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ABSTRACT

We describe an efficient method for tracking humans in a multi-camera network.
Based on online clustering, the proposed method groups single-camera tracks into
mutually exclusive subsets corresponding to individuals. Experiments indicate that
the algorithm is capable of achieving strong tracking accuracy on simulated data.
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Multi-camera Human Tracking via Clustering

Executive Summary

We describe a method for tracking humans in a multi-camera network. Based on online clus-
tering, the proposed method groups single-camera tracks into mutually exclusive subsets corre-
sponding to individuals. By considering all pairwise similarities between single-camera tracks,
the method aims to maximise within-cluster similarity, while minimising between-cluster similar-
ity. The method can work in batch mode as well as online mode where it can reassign elements as
new data arrives.

Using a synthetic map and agents, and assumed distributions of similarity scores, the behaviour
of the algorithm is examined under various conditions such as: number of targets, number of
cameras, percentage of camera overlap, probability of track breakage. In order to assess the quality
of the tracking, we use a novel error measure based on the mutual information between the ground
truth and the computed tracking result.

Experiments show that given a reasonable quality of single-camera tracks, the algorithm is
capable of achieving strong tracking accuracy on a number of simulated scenarios. In particular,
it was found that tracking accuracy improves as: the number of non-overlapping cameras and
targets decreases, more tracks are received, and cameras have higher percentage of overlap. These
findings indicate that the proposed method may be suitable for real-world surveillance systems
that are of interest. The development of such systems is the focus of our future work.

UNCLASSIFIED iii



DSTO–TR–2663 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2663

Author

Dmitri Kamenetsky
Intelligence, Surveillance and Reconnaissance Division

Dmitri Kamenetsky obtained a Bachelor of Science with first class
Honours in Computer Science from University of Tasmania in 2005.
He then completed a PhD in statistical machine learning at the Aus-
tralian National University and NICTA in 2009. His PhD thesis in-
vestigated methods for inference and parameter estimation in graph-
ical models, in particular the Ising model. In 2010, he joined the
Intelligence, Surveillance and Reconnaissance Division of the De-
fence Science and Technology Organisation. His research focuses on
multi-camera tracking and cross-matching in video.

UNCLASSIFIED v



DSTO–TR–2663 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

vi UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2663

Contents

1 Introduction 1

2 Problem Definition 1

3 Clustering 2

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Experiments 4

5 Future work 7

6 Conclusion 7

References 10

UNCLASSIFIED vii



DSTO–TR–2663 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

viii UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2663

1 Introduction

The task at hand is to track humans across multiple cameras. We assume the most general case,
where no knowledge of the camera network topology exists, the cameras are not calibrated and
may overlap or may not overlap in their fields of view. Note that it is generally assumed and
required in the literature that camera views either overlap or do not overlap, there is very little
existing work on the heterogeneous case. Each camera detects and tracks human targets producing
a set of single-camera tracks. These single-camera tracks must be associated with each other to
form multi-camera tracks that cover all cameras.

The algorithm must be tolerant of single-camera tracking errors since this is by no means a
solved problem. Also the algorithm must be an online method that can be updated incrementally
as data arrives in real time. Most of the methods described in the literature are batch methods
meaning that all data from past, present and future are processed at once to give a globally optimal
solution. This is not practical for systems where the user wants to know the whereabouts of an
individual in the camera network in real time.

Here we propose an online clustering method that groups single-camera tracks into mutually
exclusive multi-camera tracks, i.e., one for each individual. By considering all pairwise similar-
ities between single-camera tracks, the method aims to maximise within-cluster similarity, while
minimising between-cluster similarity.

2 Problem Definition

Let T = {t1, . . . , tN} be an ordered set of N observed single-camera tracks from all cameras. A
single-camera track (or simply track) t is a description of the path that a single target (human)
tar(t) takes in a single camera cam(t) field of view. We assume that cam(t) is known, while tar(t)
is not. Each track t contains information such as:

• Track start time start(t).

• Track end time end(t) ≥ start(t).

• Set of target detections det(t). Each detection d ∈ det(t) is also associated with a target tar(d)
and camera cam(d) (equal to cam(t)).

Our task is to partition T into M mutually exclusive subsets C = {C1, . . . ,CM} such that⋃
i
Ci = T and Ci ∩C j = ∅ ∀i , j.

Cluster Ci ∈ C contains all the tracks corresponding to a single target i and together they form a
multi-camera track. Hence Ci can be used to track target i in all the cameras. Note that each track
t ∈ T belongs to exactly one cluster in C, which we will call C(t).

UNCLASSIFIED 1
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3 Clustering

We now describe a clustering method that aims to find the partitioning C. The method is online
meaning that it can work as new tracks arrive. Given T , our task is to find the optimal clustering
C∗:

C∗ = argmax
C

S (C), (1)

where S (C) is some scoring function for clustering C. What form should S have? We know that
tracks that are in the same cluster should correspond to the same target and hence must be similar.
Tracks that are in different clusters, on the other hand, must be dissimilar. Suppose we have the
similarity function for track pairs S t : T × T → [0, 1], such that S t(ti, tk) is 1 when ti and tk are
most similar. The score of a clustering C can now be written as:

S (C) =
∑

C(ti)=C(tk)

S t(ti, tk) +
∑

C(ti),C(tk)

(1 − S t(ti, tk)) ∀ti , tk ∈ T. (2)

Note that S (C) is defined to be 0 if |C| <= 1. S (C) requires O(N2) computations, which can be
costly when the number of tracks N is large. We now describe an efficient method of computing
S (C) incrementally as C is slowly altered.

Algorithm 1 assigns a newly arrived track t to a new cluster in C. It then allows each track
to move between clusters. In particular, we consider moving each track p from its current cluster
C(p) to some new cluster Ci. If a move increases the score S (C) then we keep it, otherwise we
reject it. We terminate when no single move increases the score. Other types of moves can also be
considered, however, experiments have shown that this move is sufficient for finding a high-scoring
clustering.

Algorithm 1 : Clustering algorithm

Input: Current clustering C, newly arrived track t
1. C∗ := ∅
2. Do :
3. improved := False
4. ∀p ∈ T :
5. ∀Ci ∈ (C ∪ {t}) :
6. Move p to Ci : C(p) := C(p)\p, Ci := Ci ∪ p
7. If S (C) > S (C∗) :
8. C∗ := C
9. improved := True

10. Undo move: C(p) := C(p) ∪ p, Ci := Ci\p
11. While improved

Output: Optimal clustering C∗

It is important to note that we can avoid computing S (C) from scratch in step 7 of Algorithm
1. This is because when we move p from C(p) to some Ci only a small number of terms in (2)
change. For example, consider Figure 1. As p is moved, only the contribution from the blue and
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red edges changes in the computation of S (C); the contribution from all other edges (dashed) is
unchanged. In particular, the contribution from inner-cluster edges (blue) changes from +S t(p, ·)
to 1 − S t(p, ·), while the contribution from inter-cluster edges (red) changes from 1 − S t(p, ·) to
+S t(p, ·).

C(p) Ci

Figure 1: Track p is moved from its cluster C(p) to a new cluster Ci. Edges between p and tracks
in the same cluster are in blue, while edges between p and tracks in Ci are in red. Dashed edges
are all the remaining edges (only some are shown for clarity).

We will now provide an empirical estimate for the running time complexity of Algorithm 1.
During each iteration (steps 4 and 5) we try to move every track to every cluster, hence there are
NM such moves. In the worst case each cluster contains N tracks, thus for each such move we
need to update the contribution of 2N−1 edges. Empirically the total number of iterations (step 2)
seems to grow as O(M). This gives an overall running time complexity of O(M2N2). Note that the
running time can be reduced significantly by limiting the set of tracks that can be moved during
each iteration. For example, we can avoid moving old tracks.

3.1 Related Work

In traditional online multi-camera tracking there is a similarity score S ′(t,Ci), which measures
the similarity between the newly added track t and an existing multi-camera track Ci. Usually
S ′(t,Ci) is defined as S t(t, p), where p is the most recent track in Ci. The new track t is then added
to the most similar multi-camera track, as shown in Algorithm 2. Once t has been added to a
multi-camera track it remains there forever. This means that “mistakes” made early in the process
(such as assigning t to the wrong Ci) cannot be undone later and undermine the quality of future
assignments.

In contrast to the traditional method, our method (Algorithm 1) optimises the (dis)similarity
between clusters in C. Furthermore, our method is able to modify past “mistakes”, allowing it to
have the most accurate assignment at any given moment in time.

UNCLASSIFIED 3
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Algorithm 2 : Traditional online multi-camera tracking algorithm

Input: Current multi-camera tracks C, newly arrived track t
1. bestScore := −∞
2. b := 0
3. ∀Ci ∈ (C ∪ {}) :
4. If S ′(t,Ci) > bestScore Then
5. bestScore := S ′(t,Ci)
6. b := i
7. Cb := Cb ∪ t

Output: Optimal multi-camera tracks C

4 Experiments

We used synthetic data to test the clustering algorithms. We simulated agents moving in a 2D
world that is observed by cameras with rectangular fields of view (Figure 2). The camera views
may or may not overlap. During each time step, each agent produces a new detection by moving to
a neighbouring unoccupied location chosen at random. An agent may exit the map if it is located
near the map’s edge (e.g., pink agent in Figure 2). Each time step there is a probability of 50%
that a new agent will appear somewhere on the map.1 A new track is started whenever an agent
enters a new camera. An active track is terminated whenever an agent exits the camera of interest
(or exits the map). We use a small probability σ = 10% that an active track will be terminated due
to malfunctions in the single-camera tracking algorithm. When this happens, a new track is started
where the previous one got broken. Old tracks have little correspondence with recent tracks, even
if they are from the same target. For example, imagine trying to match a 2-year old track with a
1-hour old track of the same person. For this purpose, our simulation removes all tracks that are
older than W events. Removed tracks do not affect the clustering score nor the performance error
(see Equation 5). In our simulations we set W to 25.

Since a track can grow arbitrarily large, it is not possible to store every detection. Furthermore,
old detections in a long track have little (if any) correspondence with recent detections. To reflect
this we model a track as a first-in-first-out (FIFO) list of detections of maximum size Z. This
means that we only store Z of the most recent detections per track. In our simulations we set
Z to 25. We compute the similarity of a pair of tracks S t(ti, tk) based on the similarity of their
corresponding detections:

S t(ti, tk) :=
1

|det(ti)||det(tk)|

∑
di∈det(ti), dk∈det(tk)

S d(di, dk), (3)

where S d(di, dk) is the similarity between detections di and dk in the range [0, 1]. In the design of
S d we took into account three factors: whether di and dk belong to the same target, whether they
occur in the same camera, and also their time difference δ. Intuitively, S d(di, dk) should be higher
when tar(di) = tar(dk) and lower otherwise. In a real-world application we expect the accuracy
of S d(di, dk) to be greater when cam(di) = cam(dk) and lower otherwise. Also the accuracy of
S d(di, dk) should decrease as the time difference δ between the two events increases, since the two

1This is provided that the maximum number of agents has not been reached already.
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Figure 2: Simulator example. This 2D world contains 3 agents (pink, green and blue) and 2
overlapping cameras (red and green rectangles). Active tracks are shown as lines coloured as
their corresponding camera. For example, green and blue agents are currently being tracked in
both cameras, while the pink agent is only tracked in a single camera.

cameras cam(di) and cam(dk) are more likely to be experiencing different lighting conditions.2

With this in mind, we use four similarity distributions as shown in Figure 3(a). These distributions
were chosen because they can be easily sampled. If u is uniformly chosen from [0, 1] then the
similarity measure is given as:

S d(di, dk) =


u1/(3−0.25 log(δ+1)) if tar(di) = tar(dk) and cam(di) = cam(dk)
u1/(2−0.25 log(δ+1)) if tar(di) = tar(dk) and cam(di) , cam(dk)

1 − u1/(3−0.25 log(δ+1)) if tar(di) , tar(dk) and cam(di) = cam(dk)
1 − u1/(2−0.25 log(δ+1)) if tar(di) , tar(dk) and cam(di) , cam(dk)

(4)

In the above, δ affects the width of the distributions as shown in Figure 3(b).

In the experiments we sample S d(·, ·) from one of the four relevant distributions. Once a value
has been chosen it is fixed and does not change over time. In contrast, the value of S t(ti, tk) may
change over time as new detections are added to ti or tk. As a result, the value of S t(ti, tk) only
converges to its true value over time.

Note if ti and tk overlap in time3 and they are from the same camera, then we know that they
cannot belong to the same multi-camera track and hence we set S t(ti, tk) := −∞. Every experiment
is evaluated on 100 trials. If Ĉ is the true clustering for the set of tracks T , then the error for the
computed clustering C is:

2For example, one camera is filming during the day, while the other camera is filming during the evening.
3This occurs if start(ti) ≤ end(tk) and start(tk) ≤ end(ti).
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(a) (b)

Figure 3: (a) The four distributions that we sampled to obtain the similarity score S d(di, dk),
assuming the two detections occurred at the same time, i.e., δ = 0. (b) The effect on one of the
distributions (tar(di) = tar(dk) and cam(di) , cam(dk)) as the time difference δ is varied from 0 to
500.

E(C, Ĉ) :=
2H(C, Ĉ) − H(C) − H(Ĉ)

H(C, Ĉ)
, where (5)

H(C) := −
∑
Ci∈C

|Ci|

N
log2

|Ci|

N
and

H(C, Ĉ) := −
∑

Ci∈C, Ĉk∈Ĉ

|Ci ∩ Ĉk|

N
log2

|Ci ∩ Ĉk|

N
.

H(C) is the entropy of C, while H(C, Ĉ) is the joint entropy of C and Ĉ. The numerator of
E(C, Ĉ) is known as variation of information or shared information distance. E is a metric4, with
E(X, X) = 0 and E(X,Y) ≤ 1 ∀X,Y .

We investigated how various factors affect the performance of the clustering method in Algo-
rithm 1:

• Varying the number of agents and 4 cameras: Figures 4(a-b).

• Varying the number of non-overlapping cameras and 5 agents: Figures 4(c-d).

• Varying the percentage of camera overlap for 2 cameras and 5 agents: Figures 4(e-f).

• Varying the probability of track breakage σ for 2 cameras and 5 agents: Figures 5(a-b).

• Varying the maximum track size Z for 4 cameras and 5 agents: Figures 5(c-d).

• Varying the maximum age of a track W for 4 cameras and 5 agents: Figures 5(e-f).

4A metric is a binary function that satisfies symmetry, positivity and the triangle inequality.
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For all experiments σ = 10%, W = 25 and Z = 25 unless stated otherwise. In general
the errors decrease over time. This can be explained by the fact that clusters become larger,
the (dis)similarity between clusters is estimated more accurately and the effect of noise in the
similarity scores is reduced. Under various conditions the clustering method is able to recover
and maintain good clustering. The clustering performance improves as the percentage of camera
overlap increases (Figures 4(e-f)). Higher percentage of camera overlap results in a higher rate
of detections and hence provides more information to the clustering algorithm. Results in Figure
4 are as expected: the error increases as the number of agents increases, the number of non-
overlapping cameras increases, or the percentage of camera overlap decreases. It may seem that
a larger number of non-overlapping cameras should decrease the error since each target is seen
more times. However this is not the case, because a larger number of non-overlapping cameras
will produce a larger number of tracks N - increasing the complexity of the problem we are trying
to solve. Figures 5(a-b) show that an increased percentage of track breakage does not affect the
tracking accuracy - this seems counterintuitive and at this stage we cannot explain it. Figures 5(c-
d) show that it is sufficient to have a rather small maximum track size of 5 detections. Figures
5(e-f) show that the error decreases significantly as W increases. From our experiments, the use of
the constraint S t(ti, tk) = −∞ for simultaneous tracks gives only a marginal improvement in error.

5 Future work

If we know that there are exactly M targets then the clustering task can be formulated via an M-
labeled graphical model, which can be solved efficiently. Let G(T,E) be a fully connected graph
of tracks (i.e., E = T × T ) and each track ti takes the label yi ∈ {1, . . . ,M}, then we minimise the
following real-valued energy function:

E(y) :=
∑

(i, j)∈E

~yi , y j� S t(ti, t j), (6)

where ~x� is an indicator function that is 0 if x = True, and 1 otherwise. Minimising (6) is
now equivalent to maximising (2). Importantly, the energy function (6) can be minimised using
multiway cuts. This will give us y∗ = argminy E(y) and from this we can obtain the clustering C∗

via a simple Depth First Search. Note that for M = 2 this approach becomes the standard graph
cuts algorithm, which is exact and has O(N3) running time complexity [Kolmogorov & Zabih
2004]. Our future work will focus on using the proposed method with real-world surveillance
systems that are of interest

6 Conclusion

We presented a method for tracking humans in a multi-camera network. Our method is based
on online clustering, where single-camera tracks are grouped into mutually exclusive subsets cor-
responding to individuals. Clustering is achieved by maximising a cost function via a series of
swap moves. Importantly, the cost function takes into account all the pairwise similarities between
single-camera tracks, thus utilising all the available information. The method can work in batch
mode, as well as, online mode where it can reassign elements as new data arrives.
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Figure 4: Error obtained by the clustering method for various parameter settings. Left figures
show the change of error through time. Right figures show the mean and variance of error after 50
events. (a-b) Varying number of agents and 4 cameras. (c-d) Varying number of non-overlapping
cameras and 5 agents. (e-f) Varying percentage of camera overlap for 2 cameras and 5 agents.
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Figure 5: Error obtained by the clustering method for various parameter settings. Left figures
show the change of error through time. Right figures show the mean and variance of error after
50 events. (a-b) Varying the probability of track breakage σ for 2 cameras and 5 agents. (c-d)
Varying the maximum track size Z for 4 cameras and 5 agents. (e-f) Varying the maximum age of
a track W for 4 cameras and 5 agents.
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We used synthetic camera topology maps to examine the behaviour of the algorithm under
various simulated conditions. By varying each input parameter we were able to characterise the
performace of the algorithm. Given a reasonable quality of single-camera tracks, the algorithm
was able to achieve strong tracking accuracy on a number of simulated scenarios. In particular, it
was found that tracking accuracy improves as: the number of non-overlapping cameras and targets
decreases, more tracks are received, and cameras have higher percentage of overlap.
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