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Attorney Docket No. 100235 

METHOD FOR DETECTING A RANDOM PROCESS 

IN A CONVEX HULL VOLUME 

STATEMENT OF GOVERNMENT INTEREST 

[0001]    The invention described herein may be manufactured and 

used by or for the Government of the United States of America 

for governmental purposes without the payment of any royalties 

thereon or therefore. 

BACKGROUND OF THE INVENTION 

Field of the Invention 

[0002]    The present invention relates to the field of sonar 

signal processing and more particularly, to detecting the 

presence or absence of spatial random processes in physical 

phenomena. 

Description of the Prior Art 

[0003]    In some cases, it can be important or critical to know 

with a high probability whether data received by a sonar system 

is simply random noise (which may be a false alarm) or is more 

likely due to the detection of a vessel of interest.  In either 

situation, it is critical to make a determination as quickly as 

possible. 



[0004]    Naval sonar systems require that signals be 

categorized according to structure (i.e., periodic, transient, 

random or chaotic).   A variety of large sample data processing 

methods such as spectral analysis, correlogram plots, and the 

like are available.  However, a number of scenarios may also or 

only comprise small samples.  These small samples include loss 

or intermittent contact, transients, equipment failure, own ship 

maneuver, and the like.  The existence of such sparse data sets 

requires methods that are appropriate for reliable and valid 

processing. 

[0005]    As such, there is a need for sparse data set methods 

in which the methods are separate from those methods which 

evaluate large sample distributions.  It is well known in the 

art that large sample methods often fail when applied to small 

sample data sets. 

[0006]    The term "randomness" in regard to random noise has 

different meanings in science and engineering.  Random (or ' 

randomness) is herein defined in terms of a "random process" as 

measured by a probability distribution model - namely a 

stochastic (Poisson) process.  In naval engineering 

applications, waveform distributions in the time domain may be 

considered purely random if the distributions conform to a noise 

structure such as WGN (White Gaussian Noise).   This 



determination is made regardless of the underlying generating 

mechanism that produced the "noise." 

[0007]    Pure randomness may be considered a data distribution 

for which no mathematical function, relation, or mapping can be 

constructed that provides an insight into the underlying 

structure.  For example: no prediction model can be generated 

from the noise/time waveform in order to derive estimates of a 

target range, course, speed, depth, etc.   Also, one must 

distinguish the term "stochastic" randomness from 

"deterministic" randomness (chaos) as described in United States 

Patent No. 5,781,460. 

[0008]     The theoretical and practical considerations relevant 

to the inventive process are contained in the following 

publications, which are incorporated herein by reference: 

[0009]    Abramowitz, Milton and Irene Stegun. Handbook  of 

Mathematical  Functions- with  Formulas,   Graphs,   and Mathematical 

Tables.     Washington, DC United States Government Printing 

Office:  (1964) . 

[0010]    Feller, William. Introduction   to   the   Theory of 

Probability and  Its Applications.   2nd ed. Vol. I., NY: John 

Wiley and Sons (1957). 

[0011] Ruhkin, A. L. "Testing Randomness: A Suite of 

Statistical Procedures." Theory of Probability and its 

Applications,   Vol. 45, No. 1, pp. 111-132 (2000). 



[0012]    Preparata, Franco P.  and Michael I.  Shamos, 

Computational  Geometry  - An  Introduction,   Springer Verlag 

(1985) . 

[0013]    Swed, F. S.  and C. Eisenhart.  "Tables for testing 

randomness of grouping in a sequence of alternatives." The 

Annals  of Mathematical  Statistics,   14(1), pp. 66-87 (March 

1943) . 

[0014]    Wald, A. and J. Wolfowitz.  "On a test whether two 

samples are from the same population." The Annals  of 

Mathematical   Statistics,   Vol. 11, pp 147-162 (1940) 

[0015]    Wilks, S. S.  "Order statistics." Bulletin   of  the 

American Mathematical   Society.     Volume 54, Number 1, Part 1, pp. 

6-50 (1948). 

[0016]    The standard approach for assessing the hypothesis of 

spatial randomness for large samples is outlined in the known 

work on probability theory by W. Feller (Ch. 6, "The Binomial 

and Poisson Distributions") [Feller, William. Introduction   to 

the  Theory of Probability and Its Applications.   2nd ed. Vol. 

I., NY: John Wiley and Sons. 1957]. 

[0017]    Typically-, from a frequency table derived from counts 

of spatial data in a partitioned subspace, a Chi-square test for 

homogeneity of Poisson frequency levels is computed and compared 

to a level of statistical certainty.  The Feller reference (pp. 

149-154), demonstrates the utility of this procedure for several 



large samples of naturalistic data analyzed in finite 

rectangular and circular space.  The noted data sets include 

radioactive decay measurements, micro-organism distribution on a 

Petri dish, and others.  However, the Feller reference provides 

little guidance on the matter of subspace partitioning including 

how many partitions should be used and what should be done about 

non-whole subset partitions. 

[0018]    Furthermore, most prior art randomness assessment 

methods are one time tests designed for one-dimensional or two- 

dimensional space.  The methods are primarily applicable for 

truly random distributions.  However, these quantitative 

techniques sometimes even fail to correctly label truly 

nonrandom distributions - as pointed out by Ruhkin (A. L. 

Ruhkin, "Testing Randomness: A Suite of Statistical Procedures", 

Theory of Probability and its Applications,   2000, Vol. 45, No. 

1, pp. 111-132). 

[0019]    The following United States patents significantly 

improve the above-noted situation. 

[0020]    United States Patent No. 7,277,573 provides a multi- 

stage method for automatically characterizing data sets 

containing data points in which are each defined by measurements 

of three variables as either random or non-random.  A three- 

dimensional Cartesian volume is sized to contain a total number 

N of data points in the data set which is to be characterized. 



The Cartesian volume is partitioned into equal-sized cubes, 

wherein each cube may or may not contain a data point.  A 

predetermined-route is defined that goes through every cube one 

time and scores each cube as a one or a zero; thereby, producing 

a stream of ones and zeros.  The number of runs is counted, and 

utilized to provide a Runs test which predicts if the N data 

points in any data set are random or non-random.  Additional 

tests are used in conjunction with.the Runs test to increase the 

accuracy of characterization of each data set as random or non- 

random. 

[0021]    United States Patent No. 7,409,323 provides a method 

for automatically characterizing data sets containing data 

points, which may be produced by measurements such as with sonar 

arrays, as either random or non-random.  The data points for 

each data set are located within a Cartesian space and a polygon 

envelope is constructed which contains the data points.  The 

polygon is divided into grid cells by constructing a grid over 

the polygon.  A prediction is then made as to how many grid 

cells would be occupied if the data were merely a random 

process.  The prediction becomes one of two forms depending on 

the sample size.  For small sample sizes, an exact Poisson 

probability method is utilized.  For large sample sizes, an 

approximation to the exact Poisson probability is utilized.  A 

third test is utilized to test whether the Poisson based model 



is adequate to assess the data set as either random or non- 

random. 

[0022]    As evidenced and in summary, the prior art does not 

disclose a method to provide a faster solution with greater 

reliability and for widely varying sizes of three-dimensional 

data sets.  The solutions to the above-described and/or related 

problems have been long sought without success.  Consequently, 

those skilled in the art will appreciate the present invention 

that addresses the above-described and other related problems. 

SUMMARY OF THE INVENTION 

[0023]    It is therefore a general purpose and primary object 

of the present invention to provide an improved method for 

characterizing data sets of physical phenomena such as sonar 

array signals, medical imaging data, and the like, as random 

noise or as containing a signal. 

[0024]    It is a further object of the present invention to 

provide a method for characterizing large data sets as well as 

sparse data sets. 

[0025]    Accordingly, the present invention provides a method 

for characterizing a plurality of data sets as being random 

noise or as containing a signal.  The method comprises the steps 

of reading in data points from a first data set of the plurality 



of data sets and then creating a three-dimensional hull that 

encloses the data points.  The method further comprises a step 

of ensuring that the hull has a structure that passes through at 

least four non-coplanar data points from the first data set. 

[0026]     Additional steps comprise partitioning the three- 

dimensional hull into a plurality of three-dimensional cells and 

defining the first data set as being a large sample or a small 

sample based on a selected parameter. 

[0027]     The method further comprises the steps of utilizing a 

first plurality of tests for characterizing the first data set 

as comprising random noise or as a signal when the first data 

set is defined as a large sample and utilizing a second 

plurality of tests for characterizing the first data set when 

the first data set is characterized as a small sample. 

[0028]     In one possible embodiment, the method may comprise a 

step of partitioning the total volume V of data points into the 

plurality of three-dimensional cells by utilizing at least one 

(v       V (v 
of  terms   ?/— ,   3  ,   or   31—      where 

Vk      V N VN 

Vp is the volume of the convex hull; 

N  is the number of points; and k  is a value based at least 

partially on N. 

[0029]    The method may also comprise the step of ending the 

testing after any of the first plurality of tests or if the 



second plurality of tests indicates that the first data set 

comprises the signal. 

[0030]    In another possible embodiment, the second plurality 

of tests comprises determining a significance probability value 

for the small sample for a two-tailed hypothesis for a quasi- 

symmetric finite discrete Poisson probability distribution. 

[0031]    The first plurality of tests may comprise at least a 

Runs test, a correlation test, an R ratio and confidence 

interval analysis and a normal approximations z-test for a 

Poisson distribution.  These tests are completed on a number of 

non-empty of the plurality of cells wherein the first plurality 

of tests are performed in a predefined and sequential order. 

[0032]    The second plurality of tests may comprise at least a 

Runs test, a correlation test, an R ratio and confidence 

interval analysis and an exact Poisson distribution hypothesis 

test wherein the second plurality of tests are performed in a 

predefined and sequential order. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0033]    A more complete understanding of the invention and 

many of the attendant advantages thereto will be readily 

appreciated as the same becomes better understood by reference 

to the following detailed description when considered in 



conjunction with the accompanying drawings, wherein like 

reference numerals refer to like parts and wherein: 

[0034]    FIG. 1 is a plot of random data points within a convex 

hull in accordance with the present invention; 

[0035]    FIG. 2 is a flow diagram for a method to characterize 

data sets in accordance with the present invention; and 

[0036]    FIG. 3A-3C are flow diagrams for the method to 

characterize data sets in accordance with the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

[0037]    The present invention enhances the likelihood that a 

correct decision is made in multi-dimensional space for samples 

of varying sizes.  The invention also provides a method' to 

determine whether the three-dimensional data structure conforms 

to a random process (i.e., predominantly random). 

[0038]    In the preferred embodiment, the present invention 

creates a compact space by forming a convex hull around time- 

based measurements.  Convex hulls as used herein are discussed 

by Franco P. Preparata and Michael I.Shamos, Computational 

Geometry - An Introduction, Springer Verlag, 1985; the 

discussion incorporated herein by reference. 

[0039]    As used herein, the convex hull of a set of points in 

space is the surface of a minimum area with a convex (outward) 

curvature that passes through all the points in the set.  In 

10 



three dimensions, the set must contain at least four distinct, 

non-coplanar points to make a closed surface with a nonzero 

enclosed volume. 

[0040]    Typically, a convex hull in the volume will occupy 

about thirty-five to sixty percent less space than the space 

needed for containing a rectangular solid - such as proposed in 

United States Patent No. 7,277,573.  Generally, the larger the 

sample size then the smaller that this difference becomes.  As 

such, a major advantage of the present invention is a more 

compact region; meaning less processing time.  This lessoned 

processing time is especially noticeable for smaller measurement 

sets. 

[0041]    A sequenced set of randomness assessment tools tests 

the randomness hypotheses.  The testing is conducted in a 

sequenced multi-stage paradigm with built-in protocols for 

detecting aberrant data structures.  A flexible mix of known 

parametric, nonparametric and correlational testing procedures 

is selectable for similar problems in military and commercial 

environments. 

[0042]    In one embodiment of the invention, a streamlined 

decision module functions on an "all or nothing" principle.  In 

another embodiment, an operator has the option of ceasing 

randomness assessment upon one (or more) instance(s) of a non- 

random testing result.  This approach maximizes the likelihood 

il 



of a correct decision in a shorter period of time and minimizes 

the chance of an incorrect decision regarding the signal-noise 

hypothesis.  This approach also reduces unnecessary data 

processing time when searching for a signal classification in 

the observed noise-dominated data. 

[0043]    Table 1 reflects the structure of the data sets that 

this invention evaluates in analysis subsystems. 

Table 1 

Typical Data Set of a Time-Series in Three-Dimensional Cartesian 
Space For N Measurements 

Time 
(t) 

Measurement 
(y) 

Measurement 
(z) 

fo yo zo 

h y\ zl 
. . . 

V> ?N-1 *N4 

[0044]    It is noted that Time (t) may be replaced by a non- 

temporal continuous variable X. 

[0045]    These inputted time series (or non-time series) data 

of unknown structure are first enveloped in a convex hull.  The 

solid polygon shape of the hull is then partitioned into a 

predetermined number of three-dimensional cubic cells showing a 

dependent variable x (typically clock time).  FIG. 1 depicts a 

convex hull 10 enclosing a pseudo-random data set of fifty time- 
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data points (x) [shown as labeled item 12] with randomized 

amplitudes of forty and thirty units (y, z),   partitioned into 

sixty cubic cells.  The reduced observation space of 

approximately fifty percent is notable and is the key to a 

faster solution.  After the waveform is enclosed with a convex 

hull, then the convex hull is partitioned into three-dimensional 

partitions (as indicated by partitioning lines 14). 

[0046]    Following this method, a noise-free hull-enclosed 

helix can be determined to have a signal with a high degree of 

certainty.  Other input waveforms which comprise data points, 

such as a hull-enclosed elliptic parabaloid, are also found to 

have a signal with a high degree of certainty. 

[0047]    Exemplary partitioning methods are explained as 

follows: 

[0048]    Method 1: The first method employs an algorithm that 

accounts for the length of each axis and identifies how many 

points are used to determine an ideal number of cubes to 

partition the total volume V.  Taking the cube root of the value 

found (k) ,    iJ— ,     will give the length of the side of each cube. 

The value k  is the optimal number of partitions of cubic 

subspace as described in United States Patent No. 6,980,926 

(O'Brien).   Beginning at zero, the axes are partitioned 

depending on the length of the side. 

13 



\v 
3 P [00491     Method 2: The second method uses the formula \\ , 
V N 

where V     is the volume of the hull and N  is the number of points 
P 

used to find the length of each side.  Beginning at zero, the 

•axes are partitioned according to this value. 

[0050]     Method 3: The third method uses the formula \\— . 
\N 

Beginning at zero, the axes are partitioned according to this 

value.  See FIG. 1 for this partitioning model. 

[0051]     Method 4: The fourth and final method uses the same 

formulae but also eliminates excess space around the hull.  This 

method identifies that at least one point on the face of the 

convex hull must be tangent to the y-z plane of the containing 

region x,y,z.  Another alternative deletes or minimizes non- 

whole cubic subspaces.  The fourth method is preferred as 

affording the tightest possible envelope of an input waveform. 

Large Sample Testing Procedures 

Method A (Wald-Wolfowitz Independent Sample Runs Test Procedure) 

[0052]     An initial statistical test on input distributions is 

performed to evaluate the time-series structure of individual 

data sets.  The Runs test is a non-parametric combinatorial test 

that assesses a randomness hypothesis for a two-valued data 

sequence and is well known to those skilled in the art [Wald, A. 

14 



and J. Wolfowitz.  "On a test whether two samples are from the 

same population."  Ann. Math.   Stat.,   Vol. 11, pp 147-162, 

(1940)]. 

[0053]    The Runs test has been previously applied in the art 

to spatial distributions.  The test is attractive because it can 

be applied for spatial randomness in small or large samples with 

exact probabilities when assumptions of parametric testing 

procedures are not met.  The novel utility in three dimensions 

was initially demonstrated for a rectangular and solid envelope 

in United States Patent No. 7,277,573 (O'Brien). 

[0054]     In the Runs test, the procedural steps for a convex 

hull that are partitioned into cubic subspac.es are as follows: 

[0055]    Step 1.  Assign a value of "0" or "1" to respectfully 

indicate a cell as empty or non-empty.  The assignment should be 

identified separately from the number of points in a cell or 

cell size.  Subseguently, count the number of runs in the 

observation space of the volume in the same manner specified in 

United States Patent No. 7,277,573 for a three-dimensional data 

set.  A run (also known as a "clump") is a countable sequence of 

at least one consecutive and identical outcome.  For the present 

invention, a run is a sequential and homogeneous stream' of 

assigned 0 or 1 data followed by a different sequential and 

homogeneous stream of 0 or 1 data. 

15 



[0056]    Arbitrarily label the total number of 1 data 

identifiers by n    and the total number of 0 data identifiers by 

/?- .  For example and for the following data exhibit: n    = eight 

1 data identifiers and /?- = thirteen 0 data identifiers.  The 

total sample size is n  = n.   + n„, and six runs: 

000   11     00000   1111     00000  11 

V ,v J 

r =  six total runs 

[0057]     Here, the sample shows r = six runs (out of greater 

than 200,000 combinations) which may be tested for randomness. 

A sample of ordered binary data (1/0), corresponding to the 

behavior of the amplitudes of the time-series may show too few 

or too many runs to be attributable to mere chance variation. 

This sample indicates deterministic signal information which may 

be extracted in detecting or tracking objects in an ocean 

environment.  Alternatively, the number of runs may be in 

accordance with the laws of probability; thereby, indicating a 

16 



mere chance fluctuation in the behavior of the time series 

distribution.   This fluctuation is indicative of random noise 

[0058]    Step 2.  In a distribution that is truly random, an 

expected or average number of total runs E{r)   is given by the 

derived relationship: 

In n 
E{r) = L_2_ + i (1) 

nl+n2 

[0059]    Step 3.  The variance or spread in the number of runs 

of a random sample is computed as: 

2 n n  \2 n n„ -n. -nA 

{n\+n2)2(nl+n2-l) 
v} = 

[0060]     Step 4a.  For large samples, to statistically assess 

the relationship of the total sample number of runs r in 

2 
dimensional space to the distributional moments, E(r),ar;   the 

sample statistic r is submitted to a Gaussian normally 

distributed test statistic z   (with a mean 0 and a variance 1): 

z=r ß±)     (fl » >io) (3) 
.2     [     2 

17 



[0061]    Step 4b. Compute the significance probability p of the 

observed result from the continuous standard Gaussian (normal) 

distribution: 

p = ?r(Z<-z)+?r(Z>z) 
= l-[?r(Z<z)-Vr(Z<-z)] 

1    + z 

, 1      I '    _ (    r_2> j_ (4) J   exp   - .5JT     c/x, 
V2TT_|Z| 

- oo < \z\ < + QO,    0 < p < 1 

where |»| means an absolute value and Pr is probability.  In one 

embodiment, a continuity correction factor of -0.5 may be added 

to the absolute value of the numerator for small samples where 

n,, n~ < 10 . 

[0062]    The p  value is the probability of detecting noise. 

Another interpretation is that p represents the impression that 

the null hypothesis of random noise is true.  Small values of p 

lead to rejection of the null hypothesis of noise. 

[0063]    For example, in the case of pure noise, z =  0 in 

Equation (3) and p =  1 by Equation (4).  In the case of a pure 

signal, ±|z|—>±oo and p -  0 by Equation (4).  The calculation of 

p, well known to those skilled in the art, is performed in a 

standard finite series expansion. 

[0064]    An estimate of the p  value is provided for both the 

large and small sample testing procedures.  This approach 

18 



streamlines the evaluation process to a simple comparison of p 

against the a priori  false alarm rate "a". 

[0065]    Step 4c.  If the sample is small {n ,n   < 10 ) , save the 

^jj-^2 anci r values in memory and proceed to Step 5.. 

[0066]    Step 5.  Calculate the p  value, either for the z 

statistic by Equation (4) or for small samples.  The cumulative 

probability for computed sample runs r is determined by 

computing the probability of obtaining a quantity Pr(r<r') - the 

likelihood of obtaining that many runs or less in a random 

sample. 

[0067]    To obtain the two-sided equivalent for non-directional 

hypotheses, the above probability is doubled to obtain the 

composite significance probability, p = P r (r < r') + ? r (r > r').     The 

probability of runs, conditional upon r being an even or odd 

number, is provided by the following combinatorial ratios [see 

Wilks, S. S. ^Order  statistics" Bulletin   of  the  American 

Mathematical   Society.     Volume 54, Number 1, Part 1, pp. 6-50, 

(1948)]. 

[0068]  ' For the case of r    EVEN point probability 

19 



^-lYa.-r 

Pr (/• = 2/r) = 2 v^-iy 

2 
Ä- —1 

w 
77 

£ = 1, 2,..., 77 (5) 

i   ; 

where   Jc  is   found   from   r = 2k   and 
fA 

KbJ 

a\ 

b\(a-b)\ 
is the binomial 

coefficient in combinatorial notation. 

[0069] For the case of r ODD point probability 

^,-lV 

Pr(/- = 2£-l) = v *   y 

772-r 

k-\ 
+ 

fn, -\Vn2-l 
Kk-\j v  k    j 

f nx +772^ 

V    n\    J 

, k = 2,3 n2 -1, 

where TV is found from r = 2& —1, and 
v*y 

is as above 

(6) 

[0070]     The total cumulative probability for a two-sided 

alternative is p = Pr (r < r') + Pr (r > r')   and is derived by summing 

the point probabilities above.  The cumulative probability value 

p  is obtained in accordance with the process specified in Swed 

and Eisenhart F. S. Swed and C. Eisenhart.  "Tables for testing 

randomness of grouping in a sequence of alternatives." The 

Annals  of Mathematical   Statistics,   14(1):66-87, (March 1943). 

[0071]     For cumulative probability, r EVEN or ODD: 

2 0 



Pr (r<r') = 

fn  > 

\ \) 

k = \ 

r+1 

flj-lYiU- 

k-\ 
2 

k-1 
n, +n7 =n;r = 2k (/• EVEN) 

fn ^ 

IV 'U 
k = 2 

fn-iYfl _n r^-iY^-i^ 
^-iy A-—2 /r-2j^-l y 

/? +^ =/?;/- = 2k-\   (rODD) 

(7) 

[0072]      The above cumulative probability values must be 

doubled to assess the non-directional hypothesis specified 

below.   The cumulative probability value p is the most 

important datum to employ in the decision rule for this 

subsystem testing. 

[0073]     The standard statistical practice will be used 

throughout the present method.  The rule specifies: 

p > a => Noise 

p < a => Signal + Noise 

where a is the false alarm rate which is typically set at the 

five percent level or lower and p is the significance 

probability of the observed calculation.  The Probability of 

False Alarm (PFA) is defined as, a = Pr [reject HQ|//0 = True)  or the 

probability that the null hypothesis (NOISE) is rejected when it 

is true. 

[0074]    In the decision truth table of signal detection 

theory, this is considered to be the most serious error for this 
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noise processor system.  That is, when the call is SIGNAL but 

NOISE is dominant, then this is a serious error.  This results 

in unnecessary processing time and is an error which must be 

minimized. 

[0075]    The value of a represents the percentage of time that 

a wrong decision will be made (for example: the error of 

rejecting a null hypothesis when actually true).   Obviously, 

minimizing this type of significant error is a substantive 

factor in the present method.  Correlatively, minimizing a   also 

maximizes \-a , defined as Pr [Accept Hg HQ = True),   which amounts to 

calling noise correctly.  "True" indicates that the distribution 

is truly random.  If a=five percent, this confidence 

probability 1 — a is approximately ninety-five percent. 

[0076]    For a hypothesis text, the non-directional or two- 

tailed binary hypothesis set is: 

HQ:r = E(r) (NOISE ONL Y) 

H2:r* E(r)(SIGNAL + NOISE) 

[0077]    The distribution is labeled NOISE if p>a,   where a   is 

the false alarm rate.  Otherwise, the presence of a signal is 

most likely indicated by this system subtest. 

2 2 



[0078]     For the interpretation of a significant outcome 

(SIGNAL + NOISE); if r is significantly lower than the expected 

value E{r) ,   this implies a grouping or clustering of measurements 

(for example: a periodic function produced by rotating or 

reciprocating machinery).  Other possible forms may include 

parabolic and helical surface functions. 

[0079]    If r is significantly higher than the expected value 

E{r); this implies a repeated and alternating pattern in the 

measurements.  It should be noted that the null hypothesis of 

"noise only" is analogous to the hypothesis of "NO TARGET" in 

signal detection theory and the opposite is analogous to 

"TARGET". 

[0080]    As an example of the calculations for this important 

module of the subsystem assessment protocol; assume 

n-, =8; /?2 = 21 (z? = 29) and r = 6 (there are over four million possible 

runs combinations for this sample).  The data may be analyzed by 

the two-tailed probability method and by the approximate 

Gaussian distribution method. 

[0081]     Since the number of runs is even, the probability of 

this many runs or less from Equation (7) is: 

23 



Pr(r<6) = 
'/O 

KnW 

r 
2 
Z 

k = \ 

(n,-\Yn2-l) 

k-\ ,k-l , f29 

3 

v8 j 

7  Y20 

v^-ly Kk-\j 
= .0019   (8) 

and the doubled two-tailed probability is p = .0038. 

[0082]    The small sample normal approximation method with 

continuity correction factor is provided from Equation (3): 

r-Bj) 
z-- =  2.91 (9) 

r 

and the p value from Equation (4) is: 

+ 2.91 
p = Pr (Z < 2.91) = 1 —~     fexp (- .5x2). dx = .0036 

V27T      J„,     V 7 
(10) 

-2.91 

[0083]     Each method gives almost identical results at a high 

degree of'precision.  If the false alarm rate is .05 or .01, 

then p < a => Signal + Noise.  Also, since r < E(r),   the data indicates 

that mechanism-producing periodic motion is suspected. 

[0084]     It is noted that the Runs test has shown high power 

(call signal correctly) to detect input signal time waveforms. 

In one experiment, the Runs test quickly detected a signal for a 

fifty point hull-enclosed elliptic paraboloid with the detection 

having a high degree of probability. 
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[0085]    The significance probability was p = .000050834 by 

Equations (3) and (4), which represents the likelihood that this 

waveform is actually random noise.  Since the number of runs was 

observed to be far less than expected; this indicated a strong 

structural grouping or clustering of measurements (for example: 

a periodic/parabolic or a helical surface function). 

[0086]    Method B   (R  Ratio) 

[0087]     A prior art measure useful in the interpretation of 

outcomes is the R  ratio.  The R ratio is defined as the 

observed-to-theoretical expected occupancy rates in partitioned 

space: 

[0088]    R=-^— (11) 

[0089]    where "m"  = the observed number of cells occupied 

(non-empty) in partitioned space; "k"  = the number of spatial 

— Xt partitions, and &=1—e   , a Poisson measure specifying the 

probability that a partition is non-empty in a sample and the 

proportion of cells expected to be non-empty in a random 

distribution. k*S   is the Poisson mean number of non-empty 

partitions. 

[0090]     The range of sample values for R  indicate: R     < 1 

(clustered distribution); R     « 1 (random distribution); and 
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R    >  1 (uniform distribution) .  The minimum R  is R  .   =l/k&   and 
mm  ' 

the maximum R  is R       = N lk&,     where N  is sample size. 
max   / 

[0091]    The R  ratio is graphed as a linear function in a 

sample for 1 <m < N .  This measure is used in conjunction with 

prior art methods in deciding whether to accept or to reject a 

randomness hypothesis. 

[0092]    An R  ratio between 0.90 - 1.10 is indicative of noise. 

Outside of that range; a signal waveform should be suspected. 

For highly skewed distributions {k  being much larger than N) ; a 

signal structure is suspected when R>R 
max 

[0093]    The R  ratio is a heuristic measure only in that no 

probability bands of confidence are associated with the computed 

value.  The interpretation of gathered results should merely 

confirm or deny a random process when read in conjunction with 

the results derived from previously developed probability and 

statistical analyses.  Latter-described Method D provides a 

statistical assessment of the R  ratio and a method to determine 

a ninety percent, ninety-five percent or ninety-nine percent 

confidence band for JR.  This capability significantly expands 

prior art methods. 

[0094]    Along with the correlation module measures-in Module 

C, the R  ratio test is a second measure for detecting readings. 
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In operational use, the calculation of the R  ratio should be 

embedded in the testing procedure for Method D. 

Method C  (Correlation Module) 

[0095]     The use of a multiple linear correlation R  for 1 

criterion — or dependent variable (usually time t and c 

predictors or independent variables which are measurements 

coincident with time) of sample size N  is one measure employed 

to correct the paradox mentioned above in respect to randomness 

assessment test readings that provide false results for 

deterministic multivariate functions.  The ranqe is 0<R     <1 
t • y,z 

where values near 0 indicates randomness.  This statistical 

measure will help detect threats to the integrity of the method 

for a class of linear functions.  The likelihood that a correct 

decision is made will be enhanced and lessens the likelihood 

that an incorrect decision will be made in regard to "signal" 

vs. "noise". 

[0096]     The squared multiple correlation index for predictors 

(Y  and Z)   is derived from the ordinary least squares 

minimization technique and can be expressed as a weighted sum: 
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RL 
ß r.   a +ß rtjs y ty   y      z tz   z 

t* y,z 

0<R 

r2 + /\2 -2r.   r.   r ty     tz       ty tz yz 

<1; -1< t»y,z ty   tz   yz < + l, 

(12) 

where  ß and ß  are the beta weights,  r    , r   and r are the 
y z ty     tz yz 

linear  correlations  between/among  time.  The  measurements, 

2 
a and a  are  the  standard deviations  and at     is  the  time 

Y z 

variance. 

[0097]    The driving factors in Equation (12) are the zero- 

order intercorrelations (r     and r     )   of the amplitude measures 
t y tz 

with time.  If the amplitude measures are random, no systematic 

relationship should exist in the time domain.  This leads to an 

overall composite multiple correlation approaching zero which is 

a situation that is indicative of noise. 

[0098]     This correlation function is known to those skilled 

in the art.  The multiple R  is tested for a difference from 0 

(randomness) by the statistical F (variance-ratio) distribution 

(with c and N - c -  1 degrees of freedom) using the following 

distributional relation: 
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R t» y,z    N-c-l 
1-R 

F(c, N-c-l) (13) 

t*y,z 

[0099]    If R,     is approximately zero, it can be concluded 
i • yf z 

that the data conforms to a random distribution.  The hypothesis 

set is typically two-tailed. 

[0100]     In the present invention, c  is representative of two 

independent variables (Y,   Z) .     The significance probability p  is 

obtained by direct evaluation of the distribution density F. 

That is, 

p = l-?r F <f 
vrv2  vrv2 

fv, +v„ A V, v, + v. 

f., XV  F -J--1 
/\,  \ 

.2y 

f\, \ 
r 
v2y 

2j   0 .   v2 ; 
dy 

0<F<oo, 0<p<l, 

1-R: 
't*y,z 

( 

VT  • J 2 y V 

(14) 
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£ 
Where Vj = c , v =N-3,     F= —• and T (•)    is the complete 

2        l-R?   vl t%y,z    l 

gamma function. 

[0101]    The value p  is interpreted by comparison to the false 

alarm rate (for example: p > a => Noise ; otherwise, 

p < a => Signal + Noise) . 

[0102]     For example, in one typical pseudo-random data set 

analyzed with fifty measurements, R     = .0424, p « 0.96 (NOISE) by 

Equation (14). 

[0103]     In order to recognize the minimum value that the 

multiple correlation can achieve for the noise hypothesis to be 

rejected,  R is solved 

_2_ 

Rt.y,z^l-pVl (15) 

where p  functions as the a priori   false alarm rate a .      For 

example: if N  = 50 or v2=47 and p  is set to .05; then a 

R > 0.346 correlation is needed to suspect a non-noise 

distribution with a Probability of False Alarm (PFA) being five 

percent.  Any value less than 0.346 suggests the data to be 
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random with this false alarm rate.  Using a one percent PFA, 

then R > All   is needed to suspect, a non-random waveform.  The 

minimum R  value in Equation (15) is inversely-related to a 

sample size for a fixed p  value. 

[0104]     In addition to the linear multiple correlation, the 

present method specifies computing a discrete normalized 

Autocorrelation Function (ACF) indices for one, two and three 

time-lags or alternatively more (depending on sample size N)   if 

the multiple linear R  shows noise. 

[0105]     Autocorrelation is the cross-correlation of a signal 

with itself.  The measure is designed to detect repeating 

patterns in nonlinear time-series distributions (e.g., periodic, 

quasi-periodic, parabolic, etc.). 

[0106]     Whereas, the linear measure Rx     will detect a t»y,z 

linear trend relationship in time; the linear measure will not 

necessarily detect nonlinear relationships among the amplitude 

measurements.  The autocorrelation function will better detect 

such nonlinear trends which other testing procedures may 

mislabel as noise. 

[0107]     As provided below, the method computes 

autocorrelations for two models (first with Y~£ as a dependent 

variable and then with Z^  as a dependent variable).  Table 2 
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illustrates the structure for an autocorrelation analysis of 1, 

2, 3 -lags, with a Y"t dependent variable. 

Table 2. 

Model Illustrating Three-lag Autocorrelations 

(Amplitude Y^  as a dependent variable) 

(1) (2) (3) (4) (5) (6) 

T 

Time 

Yt 
depend 

zt 
indep indep 

Lag-1 

Zt-f2 

indep 

Lag-2 

#t+3 

indep 

Lag-3 

to yo zo Zl z2 23 

tl Y\ Zl Z2 z3 Z4 

• • • • • • 

tfl-4 YN-4 ZN_4 ZN-3 ZN-2 ZN-I 

tij-3 YN-3 ZN-3 ZN-2 ZN-I 

ÜN-2 YN-2 ZN-2 ZN-1 

tn-i YN-I ZN_i 

[00100]   This procedure amounts to computing successive 

ltiple linear correlation indices (0 <R<\)   between the mu 

dependent variable Y^  and the time lags of Z^+i %t+2  and Zt+3, 

and other lags, analogous to the structure in Equation (12). 
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That is the autocorrelation of lag-1 R 'column 2 with 
V*t'zt+i 

column 3 and 4); the autocorrelation of lag-2 R 
V*t»*t + 2 

(column 2 with column 3 and 5); and the autocorrelation of lag-3 

R 
yt*zrzt+3 

(column 2 with column 3 and 6).  Additional lags are 

computed in a similar fashion. 

[0108]    If the data are random, the simple Je-lag zero-order 

intercorrelations of the dependent variable Y   with the 

amplitude measures, r 
yt'Zt+k 

,   will be zero driving the R  value 

towards 0 in the multiple autocorrelation formula for all lag 

lengths. 

[0109] The second modeling approach requires treating Z^  as 

the dependent variable as shown in Table 3 for an exemplary 

three-lag analysis. 

Table 3 

Model Illustrating Three-lag Autocorrelations 

(Amplitude Zt as a dependent variable) 

(1) (2) (3) (4) (5) (6) 

t Zt Yt Yt+i ¥t+2 ^t+3 
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Time 
depend indep indep 

Lag-1 

indep 

Lag-2 

indep 

Lag-3 

to ZQ yo Y\ y2 ys 

tl Z\ yi y 2 y3 y4 

• • • • • 

tN_4 Zjj-4 yN-4 yn-3 yN-2 yN-i 

£N-3 ZN-3 yn-3 yN-2 yN-i 

tu-2 ZN-2 yN-2 yn-i 

ts-1 ZN-1 yN-i 

[0110]      The reverse correlation procedure amounts to 

computing the multiple linear correlation index between the 

dependent variable Zf and the' time lags of Y"t+i  ^t+2 anc' ^t+3, 

analogous to the structure in Equation (12).  That is for three 

lags: the autocorrelation of lag - 1 R 
Ztmyt>Xt + l 

'column 2 with 

column 3 and 4); the autocorrelation of lag - 2 R 
ztmyryt + 2 

;column 2 with column 3 and 5); and the autocorrelation of lag - 

3 R 
zt'yryt + 3 

^column 2 with column 3 and 6).  Additional lags 

are computed in a similar fashion.  As noted above, randomness 

»ccurs when the dependent variable Z does not correlate wit h 

the simple lag correlations, (For example: r 
Ztmyt + k 

*0). 
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[Olli]    The reason for this more complicated approach for 

three-dimensional autocorrelation analysis is two-fold.  First, 

in a closed system of data inputs, one cannot specify the 

dependent variable a priori  in a meaningful manner or one cannot 

know the exact nonlinear mathematical structure of the waveform 

to be detected (periodic, parabolic, etc.).  Second, the linear 

R  and the k-laq   autocorrelations will show /?     «R « 
fy,z     yt*zt,zt + k 

R «0 for random noise.  However for signal waveforms, 
*t9yryt+k 

it is not necessarily true that for a k-lag  autocorrelation, 

R =0 and R = 0 .  At least one model is 
yt

9*r*t+A zt'yryt + k 

expected to detect signal structure for nonlinear forms. 

[0112]     This approach will enhance the likelihood that a 

signal waveform will be detected and not inaccurately be labeled 

as noise when used in conjunction with the Runs test and other 

analysis procedures of the present method. 

[0113]     When a three-dimensional data set is not a time 

series; correlational analysis can be complicated in real-time 

experiments in which a rapid yes-no classification is reguired. 

An example of this circumstance is when a causal model is not 

present to specify the dependent and independent variables in 

order to detect and classify the three-dimensional functional 

form. 
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[0114]    Many variable relational techniques are known to those 

skilled in the art, including multivariate nonlinear curve 

fitting, partial correlation, canonical correlation analysis, 

pattern recognition, image processing, feature extraction, and 

other multivariate data reduction techniques.. These are large 

sample methods requiring significant analyst input to determine 

the interpretation of outcomes.  The present method focuses on 

time series analyses with potentially sparse data sets in real- 

time operating systems in which a rapid classification of 

noise/signal is required for unknown waveforms. 

[0115]     The hypothesis of no relationship [R«O) in time 

series data will be resolved by comparing the observed 

autocorrelation R  values for N  discrete sample points against 

the approximate standard error on a correlogram (For example: 

accept the noise hypothesis if the autocorrelation measure lies 

A   n  1-96 between the critical values of the white noise band,  0</t<—1=, 
VN 

for a five percent false alarm rate).  If R  falls outside the 

ninety-five percent band; a signal structure is suspected. 

Approximately five percent of autocorrelations fall outside the 

band. 

[0116] The   random wave   form  in  FIG.   1  depicts   the   following 

autocorrelation  co-efficients:   Lag   1:   Ry, .     . Zt,Zt+i =   0.152; 

Lag  2:      Ryt.Zt,Zt+2 = 0.154;    Lag  3:     Ry.Zt/Zt + 3  =   0.113. 
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All indicate white noise, since the minimum intensity for 

deciding "signal" is 0.277 with fifty measurements at a five 

percent false alarm rate. 

[0117]     As a rationale for this two-step correlational 

procedure; assume a noise-free parabolic function in two-space 

2 
f(t)=y = 9 — t  ,   plotted for t ±  3 (seven data points).  The linear 

relationship between t and y,    r  , is zero which indicates noise. 
t y 

[0118]     Thus far., the method indicates a random distribution 

for a simple deterministic function.  However, the 

autocorrelations show an increasing intensity in relationship 

(For example: r       = +.36; r       = -.48; r       =-.84; the 
yVyt + l yt>yt + 2 yt>yt + 3 

fourth lag shows r       =-.96, and the fifth lag shows 
yt'yt + 4 

r  ,     =-1.00).  The parabolic signal structure is revealed by 
yt  yt + 5 

the successive serial correlations.  With each lag, the plot of 

y  with yt+k   becomes more linear (inversely). 

[0119]    In this case, the first three lags are likely 

sufficient to indicate a signal structure.  Such a change cannot 

be observed with random noise regardless of sample size or the 

number of time lags since the correlations will fall within the 

boundaries of the critical white noise band. 
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[0120]     By contrast, in the case of a simple circle function 

2    2 in two-space, x   +y   =9,-3<T<+3 (twelve data points), the 

method of the Runs procedure quickly detects a signal waveform 

at a high level of certainty.  The autocorrelations increase in 

intensity only by the fourth and fifth lag.  These examples 

demonstrate that such experiments require a flexible mix of 

testing procedures in order to arrive at a correct time waveform 

classification. 

[0121]     The autocorrelation analysis (with Yf-  and Z^  as 

separate dependent variables) detects signals in similar three- 

dimensional algebraic/geometric and periodic functional forms 

which might otherwise be mislabeled as noise. 

Method D (Normal Approximation z-Test for Poisson Distribution 

Based on the Number of Non-Empty Partitions) 

[0122]     This testing procedure, derived from the Central 

Limit Theorem, is used for evaluating the following binary non- 

directional hypothesis set regarding the number of cells that 

are non-empty in a partitioned volume as compared to the 

expected number or mean in a random distribution: 

H0:k@=  m (NOISE) 

//,:k® * m (SIGNAL + NOISE) 
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The normal approximation Poisson z  test statistic takes the form 

m - k§     ,...  ,. 
z =  ._ ~A/(0,1) (16) 

where  /V (0, 1)  indicates the . z    measure is an approximate and 

normally-distributed  random  variable  with  a  mean  0  and  a 

variance 1 in samples of more than twenty-five measurements. 

[0123]    As discussed in Method B, the quantity 0 is the 

probability that a cell is non-empty in a random distribution 

population and the quantity £0 is the mean or the average 

number of non-empty partitions in a stochastic random 

distribution. 

[0124]    Since the population parameter 0 is rarely known, the 

sample Poisson measure is used, 0 = 1 — exp (— X t) , where U is the 

average number of points per partition.  The quantity, k&,   is the 

sample mean or the average number of partitions expected to be 

non-empty in a spatial random sample.  The sample measure m  is 

the actual number of k  partitions which are non-empty.   These 

quantities are defined further by using a Poisson frequency 

analysis notation (as described in the note for Table 4). 

[0125]    As discussed earlier, the operator would compare the 

value of z  against a probability of false alarm a.  The 
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significance probability p of the observed value z is calculated 

with Equation (4): 

+ \z\ 

p = ?r(z<\z\)= I—p= fexp(-.5^2)o^, 
V27t f |      ; (17) 

-121 

- oo < U < + oo, 0 < p < 1 

where |«| is an absolute value.  The decision protocol below is 

adopted: 

p > a => Noise' 

p < a => Signal + Noise 

It is seen that if m~k9 ,   or R*>1,   then z « 0 and p «1 (noise). 

[0126]    Based on Equation (16), a ninety-five percent or 

ninety-nine percent confidence interval (CI) can be constructed 

for the point estimate m  when H„   is true (noise); that is, to 

determine the range of m which is indicative of noise/signal.  A 

ninety-five percent confidence interval ( CI     ) is obtained by 

solving for m  in Equation (16), written as an algebraic 

probability statement: 

CIQ (m) =  *Ä-1.96VÄä < m < k&+ 1.96-JkS , 95 
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or 

CI (m) = k&  ± 1.96Ä 
.95 

(18) 

w here ±1.96 is the critical value of the Gaussian distribution 

when the false alarm rate is five percent for a two-tailed 

hypothesis. 

[0127]    Equation (18) represents the range that m  can vary 

when a distribution is random with a ninety-five percent 

certainty.  A ninety-nine percent CI is derived in a similar 

manner; the ±1.96 is changed to ±2.576; for ninety percent use 

±1.645. 

[0128]     The lower limit can be kB-1.96^1 k&   on m  or mL   and 

kB + \.96^JkB   as the upper limit m   .     This allows a useful measure 

in terms of the intuitive'R  ratio, 
m 

JcB 

[0129]     For example, if N=k = 25,   then kB = 25 [l - exp(-l)] = 15.8 

cells non-empty on the average in a random distribution.  A 

ninety-five percent CI for m  is CTQ, (m)= kB ± 1.96-yJkB  =(8,24), 

rounded.  Translated into the R  ratio in terms of m      and mL/, 

R noise 
mL    WU 

kB ' kB 

f kB-1.96^ kB   kB+ 1.96J kB 
m kB 

1 ±.49 «(0.51, 1.49),    (19) 

41 



or in general, 

1.96 
R   .     =1±—p= (ninety-five percent confidence] 
noise    Jj& 

which represents the lower and upper boundary on the R  ratio of 

a random distribution.  Replace 1.96 with 1.645 or 2.576 

respectively for ninety percent and ninety-nine percent 

confidence. 

[0130]    If N = k = 103,   R   .     =  1 ± .07 which shows that the range 
noise ^ 

narrows as the sample size increases until, in the limit as 

N —> oo, R    .     -»1.0 (pure noise) . 
noise 

[0131]    One further measure that may be of use: if N« k,   a 

2.1 
guick result is: R    .     »1 ± —= (ninety percent confidence); or 

noise Jfc J 

2.5 
R    .     »1 ± —p= (ninety-five   percent   confidence);   or noise 77; 

3.2 
R    .     « 1 ± —i= (ninety-nine percent confidence) . 
noise    ^ 

[0132]    Note that for highly skewed distributions [k  being 

much larger than N) ,   the value of the maximum R  should be 

obtained (United States Patent No. 7,409,323 demonstrates this 

methodology).  A signal structure is suspected when R>Rmax. 
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[0133]     These analyses demonstrate the usefulness of the R 

ratio, R = —, when coupled with a confidence interval analysis. 
kS 

It is a fast randomness assessment technique as well as a means 

to detect the paradox of deterministic relations being declared 

random. 

[0134]     As mentioned above, the calculation of the R  ratio 

should be embedded within the testing procedure in Method D. 

The tests are described separately for narrative purposes only. 

Method E  (Chi-square Test of Homogeneity - An Alternative) 

[0135]     The Chi-square test is used to decide if the Poisson 

distribution is adequate to model a random process. 

Table 4. 

POISSON ANALYSIS 

Frequency Table Protocol and Definitions 

(1) (2) (3) (4) (5) 

k nk k-n, 
k 

?(k;Xt) N-?(k;Xt) 

0 no 0 P(0; Xt) 7V-P(0; Xt) 

1 nl nl P (i; xt) N-?(l;Xt) 

• • • • 

K nK K-nK P(K;Xt) N-?(K;Xt) 
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TOTAL N T 1.00(approx.) Nfapprox.) 

<k = K 
NOTE: 

flo=^"2jV-1 nV (zero bin is calculated last (19) 

[0136]     V    is the computed volume of the convex hull polygon, 
p 

partitioned into N  cubes; 

[0137]      k   is an index indicating an empty cell (k = 0) , cells 

with one point (k = 1) , etc.; 

[0138]    K  is the number of categories of k; 

[0139]    n,    is the frequency count associated with k   (NOTE: n, 

<  5 must be combined with an adjacent cell to ensure n,>5.     The 

value K  is adjusted accordingly); 

K 
[0140]     N=   2J#r. ^-s t*'ie number °f partitions (cells) ; wherein 

k = 0 

N  is defined as k  in the procedures of Method D; 

[0141]     T=   "^k-n.is  the total number of points in a sample 
£ = 0 

(known a priori).      In small samples, T  may not equal the input 

sample size. 
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K 

Hk-nk 
k = 0 T 

K 

Znk 
k = 0 

N 
[0142]     Xt  »  — «— is the average occupancy rate or 

points per cell for the entire distribution.  The relationship 

VP t —  is the averaqe volume of the cubic subset partitions. 
N 

fot\k 
[0143] P(k;Xt)=exp(-Xt)±—'—,   Poisson probability 

K \ 

K 
distribution function.   ^P\k\\t) = Fl(k = 0; Xt) + ?T (k> 0; Xt)* 1 

k = 0 

Pr (k > 0; Xt) = 1 - exp (Xt),   probability that a cell is non-empty.  The 

probability Pr(k > 0;A,t)= 1 - exp (Xt)   is re-defined as &   in Equation 

(8), (16) and (20).  When this value is multiplied by the total 

number of partitions N,   the result provides the Poisson mean 

referred to as k3  which is an important measure for Method B and 

Method D (large and small sample). 

[0144]     n , » N- P{k;Xt)   in a random distribution. 

K 
Y^N<P(k\Xt) «A/ 

K 
m = y\n,-nn is the total number of non-empty partitions. 

£ = 0 
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[0145] R = 
m 

N-?v(k>0;Xt) 
»1 in a completely random distribution 

[R  Ratio of Equation (8) ] . 

[0146]     The R  ratio is therefore defined in each notation 

system as: 

R = 

K 

k = 0 777 

K 
][V Pr(£>0;Xt) N 

k = 0 

1-exp 

m 

[0147]     k3   is the mean or expected number of non-empty 

partitions.  This number is an important measure used in the 

Module B and Module D testing procedures. 

[0148]    Chi-square statistic for homogeneity test (with K-2 

K 
degrees of freedom): %   = ^ (°k-*k) ,   where 

k = 0 k 

ok=nk;ek=N-P(k;\t). 

[0149]     The Chi-square test for homogeneity is performed on 

the observed sample frequencies and expected random noise 

Poisson theoretical frequencies. 

Method F  (Non-Linear Correlation - An Alternative) 

[0150]     An alternative correlation function is the eta rj    (or 

nonlinear correlation) coefficient in time-series analyses. 

This measure is known to provide the maximum correlation 
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possible between the time criterion and any function, linear or 

nonlinear combinations, of the predictors.  The correlation 

ratio is always at least as large as the linear correlation. 

2        2 For example: r\ >R 
tmy,z t*y,z 

The range is: 0 < n    <1. 
t* y,z 

Other alternative correlational measures are indicated in 

correlation Method C for non-time series data sets. 

Example of Analysis Procedures 

[0151]     In one exemplary experiment, a sample of fifty 

pseudo-random data points was assigned to 125 cells of 

partitioned subspace within a convex hull of total volume 

1 3 V =516— contained in a 10  region of measurement amplitude 
P 6 

V 
( = .517 — forty-nine percent reduction in observation space). 

[0152]     The frequency analysis of at least partially of these 

fifty points is shown below in accordance with the definitions 

and properties as previously described with Table 4; Poisson 

Analysis. Table 5. 

Poisson Frequency Analysis 

(1) (2) (3) (4) (5) 

k Dk k-n, 
k 

P{k- u) N-P(k;Xt) 
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0 86 0 .6811 85.14 

1 30 30 .2616 32.69 

>2 9 18 .0502 6.28 

TOTAL N =   125 T  = 48 .9929 124.11 

[0153]    Overall, the frequency data in Table 5 is reasonably- 

dispersed and indicates that the Poisson model is adequate to 

model the three-dimensional random data enveloped in a 

partitioned convex hull.  The difference between data in Column 

(2) compared to the data of Column (5) is the primary 

comparison.  The Chi-square homogeneity value for model fit is 

1.41 [v = K-2 = \   degrees of freedom) with a probability of p =   .49 

(noise distribution).  The p  value was obtained by direct 

evaluation of the integral for the Chi-square density, / 
V J 

similar to the approaches used to compute Equations (4) and 

(14).  Thus, the Poisson distribution is adequate to model the 

data as a random process embedded in a three-dimensional 

polygon. 

[0154]     Other analyses that can be obtained from Table 5 and 

the raw data of fifty measurements can show that the number of 

non-empty cells amounts to m  = 39 (N-n0).      The expected average 
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number in a random distribution is 125 1-exp ( _4n 
~ 125 

= 39.86   and 

39 
the R  ratio is  =.98, which is very close to pure randomness 

39.86 

[0155] In the alternative, the actual sample size of fifty 

points may be used to carry out the computations if the 

alternative Module E is not used as part of the present method. 

[0156]     The confidence analysis procedure indicates that a 

ninety-five percent noise band for the data is (.69, 1.31) for the 

R  ratio which contains the observed R.     Likewise, a ninety-five 

percent CI for m   is (27, 52), rounded.  With ninety-five percent 

certainty, the m  and R  values are expected to fall within these 

ranges. 

[0157]     Moreover, from this data, the z test procedure of 

Method D can be applied which shows a p  value of .89 (noise). 

Here the value k& = 39.86.  The Runs test returned a p value of 

.84 (noise) 

[0158]     Since partitioning is irrelevant to the correlation 

measure, the multiple linear correlation was obtained in fifty 

simulation runs with an average correlation of R t*y,z' 154 [a p 

value of .57 (noise)].  The noise variance accounts for 

approximately ninety-eight percent of the total variance 

Autocorrelations also indicate random noise. 
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[0159]     This is an exemplary technical analysis for the data 

set in accordance with the present method.  Each procedure is 

similar in result in that the data are noise with a high amount 

of certainty as compared to a false alarm rate of five percent 

and less. 

[0160]     The above data analysis results are comparable to the 

results disclosed in the method for a rectangular solid in 

previously-referenced United States Patent No. 7,277,573.  The 

difference is a forty-nine percent reduction in observation 

space with the use of convex hull which translates into a 

solution obtained in approximately half of the time. 

Small Sample Testing Procedures (Measurements < 25) 

[0161]     Testing Method A, Method B and Method C are also 

applicable to a small sample case. 

[0162]    The R  ratio of Method B should be viewed as 

descriptive rather than inferential when applied to small 

samples.  The suggested guideline is 0.90 < R < 1.10 => NOISE ; 

otherwise, SIGNAL R > Rmax .=> SIGNAL [highly skewed distributions 

- k  being much larger than N] . 

[0163]    The correlation of Method C presents a statistical 

problem for small samples.  The ability to reject the null 

hypothesis (noise) depends on the sample size.  A high 

correlation computed on a small sample size may be insufficient 
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to reject the null hypothesis for purely statistical reasons. 

For this reason, a heuristic procedure in the interpretation of 

the linear and autocorrelation measure is stated in the 

following decision rule: 

R < .32 => NOISE 

R > .32 => SIGNAL + NOISE 

where R   refers to either the multiple linear correlation or the 

autocorrelation measures of any lag length for Y^    and Z^    as 

dependent variables. A correlation of .32 translates into a ten 

percent signal variance. Other users of the method may choose 

different cut-off values (twenty percent, twenty-five percent 

signal variance, etc.) but the recommended level appears useful 

for application to time series or other in situ distributions. 

The level can be adopted to the results of operational testing. 

Method G  (Exact Poisson Distribution Hypothesis Test) 

[0164]    This testing procedure is the small sample analogue of 

the normal approximation test in Method D.  The procedure 

provides more accurate estimates of probabilities. 

[0165]    Based on the Poisson point process theory for a 

measurement set of data in a time interval At with corresponding 
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measurements of magnitudes AY and AZ ; that data set is 

considered to be purely random if the number of partitions k  is 

non-empty (containing no observable measurements) to a specified 

degree.  The observed number of non-empty partitions is m,   as 

defined in the Note of Table 4 with follow-on supporting 

language - to be referred to as Equation (19) hereinafter for 

all uses of the Note of Table 4.   The mean or expected number 

of non-empty partitions in a random Poisson distribution is 

given by: 

k® = k(l-eJkt) (20) 

where 0 is the probability that any cell is non-empty in a 

completely random Poisson distribution and Xt   is the population 

parameter of the spatial Poisson process defined in Equation 

(19) corresponding to the average number of points observed 

across all three-dimensional subspace partitions in a random 

distribution. A spatial Poisson process is assumed to govern 

the mechanism. The calculation of Equation (20) comes directly 

from the standard Poisson distribution function given in 

Equation (19). 

[0166]    In one embodiment of the present method, the spatial 

mean A, t   is calculated from a frequency distribution of Poisson 

distributed variables in the manner recommended by Feller, Ch. 

6. [Feller, William. Introduction   to  the   Theory of Probability 
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and  Its Applications. Vol I., NY: John Wiley and Sons. (1957)]. 

This quantity was defined in Equation (19). 

[0167]    The sample value of Xt   corresponds to the average "hit 

rate" or average number of points across all cubic whole and 

part subspaces of the convex hull in three dimensions and t is 

the volume of a cubic partition.  This situation was defined in 

Equation (19). 

[0168]    An alternative to calculate Equation (20) is a 

standard manner for evaluating a two-tailed hypothesis for 

finite discrete probability distributions.  However, no known 

way is provided for calculating the significance probability 

value p  for two-tailed hypotheses — as was done for the 

symmetric infinite Gaussian distribution.  If the Poisson mean 

kS   >   10, the Poisson distribution can be approximated by the 

Gaussian distribution with the mean and variance of the original 

Poisson distribution.  At this level, the Poisson distribution 

becomes more symmetric about the mean. 

[0169]    A quantized continuity correction factor of plus or 

minus .5 is applied to the computations since a discrete 

distribution is approximated by a continuous one.  The 

identifier p  can then be calculated fairly accurately.  This was 

the rationale for Equation (16) as derived from the Central 

Limit Theorem. 
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[0170]    For small Poisson means, the distribution is skewed so 

this Gaussian approximation is not calculable and the p  value 

cannot be provided.  This is the situation for which the 

probability test was designed for the present invention.  The 

need for this probability test (for example: very small samples) 

will rarely occur. 

[0171]    A derived algorithm of Equation (26) provides an 

estimate of the significance probability p  for evaluating a two- 

tailed hypothesis for the quasi-symmetric finite discrete 

Poisson probability distribution.  It is validated against the 

calculated p  values for the large sample z test described in 

Equation (16). 

[0172]    The boundary, above and below the Poisson mean k@, 

attributable to random variation and controlled by a false alarm 

rate, is the critical region of the test.  In practice, there is 

no knowledge of the population parameter 0 and the functional 

parameters of that measure.  Rather, sample observations 3   and k 

are worked with and compared to the frequency structure against 

a theoretical probability distribution which models random 

noise. 

[0173]     In essence, this exact probability test determines if 

the observed number of non-empty cells m  is contained within the 

boundaries of the theoretical Poisson model expectations which 

is a situation indicative of random noise for the three- 
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dimensional data set.  If m  falls in the critical region; a 

signal waveform is suspected. 

Lower Boundary Value of Critical Region 

[0174]    The test procedure is described in detail below.  An 

example is provided to clarify each step. 

[0175]    Let y, be the integer quantity forming the lower 

boundary of the sample mean k&    given by the Poisson 

a 
0 Pr(K< y)< —z-, min 

criterion: 2 

f        a ^ a  ^o 

Where 

y, 

Pr(K<r)= £p(y; k&\ 
y = 0 (21) 

[0176]    Pr is probability and P(y\ k&)   is the discrete Poisson 

probability distribution function given as: 

P(y,m = 
y! 

CO 
(22) 

where ^?(y;k&) = 1.0 
y = 0 

[0177]    The upper limit on the summation is finite in 

practice; selected such that the summation achieves a 
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predetermined level of convergence (for example: the sum is 

approximately 0.99999). 

[0178]     The quantity CXQ is the probability nearest to an 

exact value of the pre-specified false alarm probability a   and 

y    is the largest value of y such that Pr \Y< y)< —— .  It is an 

objective to minimize the difference between a   and <XQ.  The 

Probability of False Alarm (PFA) is typically set at five 

percent. 

Upper Boundary Value of Critical Region 

[0179]    The upper boundary of the Poisson probability test is 

called y~   and is determined in a manner similar to that for 

determining the lower boundary value y. . 

[0180]    Let y» be the integer quantity forming the upper 

random boundary of the mean k9   given by: 

ao Pr(K>y)<—, min 
f      a ^ 

2  2 , 
V    J 

(23) 

where 

y2 
Pr(K>y)=l- J]p(^ka) 

7 = 0 
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[0181]     The value ou is the probability closest to an exact 

value of the pre-specified false alarm probability a , and y     is 

an 
the largest value of y    such that Pr \Y>y)< .  It is an 

objective to minimize the difference between a   and O.Q. 

[0182]     Hence, the subsystem determines if the frequency 

structure contains a "y" amount of observed points within the 

critical region; thereby, warranting a determination of random 

(otherwise, nonrandom is the call) with the associated PFA a 

being wrong in the decision when random is the analysis test 

result (See the discussion for Table A). 

[0183]    The overall protection against a Type I error — a   —  is 

the sum Pr(K^y))+.Pr \Y>y2)   which is often higher (as previous 

research has indicated).  This value is also known as the actual 

level of significance. 

HYPOTHESIS 

[0184]     In the hyphothesis, the subsystem assesses and 

evaluates the random process binary hypothesis for small samples 

by means of the sample proportion of non-empty partitions: 

Ho:0 = S (NOISE) 

Hj :0* S (SIGNAL + NOISE) 
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DECISION RULE 

y, < y < y^ => Noise 

y~ < y < y. => Signal + Noise, 

where y = m   (the number if non-empty cells are in a sample). 

[0185]    The false alarm rate is set at a   = .05 for very small 

samples.  For (JV<16); a  may be set to 0.10. 

[0186]    As mentioned, the quantity 0 is the unknown population 

parameter representing the probability that a cell is non-empty 

in a completely random Poisson distribution and &   is the sample 

value indicated above 3 = l-e~ 

[0187]    Note that the actual Poisson hypothesis test uses the 

calculated mean kS   (referred to as the Poisson mean fj.   or A   in 

probability distribution tables) to carry out the calculations 

for assessing the hypothesis set.  This practice is done for 

convenience since the probability 5 is a small quantity 

(0 < 0- < 1) in finite samples which gives a restricted range of the 

Poisson probability distribution integer count parameter y in 

the Poisson probability function P\y\ k§). 

[0188]    In practice, one does not possess a priori   knowledge 

of the population parameters; therefore, sample spatial data is 

compared against a known probability function which 

characterizes the structure of a random distribution.  The 
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Poisson distribution is known to model a random process for 

distributions on the line interval and in the partitioned plane. 

Example of Testing Procedure 

[0189]     Because the principle of the exact Poisson 

probability test is the same regardless of the sample size, the 

testing procedure is illustrated for the data previously 

analyzed (see Table 4).  The following summary data 

(S = .319; k& = 39.86; m = 39) are required to carry out the computations 

and to arrive at a reasonable decision for the signal-noise 

hypothesis. 

[0190]    As previously defined, nm"  is the observed number of 

non-empty partitions; $ = .319 is the probability that a cell is 

non-empty, and k9   is the mean or expected number of non-empty 

partitions in a random distribution. 

[0191]     From this data, the two-tailed hypothesis set is: 

//:© = .319 (NOISE) 

HyQ* .319(SIGNAL + NOISE) 

[0192]    This input generates the discrete Poisson distribution 

P(y;kS) given in 
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Table 6.  Poisson Probability Distribution, for k9 39.86 

y Prob ' Cum% y Prob Cuiu% 

16 0.001% 0.002% 43 5.382% 72.388% 

17 0.002% 0.004% 44 4.875% ' 77.263% 

13 0.005% 0.009% 45 4.318% 81.581% 

13 0.010% 0.019% 46 3.742% 85.323% 

2 0 0.021% 0.040% 47 3.173% 88.496% 

21 0.039% 0.079% 48 2.635% 91.131% 

22 0.071% 0.150% • 49 2.143% 93.275% 

23 0.123% 0.272% 50 1.709% 94.983% 

24 0.204% 0.476% 51 1.335% 96.319% 

25 0.325% 0.801% 52 1.024% 97.342% 

26 0.498% 1.300% 53 0.770% 98.112% 

27 0.736% 2.036% 54 0.568% 98.680% 

23 1.047% 3.083% 55 0.412% 99.092% 

23 1.440% 4.523% • 56 0.293% 99.385% 

3 0 1.913% 6.435% 57 0.205% 99.590% 

21 2.459% 8.894% 58 0.141% 99.731% 

32 3.063% 11.958% 5 9 0.095% 99.826% 

33 3.700% 15.657% 60 0.063% 99.889% 

3 4 4.337% 19.995% 61 0.041% 9 9.930% 

35 4.939% 24.934% 62 0.027% 99.957% 

3 5 5.469% 30.403% 63 0.017% 99.974% 

3 7 5.891% 36.294% 5 4 0.010% 99.984% 

3 8 6.179% 42.473% 65 0.006% 99.991% 

33 6.315% 48.789% 66 0.004% 99.995% 

4 0 6.2,93% 55.082% 67 0.002% 99.997% 

41 6.118% 61.200% ' 68 0.001% 99.998% 

42 5.896% 67.006% 63 0.001% 99.999% 
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[0193]    Based on the PFA of .05; the critical boundaries are 

computed to be y. = 27 and y„ = 53.  These values are virtually the 

same as found for the ninety-five percent CI for the large 

sample approximate z  test (27, 52) in Method D.  These values 

also provide evidence that the computations are consistent as 

well as evidence that the Gaussian z test is adequate.  Since m 

= 39 and y-i < 39 < y^;   then the null hypothesis of noise only is 

accepted.  The number of non-empty cells in the one hundred and 

twenty-five partitioned space is consistent with a Poisson 

random distribution. 

[0194]    The protection against a Type I error is found by 

calculating the sum of Pr (v< y^) + Pr (v> y2) =  .02036 + .01888 = .039 

which is approximately twenty-five percent higher than the a 

priori  value of a = .05.  This significance level represents the 

actual probability of incorrectly labeling this waveform signal. 

The difference 1- [Pr (V < yx) + Pr (V> y2)] =  .961 is the confidence that 

the operator has when deciding that noise is the correct 

decision.  For example: Pr ( Noise) Noise ) .  Considering the data 

from the exact Poisson hypothesis test, the noise-only decision 

is reasonable.  The results are consistent with the large-sample 

method of Method D but provide a higher degree of confidence. 

Alternative Testing Procedure for the Signal-Noise Hypothesis 
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(Estimate of p) 

[0195]     In the case of the continuous Gaussian distribution, 

the p value from the large-sample z test in Equation (16) is 

relatively easy to compute because of the mirror symmetry of the 

distribution about the mean.  Expressing the derivation of the 

Gaussian p measure in conceptual terms of areas where z is the 

assumed calculated value in Equation (4): 

By definition, 

z — Z oo 

p =   ,—-    | exp - .5x ) dx +   ,— [expf 
V27T   J      v '         V2TT 

J      V 
-00 Z 

•.5xz   dx 

Then, rearranging 

f   1     ° 1    Z 

p=\-  —f=   |exp(-.5x2 )dx +—1== [exp   - 
V2n   J      V ' -&*       y \        -z 0 

.5xz    <£r 

= 1 

= 1- 

.5000 
-z [ z 

 P=    rexp(-.5x   )c£r   +     ;—    [exp(-.5x   ) dx -. 
A   J V2n   J 

_v -00 

'271 

-z 

.5000 

00 

Jexp (- .5x j dx —-=   [exp [— .5x  J our 

— oo •00 

= l-[Pr(Z<^)-Pr(Z<-^)] 

which leads to the computational form of Equation (4) 

(24) 
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[0196]     In a similar fashion, an estimate for p was derived 

for the discrete Poisson distribution.  The algorithm of 

Equation (27) is used for estimating p  in the small sample 

Poisson distribution test when the mean k$   >  10 (approximating a 

symmetric Gaussian distribution). 

[0197]     The procedural steps are to first, consider any 

observed y value in Table 6 (which is assumed less than or equal 

to the mean *") to be a lower limit called  £.  Second, assume 

that the mean ^ has a theoretical cumulative probability, 

?r(Y<k&) = .50000 (or the area up tQ the mean ig one_half of the 

total area of the probability mass) as in the Gaussian case. 

This is a basic but untestable assumption.  However, by linear 

interpolation, on the interval about the mean [39, 40] by 

cumulative percent: 

9+.50000-48789 (40_39) = 39192 
.55082-.48789     ' 

the theoretical value of y  that is half-way in Table 6. 

[0198]    This calculation differs from the actual Poisson mean 

k&=39.86 by only 1.7 percent.  Alternate estimation procedures 

such as geometric mean averaging leads to no more than a 1.8 
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percent difference.  Thus, the assumption appears to be 

reasonable for large k 3- values and is used in the estimation 

procedure. 

[0199]     Third, a value is found that is equidistant above the 

mean y     to represent the upper and approximate equi-probable 

outcome of the experiment for a two-sided signal and noise 

hypothesis.  The difference in the cumulative probabilities of 

y     and y    with respect to the mean k& = 39.86 will be the 

estimate of p  - analogous to Equation (24).  The values yL and yu 

roughly symmetric with respect to the mean.  The input value 

determined as y. or y     by comparison to k&. 

[0200]    The lower/upper y values and p  are determined in the 

following manner for the case of y either above or at/below the 

mean kS\ 
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UPPER BOUND DETERMINATION 

y u 

LOWER BOUND DETERMINATION 

y 
L 

y<k& 

H = int (kd) 

y = yL 

yu = M--<-|p- — yL| 

P = i- --Pr(Y<yL)+Pr(Y 

p=l-[Pr(Y<yu)-Pr(Y<yL)] 

y>k& 

\i = int (k&) 

y = y u 

yL =M-—|yu — H 

P=i -Pr(Y<yL)+Pr(Y<yu)-- 

p=l-[pr(Y<yu)-Pr(Y<yL) 

(26) 

where "int" is an integer operator defined as the integer part 

of a real number and where  »| is the absolute value.  The first 

term jl = int (kd) will be only the whole number.  For example: 

int (39.86) = 39 = (I .  The second term is the absolute value of the 

difference between the mean a   and the values y ,  andy . 
L u 

[0201]    Applying the algorithm of Equation (26) to the case 

for the experimental observed value y = m = 39; non-empty 

partitions in Table 4 provide an estimate of p  in order to test 

the null hypothesis of noise only: 
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y = m = y L = 39 

H = 39 

y   =39 (since | |a-7L| = o) (27) 

p = 1 - [ .5000 - Pr (K < 39) + Pr (K< 39)- .5000 ] 

= l-[Pr(K<39)-Pr(K<39)]=1.00 

[0202]    The probability that y-m =39   indicates noise is 1.00, 

Using the nominal level of significance a=.05 then since 

1.00 > a => NOISE ; the operator can conclude that this time 

waveform contains virtually no signal information.   To validate 

this value against the Gaussian calculation, use Equation (16) 

with m  set to y but apply a quantized value of +.5 to the 

numerator.  For example: 

39-A& + .5 
z = p= = -0.06. (28) 

[0203]    Then, compute the p  value from Equation (4) for the 

observed z-test value.  This value is found to be p = .95.  If z 

were 0; p  would be 1.00 by Equation (4). 

[0204]     The rule of the present method for applying the 

quantized continuity correction factor is: if y — k&<0,  add +.5- 

and if y — k&>0, add —.5.  The algorithm appears acceptable if 
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applied to selected values of y in Table 6 and compared to the 

Gaussian distribution. 

[0205]     For example: the likelihood that y was observed to be 

twenty is, 

y = yL=20 

^ = 39 

yu =39 + | 39 — 20| = 58 (29) 

p = 1 - [ .5000 - Pr (Y < 39) + Pr (Y < 58) - .5000 ] 

= l-[Pr(l/<58)-Pr(Y<20)] = 1-[ .99731-.00040] = .003 

[0206]    The probability is only .003 that the number of non- 

empty partitions is twenty (20).  This appears reasonable since 

twenty (20) is an extreme value compared to the mean 39.86, 

indicative of noise.  The Gaussian p  calculation with the 

continuity correction factor of +.5 for y = 20 is the same ( p  = 

.003) . 

[0207]     Another example: if y = 27, the likelihood of that 

value can estimated by the algorithm: 

y = yL = 21 

^ = 39 

y =39 + 139 — 271 = 51 (30) 

p = l-[.5000-Pr(r<27)+Pr(r<5l)-.5000] 

= l-[Pr(K<5l)-Pr(K<27)] = 1 - [ .96319-.02036 ] = .057 
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[0208]    Compared to the Gaussian calculation with the 

continuity correction factor of +.5 for y = 27,  p = .05. 

[0209]     Lastly, if y = 53; the Poisson p  can be estimated by 

the algorithm: 

y = y =53 J     J u 

u = 39 

y^ = 39-| 53-39 | = 25 (31) 

p = 1 - [.5000 - Pr (V < 25)+ Pr (Y < 53)- .5000 ] 

= 1 - [Pr(K<53)-Pr(K<25)] = .027 

[0210]    The p  for the Gaussian is .046 with the continuity 

correction factor of -0.5. 

[0211]     The algorithm for estimating p  to test the two-tailed 

signal-noise hypothesis is workable as validated against the 

Gaussian distribution.  Overall, the differences of the p  values 

(Poisson and Gaussian) are small. 

[0212]     To further validate the derived process, the 

algorithm in Equation (26) is applied to other Poisson 

distributions with means as low as 10-15.  The means of those 

distributions differ from the interpolated means by no more than 

4.4 percent.  This percentile is an adequate tolerance level 

with which to compute p  values to test the signal-noise 
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hypothesis.  When the mean is approximately one hundred (100) 

then only a 0.96 percent difference exists.  At a mean of five 

hundred (500), the difference is down to .20 percent and 

continues to decrease with higher values of the Poisson mean. 

[0213]     Consequently, the algorithm is incorporated into the 

present method when the sample mean k& >  10 regardless of the 

sample size.  When the mean does not meet the criteria of 

kQ >  10, the p value cannot be estimated by Equation (26) due to 

the high asymmetry of such distributions.  The two-tailed 

signal-noise hypothesis must be evaluated in the standard manner 

using the DECISION RULE, under HYPOTHESIS. 

[0214]     Employing the algorithm of Equation (26) indicates that 

an alternate way to assess the signal and noise hypothesis 

involves comparing the estimated p  to the approximate PFA by the 

rule adopted: p > a => NOISE; p < a => SIGNAL + NOISE.  That procedure 

would result in a faster solution. 

[0215]    Note that in the foregoing, the data derived from the 

Poisson frequency distribution (Table 4) of Method E has been 

used to illustrate the testing procedures for Method D.  Those 

computations provided forty-eight (48) as the sample size based 

on the approximate procedure modeled on the formalism provided 

by the Feller reference (Chapter 6).  In the alternative, if 

Method E is not implemented; the operator may use the actual 
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sample   size  of   fifty points   (50)   to  carry  out   the   computations 

for  testing  the   signal-noise  hypothesis.     This   has   the  effect  of 

using  the mean: 

f    50 ^ 
m = 125 1-exp = 41.21 (32) 

V   125y. 

Compared to k9   = 39.86 computed from Eguation (20). 

[0216]    That is, Table 6 would be based on 41.21 instead of 

39.86.  All numerical results would change slightly, but the 

conclusions will not differ in regard to determining that the 

input time waveform is noise. 

[0217]     In conclusion, the fifty point pseudo-random 

distribution in Table 4 has been analyzed with the testing 

procedures of the present invention.  Each test has given the 

same result which is random noise. 

[0218]     FIG. 2 and FIG. 3A - 3C diagrammatically show the 

steps of the embodiment of data characterization method 50 and 

the embodiment of data characterization method 100. 

[0219]     In FIG. 2, in support of the data characterization 

method 50, step 52 provides a measurement input of data based on 

a plurality of measurements of physical phenomena, such as 

sonar, medical imaging, or the like. 

[0220]    For example: step 52 comprises reading input data 

vectors \t,y,z) where t is clock time and x,  y  are amplitude ' 
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measures in the time domain.  This step may also comprise 

performing pre-processing conditioning, filtering, formatting, 

and selecting a discrete sample size N. 

[0221]    Step 54 comprises forming a three-dimensional convex 

hull over the data.  The data is then partitioned into volumes 

based on a partitioning algorithm - as previously described (See 

Method 1-4).  The convex hull can average approximately fifty- 

two percent of the containing region formed by the t, y, z 

volume; thereby, providing a significant increase in processing 

speed as compared to the prior art. 

[0222]    In step 56, a determination is made as to whether the 

sample size is large or small.  While presently preferred 

embodiments for this value (N > 25) have been given 

hereinbefore, it will be understood that parameters can be 

selected which may vary.  Thus, if the number of data elements 

is greater than a selected parameter, range of parameters, 

formulae based on parameters; then the sample size is considered 

large.  If not, then the sample size is considered small. 

[0223]     Based on the determination made in step 56, a set of 

tests are utilized for a small sample size as indicated at data 

analysis module 58 or a large sample as indicated at data 

analysis module 60.  Decision module 62 states that tests are 

conducted and followed by an "all or nothing" decision rule.  If 
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all accepted tests indicate random noise, then that is the 

determination.  Otherwise, the determination is to be a signal 

plus noise. 

[0224]    For LARGE SAMPLE TEST MODULE:  N> 25 as indicated at 

step 56, then the following tests comprise one possible 

presently preferred embodiment of: a Runs Test; a R Ratio; a 

Correlation Module; a Normal Approximate z-Test/ Confidence 

Interval (CI) Analysis; a Chi-square Test (alternative); a 

Nonlinear correlation and other correlation techniques 

(alternative). 

[0225]    For SMALL SAMPLE TEST MODULE:  N < 25 as indicated at 

step 56, then the following tests comprise one possible 

embodiment: a Runs Test; a R Ratio; a Correlation Module; and a 

Poisson Probability Test.  One possible and presently preferred 

order of the testing protocol is: 

Large Sample 
(Data Analysis Module 60) 

TEST ORDER TESTING PROCEDURE 

First Wald-Wolfowitz  Runs  test  for  independent 

samples 

. Normal approximation 

. Exact probability computation 

Second Correlation Method 
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. Linear R 

. Serial Correlation (Autocorrelation) 

. Correlogram 

Third R  Ratio  and  Confidence  Interval  (CI) 

Analysis 

Fourth Normal Approximations z - Test for Poisson 

distribution  on  the  number  of  non-empty 

partitions 

Exact  Poisson  Distribution  Hypothesis 

Test (alternative) 

alternative Chi-square Test of Homogeneity 

•alternative Nonlinear    and    other    correlational 

techniques 

NOTE:  Testing continues while either noise is the current 

decision or one signal instance is detected. 

Small Sample 
(Data Analysis Module 58) 

TEST ORDER TESTING PROCEDURE 

First Wald-Wolfowitz  Runs  test  for  Independent 

Samples  (Exact test) 
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Second Correlation Method 

. Linear R 

. Serial Correlation (Autocorrelation) 

. Correlogram 

Third R  Ratio and Confidence Interval Analysis 

Fourth Exact Poisson Distribution Hypothesis Test 

. Standard Approach 

. Significance probability 

NOTE:  Testing continues while either noise is the current 

decision or one signal instance is detected. 

[0226]    As indicated at step 62 of the decision module; if all 

test results indicate noise then the data is considered to be 

random.  If any test indicates nonrandom; then the data contains 

signal information. 

[0227]     As indicated at step 64, reports may comprise outputs 

of analysis results in summary form, archiving (graphics and 

text) and the next window of data to be processed. 

[0228]    In regard to FIG 3A, steps 102, 104, 106, 108, 110, 

112, and 114 of data characterization method 100 correspond to 

the previously discussed steps 52, 54, 56, 58, 60, 62, and 64 of 

FIG. 2.  However, the characterization method 100 provides that 

testing continues while noise is the present conclusion. 
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[0229]    Referring to FIG. 3B and 3C, logic tests 116 are 

provided after each test; whereby, if any test determines that a 

.signal is present (for example: the data is not random noise). 

.At that time, the testing is terminated with a determination of 

a signal by the decision module 112. 

[0230]    Alternatively, if all tests characterize the data set 

as noise, then the method produces a characterization of the 

data set as noise as indicated at 120 shown in FIG. 3B and 118 

shown in FIG. 3C.  As discussed hereinbefore with the data 

characterization method 50; testing is conditional upon the size 

of the sample.  The sample dictates the testing procedures used 

to evaluate the signal and noise hypotheses. 

[0231]    One utility of the present method is in the field of 

signal processing and other data processing fields in which it 

is of interest to know whether the measurement structure is 

random in the presence of potentially highly sparse data sets 

contained in a compact volume.  The method provides a faster 

solution for randomness determination than prior art methods. 

[0232]    A significant new feature is an explicit method to 

handle very small samples by means of a polygon envelope; 

thereby, creating a more concentrated region for analysis.  The. 

calculation of the significance probability (as discussed 

hereinbefore for small samples) constitutes another novel, 
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useful and non-obvious feature.  The present inventive method 

can most likely be adopted for two-dimensional data sets in 

order to identify and filter Poisson noise.  Finally, a four- 

dimensional time series analysis can be performed if measures 

\x,y,z\   are captured at discrete time intervals t. 

[0233]     Various alternatives to the above-discussed methods 

are possible.  Another example, during partitioning, another 

step may comprise establishing a criterion for eliminating or 

reducing the amount of non-whole cubic subspaces from the 

analysis.  For example: eliminate subspace segments that are 

less than one-half to three-quarters of the size of the volume 

t.  The sample size is reduced with this criterion.  For small 

samples, this may lower the power of the testing procedures 

although the probability assumptions will be less violated. 

[0234]     During analysis, a Chi-square test for homogeneity 

(large samples) and the nonlinear correlation may be utilized. 

In addition, the small sample Poisson probability test can be 

used in place of the large sample approximate test since exact 

probabilities will be provided regarding the signal-noise 

hypothesis.  The autocorrelation functions (ACF) may be computed 

for as many lags as possible. 

[0235]     For non-time series data, many variable-relational 

techniques are known to those skilled in the art, including 
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multivariate nonlinear curve fitting, partial correlation, 

canonical correlation analysis, pattern recognition, image 

processing, feature extraction, and other multivariate data 

reduction technigues.  However, these are large sample methods 

that require significant analyst input in the interpretation of 

outcomes.  In the decision module, testing may contain as many 

procedures as needed to provide confidence to the operator that 

the data are a noise or a signal. 

[0236]     The improved methodology over the prior art of this 

field can be applied to the two-dimensional case for noise 

identification and filtering.  Moreover, the inventive method 

can be applied to four-dimensional structures with time t 

concomitant with measures \x,y,z\. 

[0237]    Many additional changes in the details, components, 

steps, and organization of the system, herein described and 

illustrated to explain the nature of the invention, may be made 

by those skilled in the art within the principle and scope of 

the invention.  It is therefore understood that within the scope 

of the appended claims, the invention may be practiced otherwise 

than as specifically described. 
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Attorney Docket No. 100235 

METHOD FOR DETECTING A RANDOM PROCESS 

IN A CONVEX HULL VOLUME 

ABSTRACT OF THE DISCLOSURE 

A method is provided for characterizing data sets 

containing data points.  The method can characterize the data 

sets as random or as non-random.   In the method, a convex hull 

envelope is constructed which contains the data points and 

passes through at least four non-coplanar data points.  The 

convex hull envelope is partitioned into cells.  The method 

classifies the data set as a sized sample.  Based on the 

classification, a predetermined set of tests is selected for 

operating on the data set. 
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