MOOS community as though
the originators of the data were really
running and issuing notifications. See
Newman (n.d.).

iMatlab: An application that allows Matlab to
join a MOOS community—even if only
for listening in and rendering sen-
sor data. It allows connection to the
MOOSDB and access to local serial
ports. See Newman (n.d.).

iRemote: A terminal-based tool for remote con-
trol of a platform running MOOS. It
can be configured to associate a pre-
defined variable-value poke with any
unmapped key on the keyboard. See
Newman (n.d.).

uMVS: A multivehicle autonomous underwa-
ter vehicle (AUV) simulator, capable
of simulating any number of vehicles
and acoustic ranging between them and
acoustic transponders. It uses a six-
degree-of-freedom vehicle model re-
plete with vehicle dynamics, center
of buoyancy, center of gravity geome-
try, and velocity-dependent drag. The
acoustic simulation may also simulate
acoustic packets propagating as spheri-
cal shells through the water column. See
Newman (n.d.).

pHelmIvP: The IvP Helm, and primary focus of this
document.

pNodeReporter: Garners vehicle navigation information
such as position, speed, heading, and
depth, along with other information
such as its operation mode and plat-
form type, and publishes a summary
variable, consumed by viewer applica-
tions such as pMarineViewer, and as in-
put to other vehicles participating in co-
operative tasks. See Benjamin (2010).

uXMS: A terminal-based tool for monitoring
the contents of a MOOSDB process,
or history of given variable within a
MOOSDB. See Benjamin (2010) and
Benjamin et al. (n.d.).

uHelmScope: A terminal-based tool for showing in-
formation about a running instance
of the IvP Helm. It also embeds a
general-purpose scoping utility simi-
lar to uXMS. See Benjamin (2010) and
Benjamin et al. (n.d.).
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uPokeDB: A command-line tool for poking
MOOS variable-value pairs and scop-
ing on the before and after val-
ues of the poked variable(s) be-
fore exiting. See Benjamin (2010) and
Benjamin et al. (n.d.).

pMarineViewer: A GUI-based tool primarily used
for rending the paths of vehicles
in two-dimensional (2D) space on a
Geo display but also can be config-
ured to poke the DB with variable-
value pairs connected to buttons on
the display. See Benjamin (2010) and
Benjamin et al. (n.d.).

pEchoVar: A lightweight process that runs with-
out user interaction for “echoing”
specified variable-value pairs posted
with a follow-on post having dif-
ferent variable name. See Benjamin
(2010).

iMarineSim: A very simple single-vehicle simula-
tor that updates vehicle state based
on present actuator values. Runs lo-
cally in the MOOS community as-
sociated with the simulated vehi-
cle, so, unlike uMVS, there is one
iMarineSim process running per each
vehicle.

pMarinePID: An application providing simple pro-
portional–integral–derivative (PID)
control for vehicle speed-thrust,
heading-rudder, and depth-pitch. It
is useful on platforms where there
is no front-seat control capability, or
when operating in simulation. It is
typically run at 20–40 Hz.

pBasicContactMgr: A simple manager of vehicle con-
tacts, capable of generating of user-
configured range-dependent alerts,
via posting of variable-value pairs to
the MOOSDB. See Benjamin (2010).

uFunctionVis: A application for live rendering of
objective functions produced by the
IvP Helm behaviors. See Benjamin
et al. (n.d.).

uProcessWatch: An application for monitoring
the presence (connection) of a set
of MOOS processes to a running
MOOSDB. Status is summarized
by a single published variable. See
Benjamin (2010).

uTermCommand: A terminal-based tool for poking the
DB with predefined variable-value
pairs. The user can configure the tool

to associate aliases to quickly poke the
DB. See Benjamin (2010) and Benjamin
et al. (n.d.).

uTimerScript: A MOOS application that will poke the
MOOSDB with predefined variable-
value pairs in a script that may repeat.
Not unlike pScheduler, but it can do
some additional things such as jump
forward or pause in the script based
on MOOS notifications. It may also
schedule its events to occur at a ran-
dom point in a fixed time interval. See
Benjamin (2010) and Benjamin et al.
(n.d.).

alogclip: A command-line tool for clipping a log
file based on a start and an end time.

aloggrep: A command-line tool for filtering a log
file keying on one or more MOOS vari-
ables or sources to keep.

aloghelm: A command-line postmission analysis
tool for generating IvP Helm–related
reports from a given log file.

alogrm: A command-line tool for filtering a log
file keying on one or more MOOS vari-
ables or sources to remove.

alogscan: A command-line tool for generating
statistical reports of a log file.

alogview A command-line postmission analysis
tool for rendering vehicle position tra-
jectories and time series data from a set
of alog files.

A number of MOOS applications have been written
to handle communications via acoustic modems (Schnei-
der & Schmidt, 2010a; 2010b), including dynamically con-
figurable message sets and encryption:

pAcommsHandler: A complete acoustic communications
solution composed of (1) compact en-
coding using the Dynamic Compact
Control Language (D-CCL), (2) time-
varying priority buffering, (3) medium
access control, and (4) support for the
Woods Hole Oceanographic Institute
(WHOI) Micro-Modem firmware.

iCommander: A GUI for composing DCCL mes-
sages (typically commands) for send-
ing through an acoustic modem via
pAcommsHandler.

pGeneralCodec: A stand-alone MOOS interface to
DCCL for those users not needing
the entire package offered by pA-
commsHandler.
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pCTDCodec: A special-purpose compressional en-
coder for conductivity–temperature–
depth (CTD) data. This encoder uses
delta-differencing encoding to make
very small messages suitable for trans-
mission through an acoustic modem.

pBTRCodec: An encoder for handling a beam-time
record (BTR) from an acoustic array.

pREMUSCodec: A MOOS encoder/decoder for a subset
of the WHOI/REMUS Compact Con-
trol Language (CCL) message set.

iMOOS2SQL: An interface between MOOS and the
Google Earth interface for ocean vehi-
cles (GEOV) utility.

3. IvP HELM AUTONOMY

3.1. Overview and Background

An autonomous helm is primarily an engine for deci-
sion making. The IvP Helm uses a behavior-based archi-
tecture to organize its decision making and is distinctive
in the manner in which it resolves competition between
behaviors, by performing multiobjective optimization on
their collective output using a mathematical programming
model called interval programming. Here the IvP Helm
architecture is described along with the means for con-
figuring it given a set of behaviors and a set of mission
objectives.

3.1.1. The Influence of Brooks, Stallman, and Dantzig on
the IvP Helm
The notion of a behavior-based architecture for implement-
ing autonomy on a robot or unmanned vehicle is most often
attributed to Rodney Brooks’s subsumption architecture
(Brooks, 1986). A key principle at the heart of Brooks’s ar-
chitecture, and arguably the primary reason that its appeal
has endured, is the notion that autonomy systems can be
built incrementally. Notably, Brooks’s original publication
predated the arrival of open-source software and the Free
Software Foundation founded by Richard Stallman. Open-
source software is not a prerequisite for building autonomy
systems incrementally, but it has the capability of greatly
accelerating that objective. The development of complex
autonomy systems stands to significantly benefit if the set
of developers at the table is large and diverse, even more
so if they can be from different organizations with perhaps
even the loosest of overlap in interest regarding how to use
the collective end product.

As discussed in Section 1.4, a key issue in behavior-
based autonomy has been the issue of action selection, and
the IvP Helm is distinct in this regard with the use of mul-
tiobjective optimization and interval programming. The al-
gorithm behind interval programming, as well as the term

itself, was motivated by the mathematical programming
model, linear programming, developed by George Dantzig
(1948). The key idea in linear programming is the choice
of the particular mathematical construct that comprises an
instance of a linear programming problem—it has enough
expressive flexibility to represent a huge class of practical
problems, and the constructs can be effectively exploited
by the simplex method to converge quickly even on very
large problem instances. The constructs used in interval
programming to represent behavior output (piecewise lin-
ear functions) were likewise chosen to have enough expres-
sive flexibility to handle any current and future behavior
and due to the opportunity to develop solution algorithms
that exploit the piecewise linear constructs.

3.1.2. Traditional and Nontraditional Aspects of the IvP
Behavior–Based Helm
The IvP Helm indeed takes its motivation from early no-
tions of the behavior-based architecture but is also quite
different in many regards. The notion of behavior indepen-
dence to temper the growth of complexity in progressively
larger systems is still a principle closely followed in the IvP
Helm. Behaviors may certainly influence one another from
one iteration to the next. However, within a single itera-
tion, the output generated by a single behavior is not af-
fected at all by what is generated by other behaviors in the
same iteration. The only interbehavior “communication”
realized within an iteration comes when the IvP solver rec-
onciles the output of multiple behaviors. The independence
of behaviors not only helps a single developer manage the
growth of complexity, but it also limits the dependency be-
tween developers. A behavior author need not worry that
a change in the implementation of another behavior by an-
other author requires subsequent recoding of one’s own
behavior(s).

Certain aspects of behaviors in the IvP Helm may also
be a departure from some notions traditionally associated
(fairly or not) with behavior-based architectures:

• Behaviors have state. IvP behaviors are instances of a
class with a fairly simple interface to the helm. Inside
they may be arbitrarily complex, keep histories of ob-
served sensor data, and may contain algorithms that
could be considered “reactive” or “plan-based.”

• Behaviors influence each other between iterations. The
primary output of behaviors is their objective function,
ranking the utility of candidate actions. IvP behaviors
may also generate variable-value posts to the MOOSDB
observable by behaviors on the next helm iteration. In
this way they can explicitly influence other behaviors by
triggering or suppressing their activation or even affect-
ing the parameter configuration of other behaviors.

• Behaviors may accept externally generated plans. The
input to a behavior can be anything represented by a
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MOOS variable and perhaps generated by other MOOS
processes outside the helm. It is allowable to have one
or more planning engines running on the vehicle gener-
ating output consumed by one or more behaviors.

• Several instances of the same behavior are allowed. Be-
haviors generally accept a set of configuration parame-
ters that allow them to be configured for quite different
tasks or roles in the same helm and mission. Different
waypoint behaviors, for example, can be configured for
different components of a transit mission. Or different
collision avoidance behaviors can be instantiated for dif-
ferent contacts.

• Behaviors can be run in a configurable sequence. The
condition and endflag parameters defined for all be-
haviors allow for a sequence of behaviors to be readily
configured into a larger mission plan.

• Behaviors rate actions over a coupled decision space. IvP
functions generated by behaviors are defined over the
Cartesian product of the set of vehicle decision variables.
Objective functions for certain behaviors may be ade-
quately expressed only over such a decision space. See,
for example, the function produced by the AvoidColli-
sion behavior later in this paper. This is distinct from
the decoupled decision-making style proposed in Pir-
janian (1998) and Rosenblatt (1997)—early advocates of
multiobjective optimization in behavior-based action se-
lection. There is indeed a computational cost associated
with this approach. This is mitigated by the use of the
interval programming (IvP) model and IvPBuild Tool-
box for representing, building, and solving multiobjec-
tive optimization problems over functions with multidi-
mension domains.

The autonomy in play on a vehicle during a particular mis-
sion is the product of two distinct efforts: (1) the develop-
ment of vehicle behaviors and their algorithms and (2) mis-
sion planning via the configuration of behaviors and mode
declarations. The former involves the writing of new source
code, and the latter involves the editing of mission behavior
files.

3.2. Inside the IvP Helm: A Look at the Helm
Iterate Loop

Like other MOOS applications, the IvP Helm implements
an Iterate() loop within which the basic function of the
helm is executed. Components of the Iterate() loop, with
respect to the behavior-based architecture, are described
in this section. The basic flow, in five steps, is depicted in
Figure 7. Descriptions of the five components follow.

Step 1—Reading mail and populating the information
buffer: The first step of a helm iteration occurs outside the
Iterate() loop. As depicted in Figure 6, a MOOS applica-
tion will read its mail by executing its OnNewMail() func-

tion just prior to executing its Iterate() loop if there is
any mail in its in-box. The helm parses mail to maintain its
own information buffer, which is also a mapping of vari-
ables to values. This is done primarily for simplicity—to
ensure that each behavior is acting on the same world state
as represented by the information buffer. Each behavior has
a pointer to the buffer and is able to query the current value
of any variable in the buffer or get a list of variable-value
changes since the previous iteration.

Step 2—Evaluation of mode declarations: Once the in-
formation buffer is updated with all incoming mail, the
helm evaluates any mode declarations specified in the be-
havior file. Mode declarations are discussed in Section 3.3.
In short, a mode is represented by a string variable that
is reset on each iteration based on the evaluation of a
set of logic expressions involving other variables in the
buffer. The variable representing the mode declaration is
then available to the behavior on the current iteration
when it, for example, evaluates its condition parameters.
A condition for behavior participating in the current it-
eration could therefore read something like condition =
(MODE==SURVEYING). The exact value of the variable MODE is
set during this step of the Iterate() loop.

Step 3—Behavior participation: In the third step much
of the work of the helm is realized by giving each be-
havior a chance to participate. Each behavior is queried
sequentially—the helm contains no separate threads in this
regard. The order in which behaviors are queried does not
affect the output. This step contains two distinct parts for
each behavior: (1) determination of whether the behavior
will participate and (2) production of output if it is indeed
participating on this iteration. Each behavior may produce
two types of information as Figure 7 indicates. The first is
an objective function (or “utility” function) in the form of
an IvP function. The second kind of behavior output is a
list of variable-value pairs to be posted by the helm to the
MOOSDB at the end of the Iterate() loop. A behavior
may produce both kinds of information, neither, or one or
the other, on any given iteration.

Step 4—Behavior reconciliation: In the fourth step de-
picted in Figure 7, the IvP functions are collected by the IvP
solver to produce a single decision over the helm’s deci-
sion space. Each function is an IvP function—an objective
function that maps each element of the helm’s decision
space to a utility value. In this case the functions are of a
particular form—piecewise linearly defined. That is, each
piece is an interval of the decision space with an associ-
ated linear function. Each function also has an associated
weight, and the solver performs multiobjective optimiza-
tion over the weighted sum of functions (in effect a single
objective optimization at that point). The output is a single
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Figure 7. The pHelmIvP Iterate Loop: (1) Mail is read from the MOOSDB. It is parsed and stored in a local buffer to be available to
the behaviors. (2) If there were any mode declarations in the mission behavior file, they are evaluated at this step. (3) Each behavior
is queried for its contribution and may produce an IvP function and a list of variable-value pairs to be posted to the MOOSDB at
the end of the iteration. (4) The objective functions are resolved to produce an action, expressible as a set of variable-value pairs.
(5) All variable-value pairs are published to the MOOSDB for other MOOS processes to consume.

optimal point in the decision space. For each decision vari-
able, the helm produces another variable-value pair, such
as DESIRED SPEED = 2.4 for publication to the MOOSDB.

Step 5—Publishing the results to the MOOSDB: In the
last step, the helm simply publishes all variable-value pairs
to the MOOSDB, some of which were produced directly by
the behaviors and some of which were generated as output
from the IvP solver. The helm employs a duplication filter
that may prevent successive variable-value pairs from be-
ing posted if the value does not change. This filter is applied
only to the variable-value pairs generated directly from the
behaviors and not the variable-value pairs generated by the
IvP solver that represent a decision in the helm’s domain.
For example, even if the decision about a vehicle’s depth,
represented by the variable DESIRED DEPTH, produced by
the helm were unchanged for 5 min of operation, it would
be published on each iteration of the helm. To do otherwise
could give the impression to consumers of the variable that
the variable is “stale,” which could trigger an unwanted
override of the helm out of a concern for safety.

3.3. Hierarchical Mode Declarations

Hierarchical mode declarations (HMDs) are an optional
feature of the IvP Helm for organizing the behavior acti-

vations according to declared mission modes. Modes and
submodes can be declared, in line with a mission plan-
ner’s own concept of mission evolution, and behaviors
can be associated with the declared modes. In more com-
plex missions, it can facilitate mission planning (in terms
of less time and better detection of human errors), and
it can facilitate the understanding of exactly what is hap-
pening in the helm—during the mission execution and in
postanalysis.

3.3.1. The Evolution of Autonomy Modes
A trend of unmanned vehicle usage can be characterized
as being increasingly less of the shorter, scripted variety
and to be increasingly more of the longer, adaptive mis-
sion variety. A typical mission in our own lab 5 years ago
would contain a certain set of tasks, typically waypoints
and ultimately a rendezvous point for recovering the ve-
hicle. Data acquired during deployment were off-loaded
and analyzed later in the laboratory. What has changed?
The simultaneous maturation of acoustic communications,
onboard sensor processing, and longer vehicle battery life
has dramatically changed the nature of mission configura-
tions. The vehicle is expected both to adapt to the phenom-
ena it senses and processes onboard and to adapt its oper-
ation given field-control commands received via acoustic,
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radio, or satellite communications. Multivehicle collabora-
tive missions are also increasingly viable due to lower vehi-
cle costs and mature ACOMMS capabilities. In such cases
a vehicle is adapting not only to sensed phenomena and
field commands but also to information from collaborating
vehicles.

Our missions have evolved from having a finite set of
fixed tasks to be composed instead of a set of modes, an ini-
tial mode when launched, an understanding of what brings
us from one mode to another, and what behaviors are in
play in each mode. Modes may be entered and exited any
number of times, in exact sequences unknown at launch
time, depending on what the vehicle senses and how they
are commanded in the field.

3.3.2. Syntax of Hierarchical Mode Declarations
An example is provided showing of the use of HMDs with
an example simple mission. This mission is referred to as
the Bravo mission and can be found alongside the Alpha
mission in the set of example missions distributed with the
MOOS-IvP public domain software. The modes are explic-
itly declared in the Bravo behavior file to form the hierarchy
shown in Figure 8.

The hierarchy in Figure 8 is formed by the mode decla-
ration constructs on the left-hand side, taken as an excerpt
from the bravo.bhv file. After the mode declarations are
read when the helm is initially launched, the hierarchy re-
mains static thereafter. The hierarchy is associated with a
particular MOOS variable, in this case the variable MODE.
Although the hierarchy remains static, the mode is reeval-

uated at the outset of each helm iteration based on the con-
ditions associated with nodes in the hierarchy. The mode
evaluation is represented as a string in the variable MODE.
As shown in Figure 8, the variable is the concatenation of
the names of all the nodes. The mode evaluation begins
sequentially through each of the blocks. At the outset the
value of the variable MODE is reset to the empty string. After
the first block in Figure 8, MODEwill be set to either "Active"
or "Inactive." When the second block is evaluated, the
condition "MODE=Active" is evaluate based on how MODE
was set in the first block. For this reason, mode declarations
of children need to be listed after the declarations of parents
in the behavior file.

Once the mode is evaluated, at the outset of the helm
iteration, it is available for use in the run conditions of
the behaviors (described below) via a string-matching re-
lation that matches when one side matches exactly one
of the components in the other side’s colon-separated
list of strings. Thus "Active" == "Active:Returning,"
and "Returning" == "Active:Returning." This is to al-
low a behavior to be easily associated with an internal
node regardless of its children. For example, if a collision-
avoidance behavior were to be added to the Bravo mis-
sion, it could be associated with the "Active" mode rather
than explicitly naming all the submodes of the "Active"
mode.

3.4. Behavior Participation in the IvP Helm

The primary work of the helm comes when the behav-
iors participate at each round of the helm Iterate()

Figure 8. Hierarchical modes for the Bravo mission: The vehicle will always be in one of the modes represented by a leaf node. A
behavior may be associated with any node in the tree. If a behavior is associated with an internal node, it is also associated with
all its children.
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loop, by producing IvP functions, posting variable-value
pairs to MOOS, or both. As depicted in Figure 7, once
the mode has been reevaluated taking into consideration
newly received mail, it is time for the relevant behaviors to
participate.

3.4.1. Behavior Conditions
On any single iteration a behavior may participate by gen-
erating an objective function to influence the helm’s out-
put over its decision space. Not all behaviors participate in
this regard, and the primary criterion for participation is
whether it has met each of its “run conditions.” These are
the conditions laid out in the behavior file of the form

condition = <logic-expression>.

Conditions are built from simple relational expressions, the
comparison of MOOS variables to specified literal values,
or the comparison of MOOS variables to one another. Con-
ditions may also involve Boolean logic combinations of re-
lation expressions. A behavior may base its conditions on
any MOOS variable, such as

condition = (DEPLOY=true) and (STATION != true).

A run condition may also be expressed in terms of a helm
mode, such as

condition = (MODE == LOITERING).

All MOOS variables involved in run condition expres-
sions are automatically subscribed for by the helm to the
MOOSDB.

3.4.2. Behavior Run States
On any given helm iteration a behavior may be in one of
four states depicted in Figure 9:

• Idle: A behavior is idle if it is not complete and it has
not met its run conditions as described in Section 3.4.1.
The helm will invoke an idle behavior’s onIdleState()
function.

• Running: A behavior is running if it has met its run con-
ditions and it is not complete. The helm will invoke a
running behavior’s onRunState() function, thereby giv-
ing the behavior an opportunity to contribute an objec-
tive function.

• Active: A behavior is active if it is running and it did
indeed produce an objective function when prompted.
There are a number of reasons that a running behavior
may not be active. For example, a collision avoidance
behavior may opt to not produce an objective function
when the contact is sufficiently far away.

• Complete: A behavior is complete when the behavior
itself determines that it is complete. It is up to the be-
havior author to implement this, and some behaviors
may never complete. The function setComplete() is de-
fined generally at the behavior superclass level, for call-
ing by a behavior author. This provides some standard
steps to be taken upon completion, such as posting of
endflags, described in Section 3.4.3. Once a behavior
is in the complete state, it remains in that state per-
manently. All behaviors have a DURATION parameter de-
fined to allow the behavior to be configured to time out
if desired. When a time-out occurs, the behavior state
will be set to complete.

3.4.3. Behavior Flags and Behavior Messages
Behaviors may produce a set of messages, i.e., variable-
value pairs, on any given iteration (see Figure 7). These
messages can be critical for coordinating behaviors with
each other and to other MOOS processes. They can also be
invaluable for monitoring and debugging behaviors con-
figured for particular missions. Behaviors do not post mes-
sages to the MOOSDB; they request the helm to post mes-
sages on their behalf. The helm collects these requests and
publishes them to the MOOSDB at the end of the Iterate()
loop.

There is a standard method, configurable in the be-
havior file, for posting messages based on the run state of
the behavior. These are referred to as behavior flags, and
there are five types: (1) endflag, (2) idleflag, (3) runflag,
(4) activeflag, and (5) inactiveflag. The variable-value
pairs representing each flag are set in the behavior file for
the corresponding behavior:

• endflag: An endflag is posted once when or if the be-
havior enters the complete state. The variable-value pair
representing the endflag is given in the endflag param-
eter in the behavior file. Multiple endflags may be con-
figured for a behavior. By default, when a behavior is
completed and has posted its endflag, it does not par-
ticipate further. Its instance is destroyed and removed

Figure 9. Behavior states: A behavior may be in one of these four states at any given iteration of the helm Iterate() loop. The
state is determined by examination of MOOS variables stored locally in the helm’s information buffer.
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from the helm. A behavior may, however, be configured
to survive completion by setting the perpetual param-
eter to be true.

• idleflag: An idleflag is posted on each iteration of the
helm when the behavior is determined to be in the idle
state. The variable-value pair representing the idleflag
is given in the idleflag parameter in the behavior file.
Multiple idleflags may be configured for a behavior.

• runflag: A runflag is posted on each iteration of the
helm when the behavior is determined to be in the
running state, regardless of whether it is further deter-
mined to be active or not. A runflag is posted exactly
when an idleflag is not. The variable-value pair repre-
senting the runflag is given in the runflag parameter in
the behavior file. Multiple runflags may be configured
for a behavior.

• activeflag: An activeflag is posted on each iteration
of the helm when the behavior is determined to be in the
active state. The variable-value pair representing the
activeflag is given in the activeflag parameter in the
behavior file. Multiple activeflags may be configured for
a behavior.

• inactiveflag: An inactiveflag is posted on each iter-
ation of the helm when the behavior is determined to
be not in the active state. The variable-value pair repre-
senting the inactiveflag is given in the inactiveflag pa-
rameter in the behavior file. Multiple inactiveflags may
be configured for a behavior.

A runflag is meant to “complement” an idleflag, by post-
ing exactly when the other one does not; similarly with the
inactiveflag and activeflag. The situation is shown in
Figure 10.

Behavior authors may implement their behaviors
to post other messages as they see fit. For exam-
ple, the waypoint behavior publishes a status variable,
WPT STATUS, with a status message similar to "vname=
alpha,index=0,dist=124,eta=62," indicating the name
of the vehicle, the index of the next point in the list of way-
points, the distance to that waypoint, and the estimated
time of arrival.

Figure 10. Behavior flags: The four behavior flags idleflag,
runflag, activeflag, and inactiveflag are posted depending
on the behavior state and can be considered complementary in
the manner indicated.

3.5. Behavior Reconciliation in the IvP
Helm—Multiobjective Optimization

A unique aspect of the IvP Helm is the manner in which it
reconciles the output of behaviors when they are competing
for influence of the helm decision.

3.5.1. IvP Functions
IvP functions are produced by behaviors to influence the
decision produced by the helm on the current iteration (see
Figure 7). The decision is typically composed of the desired
heading, speed, and depth, but the helm decision space
could be composed of any arbitrary configuration. Some
points about IvP functions are as follows:

• IvP functions are piecewise linearly defined. Each piece
is defined by an interval over some subset of the decision
space, and there is a linear function associated with each
piece (see Figure 11).

• IvP functions are an approximation of an underlying
function. The linear function for a single piece is the best
linear approximation of the underlying function for the
portion of the domain covered by that piece.

• IvP domains are discrete with an upper and lower
bound for each variable, so an IvP function may achieve
zero error in approximating an underlying function by
associating a piece with each point in the domain. Be-
haviors seldom need to do so in practice, however.

• The Ivp function construct and IvP solver are generaliz-
able to N dimensions.

• The pieces in IvP functions need not be uniform size
or shape. More pieces can be dedicated to parts of
the domain that are harder to approximate with linear
functions.

• IvP functions need only be defined over a subset of the
domain. Behaviors are not affected if the helm is con-
figured for additional variables that a behavior may not
care about. It is allowable, for example, to have a behav-
ior that produces IvP functions solely over the vehicle
depth, even though the helm may be producing deci-
sions over heading, speed, and depth.

IvP functions are produced by behaviors using the IvP
Build Toolbox—a set of tools for creating IvP functions
based on any underlying function defined over an IvP
domain. Many, if not all, of the behaviors in this docu-
ment make use of this toolbox, and authors of new behav-
iors have this at their disposal. A primary component of
writing a new behavior is the development of the “un-
derlying function,” the function approximated by an IvP
function with the help of the toolbox. The underlying func-
tion is a correlation between all candidate helm decisions,
e.g., heading, speed, and depth choices, to a utility value
from the perspective of what the behavior is trying to
achieve.
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(a) 7,056 (84 × 84) uniform pieces (b) 289 (17 × 17) uniform pieces

(c) Directed refinement, 732 pieces (d) Smart refinement, 225 pieces

Figure 11. A rendering of four different IvP functions approximating the same underlying function: The function in (a) uses a
uniform distribution of 7,056 pieces. The function in (b) uses a uniform distribution of 289 pieces. The function in (c) was created
by first building a uniform distribution of 49 pieces and then focusing the refinement on a subdomain of the function. This is called
directed refinement in the IvP Build Toolbox. The function in (d) was created by first building a uniform function of 25 pieces and
repeatedly refining the function based on which pieces were noted to have a poor fit to the underlying function. This is termed
smart refinement in the IvP Build Toolbox.

3.5.2. The IvP Build Toolbox

The IvP toolbox is a set of tools (a C++ library) for building
IvP functions. It is typically utilized by behavior authors in
a sequence of library calls within a behavior’s (C++) im-
plementation. There are two sets of tools—the reflector tools
for building IvP functions in N dimensions and the ZAIC
tools for building IvP functions in one dimension as a spe-
cial case. The reflector tools work by making available a
function to be approximated by an IvP function. The tools
simply need this function for sampling. Consider the Gaus-
sian function rendered in Figure 12.

The x and y variables, each with a range of [−250, 250],
are discrete, taking on integer values. The domain therefore
contains 5012 = 251,001 points or possible decisions. The
IvP Build Toolbox can generate an IvP function approxi-
mating this function over this domain by using a uniform
piece size, as rendered in Figures 11(a) and 11(b). The differ-
ence in these two figures is only the size of the piece. More

pieces [Figure 11(a)] results in a more accurate approxima-
tion of the underlying function but takes longer to generate
and creates further work for the IvP solver when the func-
tions are combined. IvP functions need not use uniformly
sized pieces.

By using the directed refinement option in the IvP Build
Toolbox, an initially uniform IvP function can be further re-
fined with more pieces over a subdomain directed by the
caller, with smaller uniform pieces of the caller’s choosing.
This is rendered in Figure 11(c). Using this tool requires the
caller to have some idea where, in the subdomain, further
refinement is needed or desired. Often a behavior author
indeed has this insight. For example, if one of the domain
variables is vehicle heading, it may be good to have a fine
refinement in the neighborhood of heading values close to
the vehicle’s current heading.

In other situations, insight into where further refine-
ment is needed may not be available to the caller. In these
cases, using the smart refinement option of the IvP Build
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Figure 12. A rendering of the function f (x, y) = Ae−{(x=x0)2+(y=y0)2/2σ 2}, where A = range = 150, σ = sigma = 32.4, x0 = xcent = 50,
and y0 = ycent = −150. The domain here for x and y ranges from −250 to 250.

Toolbox, an initially uniform IvP function may be further
refined by asking the toolbox to automatically “grade” the
pieces as they are being created. The grading is in terms
of how accurate the linear fit is between the piece’s linear
function and the underlying function over the subdomain
for that piece. A priority queue is maintained based on the
grades, and pieces for which poor fits are noted are auto-
matically refined further, up to a maximum piece limit cho-
sen by the caller. This is rendered in Figure 11(d).

The reflector tools work similarly in N dimensions and
on multimodal functions. The only requirement for using
the reflector tool is to provide it with access to the under-
lying function. Because the tool repetitively samples this
function, a central challenge to the user of the toolbox is to
develop a fast implementation of the function. In terms of
the time consumed in generating IvP functions with the re-
flector tool, the sampling of the underlying function is typ-
ically the longest part of the process.

3.5.3. The IvP Solver and Behavior Priority Weights
The IvP solver collects a set of weighted IvP functions pro-
duced by each of the behaviors and finds a point in the
decision space that optimizes the weighted combination.
If each IvP objective function is represented by fi (x), and
the weight of each function is given by wi , the solution to a

problem with k functions is given by

x∗ = arg max
x

k−1∑

i=0

wifi (x).

The algorithm is described in detail in Benjamin (2004) but
is summarized in the following few points.

• The search tree: The structure of the search algorithm is
branch and bound. The search tree is composed of an
IvP function at each layer, and the nodes at each layer
are composed of the individual pieces from the func-
tion at that layer. A leaf node represents a single piece
from each function. A node in the tree is realizable if
the piece from that node and its ancestors intersect, i.e.,
share common points in the decision space.

• Global optimality: Each point in the decision space is in
exactly one piece in each IvP function and is thus in ex-
actly one leaf node of the search tree. If the search tree
is expanded fully, or pruned properly (only when the
pruned out subtree does not contain the optimal solu-
tion), then the search is guaranteed to produce the glob-
ally optimal solution. The search algorithm employed
by the IvP solver does indeed start with a fully ex-
panded tree and utilizes proper pruning to guarantee
global optimality. The algorithm does allow for a pa-
rameter for guaranteed limited back-off from the global
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optimality—a quicker solution with a guarantee of be-
ing within a fixed percent of global optima. This op-
tion is not exposed in the configuration of the IvP Helm,
which always finds the global optimum because this
stage of computation is very fast in practice.

• Initial solution: A key factor of an effective branch-and-
bound algorithm is seeding the search with a decent ini-
tial solution. In the IvP Helm, the initial solution used is
the solution (typically heading, speed, depth) generated
on the previous helm iteration. In practice this appears
to provide a speedup by about a factor of two.

In cases in which there is a “tie” between optimal decisions,
the solution generated by the solver is nondeterministic.
When the solver is used in the helm, the nondeterminism is
mitigated somewhat by the fact that the solution is seeded
with the output of the previous helm iteration as discussed
above. In other words, all things being equal, the helm will
default to producing a decision that matches its previous
decision.

The setting of function priority weights occurs in one
of three manners. First, many behaviors are designed with
a policy for setting their own weights. For example, in a col-
lision avoidance behavior the weight varies between zero
and a maximum weight depending on the relative position
of the two vehicles. Second, weights are influenced by ini-
tial behavior configuration parameters regarding the prior-
ity weight policy. These are set during a premission plan-
ning phase. Finally, weights may be affected at run time via
the dynamic reconfiguration of behavior parameters to val-
ues different from those set at the time of mission launch.
Such reconfiguration may be the result of a field-control
message received from a remote operator or another plat-
form or the result of another onboard process outside the
helm. In practice, users often make good use of simulation

tools to confirm that parameter configurations and behav-
ior weight-setting policies are in line with their expectations
for the mission.

4. IvP HELM BEHAVIORS

Helm behaviors derive part of their function from inherit-
ing properties from a base class behavior implementation,
and their unique capabilities are an extension of the base
capability. The uniform base capability allows for mission
configurations to be constructed in a simple predictable
manner. Here we discuss (a) the base capabilities of IvP be-
haviors, (b) how behaviors are handled generally by the
helm in each iteration, (c) the hooks for creating a new
third-party behavior, (d) an overview of standard behav-
iors that are distributed with the helm in the open do-
main, and (e) a more detailed look at a few representative
behaviors.

4.1. Brief Overview

Behaviors are implemented as C++ classes with the helm
having one or more instances at run time, each with a
unique descriptor. The properties and implemented func-
tions of a particular behavior are partly derived from the
IvPBehavior superclass, shown in Figure 13. The is-a rela-
tionship of a derived class provides a form of code reuse
as well as a common interface for constructing mission files
with behaviors.

The IvPBehavior class provides three virtual functions
that are typically overloaded in a particular behavior imple-
mentation:

• The setParam() function: Parameter-value pairs are
handled to configure a behavior’s unique properties dis-
tinct from its superclass.

Figure 13. Behavior inheritance: Behaviors are derived from the IvPBehavior superclass. The native behaviors are the behaviors
distributed with the helm. New behaviors also need to be a subclass of the IvPBehavior class to work with the helm. Certain virtual
functions invoked by the helm may be optionally but typically overloaded in all new behaviors. Other private functions may be
invoked within a behavior function as a way of facilitating common tasks involved in implementing a behavior.
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• The onRunState() function: The primary function of a
behavior implementation, performed when the behav-
ior has met its conditions for running, with the output
being an objective function and a possibly empty set of
variable-value pairs for posting to the MOOSDB.

• The onIdleState() function: What the behavior does
when it has not met its run conditions. It may involve
updating internal state history, generation of variable-
value pairs for posting to the MOOSDB, or absolutely
nothing at all.

This section discusses the properties of the IvPBehavior su-
perclass that an author of a third-party behavior needs to be
aware of in implementing new behaviors. It is also relevant
material for users of the native behaviors as it details gen-
eral properties.

4.2. Parameters Common to All IvP Behaviors

A behavior has a standard set of parameters defined at
the IvPBehavior level as well as unique parameters de-
fined at the subclass level. By configuring a behavior during
mission planning, the setting of parameters is the primary
venue for affecting the overall autonomy behavior in a ve-
hicle. Parameters are set in the behavior file but can also be
dynamically altered once the mission has commenced. A
parameter is set with a single line of the form

parameter = value.

In this section, the parameters defined at the superclass
level and available to all behaviors are discussed. Each new
behavior typically augments these parameters with new
parameters unique to the behavior.

4.2.1. A Summary of the Full Set of General Behavior
Parameters
The following parameters are defined for all behaviors at
the superclass level.

NAME: The name of the behavior must be unique be-
tween all behavior instances.

PRIORITY: The priority weight of the produced objec-
tive function. The default value is 100. A behavior may also
be implemented to determine its own priority weight, de-
pending on information about the world.

DURATION: The time in seconds that the behavior will
remain running before declaring completion. If no duration
value is provided, the behavior will never time out. The
clock starts ticking once the behavior satisfies its run condi-
tions (becoming nonidle) the first time. Should the behavior
switch between running and idle states, the clock keeps ticking
even during the idle periods.

DURATION STATUS: If the DURATION parameter is set,
the remaining duration time, in seconds, can be posted

by naming a DURATION STATUS variable. This variable will
be updated and posted only when the behavior is in the
running state.

DURATION RESET: This parameter takes a variable-pair
such as MY RESET=true. If the DURATION parameter is set,
the duration clock is reset when the variable is posted to
the MOOSDB with the specified value. Each time such a
post is noted, the duration clock is reset.

POST MAPPING: This parameter takes a comma-
separated pair such as WPT STAT, WAYPT STATUS in which
the left-hand value is a variable normally posted by the
behavior and the right-hand value is an alternative vari-
able name to be used. There is no error checking to ensure
that the left-hand value names a variable actually posted
by the behavior. Transitive relationships are not respected.
For example, if the two remappings are declared, FOO,BAR
and BAR,CAR, FOO will be posted as BAR, not CAR. To disable
the normal posting of a variable FOO, use POST MAPPING =
FOO,SILENT.

DURATION IDLE DECAY: If this parameter is false the
duration clock is paused when the vehicle is in the “idle”
state. The default value is true.

CONDITION: This parameter specifies a condition that
must be met for the behavior to be active. Conditions
are checked for each behavior at the beginning of each
control loop iteration. Conditions are based on current
MOOS variables, such as STATE = normal or (K ≤ 4).
More than one condition may be provided, as a conve-
nience, treated collectively as a single conjunctive condi-
tion. The helm automatically subscribes for any condition
variables.

RUNFLAG: This parameter specifies a variable and a
value to be posted when the behavior has met all its condi-
tions for being in the running state. It is an equal-separated
pair such as TRANSITING=true. More than one flag may be
provided. These can be used to satisfy or block the condi-
tions of other behaviors.

IDLEFLAG: This parameter specifies a variable and a
value to be posted when the behavior is in the idle state.
It is an equal-separated pair such as WAITING=true. More
than one flag may be provided. These can be used to satisfy
or block the conditions of other behaviors.

ACTIVEFlAG: This parameter specifies a variable and a
value to be posted when the behavior is in the active state. It
is an equal-separated pair such as TRANSITING=true. More
than one flag may be provided. These can be used to satisfy
or block the conditions of other behaviors.

INACTIVEFlAG:This parameter specifies a variable
and a value to be posted when the behavior is not in
the active state. It is an equal-separated pair such as
OUT OF RANGE=true. More than one flag may be provided.
These can be used to satisfy or block the conditions of other
behaviors.

ENDFLAG: This parameter specifies a variable and a
value to be posted when the behavior has set the completed
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state variable to be true. The circumstances causing com-
pletion are unique to the individual behavior. However,
if the behavior has a DURATION specified, the completed
flag is set to true when the duration is exceeded. The
value of this parameter is an equal-separated pair such as
ARRIVED HOME=true. Once the completed flag is set to true
for a behavior, it remains inactive thereafter, regardless of
future events, barring a complete helm restart.

UPDATES: This parameter specifies a variable from
which updates to behavior configuration parameters are
read from after the behavior has been initially instantiated
and configured at the helm startup time. Any parameter
and value pair that would have been legal at startup time
is legal at run time. This is one of the primary hooks to the
helm for mission control—the other being the behavior con-
ditions described above.

NOSTARVE: The NOSTARVE parameter allows a behav-
ior to assert a maximum staleness for one or more MOOS
variables, i.e., the time since the variable was last updated.
The syntax for this parameter is a comma-separated list
"variable, ..., variable, value," where the last com-
ponent in the list is the time value given in seconds.

PERPETUAL: Setting the perpetual parameter to true
allows the behavior to continue to run even after it has com-
pleted and posted its end flags. The parameter value is not
case sensitive, and the only two legal values are true and
false.

4.2.2. Altering Behavior Parameters Dynamically
with the UPDATES Parameter
The parameters of a behavior can be made to allow dy-
namic modifications—after the helm has been launched
and is executing the initial mission in the behavior file. The
modifications come in a single MOOS variable specified by
the parameter UPDATES. For example, consider the simple
waypoint behavior configuration below in Listing 1. The
return point is the (0,0) point in local coordinates, and re-
turn speed is 2.0 m/s. When the conditions are met, this is
what will be executed.

Listing 1—An example behavior configuration using the
UPDATES parameter:

0 Behavior = BHV_Waypoint
1 {
2 name = WAYPT_RETURN
3 priority = 100
4 speed = 2.0
5 radius = 8.0
6 points = 0,0
7 UPDATES = RETURN_UPDATES
8 condition = RETURN = true
9 condition = DEPLOY = true
10 }

If, during the course of events, a different return point or
speed is desired, this behavior can be altered dynamically
by writing to the variable specified by the UPDATES param-
eter, in this case the variable RETURN UPDATES (line 7 in List-
ing 1). The syntax for this variable is of the form

parameter = value, # ... #, parameter = value.

White space is ignored. The # character is treated as special
for parsing the line into separate parameter-value pairs. It
cannot be part of a parameter component or value compo-
nent. For example, the return point and speed for this be-
havior could be altered by any other MOOS process that
writes to the MOOS variable:

RETURN_UPDATES = points = (50,50) # speed = 1.5.

Each parameter-value pair is passed to the same param-
eter setting routines used by the behavior on initializa-
tion. The only difference is that an erroneous parameter-
value pair will simply be ignored as opposed to halting the
helm as done on startup. If a faulty parameter-value pair
is encountered, a warning will be written to the variable
BHV WARNING. For example,

BHV_WARNING = "Faulty update for behavior:\

WAYPT_RETURN. Bad parameter(s): speed."

Note that a check for parameter updates is made at the out-
set of the helm iteration loop for a behavior with the call
checkUpdates(). Any updates received by the helm on the
current iteration will be applied prior to behavior execution
and in effect for the current iteration.

4.3. Behavior Functions Invoked by the Helm

The IvPBehavior superclass implements a number of func-
tions invoked by the helm on each iteration. Two of these
functions are overloadable as described previously—the
onRunState() and onIdleState() functions. The basic
flow of calls to a behavior from the helm is shown in
Figure 14. They are discussed in more detail later in the
section, but the idea is to execute certain behavior func-
tions based on the activity state, which may be one of the
four states depicted. An idle behavior is one that has not
met its conditions for running. A completed behavior is one
that has reached its objectives or exceeded its duration. A
running behavior is one that has not yet completed and
has met its run conditions but may still opt not to pro-
duce any output. An active behavior is one that is run-
ning and is producing output in the form of an objective
function.

The types of functions defined at the superclass level
fall into one of the three categories below, only the first two
of which are shown in Figure 14:
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Figure 14. Behavior function calls by the helm: The helm invokes a sequence of functions on each behavior on each iteration
of the helm. The sequence of calls is dependent on what the behavior returns and reflects the behavior’s activity state. Certain
functions are immutable and cannot be overloaded by a behavior author. Two key functions, onRunState() and onIdleState(),
can indeed be overloaded as the usual hook for an author to provide the implementation of a behavior. The postFlags function is
also immutable, but the parameters (flags) are provided in the helm configuration (*.bhv) file.

• Helm-invoked immutable functions—functions in-
voked by the helm on each iteration that the author of a
new behavior may not reimplement.

• Helm-invoked overloadable functions—functions in-
voked by the helm that an author of a new behavior typ-
ically reimplements or overloads.

• User-invoked functions—functions invoked within a be-
havior implementation.

The user-invoked functions are utilities for common oper-
ations typically invoked within the implementation of the
onRunState() and onIdleState() functions written by the
behavior author. Their discussion is beyond the scope of
this document, but descriptions may be found in Benjamin,
Newman, Schmidt, and Leonard (2010).

4.3.1. Helm-Invoked Immutable Functions
These functions, implemented in the IvPBehavior super-
class, are called by the helm but are not defined as vir-
tual functions, which means that attempts to overload them
in a new behavior implementation will be ignored. See
Figure 14 regarding the sequence of these function calls.

void checkUpdates(): This function is called first on each
iteration to handle requested dynamic changes in the
behavior configuration. This needs to be the very first
function applied to a behavior on the helm iteration so
any requested changes to the behavior parameters may
be applied on the present iteration. See Section 4.2.2
for more on dynamic behavior configuration with the
UPDATES parameter.
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bool isComplete(): This function simply returns a
Boolean indicating whether the behavior was put into
the complete state during a prior iteration.

bool isRunnable(): Determines whether a behavior is in
the running state. Within this function call four things
are checked: (a) if the duration is set, the duration time
remaining is checked for timeout, (b) variables that are
monitored for staleness are checked against, (c) the run
conditions must be met, and (d) the behavior’s decision
domain (IvP domain) is a proper subset of the helm’s
configured IvP domain.

void postFlags(string flag type): This function will
post flags depending on whether the value of flag type
is set to "idleflags," "runflags," "activeflags,"
"inactiveflags," or "endflags." Although this func-
tion is immutable, not overloadable by subclass im-
plementations, its effect is indeed mutable because the
flags are specified in the mission configuration *.bhv
file.

4.3.2. Helm-Invoked Overloaded Functions
Helm-invoked overloaded functions are invoked by the
helm but are defined as virtual functions so that a behavior
author may overload them. Typically the bulk of writing a
new behavior resides in implementing these functions.

IvPFunction* onRunState(): The onRunState() function
is called by the helm when the behavior is deemed to be
in the running state (Figure 14). The bulk of the work in
implementing a new behavior is in this function imple-
mentation.

void onIdleState(): This function is called by the helm
when the behavior is deemed to be in the idle state
(Figure 14). Many behaviors are implemented with this
function left undefined, but it is a useful hook to have in
certain situations. For example, the behavior may post
information to the MOOSDB about issues it is monitor-
ing while in the idle state, or it could post information
to the MOOSDB that may contribute to the behavior en-
tering the running state on the next iteration.

bool setParam(string, string): This function is called
by the helm when the behavior is first instantiated with
the set of parameter and parameter values provided in
the behavior file. It is also called by the helm within the
checkUpdates() function to apply parameter updates
dynamically.

4.4. IvP Helm Behaviors in the Public Domain

Below is a brief description of 16 commonly used behaviors
in the IvP Helm for the marine vehicle domain. This is fol-

lowed by a longer description of a few behaviors chosen for
illustration.

The AvoidCollision behavior: The AvoidCollision behav-
ior will maneuver the vehicle to avoid a collision with a
given contact. The generated objective function is based on
the calculated closest-point-of-approach (CPA) for a given
contact and candidate maneuvers. The safe-distance toler-
ance and policy for priority based on range is provided in
the mission configuration.

The AvoidObstacles behavior: The AvoidObstacles behav-
ior will maneuver the vehicle to avoid obstacles as known
locations, expressed as one or more convex polygons. The
safe-distance tolerance and policy for priority based on
range is provided in the mission configuration.

The ConstantDepth behavior: This behavior will drive
the vehicle at a specified depth. It merely expresses a
preference for a particular depth, or range of depths, in
terms of an IvP objective function. If other active behaviors
also have a depth preference, coordination/compromise
will take place through the multiobjective optimization
process.

The ConstantSpeed behavior: This behavior will drive the
vehicle at a specified speed. It merely expresses a prefer-
ence for a particular speed, or range of speeds, in terms of
an IvP objective function.

The ConstantHeading behavior: This behavior will drive
the vehicle at a specified heading. It merely expresses a
preference for a particular heading, or range of headings,
in terms of an IvP objective function.

The CutRange behavior: The cut-range behavior will ma-
neuver the vehicle to reduce the range between itself and
a given contact. The generated objective function is based
either on the calculated CPA for a given contact and candi-
date maneuver or purely on a greedy approach of heading
toward the contact’s present position. The policies may be
combined (weighted) by the user in mission configuration.
This behavior also has the ability to extrapolate the other
vehicle’s position from prior reports when contact reports
are received intermittently.

The GoToDepth behavior: This behavior will drive the ve-
hicle to a sequence of specified depths and duration at each
depth. The duration is specified in seconds and reflects the
time at depth after the vehicle has first achieved that depth,
where achieving depth is defined by the user-specified tol-
erance perameter. If the current depth is within the toler-
ance, this depth is considered to have been achieved. The
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behavior also stores the depth from the prior behavior it-
eration, and if the target depth is between the prior depth
and current depth, the depth is considered to be achieved
regardless of tolerance setting.

The Loiter behavior: A behavior for transiting to and re-
peatedly traversing a set of waypoints. A similar effect can
be achieved with the waypoint behavior, but this behav-
ior assumes a set of waypoints forming a convex polygon.
It also robustly handles dynamic exit and reentry modes
when or if the vehicle diverges from the loiter region due
to external events. It is dynamically reconfigurable to allow
a mission control module to repeatedly reassign the vehi-
cle to different loiter regions by using a single persistent
instance of the behavior.

The MemoryTurnLimit behavior: The objective of the
MemoryTurnLimit behavior is to avoid turns that may
cause the vehicle to cross back on its own path and risk
damage to towed equipment. Its configuration is deter-
mined by two parameters combined to set a vehicle turn
radius pseudo-limit. This behavior is described more fully
in Section 4.5.2.

The OpRegion behavior: This behavior provides four dif-
ferent types of safety functionality—(a) a boundary box
given by a convex polygon in the x–y or lat–lon plane,
(b) an overall time-out, (c) a depth limit, and (d) an al-
titude limit. The behavior does not produce an objective
function to influence the vehicle to avoid violating these
safety constraints. It merely monitors the constraints and
may post an error resulting in the posting of an all-stop
command.

The PeriodicSpeed behavior: This behavior will periodi-
cally influence the speed of the vehicle while remaining
neutral at other times. The timing is specified by a given
period in which the influence is on and a period specifying
when the influence is off. The motivation was to provide an
ability to periodically reduce self-noise to allow for a win-
dow of acoustic communications.

The PeriodicSurface behavior: This behavior will period-
ically influence the depth and speed of the vehicle while
remaining neutral at other times. The purpose is to bring
the vehicle to the surface periodically to achieve some event
specified by the user, typically the receipt of a GPS fix. Once
this event is achieved, the behavior resets its internal clock
to a given period length and will remain idle until a clock
time-out occurs.

The Shadow behavior: The Shadow behavior will mimic
the observed heading and speed of another given vehicle,
regardless of its position relative to the vehicle.

The StationKeep behavior: This behavior is designed to
keep the vehicle at a given lat/lon or x, y station-keep po-
sition by varying the speed to the station point as a linear
function of its distance to the point. The parameters allow
one to choose the two distances between which the speed
varies linearly, the range of linear speeds, and a default
transit speed if the vehicle is outside the outer radius.

The Trail behavior: The Trail behavior will attempt to keep
the vehicle at a specified position relative, given in terms
of range and bearing, to another specified vehicle. It may
serve the purpose of formation keeping. It has the ability to
extrapolate the other vehicle’s position from prior reports
when contact reports are received intermittently.

The Waypoint behavior: The Waypoint behavior is used
for transiting to a set of specified waypoint in the x–y plane.
The primary parameter is the set of waypoints. Other key
parameters are the inner and outer radius around each
waypoint that determine what it means to have met the
conditions for moving on to the next waypoint. This behav-
ior is discussed further in Section 4.5.1.

4.5. A Closer Look at Four Behaviors

4.5.1. The Waypoint Behavior
The Waypoint behavior is used for transiting to a set of
specified waypoints in the x–y plane. The primary parame-
ter is the set of waypoints. Other key parameters are the in-
ner and outer radius around each waypoint that determine
what it means to have met the conditions for moving on to
the next waypoint. The basic idea is shown in Figure 15.

The behavior may also be configured to perform a de-
gree of track-line following, that is, steering the vehicle not
necessarily toward the next waypoint but to a point on the
line between the previous and next waypoints. This is to
ensure that the vehicle stays closer to this line in the face
of external forces such as wind or current. The behavior
may also be set to “repeat” the set of waypoints indefinitely
or a fixed number of times. The waypoints may be speci-
fied either directly at start-up or supplied dynamically dur-
ing the operation of the vehicle. There are also a number
of accepted geometry patterns that may be given in lieu
of specific waypoints, such as polygons and lawnmower
pattern.

The Waypoint Behavior Configuration Parameters
The configuration parameters and variables published col-
lectively define the interface for the behavior. The following
are the parameters for this behavior, in addition to the con-
figuration parameters defined for all behaviors, described
in Section 4.2:
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Figure 15. The Waypoint behavior: The Waypoint behavior’s basic purpose is to traverse a set of waypoints. A capture radius is
specified to define what it means to have achieved a waypoint, and a slip radius is specified to define what it means to be “close
enough” should progress toward the waypoint be noted to degrade.

POINTS: A colon-separated list of x, y pairs
given as points in 2D space, in
meters.

POINT: A single x, y pair given as a point in
2D space, in meters.

POLYGON: An alias for POINTS.
SPEED: The desired speed (meters per sec-

ond) at which the vehicle travels
through the points.

CAPTURE RADIUS: The radius tolerance, in meters, for
satisfying the arrival at a waypoint.

RADIUS: An alias for CAPTURE RADIUS.
SLIP RADIUS: An “outer” capture radius. Arrival

declared when the vehicle is in this
range and the distance to the next
waypoint begins to increase.

ORDER: The order in which waypoints
are traversed—"normal" or
"reverse."

LEAD: If this parameter is set, track-line
following between waypoints is en-
abled.

LEAD DAMPER: Distance from trackline within which
the lead distance is stretched out.

REPEAT: The number of extra times tra-
versed through the waypoints. Or
"forever."

CYCLEFLAG: MOOS variable-value pairs posted
at end of each cycle through way-
points.

POST SUFFIX: A suffix tagged onto the WPT STATUS,
WPT INDEX, and CYCLE INDEX vari-
ables.

VISUAL HINTS: Hints for visual properties in vari-
ables posted intended for rendering.

Variables Published by the Waypoint Behavior
The MOOS variables below will be published by the be-
havior during normal operation, in addition to any config-
ured flags. A variable published by any behavior may be
supressed or changed to a different variable name using
the post mapping configuration parameter, defined for all
behaviors.

WPT STAT: A comma-separated string showing
the status in hitting the list of points.

WPT INDEX: The index of the current waypoint.
First point has index 0.

CYCLE INDEX: The number of times the full set of
points has been traversed, if repeat-
ing.

VIEW POINT: A visual cue for indicating the way-
point being currently heading toward.

VIEW POINT: A visual cue for indicating the steer-
ing point, if the lead parameter is
used.

VIEW SEGLIST: A visual cue for rendering the full set
of waypoints.

The following are some examples:

WPT_STAT = vname=alpha,behavior-name=waypt
_survey,index=1,hits=1/1,cycles
=0,dist=30,eta=15,

WPT_INDEX = 3,
CYCLE_INDEX = 1,
VIEW_POINT = active,true:label,alpha’s track-

point:label_color,0,0.5,0:
type,track_point:source,
alphawaypt_survey:vertex_color,
1,0,0:60,-152.57,0,
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Figure 16. The capture radius and slip radius: (a) a successful waypoint arrival by achieving proximity less than the capture
radius, (b) a missed waypoint likely resulting in the vehicle looping back to try again, and (c) a missed waypoint but arrival
declared anyway when the distance to the waypoint begins to increase and the vehicle is within the slip radius.

VIEW_SEGLIST = label,alpha_waypt_survey:vertex_
color,1,1,0:edge_size,1.0:
vertex_size,2.0:60,-40:60,-160:
150,-160:180,-100:150,-40.

Specifying Waypoints—the Points, Order, and
Repeat Parameters
The waypoints may be specified explicitly as a colon-
separated list of comma-separate pairs or implicitly using
a geometric description. The order of the parameters may
also be reversed with the order parameter. An example
specification follows:

points = 60,-40:60,-160:150,-160:180,
-100:150,-40,

order = reverse // default is "normal,"
repeat = 3 // default is 0.

A waypoint behavior with this specification will traverse
the five points in reverse order, (150, −40 first), four times
(one initial cycle repeated three times) before completing. If
there is a syntactic error in this specification at helm start-
up, an output error will be generated and the helm will
not continue to launch. If the syntactic error is passed as
part of a dynamic update (see Section 4.2.2), the change
in waypoints will be ignored and a warning posted to the
BHV WARNING variable. The behavior can be set to repeat its
waypoints indefinitely by setting repeat="forever."

The capture radius and slip radius Parameters
The capture radius parameter specifies the distance to a
given waypoint where the vehicle must be before it is con-
sidered to have arrived at or achieved that waypoint. It is
the inner radius around the points in Figure 15. The slip ra-
dius parameter specifies an alternative criterion for achiev-
ing a waypoint.

As the vehicle progresses toward a waypoint, the se-
quence of measured distances to the waypoint decreases
monotonically. The sequence becomes nonmonotonic when
it hits its waypoint or when there is a near miss of the
waypoint capture radius. The slip radius is a capture ra-
dius distance within which a detection of increasing dis-
tances to the waypoint is interpreted as a waypoint arrival.
This distance would have to be larger than the capture ra-
dius to have any effect. As a rule of thumb, a distance
of twice the capture radius is practical. The idea is illus-
trated in Figure 16. The behavior keeps a running tally of
hits achieved with the capture radius and those achieved
with the slip radius. These tallies are reported in a status
message.

Track-Line Following Using the lead Parameter
By default the waypoint behavior will output a preference
for the heading that is directly toward the next waypoint.
By setting the lead parameter, the behavior will instead
output a preference for the heading that keeps the vehi-
cle closer to the track line, or the line between the previous
waypoint and the waypoint currently being driven to. See
Figure 17.

The distance specified by the lead parameter is
based on the perpendicular intersection point on the track
line. This is the point that would make a perpendicular
line to the track line if the other point determining the
perpendicular line were the current position of the vehi-
cle. The distance specified by the lead parameter is the
distance from the perpendicular intersection point toward
the next waypoint and defines an imaginary point on the
track line. The behavior outputs a heading preference based
on this imaginary steering point. If the lead distance is
greater than the distance to the next waypoint along the
track line, the imaginary steering point is simply the next
waypoint.
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Figure 17. The track-line mode: When in track-line mode, the vehicle steers toward a point on the track line rather than simply
toward the next waypoint. The steering point is determined by the lead parameter. This is the distance from the perpendicular
intersection point toward the next waypoint.

If the lead parameter is enabled, it may be optionally
used in conjuction with the lead damper parameter. This
parameter expresses a distance from the track line in me-
ters. When the vehicle is within this distance, the value of
the lead parameter is stretched out toward the next way-
point to soften, or dampen, the approach to the track line
and reduce overshooting the track line.

The Objective Function Produced by the
Waypoint Behavior
The Waypoint behavior produces a new objective func-
tion, at each iteration, over the variables speed and

course/heading. The behavior can be configured to gen-
erate this objective function in one of two forms, either
by coupling two independent one-variable functions or by
generating a single coupled function directly. The function
rendered in Figure 18 is built in the first manner.

4.5.2. The MemoryTurnLimit Behavior
The objective of the MemoryTurnLimit behavior is to avoid
turns that may cause the vehicle to cross back on its own
path and risk damage to any towed equipment. Its con-
figuration is determined by the two parameters described
below, which combine to set a vehicle turn radius limit.

Figure 18. A Waypoint objective function: The objective function produced by the Waypoint behavior is defined over possible
heading and speed values. Depicted here is an objective function favoring maneuvers to a waypoint 270 deg from the current
vehicle position and favoring speeds closer to the midrange of capable vehicle speeds. Higher speeds are represented farther
radially out from the center.
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However, it is not strictly described by a limited turn ra-
dius; it stores a time-stamped history of recent recorded
headings and maintains a heading average and forms its ob-
jective function on a range deviation from that average.
This behavior merely expresses a preference for a partic-
ular heading. If other behaviors also have a heading pref-
erence, coordination/compromise will take place through
the multiobjective optimization process. The following
parameters are defined for this behavior:

MEMORY TIME: The duration of time for which the head-
ing history is maintained and heading average cal-
culated.

TURN RANGE: The range of heading values deviating
from the current heading average outside of which
the behavior reflects sharp penalty in its objective
function.

The heading history is maintained locally in the behavior
by storing the currently observed heading and keeping a
queue of n recent headings within the MEMORY TIME thresh-
old. The heading average calculation below handles the is-
sue of angle wrap in a set of n headings h0 . . . hn−1, where
each heading is in the range [0, 359]:

heading avg = atan2(s, c) · 180/π, (1)

where s and c are given by

s =
n−1∑

k=0

sin[hkπ/180], c =
n−1∑

k=0

cos[hkπ/180].

The vehicle turn radius r is not explicitly a parameter of the
behavior but is given by

r = v/[(u/180)π ],

where v is the vehicle speed and u is the turn rate given
by u = TURN RANGE/MEMORY TIME. The same turn radius is
possible with different pairs of values for TURN RANGE and
MEMORY TIME. However, larger values of TURN RANGE allow
sharper initial turns but temper the turn rate after the initial
sharper turn has been achieved.

The objective function produced by this behavior looks
effectively like a constraint on the value of the heading.
Some typical functions are rendered from simulation in
Figure 19. This figure depicts the MemoryTurnLimit IvP
function alongside the Waypoint IvP function as the vehi-
cle traverses a set of waypoints, where the final waypoint
(waypoint #3 in the figure) represents nearly a 180-deg turn
with respect to the prior waypoint. The first frame in the
figure depicts the vehicle trajectory without the influence
of the MemoryTurnLimit behavior and shows a very sharp
turn between waypoints #2 and #3.

The MemoryTurnLimit behavior, shown in the last
five frames of Figure 19, is used to avoid the sharp turn
in the first frame. This behavior was configured with
TURN RANGE=45 and MEMORY TIME=20. The turn between

waypoints #1 and #2 is not affected by the MemoryTurn-
Limit behavior because the new desired heading (180 deg)
is within the tolerance of the heading history recorded up to
the turning point. The same cannot be said when the vehi-
cle reaches waypoint #2 and begins to traverse to waypoint
#3. The recent heading history as it arrives at waypoint #2
reflects the time spent traversing from waypoint #1 and #2.
The heading average given by Eq. (1) at this point (time =
98) is 180 deg, and the IvP function produced by the Mem-
oryTurnLimit behavior restricts the vehicle heading to be
180 ± 45 deg. As the vehicle continues its turn toward way-
point #3, the heading average of the MemoryTurnLimit be-
havior and its IvP function evolve to eventually allow a
desired heading that is consistent with the optimal point
of the waypoint IvP function as shown in the last frame
at time = 170. The resulting turn between waypoints #2
and #3 is much wider than that shown in the first frame.
Discussion of this behavior used in field experiments with
a UUV towing a sensor array can be found in Benjamin,
Battle, Eickstedt, Schmidt, and Balasuriya (2007).

4.5.3. The AvoidCollision Behavior
The AvoidCollision behavior will produce IvP objective
functions designed to avoid collisions (and near collisions)
with another specified vehicle. The IvP functions produced
by this behavior are defined over the domain of posssi-
ble heading and speed choices. The utility assigned to a
point in this domain (a heading-speed pair) depends in part
on the calculated CPA between the candidate maneuver
leg and the contact leg formed from the contact’s position
and trajectory. Figure 20 shows the relationship cpa(θ, v)
between CPA and candidate maneuvers (θ, v), where θ =
heading and v = speed, for a given relative position be-
tween ownship and a given contact vehicle and trajectory.
The IvP function generated by the AvoidCollision behav-
ior applies a further user-defined utility function to the
CPA calculation for a candidate maneuver, f (cpa(θ, v)). The
form of f () is determined by behavior configuration param-
eters, described below.

The AvoidCollision Configuration Parameters
The following parameters are defined for this behavior, in
addition to the parameters defined for all IvP behaviors dis-
cussed earlier. A more detailed description follows.

COMPLETED DIST Range to contact outside of which the
behavior completes and dies.

MAX UTIL CPA DIST Range to contact outside which a
considered maneuver will have max
utility.
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Figure 19. The MemoryTurnLimit and Waypoint behaviors: The MemoryTurnLimit behavior is used to avoid sharp vehicle turns
between waypoints as shown, from simulation, in the first, upper-left frame. The MemoryTurnLimit behavior is configured with
TURN RANGE=45 and MEMORY TIME=20. In each frame, the IvP function of the waypoint behavior is shown in the upper right, and
that of the MemoryTurnLimit behavior is in the lower right. At time=24, the vehicle is approaching waypoint #1 and its recent
heading is 140 deg. At that point, the range of headings allowed by the MemoryTurnLimit behavior is 140 ± 45, which includes the
heading of 180 desired by the Waypoint behavior to reach waypoint #2. When the vehicle reaches waypoint #2, between time=98
and time=99, the desired heading from the waypoint behavior is not in the range of allowed headings from the MemoryTurnLimit
behavior. As the vehicle turns, e.g., time=145, the heading history of the MemoryTurnLimit behavior evolves to eventually allow
the peak desired heading of the Waypoint behavior, at time=170.
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Figure 20. The closest point of approach mapping: The function on the right indicates the relative change in calculated closest
point of approach between ownship and contact position and trajectory shown on the left.

MIN UTIL CPA DIST Range to contact within which a con-
sidered maneuver will have min util-
ity.

PWT INNER DIST Range to contact within which the
behavior has maximum priority
weight.

PWT OUTER DIST Range to contact outside which the
behavior has zero priority weight.

CONTACT Name or unique identifier of a con-
tact to be avoided.

DECAY Time interval during which extrapo-
lated position slows to a halt.

EXTRAPOLATE If true, contact position is extrap-
olated from last position and trajec-
tory.

TIME ON LEG The time on leg, in seconds, used for
calculating closest point of approach.

Spawning and Killing New Behavior
Instances Dynamically
The AvoidCollision behavior may be configured as a tem-
plate that spawns a new behavior for each new contact that
presents itself. The below two configuration lines would
achieve this objective:

templating = spawn,
updates = COLL_AVOID_INFO.

Configured in this manner, the following posting to the
MOOSDB would suffice to spawn a new instance of the

behavior:

COLL_AVOID_INFO = name=avd_zulu_002 # contact\
= zulu_002.

The MOOS variable matches the MOOS variable
specified in the UPDATES configuration parameter. The
"name=avd zulu 002" component specifies a unique behav-
ior name and indicates to the helm that a new behavior is to
be spawned upon receipt. When the behavior is spawned,
all initial behavior parameters supplied in the behavior
mission file are applied, and the "contact=zulu 002" com-
ponent is applied as a further configuration parameter. The
new AvoidCollision instance will remain with the helm
until the contact goes out of the range specified by the
COMPLETED DIST parameter. The posting of the MOOS vari-
able that triggers the spawning is done by a contact man-
ager. In this case the contact manager is a separate MOOS
application called pBasicContactMgr. Details of this are be-
yond the scope of this paper.

Configuring the AvoidCollision Behavior
Utility Function
The IvP function generated by this behavior is defined over
the range of possible heading and speed decisions. Its form
is derived in part from the calculation of the CPA calcu-
lated for a candidate maneuver leg, of a duration given
by the TIME ON LEG parameter, which is set to 60 s by de-
fault. The utility of a given CPA value is determined further
by a pair of configuration parameters. Distances less than
or equal to MIN UTIL CPA DIST are given the lowest utility,
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equivalent to an actual collision. Distances greater than or
equal to MAX UTIL CPA DIST are given the highest utility.
These two parameters, and the raw CPA calculations, deter-
mine the form of the function. The magnitude, or weight,
of the function is determined by the range between the
two vehicles and two further configuration parameters. At
ranges greater than PWT OUTER DIST, the weight is set to
zero. At ranges less than PWT INNER DIST, the weight is set
to 100% of the user-configured priority weight. The weight
varies linearly when the range between vehicles falls some-
where between.

Closest Point of Approach Calculations
and Caching
The production of IvP functions for this behavior is poten-
tially CPU intensive compared to other behaviors, primar-
ily due to the repeated calculations of CPA values. Recall
from Section 3.5.2 that IvP functions built with the reflector
tool are built by repeated sampling of the underlying func-
tion. This repeated sampling, and the existence of common
partial calculations between samples, allows for caching
of intermediate results to greatly speed up sampling for
this behavior. This is implemented in a C++ class called a
CPAEngine in a separate utility library for use in other be-
haviors that reason about CPA, such as the CutRange and
Trail behaviors.

Current ownship position is known and given by (x,
y), and the other vehicle’s current position and trajectory is
given by (xb, yb, θb, vb). To compute the CPA distance for
a given 〈θ, v, t〉, first the time tmin when the minimum dis-
tance between two vehicles occurs is computed. The dis-
tance between the two vehicles at the current time can be
determined by the Pythagorean theorem. For any given
time t (where the current time is t = 0), and assuming that
the other vehicle stays on a constant trajectory, the dis-
tance between the two vehicles for any chosen 〈θ, v, t〉 is
given by

dist2(θ, v, t) = k2t
2 + k1t + k0, (2)

where

k2 = cos2(θ )v2 − 2 cos(θ )v cos(θb)vb + cos2(θb)v2
b

+ sin2(θ )v2 − 2 sin(θ )v sin(θb)vb + sin2(θb)v2
b,

k1 = 2 cos(θ )vy − 2 cos(θ )vyb − 2y cos(θb)vb

+ 2 cos(θb)vbyb + 2 sin(θ )vx − 2 sin(θ )vxb

− 2x sin(θb)vb + 2 sin(θb)vbxb,

k0 = y2 − 2yyb + y2
b + x2 − 2xxb + x2

b .

The stationary point is obtained by taking the first deriva-
tive with respect to t :

dist2(θ, v, t)′ = 2k2t + k1.

Because there is no “maximum” distance, this stationary
point always represents the time of the closest point of ap-
proach, and therefore tmin = −k1/2k2. The value of tmin may
be in the past, i.e., less than zero, if the two vehicles are cur-
rently opening range. On the other hand tmin may occur
after t , the time length of the candidate maneuver 〈θ, v, t〉.
Therefore the value of tmin is clipped by [0, t]. Furthermore,
tmin = 0 in the special case when the two vehicles have the
same heading and speed (the only case in which k2 is zero).
The actual CPA value is obtained by substituting tmin back
into Eq. (2):

cpa(θ, v) =
√

k2tmin2 + k1tmin + k0. (3)

In the generation of a single IvP function with cpa(θ, v) as
a component of each sample of the decision space, inter-
mediate values [Eq. (2)] may be cached that have the same
values of current vehicle position (x, y) and current position
and trajectory of the other vehicle (xb, yb, θb, vb). A further
cache, normally of size 360, is typically used for terms in-
volving θ , ownship heading.

The AvoidCollision Behavior in Action
The AvoidCollision behavior is shown in Figure 21 in a sim-
ple scenario working with the waypoint behavior in simu-
lation. In Figure 29 later in the paper, the effect of the Avoid-
Collision behavior in two fielded UUVs is shown.

4.5.4. The StationKeep Behavior
This behavior is designed to keep the vehicle at a given
lat/lon or x,y station-keep position by varying the speed
to the station point as a linear function of its distance to
the point. The parameters allow one to choose the two dis-
tances between which the speed varies linearly, the range
of linear speeds, and a default transit speed if the vehicle is
outside the outer radius. See Figure 22.

An alternative to this station-keeping behavior is an
active loiter around a very tight polygon with the Loiter
behavior. This station-keeping behavior conserves energy
and aims to minimize propulsor use. The behavior can be
configured to station keep at a preset point or wherever the
vehicle happens to be when the behavior transitions into an
active state.

The station-keep behavior was initially developed for
use on an autonomous kayak. A vehicle’s control system,
i.e., the front-seat driver described in Section 1.2., may have
a native station-keeping mode, in which case the activation
of this behavior would be replaced by a message from the
backseat autonomy system to invoke the station-keeping
mode. It is also worth pointing out that most UUVs are
positively buoyant and will simply come to the surface if
commanded with a zero speed.
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Figure 21. The AvoidCollision and Waypoint behaviors: The bravo vehicle maneuvers to a destination point with the Waypoint
behavior. The IvP objective function produced by the waypoint behavior is the lower function shown on the right in each frame.
Beginning in the second frame, time=415, the AvoidCollision behavior becomes active and begins to produce IvP objective func-
tions shown in the upper right of each frame. At each point in time, the helm chooses the heading and speed that represent the
optimal decision given the pair of IvP functions. At time=625, the AvoidCollision behavior ceases to produce an IvP function due
to the range between vehicles.

The StationKeep Behavior Configuration
Parameters
The following parameters are defined for this behavior, in
addition to the parameters defined for all IvP behaviors
discussed earlier. A more detailed description is provided
below.

STATION PT: An x,y pair given as a point in local coordi-
nates.

POINT: A supported alias for STATION POINT.
CENTER ACTIVE: If true, station keep at position upon

activation.
INNER RADIUS: Distance to station point within which

the preferred speed is zero.
OUTER RADIUS: Distance within which the preferred

speed begins to decrease.
OUTER SPEED: Preferred speed at outer radius, de-

creasing toward inner radius.
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Figure 22. The station-keep behavior parameters: The station-keep behavior can be configured to approach the outer station circle
with a given transit speed and will decrease its preference for speed linearly between the outer radius and the inner radius. The
preferred speed is zero when the vehicle is at or inside the inner radius.

SWING TIME: Duration of drift of station
circle with vehicle upon ac-
tivation.

TRANSIT SPEED: Preferred speed beyond
the outer radius.

EXTRA SPEED: A deprecated alias for
TRANSIT SPEED.

PASSIVE STATION RADIUS: A radius used for low-
power, passive station
keeping.

PASSIVE STATION VARIABLE: Name of MOOS vari-
able used for conveying
passive-station mode.

Setting the Station-Keep Point and Radial-Speed
Relationships
The station-keep point is set in one of two ways: either with
a prespecified fixed position or with the vehicle’s current
position when the vehicle transitions into the running state.
To set a fixed station-keep position,

station_pt = 100,250.

To configure the behavior to station keep at the vehicle’s
current position when it enters the running state,

center_active = true.

At the outset of station keeping via center active, the ve-
hicle typically is moving at some speed. Despite the fact
that station keeping is immediately active and typically re-
sults in a desired speed of zero if no other behaviors are ac-
tive, the vehicle will continue some distance before coming

to a near or complete stop in the water, thus “overshooting”
the station-keep point. This often means that the station-
keep behavior will immediately turn the vehicle around
to come back to the station-keep point. This can be coun-
tered by setting the behavior’s “swing time” parameter,
the amount of time after initial center activation that the
station-keep point is allowed to drift with the current posi-
tion of the vehicle before becoming fixed. The format is

swing_time = <time-duration> // default is 0.

The <time-duration> is given in seconds, and the duration
is clipped by the range [0, 60].

If the behavior enters the running state, but center ac-
tivation is not set to true and no prespecified fixed posi-
tion is given, the behavior will not produce an objective
function. It will remain in the running state but not the
active state. (See Section 3.4.2. for more detail on behav-
ior run states.) In this situation, a warning will be posted:
BHV WARNING="STATION POINT NOT SET."

The INNER RADIUS and OUTER RADIUS parameters af-
fect the preferred speed of the behavior as it relates to
the vehicle’s current range to the station point. The pre-
ferred speed at the outer radius is given by the parameter
OUTER SPEED. The preferred speed decreases linearly to zero
as the vehicle approaches the inner radius. The default val-
ues for the inner and outer radii are 4 and 15, respectively.
If configured with values such that the inner is greater then
the outer, this will not trigger an error, but the two radius
parameters will be collapsed to the value of the inner radius
on the first iteration of the behavior.
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Figure 23. Passive station-keeping: The station-keep behavior can be configured in the “passive” mode. The vehicle will move
toward the station point until it reaches the inner radius or until progress ceases. It will then drift until its distance to the station
point is beyond the passive station radius. At this point it will reengage to reach the station point and may trigger another behavior
to dive.

Passive Low-Energy Station-Keeping Mode

The station-keep behavior can be configured to operate in a
“passive” mode. This mode differs from the default mode
primarily in the way it acts after it reaches the inner ra-
dius, i.e., the point at which the behavior regards the vehi-
cle to be on station and outputs a preferred speed of zero. In
the normal mode, the behavior will begin to output a pre-
ferred heading and nonzero speed as soon as the vehicle
slips beyond the inner radius. In the passive mode, the be-
havior will let the vehicle drift or otherwise move to a dis-
tance specified by the PASSIVE STATION RADIUS before it re-
sumes outputting a preferred heading and nonzero speed.
The idea is illustrated in Figure 23.

This mode was built with UUVs in mind. Most UUVs
are deployed having a positive buoyancy (battery dies—
vehicle floats to the surface). They need to be moving at
some speed to maintain a depth. Furthermore, it may not
be safe to assume that a UUV can effectively execute a de-
sired heading when it is operating on the surface. For these
reasons, when operating in the passive mode, this behav-
ior will publish a variable indicating whether it is in the
mode of drifting or attempting to make progress toward
the station point. The status is published in the variable
PSKEEP MODE, short for “passive station-keeping mode.”
This variable will be set to "SEEKING STATION" when out-

putting a nonzero speed preference and presumably mov-
ing toward the station point. The variable will be set to
"HIBERNATING" otherwise. This opens the option of config-
uring the helm with the ConstantDepth behavior to work
in conjunction with the StationKeep behavior by condition-
ing the ConstantDepth behavior to be running only when
PSKEEP MODE="SEEKING STATION." The idea is illustrated
in Figure 24.

This behavior mode is regarded as ”low-power” due
to the presumably long periods of drifting before resuming
actively seeking the station point. A couple of safeguards
are designed to ensure that when the behavior is in the
"STATION SEEKING" mode, it does not get hung or stuck in
this mode for much longer than intended or needed. How
could one become stuck in this mode? Two ways—by either
reaching an equilibrium at-speed (and perhaps at-depth)
state in which the vehicle is neither progressing toward nor
away from the inner radius or repeatedly “missing” the
inner radius by heading right past it.

Both cases can be guarded against and detected by
monitoring the history of vehicle speed in the direction
of the station point. If this speed becomes zero, an equi-
librium state is assumed, and if it becomes negative, it
is assumed that the vehicle missed the inner radius cir-
cle entirely. In short, the StationKeep behavior exits the
"STATION SEEKING" mode and enters the "HIBERNATING"
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Figure 24. Passive station-keeping with depth coordination: The passive mode can be coordinated with the ConstantDepth be-
havior to dive each time the StationKeep behavior enters the "SEEKING STATION" mode. This ensures that a UUV needing to be at
depth to have reliable heading control will indeed be at depth when it needs to be.

mode when it detects that the vehicle speed toward the
station point reaches zero. To calculate this vehicle speed,
a 10-s history of range to the station point is kept by the
behavior. A zero speed or “stale-progress” criterion is de-
clared simply if the range to the station point for the most
recent measure in the history is not less than the range of
10 s ago in the history list. The behavior will transition into
the "HIBERNATING" mode if either the inner-radius or stale-
progress criterion is met.

It is also possible that when the StationKeep be-
havior enters the "SEEKING STATION" mode from the
"HIBERNATING" mode, the vehicle initially begins to open
its range to the station point before it begins to close range.
This would be expected, for example, if the vehicle were
pointed away from the station point when the behavior
first entered the "SEEKING STATION" mode. In this case it
is quite possible that the behavior would correctly, but in a
way that is unwanted, infer that the stale-progress criterion
has been met. For this reason, the stale-progress criterion
is not applied until an “initial-progress” criterion is met af-
ter entering the "SEEKING STATION" mode. The same 10-s
history is used to detect when the vehicle begins to make
initial progress, i.e., closing range, toward the station point.

5. APPLICATION EXAMPLE: MULTISTATIC ACOUSTIC
SENSING NETWORKS

5.1. Nested Autonomy for Environmental Acoustic
Sensing

Undersea observation, mapping, and monitoring are expe-
riencing a dramatic paradigm shift from platform-centric,
human-controlled sensing, processing, and interpretation
toward distributed sensing concepts using networks of au-
tonomous platforms. A similar trend in land- and air-based
systems has long been underway. The principal reason for
the delayed adaptation of the undersea distributed sys-
tems is the fact that the capacity and reliability of under-
water communication is many orders of magnitude be-
low land- and air-based equivalents. What has made the
transition to distributed underwater sensing systems feasi-
ble is the possibility of incorporating significant computa-

tional capacity on the network nodes and therefore making
them more autonomous and less dependent on communi-
cation connectivity than conventional shipborne and fixed
or cabled sensors. In addition, onboard “intelligence” in the
form of behavior-based autonomy enables the autonomous
detection, classification, localization, and tracking (DCLT)
of episodic undersea events, exploiting adaptive and col-
laborative sensing behaviors, without direct operator con-
trol. The nested autonomy architecture for environmental
acoustic sensing shown in Figure 25 is a particular instan-
tiation of the general nested autonomy concept shown in
Figure 5.

Although a high level of autonomy allows the network
nodes to complete their mission with limited, latent, and
intermittent communication, a robust communication sys-
tem is still required for cueing the sensor nodes, for alerting
the network of a detected event, and for collaborative event
tracking.

As mentioned earlier, the nested autonomy paradigm
is specifically developed for heterogeneous networks op-
erating within layered communication capabilities of the
undersea environment. Thus, the operator may use high-
bandwidth RF communication with buoys and other sur-
face nodes, but the communication link between these and
the submerged assets is many orders of magnitude lower
in capacity. On the other hand, in many cases the RF con-
nectivity may be occasional when at the surface, and the
latency of the operator communication may be minutes or
hours, and in such cases the network may exploit local
acoustic communication within clusters of nodes for en-
hancing performance through autonomous collaboration.

In addition, an optimal platform suite will often be
highly heterogeneous with large differences in mobility,
maneuverability, sensing capability, and communication
connectivity. The sensor systems have different constraints
on platform mobility and communication capacity, and
some network operations require highly coordinated ma-
neuvering of heterogeneous platforms. The MOOS-IvP pay-
load autonomy architecture inherently supports collabora-
tive sensing missions by a heterogeneous network. Thus,
by concentrating not only the autonomous command and
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Figure 25. Nested autonomy for environmental acoustic sensing: Nested autonomy architecture for heterogeneous undersea net-
works for environmental and acoustic sensing, involving gliders for environmental profiling and fixed hydrophone line arrays
(HLAs) and AUVs for acoustic sensing. The activity at each level component is denoted by the key D for detection, C for classi-
fication, L for localization, T for tracking, and E for environmental sampling or modeling. Larger and smaller script keys denote
primary and secondary roles of the activity within a component.

control (C2), but also the communication management in
the portable payload architecture, a unified network C2 can
be established.

5.2. Communication, Command, and Control
Infrastructure

Acoustic communication is the only option for establish-
ing undersea network connectivity. In contrast to air- and
land-based equivalents, the extremely limited bandwidth,
latency, and intermittency of underwater acoustic com-
munication impose severe requirements to the selectivity
of message handling. Thus, contact and track reports for
a high-priority event, such as a detected chemical plume
from a deep ocean vent, which may indicate an imminent
volcanic eruption, must be transmitted to the system oper-
ators without delay. On the other hand, reports concerning
less important events and platform status reports may be
delayed without significant effects. Most message handling
systems have only a rigid, hard-coded queuing infrastruc-
ture and do not support such advanced priority-based se-
lectivity, hampering the type and amount of information
that can be passed between cooperating nodes in the net-
work, severely limiting the level of autonomy that can be
supported on the network nodes.

To overcome these limitations, a new MOOS-IvP com-
munication software stack and associated C2 infrastructure
has been developed at the MIT Laboratory for Autonomous
Marine Sensing Systems (LAMSS). This new unified com-

munication, C2 infrastructure is described in a companion
paper (Schneider & Schmidt, 2010b), and only a summary
shall be given here. The new MOOS communication soft-
ware stack provides extremely robust message handling for
collaborative autonomous sensing by heterogeneous, un-
dersea autonomous assets, as demonstrated through suc-
cessful deployment in a handful of major field experiments
on autonomous sensing under programs such as the ONR
ASAP MURI, GOATS, and SWAMSI programs. Being based
on established libraries of message-handling software, the
open-source architecture of this new MOOS communica-
tion stack lends itself directly to a wide range of military
and civilian applications. Thus, it supports an arbitrary
message suite and content without the requirement of mod-
ifying software. All message coding and decoding informa-
tion is specified in a mission-unique configuration file writ-
ten in the standard XML format.

As an example, Figure 26 shows the collaborative, mul-
tistatic MCM mission by the Unicorn and Macrura Bluefin-
21 AUVs during SWAMSI-09 in Panama City, Florida. The
two vehicles are circling a proud cylinder (cp) at a distance
of 80 m, maintaining a constant bistatic angle of 60 deg.
The collaboration was achieved fully autonomously with-
out any intervention by the operators, with each vehicle
adapting its speed based on its current position and the
position of the other vehicle extrapolated from the latest
status, contact, or track report. Such collaborative maneu-
vers would not be possible using traditional communica-
tion schemes, in which navigation packets must be rigidly
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Figure 26. Collaborative autonomy demonstrated in SWAMSI09 using MIT LAMSS communication stack. The two BF21 AUVs
Unicorn and Macrura perform synchronized swimming maintaining a constant bistatic angle of 60 deg relative to a proud cylin-
drical target (cp).

interleaved with messages containing data and C2 se-
quences. In contrast, the D-CCL coding applied by the
MOOS communication stack allows for adequate naviga-
tion information to be packed with all other required mes-
sage content.

A number of project-specific message sets have been
defined, including active sonar contact and track reports
for active, multistatic acoustic applications, environmen-
tal messages for oceanographic missions, and passive
sonar contact and track reports for undersea surveillance
missions. In addition to the new communication software
stack, the system provides a user interface for creating com-
mands for transmission to the network nodes. Using the
same XML configuration files as the communication stack,
it automatically adapts the GUI to the current message
configuration, without any need for code changes. To-
gether with a situational display module based on Google
Earth, it allows the operator to command and control any
number of nodes in a subsea network from a single topside
control console, as demonstrated in several major at-sea
deployments. The GLINT’08 and ’09 experiments (Generic
Littoral Interoperable Network Technology) carried out
jointly with the NATO Undersea Research Centre represent
the most diverse, interoperable node and sensor suite
operated under the LAMSS C2 infrastructure, with four
different AUVs, several surface craft, and fixed nodes all
operating with the same MOOS-IvP payload autonomy.

5.3. GLINT’08 Experiment

As part of a Joint Research Project (JRP) on undersea sens-
ing network technology (NURC project 4G4), MIT in col-
laboration with the NATO Underwater Research Center
(NURC), the Woods Hole Oceanographic Institute (WHOI),
the Naval Undersea Warfare Center, Division Newport
(NUWC-NPT), and several Italian organizations carried
out GLINT’08, a major field demonstration of a hybrid un-
dersea sensing network near the island of Pianosa, Italy
(Figure 27). The experiment had several scientific objec-
tives, relating to both the sensing concepts, communica-
tion networking, and distributed, autonomous control. The
overall objective was to demonstrate the use of a heteroge-
neous fleet of acoustic sensing platforms, including bottom-
mounted arrays and AUVs, in a coordinated fashion for es-
tablishing an autonomous, distributed multistatic acoustic
network with environmental adaptation capability. The ex-
periment was a joint effort between NURC, NUWC-NPT,
WHOI, and MIT, who all contributed with vehicles and
sensors.

NURC deployed a cabled communication infrastruc-
ture from a C2 center on Pianosa Island. The installation
also included a bottom-mounted vertical array for overall
acoustic monitoring. NURC also contributed the two re-
search vessels, the NATO research vessel (NRV) alliance
and coastal research vessel (CRV) Leonardo, which served
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Figure 27. GLINT’08 experiment, Pianosa, Italy, July–August 2008: The upper left frame shows the Unicorn BF21 AUV with
towed DURIP array being deployed from NRV Alliance. The upper right frame shows the NURC OEX AUV also being deployed
from the NRV Alliance. The bottom left frame shows the NUWC-NPT Ocean Server Iver2 AUV in Pianosa. The bottom right frame
shows the C2 center on NRV Alliance with situational display.

as a command and control center, and launch and recov-
ery of the mobile platforms. As part of the collaborative ef-
fort, the NURC Ocean Explorer AUV (OEX) was converted
to the MOOS-IvP payload autonomy, allowing this vehicle
with its towed hydrophone array (SLITA) to execute collab-
orative maneuvers with the MIT and NUWC-NPT AUVs
and commanded via the common C2 infrastructure. The
new NURC FOLAGA environmental sampling vehicle was
also converted to the MOOS-IvP payload autonomy archi-
tecture and used as part of the network.

NUWC-NPT participated with two Iver2 AUVs. These
vehicles were primarily used for environmental sam-
pling but also served as part of the multistatic acous-
tic sampling network, using their integrated, towed hy-
drophone arrays. WHOI participated with acoustic com-
munication equipment and assisted in establishing the uni-
fied C2 infrastructure. The MIT LAMSS participated with
one of its Bluefin BF21 vehicles, towing the 32-element
DURIP array. In addition, two SCOUT autonomous sur-
face craft were deployed, one for environmental sam-
pling using a CTD winch, the other equipped with a
towed acoustic modem used as a mobile communication
gateway.

An important objective of GLINT’08 was to demon-
strate the communication, command, and control of the hy-
brid platform suite, using a common communication in-

frastructure based on the WHOI Micro-Modem and the
new D-CCL and a common implementation of the MOOS-
IvP payload autonomy in all mobile and fixed assets. The
architecture had previously been successfully integrated
and demonstrated on the SCOUT kayaks, the Bluefin BF21
AUVs, and several land robots at MIT. In preparation for
and during GLINT’08, it was successfully integrated into
the NURC OEX AUV and the NUWC-NPT Iver2 AUVs,
both deployed in the experiment towing hydrophone ar-
rays for multistatic acoustics. In addition, the architecture
was partially integrated into the NURC FOLAGA envi-
ronmental sampler and two bottom moorings equipped
with micromodems for undersea networking. The hy-
brid network with these assets is shown schematically in
Figure 28. In addition to the different autonomous vehi-
cle nodes, virtual, simulated nodes were operated onboard
the research vessels, communicating through over-the-side
acoustic modems.

The principal scientific objective of GLINT’08 was
to collect a comprehensive multistatic active data set us-
ing three AUVs with towed hydrophone arrays, which
will support the development of robust multistatic active
processing approaches suited for operation in the lim-
ited computational environment of AUVs. The three ve-
hicles were the NURC OEX with the 48-element SLITA
array, the MIT Unicorn BF21 with the 32-element DURIP
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Figure 28. Hybrid undersea acoustic sensing network deployed in GLINT’08 at Pianosa Island, Italy.

array, and the NUWC-NPT Iver2 vehicle towing a 16-
element hydrophone array. The two large vehicles, the
OEX and Unicorn, had fully integrated MOOS-IvP au-
tonomy systems early in the experiment and were rou-
tinely used in coordinated data collection missions. On the
last day of the experiment, all three array-towing vehi-
cles were operated together. Also, the MOOS-IvP/D-CCL
communication infrastructure allowed several demonstra-
tions to be performed of fully autonomous obstacle and
collision avoidance by Unicorn and OEX, as illustrated in
Figure 29, showing the topside real-time situational display,
which graphically displays all status and contact informa-
tion transmitted from the vehicles via the undersea com-
munication network.

With the Unicorn BF21 AUV fully integrated with the
MOOS-IvP autonomy and D-CCL communication, as de-
veloped in past experiments MB06, MINUS07, and PN07,
it was operated with fewer personnel than previously re-
quired. Significant effort went into streamlining and au-
tomating operating procedures so that more effort could be
spent focusing on the scientific goals. Thus, once initially
deployed, the vehicles are entirely commanded using the
D-CCL message set, including redeployments, target pros-
ecute behaviors, and return to base commands.

An additional major accomplishment in GLINT’08
was the development and field demonstration of the new
LAMSS D-CCL communication stack with its enhanced re-
port and command structure. Integrated with the MOOS-

IvP payload autonomy, it allowed for real-time, interleaved
transmission of regular low-bandwidth FSK messages with
high-rate PSK coded messages, with up to 2-kbyte mes-
sages at 5.4 kbytes/s. The protocol was demonstrated for
real-time transmission and display of CTD measurements
and array signal processing products such as Beam-Time
Records (BTR). It is believed that the real-time topside dis-
play of BTR data from an AUV has not previously been
achieved in the field. Acoustic communications messages
from Unicorn and the other AUVs were assimilated with
a heterogeneous mixture of other data sources (AIS, ship’s
NMEA, etc.) to give a unified situational display available
to both the science crew and the ship’s captain, as illus-
trated in Figure 29. The left frame shows the topside dis-
play of the network nodes during a mission in which AUV
Unicorn is executing a trail behavior, maintaining a fixed
relative bearing and range from AUV OEX. The trail be-
havior is performed solely by forecasting the current OEX
position, speed, and heading, based on the most recent sta-
tus reports received from that vehicle. Such synchronized
swimming is crucial to collaborative acoustic sensing, and
as demonstrated here, the nested autonomy architecture al-
lows this to happen with neither the operator in the loop
nor the requirement of a communication handshake be-
tween the two vehicles. If status reports from the OEX go
stale, due to communication intermittency, the Unicorn will
autonomously enter a loiter pattern awaiting resumption of
the communication connectivity. This is an example of the
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Figure 29. Real-time topside situational display in GLINT’08 command center onboard NRV Alliance. The left frame shows the
autonomous trailing by the Unicorn BF21 of the NURC OEX, based solely on predicting the location of the OEX using the received
status reports, a behavior first demonstrated in this experiment. The right frame shows the topside rendering of a Unicorn per-
forming its obstacle avoidance and collision avoidance behaviors, with the WHOI Gateway buoy and the OEX AUV, respectively.

robustness of the nested autonomy to communication in-
termittency. The right frame shows the topside display of
the collision avoidance carried out by Unicorn relative to
the communication buoy and the OEX, demonstrating the
power of the MOOS-IvP autonomy to handle multiobjec-
tive missions.

5.4. GLINT’08: Autonomy Results and Lessons
Learned

Apart from the comprehensive acoustic data set collected
during GLINT’08, an important result was the experience
gained in operating a complex heterogeneous network
of autonomous platforms with limited and intermittent
communication connectivity. The successful deployment
and collaborative operation of five to six undersea vehicles
with acoustic and nonacoustic sensors were in large part
due to the extensive use of a consistent, high-fidelity sim-
ulation infrastructure. Thus, before deploying the multiple
vehicles together, virtual vehicles were operated on com-
puters onboard the RVs, communicating with the network
through over-the-side modems, allowing for minimal-risk
testing of advanced collaborative behaviors and strategies.

Another important lesson learned was the criticality
of a robust configuration management infrastructure, en-
suring the consistency between simulated and real vehi-
cles. Thus, following the experiment a robust configura-
tion management infrastructure was developed by LAMSS,
which has subsequently been used in five to six separate
field efforts, eliminating many of the sources of vehicle
mishaps experienced in earlier experiments and attributed
to simple human errors.

Finally, the experiment showed the need for a rigor-
ous state space management system for the autonomous
vehicles to eliminate unintended conflicts and mishaps as-

sociated with the IvP behavior suite. This experience led to
the subsequent addition to the IvP-Helm of a HMD frame-
work for the autonomy mode management. This develop-
ment was another critical factor in eliminating experimen-
tal mishaps in the five to six major field deployments that
LAMSS has been involved in. Figure 30 shows the HMD
representation of the modes applied by the AUVs operated
in GLINT’08.

Once launched, the vehicle is in the Undefined mode.
Once the IvP-Helm starts up, the vessel will initially be in
the AllStop mode, in which no behaviors are active. Once
issued a command, the vehicle will enter the Mission mode.
If the command is a deploy command, the vehicle will en-
ter this mode. The active behavior set includes behaviors
that are active in all deploy submodes, including behaviors
for vehicle safety, such as obstacle and collision avoidance,
and some that are specific to a particular submode. Thus,
the Loiter mode will place the vehicle in a hexagonal loiter
pattern at a specified location at constant speed and depth,
where it will stay until it is issued a new command. Al-
ternatively the deployment mode may be a Racetrack with
various depth behaviors, including constant depth, a fixed
vertical yo-yo, and an adaptive depth behavior used for
tracking the thermocline. Another deploy mode, which was
first demonstrated in this experiment, was the Trail mode,
in which one vehicle is trailing another at a specified bear-
ing and range, using solely a prediction of the current loca-
tion, heading, and speed based on the previously received
status report from the trailed vehicle.

6. SUMMARY

In this paper we have described two paradigms and two
architectures and descriptions of their fielded implemen-
tations. The payload autonomy paradigm includes (a) the
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Figure 30. GLINT’08 autonomy HMDs: Each AUV node in the nested autonomy system deployed at GLINT’08 exercises had the
shown HMD representation. Each mode mapped directly to a distinct set of IvP Helm behaviors that were running in each mode.
The ACOMMS message set configured for this fielded system of AUVs was closely coupled with the declared nodes to facilitate
both command and control messages passed down to platforms from field operators to change between autonomy modes, as well
as status messages passed up from platforms to facilitate the understanding of the tactical picture to field operators.

separation of autonomy sensing and decision making
from the problem of vehicle control and navigation, (b)
the MOOS publish–subscribe middleware for allowing
independent development of sensing, communication, and
autonomous decision-making software, and (c) the
behavior-based IvP-Helm for independent development
of autonomy modules. The nested autonomy paradigm is
an approach for implementing a system of unmanned
platforms for large-scale, long-endurance, autonomous
sensing applications. It exploits the platform-independent
payload autonomy paradigm to field a network of hetero-
geneous nodes to address the limitations of unpredictable,
environmentally dependent sensing and low-bandwidth
communications in the underwater domain.

In this paper two architectures were described in de-
tail. The MOOS publish–subscribe middleware is both an
architecture and a mechanism for interprocess communi-
cation and process scheduling but also, as an open-source
software project, a collection of substantial applications for
sensing, communications, autonomy, debugging, and post-
mission analysis. The IvP-Helm is a behavior-based archi-
tecture, unique in its use of the IvP model for multiobjective

optimization for resolving competing autonomy behaviors.
It is also an open-source project that includes many well-
tested vehicle behaviors and autonomy tools for creating,
debugging, and analyzing autonomy capabilities.
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