Kl &l B N N & BN = BN e

AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan —

Software Development Process Guidebook

November 11, 2011

Marvin C. Gechman
Software Engineering Subdivision
Computers and Software Division

Contributing Author:

Suellen Eslinger

Software Engineering Subdivision
Computers and Software Division

Prepared for:

Space and Missile Systems Center
Air Force Space Command

483 N. Aviation Blvd.

El Segundo, CA 90245-2808

Authorized by: Engineering and Technology Group

Distribution Statement: Public release is authorized, distribution unlimited.

201204 20230

AEROSPACE

Assuring Space Mission Success

-—------f'—-—-_

AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan —

Software Development Process Guidebook

November 11, 2011

Marvin C. Gechman
Software Engineering Subdivision
Computers and Software Division

Contributing Author:

Suellen Eslinger

Software Engineering Subdivision
Computers and Software Division

Prepared for:

Space and Missile Systems Center

Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Authorized by: Engineering and Technology Group

Distribution Statement: Public release is authorized; distribution unlimited.

AEROSPACGE

Assurning Space Missfon Success

AEROSPACE REPORT NO.
ATR-2011(8404)-11

The Elements of an Effective Software Development Plan —
Software Development Process Guidebook

Approved by:

Aézsya Campbe{ 1, Principal Director

Software Engineering Subdivision
Computers and Software Division
Engineering and Technology Group

All trademarks, service marks, and trade names are the property of their respective owners.

SP0036(1, 5840, 219, MLM)
ii

Abstract

Every software development program must have a Software Development Plan (SDP). The SDP is
required by the software development standards, it is prepared by the contractor, and it is usually
submitted with their proposal. The SDP is the vehicle by which the contractor, responsible for
software development, documents how the software will be designed, developed, integrated, tested
and managed.

The principal objectives of this SDP Guidebook are to: (1) Assist the acquisition agency in evaluating
SDPs during source selection and during subsequent update deliveries; (2) Provide guidance to
contractors in developing and updating their SDP; and (3) provide a convenient source of reference,
during conduct of a software development program, documenting the systematic steps of the process
during the full software development life cycle. The Guidebook contains examples and recommended
contents of a program-level SDP for large software development efforts.

iii

iv

Foreword

A poorly planned software development effort is likely to fail—that makes the SDP a critically
important software management tool for both large and small software development efforts.

An incomplete or inadequate SDP is a clear red flag. Contractors with a deficient SDP, who are
awarded a contract, have historically a high probability of cost and schedule overruns. This
Guidebook is intended to significantly increase the probability of a successful software-intensive
contract. The principal objectives of this SDP Guidebook are:

e To assist the acquisition agency in evaluating SDPs during source selection and during
subsequent updated deliveries of the SDP

e To provide guidance to contractors in preparing and updating their SDPs

e To provide a convenient source of reference, during conduct of a software development
program, describing the systematic steps of the software development process during the full
software development lifecycle.

The contractor-developed SDP must address at least the following software development concerns:

¢ What specific process will be followed for software requirements analysis, design, coding,
testing, integration, and qualification?

e Who is responsible for each software development task and what is their reporting chain?
¢ How will software development be managed and with what controls?
e What is the software development schedule and what are the reportable milestones?

¢ How will management know if the current software project is consistent with planned
schedules?

e What documentation will be produced, in what format, and when?

e What standards, practices, and guidelines will be followed and how will they be enforced?

e What reviews will take place, who are the attendees, and when will they take place?

e How will compliance with the SDP be assured?

e What methods will be employed to identify and mitigate software risks?

¢ How are software development responsibilities managed and flowed down to subcontractors?
¢ What development and testing support software, environment, and tools are required?

e What is the process for ensuring systematic testing of the developed software?

¢ What software management measurements (metrics) are planned and what is the process for
collection, reporting, analysis and corrective action?

¢ What process and methods will be used to ensure the quality of the software product?

¢ How will errors be detected, documented and corrected?

¢ What software products will be subject to formal configuration management and when?
e What software is deliverable to the acquisition agency and what are the transition plans?

e How will classified data and products be controlled?

Although software planning is performed throughout the software lifecycle, strategic planning up-
front usually makes the difference between success and failure of a software development program.
The quality and attention to detail in the SDP are major source selection evaluation criteria. A good
SDP, at the start of a program, builds the foundation for the teamwork and disciplined trust vital to
software lifecycle cooperation and success. The existence of a comprehensive SDP does not
guarantee project success. However, a poor SDP at the start of a program is essentially a guarantee of
serious problems ahead.

vi

SDP Guidebook Reading Recommendations

Because of the comprehensive nature of this Guidebook, it is expected that individual sections will be
used as a reference, when needed, as opposed to assuming the reader will always read the entire
Guidebook. However, it is highly recommended that all users of this Guidebook read. at a minimum.
the six-page Introduction of Part 1 and paragraph 1.2.3 of Part 2 describing the software classes and
categories referred to throughout Sections 4 and 5 of Part 2.

If the user is planning to read any of the sections dealing with software integration and testing
(subsections 5.7 through 5.11), it is highly recommended that they begin by reviewing subsection 3.7
as it provides an overview of the software integration, testing, and verification process described in
more detail in subsections 5.7 through 5.11.

To facilitate the lookup of specific topics of interest in this Guidebook, a Subject Index is included in
Part 3 as Additional Guidebook Information AGI-5 of this Guidebook. It refers to the subsection,
paragraph or subparagraph where the subject is addressed.

vii

I D I WD an W BN UR AE IE P E TE P ER @ an S e

Contents

AADSITACT 1vee ettt ettt ettt et ee ettt e st ee ettt e st e s et e e e ae e e ah bt e e atae e e ehn st eanbae s astbe e e nsraeesreeeennsnaeanes iii
FOREWORM 2t i s S T e e A e S T e S e e e e S T e o il il v
SDP Guidebook Reading Recommendationsccocccevueeiiiiiiiiiciieee e v vii
Part 1. SDPGUidebookINIEOAIICION cossessseesssssssssssssansssssnssssssinssssssasssss sossaisssssassssssasssssssssgassssssss 1-1
Ite SeoperandiPenspeotiVe: s s rrt st b s e s e st nasi 1-1
2. Organization of this SDP GUidebookccccoovvueerviiiiniieiiiiieieie et 1-1
5) ElectroniCData IMaNaEEIMENE : c. sussssess i G5ui5sus s s s Hespasss s s g s e« 05 e s SEA S e a5 1-2
4 Example Text and Highlightsc.covirieiiriiie ettt s 1-2
S fliermsiandyA CRonymS Seds s oo o e e B S e e T o 1-2
6. Forimat 0fithe ProCess; DESCHIPIIOMS :xmssmarrsattas o ssm o fies s wuss s s i 53 5es 347 5o s msormn s sabisoats i s 1-3
7 Integrated Product Teams (IPTS).....cccccvvviiiiiiiiiiiiiiiniiiiii et 1-4
8 Analysis and Design MethodOIOZIesccoveeviiiiiiiiiiiner e erernresseesne s sreesneesseesees 1-4
9 RO At O Pt O SO N S D) P o 5 555 s s st S S o Emr e et 2ot el s il Ao A e o 1-4
10. Tailoring 0f the SDPooi it eeee e e e ee e e e eeaeaas 1-5
11. Large Versus Small Software DevelOpments...........cccuveveviiiiiiieerciiienieeeeeeeesirieeieessenneesenns 1-5
2. Recommended SDPINUMbDERINE FORMAL:. v cxuiesssesemusasnsssessissnissss shasrnsssvnsesss aurehs ssswabis b 455570 1-6

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development
L L S rromor e P O e R O E R X X P oo D PO T D OO OO O O s 1-1
1 D D e T e T s e s le o e e s 2-1
1.1 TAeNtifICALION .. e e e e 2-1
12 SYSIEM OV ETVIIEW, cveirrees ssmasis suess 55 el SE TR+ Ea 53 FH o oo He B 55 S55HIT4 sB 3T ¥ A s MEA T3 43 e S TR AIS TR 2-2
1.2.1 System Architecture OVErVIEWcccccvviceereivennrireccennnnnrsesceecrnereccsnnesssnnnenns 2-2
1.2.2 Software Architecture OVerview.......cccccoevieiveiiiei i 2-3
1.2.3 Software Classes and Categories.....co..eecvueniiineiniincisiee i e e 2-4
1.3 D QU T N IVl VAo e e o bl s oo oo s e e e e e SRS A S s e R 2-7
1.3.1 SDP COMPONENE PATTS «.vvevvreirieirirriesronsmenmenmnnreeeseeteeeeseisosnmseesonnneeeeeeesssnsanaans 2-7
1.3.2 SDP OrganiZation........ccccieiiiiiiieiieesiieiriesesinieee s seeeessinasae s s s snseaesssssnnnnnns 2-8
1:353] 'S PAUBAALES crnmmmesmzsse ssmuse s sovai mesmm- deerEses < Ea s v Tl TE e s SRS R e 2-8
1.4 Relationship to Other PIANSc.cccceveeiiiiiiiiieeeeinieecreeessnieessseeesnnneessseesesisesssssenesnns 2-9
2.1 GoVERNMEN D OCUTNENTS! s, imts i oot i t e e T s e o R TS s oo LB e e 2-11
2.1.1 Government Referenced Documents—Examplecccccoceerveeeennincenenene 2-11
2.1.2 Government Applicable Documents—Example......ccccccccvvvvvveriiiiinnneeeennne. 2-11
2.2 Non=Government; D OCUMEIS «ucs svvese s amsssesvessassee sas s ss el sssssis sy e ssers s sasoss 2-11
2.2.1 Non-Government Referenced Documents—Example...........ccccceeveveiennenne 2-11
2.2.2 Non-Government Applicable Documents—Examplecccoccoveennennnen. 2-11
3 OVenRVIEWAO R QUIREH I WIORKS 1255 5575555 s e et e iomi S S8 oAl Sl e e S e sl el 2-13
3l Sy stemiACqUISITIONIIEIECCYCICH . i i st s asiesne sulte s lasilie st s ol smiisSmale 48 2-13
3.2 Software Requirements and CONStraiNtS........cocvveeerrireeerierenerneeenieesnioreeesireesssseesssenes 2-13
353, SoftwaneillemIC) Ve IEIW . s e 5 s e e s o seR T s A TR s T S TRE TR BT 2-14

ix

3.4 Required Software Lifecycle ACtiVItIEs....c.cocvvciiniiniiniinncnniniiiinnie e 2-15
355, ISOftWare RrOCESS IOVERVIEW, . cucu:ia e i e s sius s 408 438 TR SR AT TR TR SR TR TS 2-15
3.6 Software Documentation Requirements and Constraints........cooeeeerrvireeverioseeisieennns 2-16
3.7 Requirements and Constraints on Development Strategy............coccovniiiiiinniieiniennne, 2-19
3.7.1 Development Strategy FActorsc.ccevveriieiiieeiie e e 2-19
3.7.2 Software Integration, Testing, and Verification Approachcccccevveeeceeres 2-19
3.7.3 Software Integration, Testing, and Verification Objectives..........cccoevrurenenne 2-20
3.7.4 Software Integration, Testing, and Verification Processc.ccceveververnnne 2-20
3.8 Requirements and Constraints on Schedule and Resources........c.c.ccocevveenieeccnennen. 2-20
3.9 Other Requirements and CONSLIAINTScceererininivsnessiriirssnnessmriennee e sseees 2-20
General RE QUITEI IS s et e s s bl s s e T s ot e oM e e i s 2-23
4.1 Sottware Development PrOCESS ;sscwsssuinsems soviveshtuoss sussssne seosisssse sess s e s s esis s isns i 2-23
4.1.1 Mission Critical Software Development Processcc.ccecceeeercenrirareinennneine 2-23
4.1.2 Support Software Development Process.........cccceeeeeneiniercccnniiincccnininnnns 2-26
4.1.3 EratiVePFOCESS imumssu rossnn vasmssssmesssssmess oy uwa 6 e S (R e MGG S e 2-26
4.2 General Requirements for Software Development............ccoocvvvevnierciniininininieninnn, 2-27
4.2.1 Software Development Methodsccovereveieeinerrveriieennunncnneeese e 2-27
4,22 Standards for Software Productsc..ccceeoueeineneinciiinieciece e 2-28
4.2.3 Traceability ...ccciiviivieiieiceenriinieee e ettt et ne e see e 2-29
424 Reusable SOt WAre PROAUCES.: s smvsusssmmesnsasuassssusssssesn i ssssssess s e ameis s isses 2-30
4.2.5 Assurance of Critical Requirementsc.ccceeiviiiiiniiinciniinin e 2-33
4.2.6 Computer Hardware Resource Utilizationccccecevviirieneiininiciinecininnenns 2-37
4.2.7 Recording Rationale for Key Technical DeciSions........cccueevviiinsiciiieninnnnne 2-37
4.2.8 Access for ACQUITEr REVIEW ...cccceevecuerennirsicuencisnosssensionieissensessiessssesses 2-37
4.29 Software Data Management (Recommended Optional Addition)................ 2-38
4.2.10 Software Plans and Work Products (Recommended Optional Addition).....2-39
Detailed REQUITEIMENLSccvueereeereeneeiieeneesetassneesaneeseessneesetseseessetssseeseseeesneesnssnseesesssssanas 2-43
5.1 Project Planning and OVersightccciviiviieieiriiinnreeienienneierinneececeeensnescsscaesesnsessssens 2-43
5.1.1 Software Development Planning.......cccceevieenminimnnennnnnnnciee e ceeene 2-44
5:.1:2. Softwareilten) Tiest Planmifi.....o.occosvseessrmsssssssessanssossasssossssinsns sossrasasassessss 2-49
5.8 iSystem! TSt PIanMingi ceovremsiame s mosisamme st drssssssirasssssssisetoss dosasamass 2-50
5.1.4 Planning for Software Transition to Operations.........c.ocevevscrnvuccnsieinunnns 2-50
5.1.5 Planning for Software Transition to Maintenance..........ccovveerveeeveerreerneenene 2-51
5.1.6 Following and Updating Planscccoceeeeviivinnienecennunoneioonnieninoneneeesn 2-51
5.2 Establishing a Software Development Environmentcccccociieeciicninininnneiinne. 2-51
5.2.1 Software Engineering Environmentccccceevveeireiteeccncniieeeninnnneeninnns 2-51
5.2.2 Software Integration and Test Environmentccccoeviiniiiiiiinnniinnenn. 2-52
5.2.3 Software Development Libraries.........coeiviniinniinriiiiininiien e, 2-53
5.2.4 Software Development Filesccccovviiinvverriiininineccneniiniiieoniinnmiienneeinn, 2-55
5.2.5 Non-Deliverable SOftWarecccocovrininiiiiiiinii i e 2-56
53 System/Segment Requirements AnalysiS......cccoeeeceeeciieinvreeeiiieenneeesineeesecseeecineeescnees 2-56
S8:l - ANalYSisOf USer NPl s et st semsss s fasiamimssasam s 2-57
5.3.2 OperationaliCOMCEPL.. ..« e seurss i shasnns snnsssiennnsensshesssiodrspnass Seaseaaesimaest vosiana 2-57
5.3.3 System/Segment REQUIrEmMENtScoevureeervvereueeerosurensasunrinsiesssseesinniesssneens 2-58
5.4 System/Segment DEeSIZNccccvccirieiieiieinieniinieete s s 2-58
5.4.1 System-wide/Segment-wide Design Decisions........cc.ceevereieniersereneeccenneenne 2-60
5.4.2 System/Segment Architectural DeSignccoocceerervieemrieinininrinnieininienineennn 2-61
5.5 Software Requirements ANALYSiS........ceivceeerrereereeririicteertereeeeeieeseeseeessnessereessreenens 2-62
£ I < o) % 22 (= D =3 7 e e P o 2-68
X

I en B N B S T BN G R .

54

5.8

S

5.10

5:12

5.13

5.6.1 Software Item-wide Design DeCiSIONSc..cccvvvrriiieiicieniiieeeciereniieeeiieens 2-70
5.6.2 Software Item Architectural DeSiZN. uwsisvmmssenuessvencosmuedosnsaesssasass sisessas 2-71
5.6.3 Software Item Detailed Desi@nccccovvveeeiiiiinnieeeniveiennieeesierennnneeenienenns 2-73
Software Implementation and Unit TeStINZccceeeeieiiiiireeeciieniee e ceee v 2-77
5.7.1 Software Implementation.........c.ccoeveeiereeeneinienee et e e 2-79
5.7.2 Preparing for Unit TeStiNgccoeeiieiiieiiiiieeeie e e 2-81
5.7.3 Performing Unit TeStINGc.cccevveeeriurrinnneeesireensineeesieeensreesssseesnsseessssnnenns 2-81
5.7.4 Unit Testing Revision and Retesting.........cc.ccccovvvvverniiirinnreeeeniieennseeeecnnnnns 2-82
5.7.5 Analyzing and Recording Unit Test Results..........cccoervrnnnrveeriierinneeeeninnnnns 2-82
Unit:Integration and) TESTNE]. . cu.ussysurssssrsiessasssnsastsnssesnaase issmssssessssssasssatasesssusasess 2-82
H8al IPrepaning fontlUI&HT « o mite it o e e S A e e e s 2-86
5.8.2 Performing UL&Tccoviiiiiiieiiniiiieeee e siis e sreaesieeesetreenieeessesessnneseenes 2-87
588 'UI&T Revisioniand ReteSting s ewrome. ssorsseussssuesesdissinaminsmas v ssman saussuisases 2-87
5.8.4 Analyzing and Recording UI&T Results......c.cooeeriinciunniciiiieniencncciinecnes 2-88
Software Item Qualification TeStNEcccviiiiiiiiiie e 2-88
5.9.1 Independence in Software Item Qualification Testingcc.cccoeevvcernneenn. 2-92
5.9.2 Testing on the Target Computer SYStemccceevvvrieeeerniereeeennieeeeeneineens 2-92
5.9.3 Preparing for Software Item Qualification Testingcccccovceeriiinenneenne. 2-93
5.9.4 Dry Run of Software Item Qualification Testing.........c..ccceeevvvivrinciiecccnnnns 2-94
5.9.5 Performing Software Item Qualification Testing.........cccocveeereerinirreerccernnns 2-95
5.9.6 SIQT Revision and Retesting........c.cveeeeccmrrerrueecveneesssreerseceesssnnenccessnsnaene 2-96
5.9.7 Analyzing and Recording SIQT Results..........cooveeeermiennnieeeniieeenneeeeiieenne 2-97
Software/Hardware Item Integration and Testingccoccevveinvenneeniriineeseevireeees 2-98
5.10.1 Preparing For SI/HI Integration and Testingc...ccccoviiviiiiiiiinninnen. 2-100
5.10.2 Performing SI/HI Integration and TeStingccooceevvriveiiveerireirineeceesneens 2-102
5.10.3 Analyzing and Recording SI/HI Integration and Test Results.................... 2-103
5.10.4 SI/HII&T Revision and Retestingcocceceeveeriirieieneniennenieeneeeeenaes 2-103
System Qualification TestiNg s wrra s immmmems st grsrrmermmmi i, 2-104
5.11.1 Independence in System Qualification Testing.........ccccevvueivevrivinceennenns 2-106
5.11.2 Testing On the Target Computer SyStemcccceverrciinienciiiieecneeninee. 2-106
5.11.3 Preparing For System Qualification Testing.......c.ccocceveeceererneencnieencenne. 2-106
5.11.4 Dry Run of System Qualification Testingcccveveeeriiveeeiinnniveneeernnneen. 2-107
5.11.5 Performing System Qualification TeStingcceovvvrerirreirvererineenseeeeninees 2-107
5.11.6 Analyzing and Recording System Qualification Test Results 2-107
5.11.7 System Qualification Testing Revision and Retestingcccocveevvveeernnenn 2-108
Preparing for Software Transition to Operationsccoveevirveinneriniiiennienineenns 2-108
5.12.1 Preparing the Executable SORWarecccccvviiviiieininnincnneine e 2-109
5.12.2 Preparing Version Descriptions for User Sitescoceeeveeernnicenncecnnne. 2-109
55112581 IRrepaningsllser M anlal She s arne s s e e s e 2-109
Sa12:4) Installationt atilSEr SilEskm s syt e e o b bt o sl s s T e e 2-111
Preparing For Software Transition to Maintenanceccccoovevveeveeerivreenieeeennnneennn 2-111
551841 Pieparing the EXecutable SOWATe ¢ vursiearomem. s alnssim s siwsses sommmasse e wes 2-112
5418:28 RreparingsSOURCEHRITES ouaie dih i st s s s i el e mete sl ool 2-113
5.13.3 Preparing Version Descriptions for the Maintenance Site........c..cccceoccene 2-113
5.13.4 Preparing the “As Built” Software Item Design and Related Information.2-113
5.13.5 Updating the System/Subsystem Design Descriptioncccoeeeevvveennnen, 2-113
5.13.6 Updating the Software Requirements..........cccceevvcuereennnicereeennieeeecnnenneee. 2-114
5.13.7 Updating the System ReqUirementsccoeeverrereeeerireinseeecenvnessveesnenneens 2-114
5.13.8 Preparing Maintenance Manuals.............ccocoeciiiiiiiinninncc i 2-114
5.13.9 Transition to the Designated Maintenance Site..........c.ccooccenviiiiinieenncns 2-115
Xi

5.14 Software Configuration Management........c.ooveeecvevmreerieeencreeneeseesseeseeeseeeesneesneenes 2-115
5.14.1 Configuration 1dentification..........cccceerieiiiercrisiiiccnn it 2-117
51452 ConfigurationtCONtIOl: mmmmmummassm s miminmmss s mssimss ssasuasresasmrinsmss 2-118
5.14.3 Configuration Status ACCOUNLINGcccceviiveiiimeeriiiieiniseeeriner et esssees e 2-120
5144 (Configuration AVAilSic s s omonamsiasmnsmims st sssarmsmess: 2-120
5.14.5 Packaging, Storage, Handling, and Deliveryc.ccceoveernvnnninicnniienineennee 2-121
5.15 Software Peer Reviews and Product Evaluationsccccvuiniiinniiiininiiinnciniiinnns 2-122
5155, ‘SoftWare;Peer REVIEWS wusuisvvssossas msassmismusins s quammeasssssesaamsessaris soss s wsse s s 2-123
5.15.2 Software Product Evaluationscccccvveeieiiemnieniiie e 2-126
5.16 Software QUality ASSUIANCE.cccvcvervrreieireeeesrsecesssnesssesisiseesssssessssseessseseesssssenssnne 2-127
5.16.1 Software Quality Assurance Evaluations.............cccovviinninnninniiinniiiniinne, 2-128
5.16.2 Software Quality Assurance Records, Including ltems to Be Recorded.....2-129
5.16.3 Independence in Software Quality ASSUFANCE.......ccccveerveeriinneeniereesieeninns 2-129
5.16.4 Software Quality Assurance Non-Compliance ISSUEScccovvuvreerverenene. 2-130
SEITY G ORTCC Y A CION euttaacs ety et s s o S S S Tt S e e s 2-130
5171 Problem/Change RepOrtSia s st s maminm s s ma s it e 2-130
5.17.2 Corrective ACtiON SYSIEM ...cccccveiuriecieiiieneieie et et e 2-131
5.18 Joint Technical and Management ReVIEWS......c.ccoviiieiiiiiiiniininni e 2-132
S8l Joint: TechniCAlREVIEWS! . .t i ies cons s onssiassamnsioss s55vissssiss s lsinsa e smis Faemases 2-133
5.18.2 Joint Management REVIEWScocviiivinnsisiniiismnesiniennssseesnniessseeesessessesees 2-134
5:19: Software:RiskiMaNagemBL ... oo seassiessssssaarevsssitssm voismue fossssssssanissssisissaasisssins 2-136
5.20 Software Management IndiCators......ccceeveeiecoieerereeernruneecenncnnnneieiiieessseeesseessesenes 2-138
5.20.1 Principal Objectives of Measurement.........ccooveeeeeeeneeernerscrecereesseeeneesences 2-138
5.20.2 Continuous JMPrOVEINENL:. .« uusaussasusssssssssassssassssiessasssssssssssasesesssasssaassanss 2-139
5.20.3 Approach to Management Measurements.......cccccocevveeeriiiienscenienineeninees 2-139
5.20.4 Key Software Management QUEeStionsS..........cooceereremnueniniinsinnnienniennin, 2-141
5:20:51 ‘Software Measurement SOt . rramansiiianmsstisini s isnisesinssssnisssesies 2-141
5.20.6 Software Measurement CONSLIUCEcoovviiiiiiiiiiiiiiininniinae e 2-141
5.20.7 Analysis and Reporting of Software Management Indicators.................... 2-145
5.20.8 Software Indicator Thresholds and Red Flags.......cccccceeeeievcinnciececcineneneee. 2-146
5.21 Security and Privacy Protectionccccceceeeviircinrenccinin s 2-146
5.22 Subcontractor Management so e sonis i mmisnismass haitimsamissmassisesissmses 2-147
5.23 Interfacing with Software IV&V AZeNtscccooceiciiicciciniiininninisinie e 2-148
5.24 Coordination With ASSOCIate DEVEIOPETS ..uvvverreriirisieicirrniinaniiinieissersessniesssnnnesnne 2-149
525 |mprovement:of Project PrOCESSeS . rrirumsmammuscassirmss st sssimenssaisssasiasssssasssesswsses 2-149
5.25.1 Software Engineering Process Groupc.cceeeereveeiiernveccnscncienecensnenne 2-150
SE257) PROCES S A S e o r et e s euiab s e Sl T et P T e 53 5555 s sl s oo 2-151
5:25:831 Change lmplementationt s e retivrmtt seitssimm ot sissassessistasssuesunsespsmissassnruesi 2-152
5:2574 SEPGINIRastiuCHIne s o inmimiinae nom ot s f s o vt e s s 2-152
5:25E5) PROCESS TITALMITIE s oo i wssssinenisale imeise oy slsisasle s oo il e ssse Sio 605 5 2-152
5256 Software Process Engineer/LLead o comrosmavussmessmsmassasssaonsossssansssoisussass 2-153
5.26 Software Sustainment (Optional)cocueeiviirecceeniiiecitreerteee e 2-153
5.26.1 Software Sustainment ObJectiVES........ccorviriimrciniiiiini 2-153
5.26.2 Planning for Software Sustainmentcocccveeeeminercecrrininieenineninneeenn 2-154
5.26.3 Software Maintenance Plan...........cccccoecverivinciincincncinnnne e 2-155
5.26.4 The Software Sustainment Organizationcceeevevniinninninsneninnenne. 2-156
5.26.5 Key Software Sustainment 1SSUES.......cccvvivrieieeiniiseniniinseneisnir e, 2-156
Schedules and: Activity INEEWORK: .«.vuaii st teiiem s sio i e s S s T as=resessumsushns s emsss 08 2-159
Project Organization and RESOUICEScccvvereeieiierierineniieeeesessiieceeessnnreressnssseeeeeesssenmeneens 2-161
Xii

7.1 Project Organization.......co.eoveerieerieesee ettt s st enree s 2-161

7.2 PrOJECt RESOUMCES «.euiiiieieiiiereeietiteeeiieteeseeeteessessseeesessateeesssssanes e seasnnaesasarannnes 2-162

7251 PersONNEl RESOURCES <. st sapan smessvslse e 5555 S5asis 5l Art i els S8 s 5605 Toe S8 355 78 2-162

252 DevelopmenRIBacilifies). o i e e e 2-165

7.2.3 Government Furnished Equipment, Software and Servicesc.cccccceeu..... 2-165

7.2.4 Other Required RESOUICEScccevvuriireirirrreeriiieeenieesireensreesenineessssessennees 2-165

7.2.5 Software Training Plans (Optional).........ccccvviviriveereniiiininieeeenieennneeeesnnes 2-166

8. N O S e e L C Tm T DLk S s e T L s s S e et 2-167
Part 3. Additional SDP Guidebook Information...........iiiiniicinniiiniiinniniccnnnsssniancosssssnnee 2-1
AGI-1. Software Roles and Responsibilitiesccc.oeiriiiiiiniieeccrece e e e 3-3
AGIEZ, Bibli O ST ap s e s sisss e ss bt o se v oo S 0emis o e ssu SIS S0 6 Do oo o Sl el AT 55 o st 3-15
AGI-3. Software-Related Definitions......c.covvieieeirceeeeniiniieer ittt et eeeeee e e e esceee e 3-17
AGI-4. SOftWATE ACTOMYIMS wceviiuiiiieiiecterereteeettertesetessteeteeteseetsbte st sns stesaee et seneesesenseeatesaeseneeenenee 3-19
AGI-5. Subject Index to the SDP GuidebooKcccociiiviiiiiiiiiiiiicriceci e 3-21

Xiii

Part 1. SDP Guidebook Introduction

Figure 1-1.
Figure 1-2.

Figures
Organization of This SDP Guidebook........ccoccvviiiiiniiiiiniiinniniin, 1-2
Components of a Typical SDP Package—Example........ccccovveeeriirinneeeeninnesnnnenens 1-5

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development

Efforts

Figure 1.1.
Figure 1.2.1.
Figure 1.2.2.
Figure 1.3.3.
Figure 1.4.
Figure 3.1.
Figure 3.2.
Figure 3.4.
Figure 3.5-1.
Figure 3.5-2.
Figure 3.7.4.
Figure 4.1.1.
Figure 4.1.2.
Figure 4.2.2,
Figure 4.2.4.1.
Figure 5.1.1.
Figure 5.1.1.4.
Figure 5.2.3.
Figure 5.4.
Figure 5.5-1.
Figure 5.6.2.
Figure 5.6.3.
Figure 5.7.
Figure 5.8.
Figure 5.9.
Figure 5.10.
Figure 5.14.
Figure 5.14.2.2,
Figure 5.15.
Figure 5.16.1.
Figure 5.16.3.
Figure 5.17.2.
Figure 5.19.
Figure 5.20.2.
Figure 5.20.3.
Figure 5.20.4.
Figure 5.20.6.
Figure 5.25.
Figure 5.25.4.
Figure 7.1.
Figure 7.2.1.2.

Software Organization and Software ltem Structure Overview—Example 2-2
XMPL System Overview—EXampleo.cccviiviniiniiiinmiinnni e, 2-3
XMPL Software System Architecture Overview—Example.......c.ccccoovercennnnenennee. 2-4
XMPL SDP Update Plan—Example..........ccccecoviiiiiniiniiniiiinninnenn 2-8
Relationship Between the XMPL SDP and Other Key Plans—Example................. 2-9
XMPL System Acquisition Lifecycle Phases—Example...........ccoccoevernienieennnen. 2-13
Software Process Levels Used In This Guidebookcoeconivininininiinnninnnn, 2-14
Software Lifecycle Development Domains—Example........c.cccoveeeecnnneeeniceninnnene 2-15
XMPL Software Development Process Overview—EXample.........cccoeeevviernvveernnns 2-16
Principal Software Development Process Activities—Example............ccccccenneene. 2-17
Software Testing and Integration Process—Examplecc.cccvvviiiiiiiniinniinnnnn 2-22
Mission Critical Software Development Process—Example............ccccoviinninnninnn, 2-25
Support Software Development Process—Example........oocieoveveecencinnnceenicnneeene 2-27
Hierarchical Software Product Levels—Example.......c..ccceeevvveriiccennnnieecinennnneeen. 2-29
COTS/Reuse Management Process—EXamplecccevvniiivniniinnininiiniennn. 2-31
SDP Waiver Approval Process—EXample.......c.cocovvveeeeeiniiiniinniiinininnn, 2-45
Software Management from a Measurement Perspective—Example.................... 2-49
Electronic SDL Logical Partitioning—Example.......cccccovvveeeeineenienninineecieennen. 2-54
System/Segment Design Process Flow—Exampleccccoovvininininininninincns 2-59
The Origin of Software Requirements........c.cccoceveeveieieniniense et scceee e 2-63
Software Item Architectural Design Process Flow—Example............cccooveenennee 2-72
Software Item Detailed Design Process Flow—Examplecccccoevieviinicennen. 2-74
Software Coding and Unit Testing Process Flow—Examplecccccoceinicniniinnee 2-80
Software UI&T Process Flow—Example.........ccccccceiviiiniiniiniiniinnnnenn, 2-85
SIQT: Process Flow—EXamPpleoiiumumseviiumsmmmrinsmintonn o iamnsiondoesssont dearasiion s 2-92
Hardware/Software Item Integration and Test Process—Example............cc..... 2-100
Relationship of the SDLs to the MSDL—Exampleccoccovvvviiniiniininienncnnns 2-117
Relationship of the Configuration Control Boards--Example............c.coooviiinnins 2-119
Software Peer Review Process Overview—Exampleccccoceeeiiniieiciinniiiinn, 2-123
SQA Staffing Projection—Example.........ccccovniniiiniiiiinininnninneenn, 2-129
SQA Independent Reporting Structure—EXample.......ccccoovvvanerrnreiiecrecccssneeennens 2-129
Corrective Action Process Overview—Examplecccccooeiiiiiieniiinnnnninninnne, 2-131
Risk Management Process Overview—Example..........cccocniinininiininninninin, 2-136
Closed Loop Software Control Process—Example...........cocovviiiiinniiniiniininnne, 2-139
Software Measurement Framework—Example........ccoccveeevvniieneccnsccinnneiinneeen, 2-140
Categories and Indicators Support the Key Management Questions—Example..2-141
Elements of the Software Measurement Construct—Example..........ccccecceenneen. 2-143
Software Process Improvement Process Overview—Example...........ccccocovieneen 2-150
SEPG lnfrastricturé—Exampleé - zammaminaniinnamuisnissmsnsiiammarimits. 2-152
Overall Program Organization—Example............ccccooiniinnininiinnnn, 2-161
Estimated Software Staff-Loading—ExXxample..........ccoovrvcvireriniiicccinniiniccneninnne 2-164
Xiv

i

Tables

Part 1. SDP Guidebook Introduction

Table 1-1.

Common Acronyms Used in this GUideboOKeecvceeinviieiiveeiiniiie e, 1-3

Part 2. Recommended Contents of a Program-Level SDP for Large Software Development

Efforts

Table 1.2.3.1.
Table 1.2.3.2.

Table 1.2.3.
Table 3.3.
Table 3.6.
Table 3.7.2.
Table 3.7.3.
Table 4.1.
Table 4.2.3.

Table 4.2.10.1.

Table 5.
Table 5.1.
Table 5.1.1.
Table 5.1.1.
Table 5.1.2.
Table 5.2.1

-1.
Table 5.2.1-2.

Table 5.2.4.
Table 5.3.

Table 5.4-1.
Table 5.4-2.
Table 5.5-1.
Table 5.5-2.
Table 5.6-2.
Table 5.6-3.

Table 5.6.2.
Table 5.6.3.

Table 5.7-1.
Table 5.7-2.
Table 5.7-3.
Table 5.7-4.
Table 5.8-1.
Table 5.8-2.
Table 5.8-3.
Table 5.8-4.
Table 5.9-1.
Table 5.9-2.
Table 5.9-3.
Table 5.9.3.

Table 5.9.4.
Table 5.9.5.
Table 5.9.7.

3

It
3.

Mission Critical Software Class and Sl Categories—Example.........cccoeevvevivenenann. 2-5
Support Software Class and S1 Categories—EXample........ccecenveriienieniniennenes 2-5
COTS/Reuse Software Class and SI Categories—Example...........cccoovvvrecvivvinnnnnns 2-6
XMPL Software ltems and Team Responsibilities—Example............cccccoevnrnen. 2-14
XMPL Software Documentation Production Matrix—Example.............cccoouueee. 2-18
Software Integration, Testing, and Verification Stages—Exampleccoocvvvunennn 2-19
Software Integration, Testing and Verification Objectives—Example.................. 2-20
Overview of Software Development Process Models—Examplec.cc..c..... 2-24
Traceability Requirements by SI Category—Examplec.cccovevevviiceiennnnnn 2-29
Candidate Software Management and Quality Control Plans—Example.............. 2-39
Contents 0f SDP SECHONS ..coovuiiiiiiiiiiiiir et 2-43
Readiness Criteria: Project Planning and Oversight—Example..........c.cccceevveen.nn. 2-44
Software Planning Tasks—Example.......coccoovviiiiiiiiiiiii i 2-46
S1 Build Delivery Plan-Examiple.........cocccoiviiiiiiniiniiiinniinciensie e sinesssessnne e 2-47
Readiness Criteria: Software Test Plan—Example.......ccccovvvveviiiinniiieeeniienniineens 2-50
Program-wide SEE CASE Tools—Example.........cccoviiiniiiiiciiiiienecieeneee 2-52
SEE Development Sites—EXamMPIeccccieeerveriiniieeeinierinisreeenieerinneesssnennnneeee e 2-52
Electronic SDF Organization—EXampleccccooiieieiiiiiiiiiieiciie e evveee s 2-55
Readiness Criteria: System/Segment Requirements Analysis—Example.............. 2-57
Readiness Criteria: System/Segment Design—Examplecccocvvveeievniiinvinnnenn, 2-58
System/Segment Design Tasks—EXample.......ooovvvveriiiineeenineeeie e, 2-60
Readiness Criteria: Software Requirements Analysis—Examplecccocvveeenee 2-64
Software Requirements Analysis Work Products—Example........ccccoecveviinnnneeen. 2-64
Required Software Design Activity Work Products—Example.........ccccevvennnns 2-70
Roles and Responsibilities During Software Design—Example............ccc.ccoeenee. 2-70
Software Item Architectural Design Tasks—Examplecccccevviereivvereiniininiciernnns 2-73
Software 1tem Detailed Design Tasksccceeieiiiiiiiiniiiie e 2-75
Readiness Criteria: Software Coding and Unit Testing—Example 2-78
Required Software Coding and Unit Testing Work Products—Example 2-78
Roles and Responsibilities During Software Coding and Unit Testing—Example 2-79
Software Coding and Unit Testing Tasks—Examplecccooceervinniiiniiinnnnen. 2-80
Readiness Criteria: Software Unit Integration and Testing—Example.................. 2-84
Software UI&T Work Products—EXample......cceevvveeeviriiiniveeeinieeensiecennneesnovenenns 2-84
Software UI&T Responsibilities—EXamplecccceeeriiiiiiierinniieeneeeneee e, 2-85
Software UI&T Tasks—EXaMPIeccooiiiiiiiiiiiiiiiiiiie e 2-86
Readiness Criteria: Software Item Qualification Testing—Example 2-89
Software Item Qualification Testing Work Products Per Build—Example........... 2-90
SIQT Roles and Responsibilities—EXamplecccceeeriiiiiinnniieiieennceee s, 2-91
SIQT Preparation Tasks—EXaMPIeccciveeerveriiniveeiiiereinseeesieresnseeessineesssenenenns 2-94
SIQT Dry Run Tasks—EXaMPIecccovvviriiveeeiiiiiiiiieeeiniieceeeenieessieeessnnesssnneenns 2-95
Perform Formal SIQT Tasks—EXamplec.ccccvveiereiiiininiieiinee e e 2-96
Analyzing and Recording SIQT Results—Example..........ccoccvviniiiniiniie e 2-97
XV

Table 5.10.

Table 5.10.1.
Table 5.10.2.
Table 5.10.3.
Table 5.10.4.
Table 5.11.

Table 5.14-1.
Table 5.14-2.

Table 5.15.1.2.

Table 5.18.1.
Table 5.18.2.
Table 5.20.5.

Table 5.20.6-1.
Table 5.20.6-2.
Table 5.20.6-3.
Table 5.20.6-4.
Table 5.20.8-1.
Table 5.20.8-2.

Table 5.22.
Table 5.23.
Table 5.25.1.
Table 5.25.2.
Table 5.25.6.
Table 5.26.3.
Table 5.26.5.
Table 7.2.1.
Table 7.2.1.3.
Table 7.2.2-1.
Table 7.2.2-2.
Table 8.1.
Table 8.2.
Table 8.3.

Readiness Criteria: Software/Hardware 1tem Integration and Testing—Example..2-99

SI/HI Integration and Testing Preparation Tasks—Example.........ccccccoviiniinnn 2-101
Performing SI/HI Integration and Testing Tasks—Example........c..ccoccnviniinininns 2-102
Analyzing and Recording S1/HI Integration and Test Tasks—Example.............. 2-103
Revision and Retesting SI/HI Integration and Test Tasks —Example................. 2-104
Readiness Criteria: System/Segment Qualification Testing—Example............... 2-105
Division of SCM Responsibilitiess—Examplec..ccocniiniiiinniiniinninnin, 2-116
Software Library Levels and Controls—Examplecccccccovveieencrccnnniennnin. 2-117
Software Development Peer Reviews—Example........c.ccoccevnvenninninicinininn, 2-125
Software Product Reviews By Activity and Category—Example........c..coeeneene. 2-134
Software Documentation Maturity Mapped to Reviews—Examplec....c...... 2-135
Software Measurement Set—Example.......coocccvviiiviviiiiiniinnnn, 2-142
Format of the Measurement Information Specification—Example 2-143
Example of a Measurement Information Specification for Staff Profile.............. 2-144
Base and Derived Measure Specifications—Exampleccoccoevniiiiniiininnninns 2-144
Format for the Measurement Indicator Specification—Example.............cc......... 2-145
Software Indicator Thresholds—Example........cocvvvvveiiviiiecvinierinrceneeneee e 2-146
Software Indicator Program Red Flags—Examplecccccoviiniiininniinninnn, 2-146
Subcontractor Management Team Members and Responsibilitiess—Example.....2-148
Software IV&V Evaluations—EXample..........cccccoeoviniiniiinieie et 2-149
SEPG Membership and Responsibilities—Example.........cccocoveevieiiennienineeneen, 2-150
Focus of the Process Improvement Initiative—Examplecc.ccooceniiiiiininninnn 2-151
Typical SPE Functions—Example........ccccooeiiiniiiiiiicicie e 2-153
Example Outline of the Software Maintenance Plan.........cccccconveeniiiiniiininnnnn, 2-156
Key Software Sustainment ISSUESeeeuecereerrneerraernneerserreneensneesaeesreesssusenseeennans 2-157
Chief Software Engineer Team Responsibilities—Examplecc..coccevieirineeene 2-163
Estimated Skill Levels By Location and Function—Example.........c.cccevvvvinnnne 2-164
Team Locations and Software Activities—Examplec.cccoovviviininiinninnne, 2-165
Facilities Allocation—Examplecccccciviiiiiiiniiiiiiiiiicciern e 2-165
Acronyms—EXamPIlecccoviiiiiiciiiiiiinniiii e s 2-167
Software-Related Definitions—EXamplecccevvevrirerceenineeennnreiccnieenecsseeneens 2-167
Work Instructions and Procedures—Example..........cccoccvviiniieiieiiiccnceenecnnen. 2-168

Part 3. Additional SDP Guidebook Information

Table AGI-1.
Table AGI-3.
Table AG1-4.
Table AGI-5.

Table AGI-6.
Table AGI-7.
Table AGI-8.
Table AGI-9.
Table AGI-10.

Table AGI-11.

Roles and Responsibilities of the Chief Software Engineer—Example.................... 3-4
Roles and Responsibilities of the Software Process Lead—Example...................... 3-6
Roles and Responsibilities of the IPT Software Lead—Example..............c.co..c...... 3-7
Roles and Responsibilities of the IPT Software Integration and Test Lead—

E X A o o B e S e e T R e A B S s At Tt e S e 3-8
Roles and Responsibilities of the Software ltem Lead—Example..........ccccoouerrnneee. 3-9
Roles and Responsibilities of the Software Engineer—Examplecccvcvcivennne 3-10
Roles and Responsibilities of the Software Test Engineer—Example................... 3-11
Roles and Responsibilities of the Software Configuration Management—

R ATI () C: Trtee e oot e o 23 e 3 e = AT o s e e il e St TS e elele lom e 3-12
Roles and Responsibilities of the Software Quality Assurance Management—
Examiple.: . cmimrs e s A R ST S S 3-13

Roles and Responsibilities of the Software Subcontract Management—Example.3-14

xvi

Part 1. SDP Guidebook Introduction
1. Scope and Perspective

The contents and organization of the Software Development Plan (SDP) recommended in this
Guidebook is based on guidelines as defined in:

e Section E.2.1 of the “EIA/IEEE Interim Standard J-STD-016-1995 " (hereafter referred to as
J-16),

¢ Department of Defense (DoD) Data Item Description (DID) DI-IPSC-81427A., Software
Development Plan, and

¢ The Aerospace Corporation software development standard Technical Operating Report,
TOR-2004(3909)-3537B, “Software Development Standard for Space Systems” (hereafter
referred to as TOR-3537B). Appendix H of TOR-3537B contains the SDP content template.

This Guidebook is compliant with those standards, however, TOR-3537B is the cited standard as it
is newer (published 11 March 2005) and is currently being used as the compliance standard on United
States Air Force (USAF) Space and Missile Systems Center (SMC) programs. TOR-3537B has also
been published as SMC Standard SMC-S-012, “Software Development for Space Systems” dated
13 June 2008. If the guidance being applied appears only in J-16, then J-16 is the cited standard.
There is no intent to duplicate the information contained in those standards. The intent of this
Guidebook is to supplement the standards with detailed guidance, recommend contents, and
examples, to assist in the preparation and review of SDPs. Therefore, this Guidebook should be used
in conjunction with the standards.

The contents of a SDP, as defined collectively by the above standards, consists of the following eight
sections plus Addendums and Annexes as needed:

1.Scope
2.Referenced Documents
3.Overview of Required Work
4.General Requirements
5. Detailed Requirements
6.Schedules and Activity Network
7.Project Organization and Resources
8.Notes

e Addendums

e Annexes

2. Organization of this SDP Guidebook

This Guidebook is organized into three parts as shown in Figure 1-1. Part 1, the introduction, covers
the basic approach and general information of special importance to the reader. Part 2 of this SDP
Guidebook constitutes the bulk of the document as it contains the recommended contents of a
program-level SDP in terms of what is expected and recommended to be included within each
subsection or paragraph and examples of expected contents, figures, and tables. The Notes section
(Section 8) contains acronyms, definition of terms, and an example list of work instructions that
document how to carry out tasks described in the SDP. Part 3, Additional Guidebook Information,
contains a suggested list of software roles and responsibilities, references, definitions, acronyns, and a
Subject Index to this Guidebook.

I-1

¢ PART 1: SDP GuidebookIntroduction

¢ PART 2: Recommended Contents ofa
Program-Level SDP for Large
Software Development Efforts

« PART 3: Additional Guidebook Information

Figure 1-1. Organization of This SDP Guidebook
3. Electronic Data Management

This Guidebook is written with the assumption that the contractor’s parent organization has in place
an effective and comprehensive Electronic Data Interchange Network (EDIN) for the storage,
retrieval and distribution of program related software documentation and work products (see
subparagraph 5.2.3.1).

4. Example Text and Highlights

Tailoring. Throughout this Guidebook the name of a fictitious example program will be called
“XMPL.” All of the figures and tables used in this SDP Guidebook are examples and they are
expected to be tailored for each program’s SDP and be compliant with the developer’s Standard
Software Process (SSP).

Example Text. In some sections of this Guidebook, example text is included as a guide for
preparation of that section. Example text is identified as follows:

Example Text:
The example text provided in this Guidebook is outlined with a solid outside border and
includes the words “Example Text” in the upper left corner.

Highlights. Paragraphs or sentences containing essential or key information are highlighted with a
light yellow background. When the term “<corporate>" is used in example text, the intention is to
replace it with the name of the parent organization of the program producing the SDP.

5. Terms and Acronyms Used
Terms used in this Guidebook are consistent with the definitions in Section 3 of TOR-3537B.

This Guidebook is not a standard! Therefore, there are no mandatory “shalls.” Instead, the following
terms—and what they mean—are used throughout this Guidebook:

e Must: Highly recommended for compliance with TOR-3537B and J-16. The word “must”
is in bold letters to highlight that it is, or is implicitly, a “shall” in the standards.

e Should: Recommended for completeness
e Can: Discretionary but should be seriously considered for inclusion
e May: Discretionary or used to show examples

Using the term “may” implies that other good options exist—choosing between them is left up to the
program.

1-2

Acronyms. Acronyms are used extensively in this Guidebook. Acronyms and definition of terms
used are included in Part 3 of this Guidebook. Table 1-1 is a list of the most common acronyms used
throughout the Guidebook. It is expected that individual sections of this Guidebook will likely be
used as a reference when needed (as opposed to assuming the reader will always read the entire
Guidebook). Consequently, acronyms are typically redefined when first encountered in each section.

Table 1-1. Common Acronyms Used in this Guidebook

Software Development File (or Folder)
Software Development Library

Chief Software Engineer
Configuration Control Board
Contract Data Requirements List
Commercial Off-The-Shelf
COTS/Reuse (a software class)
Code and Unit Test

Integrated Product Team
Integrated Master Plan
Integrated Master Schedule

Software Development Plan
Software Discrepancy Report
System Engineering, Integration, and Test

Software Engineering Process Group

Software Item

Software Peer Review
Software Quality Assurance

Mission Critical (a software class) SS Support Software (a software class)
Master SDL SuU Software Unit

Software Configuration Management Y[l Software Configuration Control Board
Software Change Request/Report TIM Technical Interchange Meeting

The “Program Office™ or the “Acquisition Program Office™ and the “customer,™ as referenced in this
Guidebook, refers to the government organization responsible for the program’s contract and
implicitly includes their representatives—such as personnel from The Aerospace Corporation, other
Federally Funded Research and Development Centers (FFRDCs), and System Engineering and
Technical Assistance (SETA) contractors.

6. Format of the Process Descriptions

A graphical and tabular emphasis is heavily displayed in this SDP Guidebook and is the
recommended format to more clearly describe the software development processes. Details of the
software development process are contained in subsections of SDP Section 5, especially
subsections 5.3 through 5.11, covering the principal activities of the software development process.

The following four inter-related items (three tables and a flowchart) are recommended for inclusion in
SDP subsections, 5.3 through 5.11, to provide a comprehensive definition of the software tasks
involved in each activity:

¢ Readiness Criteria Table: Should contain: Entry Criteria; Exit Criteria; Verification Criteria;
and Measurements for each software development activity

e Software Work Products Table: Should contain: A list of work products required, or
typically produced, for each software development activity organized by software category

e Input/Process/Output (IPO) Flowchart: Should show: the input documents and work
products, process tasks, and outputs for each software development activity

e Task Table: Must be linked to the process activities in the IPO flowchart but containing more
details of the tasks and sub-tasks for each software development activity. The IPO flowchart
can be considered optional, but the Task Tables should be included in subsections 5.3 through
S8

1-3

Examples of these tables, and the flowchart, are included in subsections 5.3 through 5.11 of this
Guidebook. Example figures throughout this Guidebook are intentionally made simple to convey the
general content expected in the figure. In most cases, it is expected that the figures produced by the
contractor for their SDP will have more content and detail than the examples shown.

7. Integrated Product Teams (IPTs)

The establishment of effective software IPTs is one of the most important ingredients to a successful
software development program. The software IPTs, referenced extensively throughout this
Guidebook, must be composed of relevant stakeholders who make and implement decisions for the
work being developed. The software IPTs are collectively responsible for delivering the product(s)
and its members should:

Share a common understanding of the IPTs tasks, objectives, and responsibilities
Collectively provide the skills and expertise needed to accomplish the tasks and objectives
Collaborate internally and externally with other IPTs and relevant stakeholders

Provide the advocacy and representation to address all phases of the lifecycle

8. Analysis and Design Methodologies

The recommendations in this Guidebook are applicable to all software analysis and design
methodologies; however, the examples presented in this Guidebook assume the software is being
developed using an Object-Oriented approach since Object-Oriented Analysis (OOA) and Object-
Oriented Design (OOD) have, to a large extent, replaced the Structured Analysis (SA) and Structured
Design (SD) approach commonly used for the past 30 years. The scope of this SDP Guidebook does
not permit a discussion and evaluation of the advantages and disadvantages of various methodologies.
Newer methodologies, such as Agile and Extreme Programming, may be appropriate for some types
of software development.

9. Format Options for the SDP

A comprehensive SDP is composed of multiple parts. Typically, there are two basic approaches to
SDP formats: programs with a single SDP and programs with a program-level SDP plus site-specific
SDPs.

The Single SDP Approach. A program may elect to have a single SDP and mandate that it be
followed by all software team members. That approach works very well when all developers,
including subcontractors, are co-located and using the prime’s infrastructure.

The Site-Specific SDP Approach. On large programs, typically involving numerous corporations
that are geographically dispersed, site-specific SDPs are often needed because of significant corporate
differences in software organization, management policies, development environments, and unique
operational processes and procedures. Site-specific SDPs are written and maintained by the
development sites and provide additional standards and procedures specific to each site. They expand
upon, but must not conflict with, the processes and procedures defined in the program-level SDP
unless a waiver has been approved. Figure 1-2 is a typical organization of the complete “SDP
package” containing three parts including site-specific annexes. Programs with a single SDP would
not have Part 3.

1-4

SDP Plans. All of the plans listed as SDP Addendums in Figure 1-2 are recommended as long as they
are applicable. Some programs will require the plans listed as SDP addendums embedded in the SDP
itself; other programs may require them to be separate documents. Software management and quality
control plans are briefly described in subparagraph 4.2.10.1 of this Guidebook.

Program-Level Software Development Plan

PART 1

Appendices

Annex A: Site 1 Specific SDP
Annex B: Site 2 Speclfic SDP
Annex C: Slte 3 Specific SDP

PART 3
Site-Specific SDPs

Figure 1-2. Components of a Typical SDP Package—Example
10.Tailoring of the SDP

The SDP must be tailored to the specific requirements of a particular program, program phase, or
contractual structure to which it applies. Although tailoring is generally a responsibility of the
acquirer, prospective and selected software developers may provide suggested tailoring. Generic
tailoring guidance is provided in J-16 Annexes A, B, and C. Tasks that add unnecessary costs, and
data that does not add value to the product, must be eliminated. Tailoring can include deletion,
alteration, or addition of activities as long as the result satisfies program requirements. Acquirer-
generated tailoring is normally specified in the Statement of Work (SOW), Compliance Documents or
in the Contract Data Requirement List (CDRL) section of the contract.

11.Large Versus Small Software Developments

SDP tailoring guidelines apply to both large and small development efforts. If a specified task or
activity does not make sense because of the size of the development effort, it should be deleted. There
is no intention to shoot a mouse with an elephant gun. However, a sound software process
management philosophy dictates that all software developments (large and small) go through the
same procedural steps—the difference is a matter of scale.

1-5

12.Recommended SDP Numbering Format

To enhance readability, it is recommended that the SDP numbering format does not go beyond four
levels plus two additional unnumbered levels as follows:

Level 1: Section (Example 5)

Level 2: Subsection (Example 5.1)

Level 3: Paragraph (Example 5.1.1)

Level 4: Subparagraph (Example 5.1.1.1)

Level 5: Bold key word(s) to lead off the paragraph

Level 6: Bullets indented under Level 5 (Note: Bullets can also be used at
Levels 2 through 4)

1-6

Part 2. Recommended Contents of a Program-Level SDP
for Large Software Development Efforts

1. Scope

The SDP starts with the Scope and is defined by TOR-3537B' as containing four subsections:
Identification (1.1), System Overview (1.2), Document Overview (1.3), and Relationship to Other
Plans (1.4).

1.1 Identification

The purpose of this subsection is to fully identify the system, the software to be produced, and the
activities to which the SDP applies. It includes applicable identification numbers, version numbers,
and release numbers. Subsection 1.1 can be as short as one paragraph or a half page or longer to
introduce the SDP and organization of the Software Item (SI)°. For example, an introduction to the
SDP may be similar to the following:

Example Text:

This Software Development Plan (SDP) establishes the management and technical plans to be used
during Phase-C, Complete Design, by the XMPL Integrated Product Teams (IPTs), in the
development of software items for all segments and their development sites.

This SDP describes the organization, processes, controls, and tools applied to the management,
design, development, and test of the XMPL software products. This plan applies to all software
integrated into XMPL during its lifecycle, including newly developed software, reused software and
modifications to it, and commercial off-the-shelf (COTS) products.

The SDP provides software management with the controls necessary to oversee the XMPL software
development activities. 1t provides software engineers with the standards and practices required for
all XMPL software development. This SDP implements the <corporate> Standard Software Process
(SSP), as tailored for the XMPL program.

Subsection 1.1 should contain a software organization overview as shown in the example Figure 1.1.
This figure should show the program segments containing software, the Software Items (Sls), and a
top-level view of the software organization. A description of the software organization must also be
addressed in subsection 7.1 of the SDP. Unfortunately, subsection 7.1 of TOR-3537B and J-16 is
titled “Project Organization” and many SDP authors take that literally to mean “project” and do not
show details of the software organization. In the context of an SDP, subsection 7.1 must be
interpreted to mean a view of the software organization from a project perspective.

Some programs may not have all the software titles shown in Figure 1.1. In that event, responsibilities
identified for the Chief Software Engineer (CSWE), Chief Software Architect, and Chief Process
Engineer should be performed by the person(s) having those responsibilities regardless of their job
title. This Guidebook assumes the program has a CSWE and contains descriptions of the
responsibilities typically performed by the CSWE (see AGl-1 Tables AGl-1and AGI-2 and
subparagraph 7.2.1.1).

' TOR-3537B is cited throughout this Guidebook, however, J-16 can also be used as the referenced standard since this
Guidebook is compliant with both standards.
% The SI was called a Computer Software Configuration ltem (CSCI) in MILSTD-2167A and MILSTD-498.

2-1

XMPL Chief Systems Engineer

XMPL Chief Software Engineer

Software Configuration A Chief Software Architect
Management
| Chief Software Process Engineer
Software Quality Assurance EEEEEERE

Space Ground Field Command, Control, and
Software Software Software Communications Software
- Spacecraft « MMC * JKL - ABC
. Pay|oads » Test Beds *MNO * DEF

Figure 1.1. Software Organization and Software Item Structure Overview—Example
1.2 System Overview

The intent of this subsection is to describe the general nature of the system and the software. To
provide a clear overview of the “system” versus the “software,” it is recommended that subsection 1.2
be broken into two paragraphs: System Architecture Overview (1.2.1) and Software Architecture
Overview (paragraph 1.2.2). Paragraph 1.2.1 should be further broken down into a general system
description followed by short descriptions of the segments comprising the overall system.

1.2.1 System Architecture Overview

The purpose of the system must be briefly stated in paragraph 1.2.1. As applicable, it must
summarize any historical aspects of the system to be developed and identify the project sponsor,
acquirer, user(s), developers, as well as planned maintenance organizations and operating sites. The
segments that comprise the system must be listed and an overall graphical diagram of the system
should be included similar to the example shown in Figure 1.2-1.

The remainder of SDP paragraph 1.2.1 should contain as many single paragraphs as necessary to
describe the segments that involve software responsibilities for the system. In the XMPL example
there would be descriptions of the following four segments:

o Space Segment: Top-level functions of the spacecraft and payload software

e Command, Control, and Communications (C3) Segment: Top-level functions of C3
software

e Ground Segment: Top-level functions of the ground-based software

o Field Segment: Top-level functions of the field software

Command, Control,
and
Communications
Segment

Ground Segment & *Element A
" s> 1@

Field Segment

Figure 1.2.1. XMPL System Overview—Example
1.2.2 Software Architecture Overview

This paragraph provides an overview of the software system (or functional) architecture, a definition
of the software categories, and an overview of the Software Items (SI) and responsibilities.

The overall software system architecture should be depicted in a diagram; Figure 1.2.2 is an example
of such a diagram. An additional, or optional approach, would be to include a “functional matrix”
table showing the software “functionality” for each segment or Sl. A physical overview of the system
may also be necessary.

2-3

Command, Control, and

)
! 1
! 1
]

Space Segment (SS) ! Communications Segment :
Spacecraft (FSW) : ‘
- Spacecraft Control ! | MMC Backup E

'gotce;m(sgp_)t i 0 Mission Management Center '
» Data Server Uni i = : .

« Satellite o perations (SO !

+ Payload Support Processor i -% ; OfbitOPerF;tions(OC())) :
-]

(PSP) < ! 5 + Mission management (MM) '
Payloads ! g + Ground operations (GO) |

* One | 2 ||+ stored telemetry analysis (STA) .
S R’\VO 1| O - Enterprise management (EM) L/
- Three ‘ z '
- Four E + I E 3 i
Ir: 4 ;

3 ' || DataRouting and Retrieval I

Field Segment t || - Datamonitorand recovery (DMR) !
« Infrastructure (INF) L . e R I

* Ingest(ING)

* Processing (PRO)
+ Data Delivery System (DDS) Ground Segment
» Data Management System (DMS) + Infrastructure (INF)
*Ingest(ING)
* Processing (PRO)
* Data delivery (DDS)
ltems preceded by a bullet are + Data management (DMS)
Deliverable Software ltems » Calibration/validation (CVS)

Figure 1.2.2. XMPL Software System Architecture Overview—Example
1.2.3 Software Classes and Categories

There are typically three generic classes of software in a software-intensive system: mission critical
software, support software, and COTS/Reuse software as described in example Tables 1.2.3.1
through 1.2.3.3. Each software class can be further sub-divided into categories as needed for the
program, resulting in the identification of 4-8 categories of software for a typical program.

The number of software classes, the number of categories within those classes, and the names of each
are not critical. What is important is that there must be a definition of the category assigned to each
software entity because not every software entity needs to have the full set of documentation, the full
set of reviews, the full set of metrics, and the same level of testing.

Assigning categories to software entities can result in cost savings by eliminating unnecessary
documents, reviews, metrics, and testing. However, the simplicity of this approach is deceiving since

obtaining agreements from all stakeholders on the appropriate category to assign is not always simple.

1.2.31 Mission Critical Software

Mission Critical (MC) software is physically part of, dedicated to, and/or essential to the mission
performance of the system. It includes both space and ground software. MC software may be
expanded to two software categories as defined by the example in Table 1.2.3.1.

Table 1.2.3.1. Mission Critical Software Class and Sl Categories—Example

Class Definition Category Category Definition
Deliverable applications software that
MC MC-1 plays a direct role in system operation
and system development.
MISSION CRITICAL SOFTWARE Same as MC-1 but the software is

MC-2 embedded in deliverable hardware.
Firmware is software and is treated in the
same way as software that executes in

Applications software used to perform
real time operations and non-real time
functions implicitly required for a mission.

general purpose computers.

1.2.3.2 Support Software

Support Software (SS) aids in system hardware and software development, test, integration,
qualification, and maintenance. The SS class may be composed of three Sl categories, SS-1, SS-2,
and SS-3 as defined in Table 1.2.3.2. MC-1, MC-2, and SS-1 software categories (but not SS-2 or SS-
3) are usually deliverable and contractually obligated, must pass through all of the developmental
phases, including all of the relevant software documentation, reviews, metrics, and testing. and are
subject to external Software Discrepancy Reports (SDRs).

SS-2 software is used in non-operational environments, may be deliverable, but normally not
contractually obligated. Both SS-2 and SS-3 software categories do not go through the full software
lifecycle or receive external SDRs and are normally not deliverable. However, in some cases,
important support software may be contractually deliverable. For example, deliverable support
software may include training software, database-related software, software used in automatic test
equipment, and simulation software used for diagnostic purposes during the maintenance activity.
The contractor must decide the appropriate category for all software entities in compliance with
contractual requirements,

Table 1.2.3.2. Support Software Class and SI Categories—Example

Class Definition Category Definition
Software items that play a direct role in program and
SS SS-1 system development including software and system
requirements qualification and acceptance testing for
_ final “sell-off.”)
SUPPORT SOFTWARE Support software that is typically prototype software,
S$8-2 simulation software, or performance analysis and

Software that aids i tem
Oha:'jwarea aild Z(I)?tvsv);ee modeling tools (although some of this type of

development, test software may be selected to be in category SS-1).

integration, qualification and Non-deliverable and non-critical tools or test drivers
maintenance. S$S-3 that indirectly aid in the development of the other
categories of software.

1.2.3.3 Commercial Off-The-Shelf and Reuse Software

COTS/Reuse software is non-developmental software items including commercial and government
oft-the-shelf (COTS or GOTS) software as well as reused software obtained from internal libraries,
previously developed under an internal research and development effort, or developed by other
programs, set up specifically for reuse. The C/R class may be composed of two categories as
described by the example in Table 1.2.3.3.

2-5

Table 1.2.3.3 COTS/Reuse Software Class and SI Categories—Example

Class Definition Category Category Definition

Non-developmental software that is
C/R C/R-1 | unmodified COTS or Reused software.
COTS/REUSE SOFTWARE Non-developmental software that is
Non-developmental software items C/R-2 | modified COTS or Reused software.*
including commercial and government (A distinction between vendor-provided
off-the-shelf and internally reused software may be
(COTS or GOTS) software. All C/R made for C/R-1 and C/R-2 if meaningful to
products must be treated and controlled the program)
as defined for the category targeted for
its end use.

*Modifying vendor-provided COTS is generally a high-risk approach and is not recommended.

Calculating ESLOC. When software design and/or code is reused, the costing of it is usually based
on an approach called the “Equivalent Source Lines of Code” (ESLOC) count. The premise is that
some portion of the design, code and/or testing does not have to be redone and can be reused. The
method to be used for calculating ESLOC must be described in the SDP.

One common approach to calculating ESLOC is to set the proportionate weighting factors for
designing, coding and testing the reused software product to 40%, 30%, and 30% respectively.
Programs may deviate from these standard proportions (40%, 20%, and 40% is also often used). The
ESLOC count is calculated by estimating the percentage of new design, coding and testing needed for
the deliverable product, and multiplying the sum of these weightings by the lines of code in the
reused product.

For example, assume an existing documented software product with 1000 source lines of code was
selected for reuse by another program having a need for similar functionality. Upon examination of
the reused product, an estimate is made that only 10% of the design needs to be changed, 30% of the
code must be redone, and 60% of the software needs to be retested. In this example, the ESLOC is
310 and is calculated as follows: 1000 [(.1 * .4) + (.3 *.3) + (.6 * .3)] = 1000 [.04 + .09 + .18] = 1000
[.311=310.

1.23.4 Software Category Features

A single Software Item (SI) may consist of different classes and/or categories. In that event, each part
of the SI must be compliant with the documentation, review, and testing requirements of the category
assigned to it. All software releases must be configuration controlled by a Software Development
Library (SDL) at the segment level or by the Master Software Development Library (MSDL) at the
program level as described in SDP paragraph 5.2.3.

Software cannot be moved up or “promoted” to a higher category level without additional
development and testing. To achieve a higher category level, the software must be “re-engineered”
and conform to the documentation, review, and testing requirements imposed on the higher category
level. All COTS and reused products must be treated and controlled as defined for the category
targeted for its end use.

1.3 Document Overview

This overview of the SDP document must include its constituent parts and organization, and should
include a plan for updating. If applicable, it must also describe any security, distribution, or privacy
protection considerations associated with its use.

1.3.1 SDP Component Parts

The SDP is more than just a program-level document since it usually contains addendums and
annexes that may be bound separately from the main volume. These SDP components can be shown
in graphical form on the page following the title. The following is an example of text that may be
used for paragraph 1.3.1:

Example Text:
The complete XMPL SDP is organized into three parts as follows:

Part 1: This is the program-level SDP (also called the SDP “main volume™)
Part 2: Addenda to the SDP containing XMPL plans or processes documents:
Addendum A: Software Metrics Plan

Addendum B: Software Roles and Responsibilities

Addendum C: Software Subcontractor Management Plan

Addendum D: Software Quality Assurance Plan

Addendum E: Software Configuration Management Plan

Addendum F: Software Reviews Plan

Addendum G: Software Resource Estimation Plan

Addendum H: Software COTS/Reuse Plan

Addendum 1: Software Integration and Test Plan

Addendum J: Software Risk Mitigation Plan

Addendum K: Software Maintenance Plan

Addendum L: Software Training Plan

Part 3: Annexes to the SDP—Site-Specific SDPs as required for software team members

2-7

1.3.2 SDP Organization

This paragraph of the SDP is essentially “boiler-plate” as it describes the format required in the
standard used to produce it—in this case, TOR-3537B. The following example text may be used for
this paragraph:

x[1l]e Text:

This SDP was produced using the compliance standard entitled “Technical Operating Report,

TOR-2004(3909)-3537B, “Software Development Standard for Space Systems.” The XMPL SDP

is organized into the following eight sections:

e Section 1: Provides overviews of the XMPL system, the software system, SDP updates,
software classes and categories, and the relationship of the XMPL SDP to other XMPL
documents

e Section 2; Identifies all documents referenced by this SDP

e Section 3: Discusses an overview of the work to be performed. It describes the requirements
and constraints on the software, documentation, schedules, and resources

e Section 4: Describes the general software development activities to be performed. This
includes an overview of the software development process, standards that apply to the
development activities, the approach to developing and incorporating reusable software,
information on computer resource utilization, and the handling of critical requirements

e Section 5: Provides details on each of the individual software development phases and
activities that are to be performed, or may be performed. It covers project planning, methods,
and the tools that support these methods

e Section 6: ldentifies the schedules and activities to be performed

e Section 7: Provides details on the XMPL project organization and the resources to be applied

e Section 8: Provides the definition of acronyms and selected terms used in this document plus
identification of lower level standards and procedures

1.3.3 SDP Updates

The SDP is considered a “living” document that must be updated periodically throughout the
software development lifecycle. Updates are usually planned to occur at the Program Milestones, and
a figure similar to the example Figure 1.3.3 can be included in the SDP—or the same information
provided in table format.

';3’1“2" | Preliminary Delivery With Proposal I

g December i
12 ATP + 90 dayv Delivery I
g November i
. "13 | PDR Update Delivery .
: "
g; °°‘°b¢“' | CDR Update Dellveryl

Lessons

Figure 1.3.3. XMPL SDP Update Plan—Example

2-8

1.4 Relationship to Other Plans

The relationship of the SDP to other key project management plans is important to establish
document subordination in the event of conflicts between plans. Figure 1.4 is an example overview of
the relationship of the SDP to other key plans; software documents are highlighted. Example text for
this subsection may be:

Example Text:

The XMPL SDP is compliant with the <corporate> Standard Software Process and serves as the
compliance document for all XMPL software development. Contractor specific plans, development
policies, and practices are incorporated as annexes to this program-level SDP.

Team members shall comply with this SDP based on tailoring guidance provided in subsection 4.1
and captured in their annexes to this document. The XMPL SDP is subordinate to the Integrated
Master Plan (IMP) and, in the event of a conflict, the IMP takes precedence. The SDP is not
subordinate to, but must be consistent with, the other plans at the same peer level as shown in
Figure 1.4 (e.g., SEMP, CM, etc.).

IMP

Integrated Management Plan

IMS

Integrated Master Schedule

Program Quality
Assurance Plan

System
Engineering
Management Plan

Risk Management
Plan

Systan Soffyane Dota Hanagement
Kasilah DevelopmentPlan Plans
Software Test and Software Software
Verification Plans Metrics Configuration

Plan Management Plan
Other Software Contractor-Specific
Plans and Manuals SDP Annexes

Software Quality
Program Plan

Software Risk
Management Plan

Figure 1.4. Relationship Between the XMPL SDP and Other Key Plans—Example

2-10

2. Referenced Documents

All referenced and applicable documents in the SDP must be listed in Section 2 and must contain the
document number, document title, and date of the revision used. A tabular format is an easy way to
display this information and should be organized by government and non-government documents and
then broken down into referenced and applicable documents as shown in the examples below.
Referenced documents are guidelines, but Applicable documents must be adhered to. Non-
Government Applicable documents are usually mandated by the developer’s organization or by the

program.
2.1 Government Documents

2.1.1 Government Referenced Documents—Example

DO - he DO e - < » Date
Document Number Document Title Document Date
Document Number Document Title Document Date

2.1.2 Government Applicable Documents—Example

Document Number Document Titie Revision Date
Document Number Technical Requirements Document (TRD) Document Date
Document Number Interface Control Document (ICD) Document Date

2.2 Non-Government Documents

2.21 Non-Government Referenced Documents—Example

Document Number Document Title Revision Date
Document Number Software Estimating Guide Document Date
1SO 9001 Quality Program Document Date
I1ISO/IEC 15939 Software Engineering—Software Measurement Process 2002
Document Number Software Peer Review Guide Document Date
|IEEE-1471 Software Architecture Descriptions Document Date
AlAA R-023A Recommended Practice—Human Computer Interface for Space 1995

System Operations

2.2.2 Non-Government Applicable Documents—Example

Document Number Document Title Revision Date
Aerospace Report No. TOR- | Software Development Standard for Space Systems 11 March 2005
2004(3909)-3537B
J-STD-016-1995 Standard for Information Technology September 1995
ANSIISO/NEC 9899 Cc 1990
ISO/IEC 14882 C++ July 1998
Document Number <Corporate> Standard Software Process Document Date
Document Number Software Subcontract Management Guidebook Document Date
Document Number Configuration and Data Management Plan Document Date
Document Number Risk Management Plan Document Date
Document Number Integrated Management Plan (IMP) Document Date
Document Number Integrated Management Schedule (IMS) Document Date
Document Number Security Implementation Plan Document Date
Document Number Integration and Test Plan Document Date

2-11

2-12

3. Overview of Required Work

There are no specific numbered subsections required for Section 3 in TOR-3537B. However.
TOR-3537B describes Section 3 as containing an overview of requirements and constraints on the:
system, software, documentation, development strategy, schedule, resources, and other areas. such as
contractual and non-contractual constraints, plus a requirement to show the position in the system
lifecycle where the SDP applies. The following organization is recommended.

3.1 System Acquisition Lifecycle

A figure similar to example Figure 3.1, or a table, should be included in SDP subsection 3.1 to
provide a top-level overview of the system acquisition lifecycle phases combined with a clear
indication as to where in the system lifecycle the SDP being written applies. Also, the program’s
Integrated Master Plan (IMP) must be referenced in the SDP since the IMP includes important
information on program tasks, events, and milestones for software activities.

Acquisition Phases

Phase A: SR AR l I | l ‘ | | |
Technology e—— This version of the SDP applies to the
Development EMD phase of the XMPL Contract

Phase B:

Engineering and

Manufacturing H
Development
Phase C:

Production and
Deployment | | I

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 3.1. XMPL System Acquisition Lifecycle Phases—Example
3.2 Software Requirements and Constraints

Figure 3.2 is a depiction of the basic levels of abstraction for describing the software process used in
this Guidebook. The top level is focused on programmatic phases. The middle level incorporates the
principal software development activities required by subsections 5.3 through 5.11 of the SDP. The
lowest process level involves the specific tasks required to carry out the software development
activities.

There are many types of system requirements and constraints that may become drivers for the
software. Such drivers may include: specific standards that must be followed; precise performance
mandates; requirements to execute on a government platform; preliminary deliveries of software
such as an interim version needed to support military exercises; mandated severe schedule constraints
to meet launch or delivery dates; etc. (see subsections 3.8 and 3.9).

A fundamental aspect of the software development process is the system lifecycle model to be
followed. A detailed discussion of process models is beyond the scope of this document. However,
six of the most common software development process models (Prototype, Waterfall, Incremental,
Evolutionary, Spiral, and Compound—such as the Rational Unified Process™) are briefly defined in
subsection 4.1. The process models are also discussed in the Air Force Space and Missile Systems
Center Instruction 63-104, dated 21 November 2005, and in many other sources.

2-13

PHASES

ACTIVITIES

TASKS

Figure 3.2. Software Process Levels Used In This Guidebook

Technology DevelopmentPhase
Engineering and Manufacturing Development Phase
Production and Deployment Phase

etc.

SDP Sections 5.3 through 5.11

§.3 System Requirements Analysls
5.4 System Design
5.5 Software Requirements Analysis
5.6 Software Design
5.7 Software Implementation and Unit Testing

5.8 Unit Integration and Testing

5.8 Unit Integration and Testing

Task 1: Prepare for UI&T

Task 2: Perform UI&T

Task 3: Perform Revision and UI&T Testing
Task 4: Analyze and Record UI&T Resuits

3.3 Software Iltem Overview

Although not specifically required by TOR-3537B, an overview of the planned Software Items (SI)
should be provided in this SDP subsection. An overview of the Sls that are to be developed can be

best displayed in a table that defines the SIs in terms of the responsible Integrated Product Teams

(IPTs), where in the system the Sl is used, the developing organization, the programming languages

used, and the software category for each SI. An example is shown in Table 3.3.

Table 3.3. XMPL Software Items and Team Responsibilities—Example

Software Item IPT System Element Developer Languages SW Category
Spacecraft Controller | Space Spacecraft Able Corp. (o] MC1, MC2
Processor
Payload Support Space Spacecraft Able Corp. C MC1
Processor
Vehicle Dynamic Space Spacecraft Able Corp. C S81
Simulator
Data Management Ground | Data Processor Baker Corp. | C++, Java MC1
Data Delivery Ground | Data Processor Baker Corp. | C++, Java MC1
Infrastructure Ground | Data Processor Baker Corp. | C++, Java, IDL MC1, $S1, C/R1
Calibration and Ground | Data Processor Baker Corp. | C, C++, Java, S§81, S82, SS3
Validation Visual Basic
Satellite Operations C3s Mission Management Charlie C,C++, Java MC1, SS1, 882,

Center Corp. FORTRAN S83,
C/R1
Mission C3s Mission Management Charlie Java, C++ MC1, SS1, SS3
Management Center Corp.
Ground Operations C3s Mission Management Charlie C,C++ MC1, SS1, S82,
Center Corp. SS3

Table 3.3 can become a very long table; in that case it should be included in an SDP Appendix and
referenced in subsection 3.3. This table can be expanded with additional columns, such as percent

new versus reuse code, and developer contact information.

2-14

3.4 Required Software Lifecycle Activities

Figure 3.4 is an example illustration of the required software activities during the software lifecycle
development organized into four domains. Figure 3.4 also identifies the subsections within the SDP
where each activity of the software development process is described.

5.3 - System

Requirements Analysis

5.4 - System Design

5.1 - Project Planning and Oversight

5.19 - Risk Management

5.20 - Software Management Indicators

5.21 - Security and Privacy

5.22 - Subcontractor Management

5.23 - Interfacing With Software IV&V Agents
5.24 - Coordination With Associate Developers

5.10 - Software / Hardware

Item Integration and
Testing
5.11 - System

Qualification Testing

5.12 - Preparing for

Software Transition to

Operations
5.13 = Preparing for

Software Transition to

Maintenance

E SDP Sub-sections
! 5.3-5.13 are

. applicable to

i specific activities
1 of the software

' development life
3 cycle

Management
Domain
System
Domain
Support
Domain

Software
Domain

5.2 - Establishing a Software Development

Environment

5.14 - Software Configuration Management
5.15 - Software Peer Reviews and Product

Evaluation
5.16 — Software Quality Assurance
5.17 -- Corrective Action

5.18 - Joint Technical & Management Reviews

Figure 3.4. Software Lifecycle Development Domains—Example

3.5 Software Process Overview

5.5 - Software

Requirements Analysis

5.6 = Software Item

Design

5.7 - Software

Im plementation & Unit
Test

5.8 - Software Unit

Integration and Test

5.9 — Software Item

Qualification Test

5.25 - Software Process

Improvement

5.26 - Software

Sustainment (Optional)

SDP Sub-sections 5. 1,;
5.2 and 5.14-5.26 are |

the entire software |
development life !
cycle I

.....................

In addition to overviews of the Sls and development activities in the previous subsections, it is
recommended and extremely useful to include in subsection 3.5 an overview of the software
development process that the program expects to follow and cover in more detail in SDP Section 4.

Figure 3.5-1 is one example of how to illustrate an overview of the software development process. It
shows the principal software areas of responsibility as well as where software supports System
Engineering for system-related activities. Figure 3.5-2 is a depiction of the specific software
development activities and the sections of the SDP (subsections 5.3 through 5.13) where the activity
is described. Although Figure 3.5-2 implies a sequential process, the actual process is dictated by the
software development process model used (see SDP Appendix B) as well as an overlap of the
activities consistent with the build plan.

2-15

1<

vk System Requirements and Design
1}

System Requirements and Design

. 4

wee-sl SOFTWARE REQUIREMENTS AND DESIGN

§ § . 7 i e \\
= Software Requirements and Design I/ TRD = Technical Requirements \
8 : ! | Document :
- . : I CDD = Capabilities Development |
O :¢ ">l SOFTWARE IMPLEMENTATION I : Document -, !
= e | |CD = Initial Capabilities Document :
&’ Readin Revi | SPS = System Performance |
& HIGSS Reviaws | Specification |
> | CONOPS = Concept of Operations |
.ﬁ > \\ ________________ //
g-é-bl INTEGRATION AND TEST
O-. P e, TR
0. / \
. Qualification Reviews : Software |
: ’ | Responsibilities :
. |
: I
*-k System Qualification Testing ‘] I
I Software Support to I
| System Engineering }

Operations Turnover Nt et e "

Figure 3.5-1. XMPL Software Development Process Overview—Example
3.6 Software Documentation Requirements and Constraints

During the software development process, various documents are required at different phases of the
lifecycle. It is recommended and extremely useful to include an overview of the plans for production
of software documentation in subsection 3.6. An example of a Software Documentation Production
matrix is shown in Table 3.6.

The example document production matrix in Table 3.6 is an important guide as it summarizes the
preparation of required work products (i.e., documentation) during the software development and test
lifecycle covering SDP subsections 5.5 through 5.13. It identifies the normal preparation of draft (D),
preliminary (P), and baselined (B) documents as well as when baselined documents are updated (U).
Some documents that are prepared may not be required to be delivered. They may be prepared to be
compliant with TOR-3537B but not contractually deliverable (such as unit test plans, descriptions,
and reports). The contract must identify the required work products to be delivered.

2-16

sbP 5.3 %, | System Requirements Analysis I [l = System Engineering Activity
* with Software IPT Support

.
SDP 5.4 %4 | System Design _ " -
A [= Software Engineering Activity

with System Engineering

L J
SDP 5.5 “ ISoﬁware Requirements Analysis |

Support
., pp
SDP 5.6 ” Software Design
"
SDP 5.7 "e | Software Implementation and Unit Testing
»
SDP 5.8’.‘ I Unit Integration and Testing |

.
.
SDP 5.9 #_ | Software tem Qualification Testing |
1>’
SDP 5.10 0’ Software/Hardware Item Integration and Testing]
.

A -
SDP 5.11 ¢ . System Qualification Testing I

*
L J

SDP 5.12 ” Preparing for Software Transition To Operations
.

*
SDP 5.13 " Preparing for Software Transition To Maintenance

Figure 3.5-2. Principal Software Development Process Activities—Example

Documents, and other software products required at each activity of the lifecycle, are discussed in
subsections 5.5 through 5.13, and the matrix must be consistent with the required work products
tables appearing in each of those subsections. See Table 5.18.1-2 for a breakdown of software
documentation mapped to formal reviews.

Non-document software work products, as defined in subparagraph 4.2.10.3, are not included in the
documentation production matrix in Table 3.6.

In addition, Table 3.6 does not include software management and quality control plans such as the:
Software Development Plan; Risk Management Plan; Data Management Plan: Subcontractor
Management Plan; Software Safety Plan; Software Configuration Management Plan; Software
Quality Assurance Plan; Software Process Improvement Plan; Software Peer Review Plan; Software
COTS/Reuse Plan; Software Metrics Plan; Software Reviews Plan, etc. (see subparagraph 4.2.10.1).

It is also recommended to include in the SDP a master index of all software documentation. That
index can be included as an SDP Appendix. For more information on software deliverable
documentation see TOR-2006(8506)-5738, Recommended Software-Related Contract Deliverables

Sfor National Security Space System Programs, dated 14 February 2008.

Data Item Descriptions (D1Ds) must be listed (as applicable) on the Contract Data Requirements List
(CDRL) to ensure the software work products are delivered under the contract. TOR-3537B provides
a list of the software DIDs. Each DID provides a full description of the contents of each deliverable
software document. Annexes E through J in J-16 also provide a similar description of software
document contents. Note that the Master Test Plan is not a software document.

(8]

-17

Table 3.6. XMPL Software Documentation Production Matrix—Example

Software Documentation

Softwate SDD IDD SVD SUM

Development
Activities (5) SRS IFCD SMBP SAD DBDD STP STD STR SPS STiP

Software
Requirements P B D
Analysis ™
Sl Architectural
Design B V) B P DI/P B
Software Item
Detailed Design (2) | Y B B B B R
Software
Implementation U U v D !
and Unit Testing (2)
Unit Integration
and Testing (2) u bip D
Sl Qualification
Testing (3) u|pej| B ® | P | P
Sl/HI Integration U B
and Testing (3)
System | U
Qualification
Testing
Preparing for SW ‘ U B
Transition to
Operations (4)
Preparing for SW U B
Transition to
Maintenance
MATURITY LEGEND: DBDD = Data Base Design Document
D = Draft In Process STP = Software Test Plan
P = Preliminary Baseline Completed STD = Software Test Description
B = Baselined STR = Software Test Report
U = Updated Baseline (as needed) SVD = Software Version Description
SPS = Software Product Specification
SOFTWARE DOCUMENTATION: SUM = Software Users Manual
SRS = Software Requirements Specification FSM = Firmware Support Manual
IFCD = Interface Control Document CPM = Computer Programming Manual
SMBP = Software Master Build Plan STrP = Software Transition Plan
SAD = Software Architecture Description S| = Software Item

SDD = Software Design Description
IDD = Interface Design Description

(1) In this example, the SRS contains the Interface Requirements Specification (IRS), Software Requirements
Traceability Matrix (SRTM) and Requirements Test Verification Matrix (RTVM).

(2) lIterative for each build.

(3) This activity may be iterative, in reverse order, or concurrent.

(4) Other optional user manuals include: Computer Operation Manual (COM); Software Center Operations
Manual (SCOM); Software Input/Output Manual (SIOM).

(5) The ‘Development Activity' name is equivalent to the principal activity being performed at that time.

2-18

3.7 Requirements and Constraints on Development Strategy
3.7.1 Development Strategy Factors

There can be many factors, and constraints, that impact the development strategy. For example, if the
program involves a large number of geographically dispersed subcontractors from different
companies, the overall approach to management and communication will have a significant impact on
the development strategy and those issues need to be addressed. Another example involves programs
that plan to utilize a significant amount of COTS/Reuse software. SDP paragraph 4.1.3 is devoted
entirely to the management and implementation of COTS/Reuse software. However, its impact on the
development strategy should be briefly addressed in this paragraph.

3.7.2 Software Integration, Testing, and Verification Approach

Subsections 5.7 through 5.11 of the SDP describe the software Integration, Testing, and Verification
(IT&V) activities. It is recommended, and would be extremely useful, to include in this paragraph of
the SDP an overview of the software IT&V approach and process before describing the details in
subsections 5.7 through 5.11. It must be stated that the software IT&V approach is consistent and
compliant with the system-level integration and verification test plan (sometimes called the System
Master Test Plan).

The rationale for software testing, described as an example in this Guidebook, is based on an
incremental buildup of tested requirements with a simultaneous incremental verification buildup. The
software IT&V process involves four generic testing stages as shown in Table 3.7.2.

Table 3.7.2. Software Integration, Testing, and Verification Stages—Example

Stage Description
Stage 1 testing covers Software Unit (SU) testing and integration by the software

Stage 1: developers, unit integration testing, and individual Software Item (SI) qualification
Development Testing testing. These stages of software I&T are covered in SDP subsections 5.7, 5.8,
and 5.9.

Stage 2 testing includes: integration of multiple Software Items; integration of the
Hardware Items (H1) with Sls; and the Element Acceptance Test (EAT) that may
also be referred to as the “Factory Acceptance Test” (FAT). It normally takes place
at the Segment Level depending on where the software entities are developed.
The SI/HI integration is covered in subsection 5.10 of the SDP.

Stage 2:
Element Testing

Stage 3 of testing takes place in a location where elements are integrated and
SI/HI elements are tested with other SI/HI elements. Generally, this stage can be

Stage 3: viewed as the location where all of the elements of a segment come together. It
Segment Testing includes the functions of Installation, Checkout and Test plus Interface Testing.
This stage of software testing is normally concluded with a Segment Acceptance
Test (SAT and is described in subsection 5.11 of the SDP.)

Stage 4 of testing is focused on the process of integrating all of the segments (and
sites) into the full system or portions of the full system being tested. This stage of
testing is normally concluded with a System Qualification Test (SQT) and is also
described in subsection 5.11 of the SDP. Software has a support role in segment
and system testing as those activities are typically the responsibility of (SEIT).

Stage 4:
System Testing

3.7.3 Software Integration, Testing, and Verification Objectives

The objectives of each of the above four stages of the software IT&V process are summarized in
example Table 3.7.3. That table identifies the subsection of the SDP containing details of the testing
process at each stage and highlights key functions at each step of the IT&V buildup.

Table 3.7.3. Software Integration, Testing and Verification Objectives—Example

SDP Subsection and Title Integration, Test, and Verification Objectives
. « Convert Software Unit (SU) design into computer source code, compile, and
Stage 1a: debug
5.7 Software Implementation and « TestInspect to ensure source code is compliant with expected results
Unit Test Verify that the source code meets the design

« |ntegrate SUs that have successfully passed Code and Unit Test (CUT) and
Stage-b: build them up to higher level SUs and to a Sl

. « Assure SUs are successfully integrated for the current build
5.8 Unit Integration and Testing o Perform design inspection through functional testing for current build
¢ Perform initial Sl to Sl interface testing, with stubs, drivers, or current Sls
Stage 1c: « Demonstrate that the SI(s) satisfies the software and interface requirements
5.9 Software Item Qualificatlon
Testing
¢ Sl to Sl Integration and Testing integrates individual Slis of an element or
segment to produce a complete software segment build
Stage 2: « Slto Hl Integration and Testing integrates software with hardware
5.10 Software/Hardware item « Element Acceptance Test (EAT),verifies that: (a) software and hardware
Integration and Testing functional requirements defined in the element specifications, have been
satisfied; and (b) functional and physical interface requirements have been
satisfied for the current build
Stage 3: « Segment Acceptance Test (SAT) venfies that the segment hardware and
5.11 Segment Qualification Testing software functional and interface require<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>