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Abstract—The Maximum Likelihood Probabilistic Data Asso-
ciation (ML-PDA) tracker and the Maximum Likelihood Prob-
abilistic Multi-Hypothesis (ML-PMHT) tracker were applied to
five synthetic multistatic active sonar scenarios featuring multiple
targets, multiple sources, and multiple receivers. For each of
the scenarios, Monte Carlo testing was performed to quantify
the performance differences between the two algorithms. Both
trackers ended up performing well. For most scenarios, ML-
PMHT slightly outperformed ML-PDA in terms of in-track
percentage. However, in a scenario with closely-spaced targets,
ML-PDA exhibited superior performance.

Keywords: ML-PDA, ML-PMHT, maximum likelihood,

multistatic, bistatic, sonar, tracking, expectation maximiza-

tion, EM.

I. INTRODUCTION

The Maximum Likelihood Probabilistic Data Association

(ML-PDA) tracker and the Maximum Likelihood Probabilis-

tic Multi-Hypothesis (ML-PMHT) tracker are both simple,

straightforward algorithms that can be used in an active multi-

static sonar framework. With some basic assumptions about a

target (or targets) as well as the environment, likelihood ratios

can be developed for both algorithms and then optimized.

The main difference between the two algorithms is in the

target assignment model; ML-PDA assumes that at most one

measurement per scan can originate from a target, while

ML-PMHT allows for any number of measurements to have

originated from a target. While this assumption may reduce the

appeal of the ML-PMHT, the resulting algorithm does offer

advantages in both its implementation (especially fine-scale

optimization) and in terms of its multitarget formulation.

The algorithms were tested with Monte Carlo trials on five

different synthetic multistatic sonar scenarios. These scenarios

were designed to test a range of geometries, including a single

target, closely-spaced targets, crossing targets, large numbers

of targets, and large numbers of sources and receivers.

II. ML-PDA AND ML-PMHT FORMULATIONS

This section briefly describes the development of the ML-

PDA and the ML-PMHT likelihood ratios (LR), as well as

the manner in which each log-likelihood ratio is optimized.

Supported by ONR grants N00014-10-10412, N00014-10-1-0029, and ARO
grant W911NF-06-1-0467.

Proc. 14th Intn’l Conf. Info. Fusion. Chicago, IL, July 2011.

It also discusses how each algorithm is extended to work for

multiple targets, and how they handle maneuvering targets.

A. ML-PDA Likelihood Ratio

The ML-PDA concept was initially developed in [13]. Sub-

sequently, in [19], [20], and [7] it was applied in a multistatic

active application, which is how we currently employ it. The

assumptions used to develop the ML-PDA LR are [8], [14]:

• A single target is present in each frame with known de-

tection probability Pd. Detections are independent across

frames.

• There are zero or one measurements per frame from the

target.

• The kinematics of the target are deterministic. The motion

is usually parameterized as a straight line, although any

other parameterization is valid.

• False detections (clutter) are uniformly distributed in the

search volume and their number is Poisson distributed

with known density.

• Amplitudes of target and false detections are Rayleigh

distributed. The parameter of each Rayleigh distribution

is known (although the SNR may be tracked [8]).

• Target measurements are corrupted with zero-mean Gaus-

sian noise with known variance.

• Measurements at different times, conditioned on the pa-

rameterized state, are independent.

Based on these assumptions, the ML-PDA log-likelihood ratio

can be constructed. Its development is extensively explained

in [4], so it is only summarized here. For a single scan of data

with mi measurements, the ML-PDA LR is

p1[Z(i)|x]

p0[Z(i)|x]
= 1 − Pd +

Pd

λ

mi
∑

j=1

p[zj(i)|x]ρj(i) (1)

In this expression, Z(i) is the set of measurements in the

ith scan, and zj(i) is an individual measurement (the jth

measurement in the ith scan). Pd is the probability of detection

of the target in the scan, λ is the spatial clutter density,

and ρj(i) is the amplitude likelihood ratio of an individual

measurement. Since one of the assumptions for ML-PDA

(and ML-PMHT) is that, conditioned on x, measurements

at different times are independent, for Nw scans/frames, the

14th International Conference on Information Fusion
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likelihood ratio of a batch is just the product over i, where

i = {1, . . . , Nw}, of the right-hand side of (1). Taking the

logarithm produces the log-likelihood ratio for a batch of data:

Λ(x, Z) =

Nw
∑

i=1

ln

{

1 − Pd +
Pd

λ

mi
∑

j=1

p[zj(i)|x]ρj(i)

}

(2)

Here, Z refers to the set of all measurements in the batch.

In the case where measurements include range-rate (Doppler),

and information is available on the distribution of the Doppler

measurements resulting from clutter, a “moving target indi-

cator” de-weighting term can be added to the log-likelihood

ratio. The MTI deweighting term ζ[dj(i)] is given by [15]

ζ[dj(i)] =
edj(i)

2/2a2

1
mi

∑mi

l=1 edl(i)2/2a2
(3)

Here, dj(i) is the jth Doppler measurement in the ith scan,

and a2 is the variance of the clutter Doppler with an assumed

N (0, a2) distribution. This term is incorporated into equation

(2) as

Λ(x, Z) =

Nw
∑

i=1

ln

{

1 − Pd +
Pd

λ
× (4)

mi
∑

j=1

p[zj(i), dj(i)|x]ρi(j)ζ[dj(i)]

}

This equation is what is implemented in this work for ML-

PDA. In order to find the vector x that gives the maximum

likelihood, a typical nonlinear optimization scheme is used. In

this application, a conjugate gradient approach was found to

work both accurately and rapidly.

B. ML-PMHT Likelihood Ratio

The Maximum Likelihood Probabilistic Multi-Hypothesis

tracker is very similar to the ML-PDA algorithm. The ML-

PMHT likelihood ratio was first formulated for the PMHT

algorithm in [3], [16], [17] and [18]. It was implemented

with a maximum-likelihood formulation in a bistatic active

application in [20] and [21], which is how we currently employ

it. The assumptions that go into it are almost exactly the same

as those listed above for ML-PDA, with one (major) exception.

Instead of allowing only zero or one measurements in a scan

to be assigned to the target, ML-PMHT allows any number

of measurements in a scan to be assigned to the target. While

this would seem to add complexity to the problem, it actually

makes the log-likelihood ratio much easier to develop. For a

single scan of data, the likelihood ratio is

p1[Z(i)|x]

p0[Z(i)|x]
=

mi
∏

j=1

{

π0 + π1V p[zj(i)|x]ρj(i)

}

(5)

where π0 is the prior probabilitity that a measurement is

from clutter, π1 is the prior probability that a measurement

is from the target, and V is the search volume. Again, since

measurements at different times, conditioned on the state, are

independent, the likelihood ratio of a batch is just a product

over i of the terms on the right-hand side of equation (5).

Doing this and then taking the logarithm produces the ML-

PMHT log-likelihood ratio for a batch:

Λ′(x, Z) =

Nw
∑

i=1

mi
∑

j=1

ln

{

π0 + π1V p[zj(i)|x]ρj(i)

}

(6)

Finally, if Doppler measurements are present, and information

is available on the Doppler clutter, the MTI deweighting term

described above can be incorporated into the log-likelihood

ratio, in a manner similar to ML-PDA:

Λ′(x, Z) =

Nw
∑

i=1

mi
∑

j=1

ln

{

π0 + (7)

π1V p[zj(i), dj(i)|x]ρj(i)miζ[dj(i)]

}

C. ML-PMHT optimization

An advantage of the ML-PMHT log-likelihood ratio formu-

lation is that it can be optimized with a closed-form expression

using expectation maximization [10]. As long as there is

a linear relationship between the state x and the predicted

measurement ẑ, we can write the cost function J(x, Z) as

J(x, Z) =

Nw
∑

i=1

mi
∑

j=1

{

[zj(i) − Hx]TR
−1
ij × (8)

[zj(i) − Hx] + ln(|2πRij |)

}

wj(i)

Here, H is the measurement matrix, Rij is the measurement

covariance matrix for the jth measurement in the ith scan,

and wj(i) is the association probability of the measurement.

The EM algorithm for this case involves iteratively calculating

wj(i) and then using this value to solve for the minimum of

equation (8) [3]. The expression for wj(i) is

wj(i) =
π1p[zj(i)|x]ρj(i)

π0/V + π1p[zj(i)|x]ρj(i)
(9)

In equation (8), the relationship between the predicted mea-

surement ẑ and the state is linear

ẑ = Hx (10)

This relation is valid when the measurements are two-

dimensional (typically x and y Cartesian coordinates), and the

state vector is given by

x = [x0 ẋ y0 ẏ]T (11)

Here, (x0, y0) is the Cartesian position of the target at the

beginning of the batch, and ẋ and ẏ are its Cartesian velocity

components. The measurement matrix is given by

H =

[

1 t 0 0
0 0 1 t

]

(12)

In this case, the initial time t = 0 is at the beginning of

the batch. When the relationship described by (10) holds, the

minimization of the cost function in (8) is a simple vector
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quadratic minimization, the solution to which is easily worked

out to be

x =
[

Nw
∑

i=1

mi
∑

j=1

wj(i)H
T
R

−1
ij H

]

−1

× (13)

Nw
∑

i=1

mi
∑

j=1

wj(i)H
T
R

−1
ij zj(i)

When Doppler is added to the measurement, the relationship

between the predicted measurement and the state vector is no

longer linear, and the above solution can not be used. In order

to avoid this problem, the new (three-dimensional) predicted

measurement can be linearized about some initial state vector

x0. In this case, the linearized measurement is

ẑ(x) ≈

[

H

∇r̃(x0)
T

]

x +





0
0

r̃(x0) −∇r̃(x0)
T
x0



 (14)

In this equation, r̃ is the bistatic Doppler, a function of the

state vector and the positions and velocities of the source and

receiver [9]. Now, the vector on the right-hand side of this

equation can be shifted to the left-hand side of the equation

to produce a modified predicted measurement

z̃ = ẑ−





0
0

r̃(x0) −∇r̃(x0)
T
x0



 (15)

and

H̄ =

[

H

∇r̃(x0)
T

]

(16)

so we can write

ẑ = H̄x (17)

The linear relationship between the (modified) predicted mea-

surement and the state again holds, so equation (13) can be

used for the optimization of the cost function and the solution

for the state vector x for ML-PMHT.

D. Extension to Multitarget Scenarios

It is very difficult to extend ML-PDA to multiple tar-

gets. While it is possible to write down the multitarget log-

likelihood ratio, the number of terms increases dramatically

with the number of targets, and the expression becomes

essentially intractable for the multitarget case. In order to

handle multiple targets, ML-PDA treats the problem like

a sequence of single-target problems. For a batch of data,

it optimizes the LLR, and if this value exceeds a certain

threshold, a target is declared. Next, the measurement that has

the highest association probability with that solution is excised

from each scan, and the sequence is repeated for the next

target. This method is not elegant, but it has been shown to

work effectively for multitarget scenarios in [11] and [12]. The

ML-PMHT LLR, on the other hand, is very easily extended to

a multiple target framework. For n targets with state vectors

x1, . . . ,xn, the multitarget LLR is expressed as

Λ′(x, Z) =

Nw
∑

i=1

mi
∑

j=1

ln

(

π0 + π1V

{

p[zj(i)|x1]ρ1j(i) (18)

+ · · · +p[zj(i)|xn]ρnj(i)

}

)

While this is an elegant formulation, it does lead to problems

with track declaration. For a single target, a track is declared

if the LLR produced by the target exceeds some threshold

τ . Now consider the case where there is already an existing

target, and a new target is spawned. The new (joint) likelihood

would be given by equation (18) for n = 2. The increase in

LLR that is due only to target 2 is given by

∆Λ′(x, Z) =

Nw
∑

i=1

mi
∑

j=1

ln

{

1 +
π1V p[zj(i)|x2]ρ2j(i)

π0 + π1V p[zj(i)|x1]ρ1j(i)

}

(19)

This is the test statistic that must be used to determine the

existence of a track for target 2; however, it is a function of

the states of both targets 1 and 2. The test statistic for a target

track should only be a function of that target. This problem

only gets worse as the number of targets increases – the test

statistic for the nth target will be a function of the previous

n − 1 state vectors. For this reason, in this work, ML-PMHT

is treated in the same way as ML-PDA. One target at a time

is found in a batch. After each target is found, measurements

associated with this target are excised from the data and the

process is repeated. Future work will examine how to take

better advantage of ML-PMHT’s multitarget LLR formulation.

E. Target Maneuvers

One of the assumptions of ML-PMHT and ML-PDA is that

target motion is deterministic and can be parameterized. For

this work, all motion was parameterized as a straight line.

However, this was done with a relatively short, sliding batch,

with the idea that any target motion could be approximated

by a series of line segments. In this case, a batch of 11 time

periods was used (each time period was 60 seconds), and then

at every tracker update, the batch was slid forward by two

periods.

III. ML-PDA VS ML-PMHT PERFORMANCE

COMPARISONS

Five multistatic sonar scenarios were created to measure

performance differences between ML-PDA and ML-PMHT.

For each scenario, Monte Carlo testing was performed in order

to accurately quantify any of these differences. The parameters

used for ML-PMHT and ML-PDA for the scenarios are listed

in Table I (these parameters match the conditions in their

respective scenarios). At the conclusion of each scenario, the

following metrics were measured: target in-track percentage,

target duplicate tracks, target root-mean square error (RMSE),

and overall number of false tracks.
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Table I
ML-PMHT AND ML-PDA PARAMETERS

ML-PMHT ML-PDA

π0 π1 V λ Pd

Scen. 1-4 0.95 0.05 1.26× 109 3.7× 10−9 0.8

Scen. 5 0.95 0.05 1.26× 109 6.7× 10−10 0.8

Scen. 1 0.95 0.05 1.26× 109 2.0× 10−7 0.8
Rayleigh clut.

A. Scenarios

Five scenarios were developed for Monte Carlo testing.

All scenarios are shown (with results overlaid) in Figures

1 – 12. Scenario 1 featured a single target moving past a

source and a receiver (the source was a receiver as well). This

was used as a simple baseline for performance comparisons.

Scenario 2 was intended to test each algorithm’s ability to track

closely spaced maneuvering targets. It featured three targets

separated by about 500 distance units moving past several

source-receiver pairs. It should be noted here that none of

the plots showing the scenarios have any units on them, nor

are any units listed in this work. This is because distances in

the data were completely arbitrary. The program that created

the scenario data simulated target return signal-to-noise ratio

(SNR) at the output of a matched filter by setting the SNR at

a distance of 1000 units (which could be anything) from the

target and then simply assuming cylindrical spreading losses,

again referenced to 1000 distance units. No attempt was made

to model “real-world” acoustic propagation loss.

Scenario 3 was designed to test the ability of the trackers

to follow crossing targets. It featured two targets, closing each

other from the east and west. As the targets passed each other,

the target moving from east to west performed a 180-degree

turn and followed the other target back to the east. Scenario

4 was set up with a large number of targets. It featured ten

very low-speed targets and three relatively high-speed targets.

Finally, scenario 5 had a large number of transmitters/receivers

(20), and two targets that approached each other, paralleled

each other for a period, and then separated.

Clutter for the scenarios (with one exception) was also given

K-distribution clutter, as described in [2] and [1]. Thresholding

for the scenarios was set so the clutter density for an individual

source-receiver pair was about 4× 10−9 false detects per unit

of search volume.

B. Results

For each of the scenarios, several hundred runs were per-

formed (the number varied from scenario to scenario, depend-

ing on the individual execution times). In terms of computa-

tional performance, ML-PMHT was slightly more expensive

than ML-PDA. The time to calculate the actual likelihood

ratios was almost identical; however, the EM optimization

used by ML-PMHT was slower than the conjugate gradient

optimization used by ML-PDA. At the conclusion of each

Monte Carlo run set, the following metrics were computed:

in-track percentage, RMSE, target track fragmentation, target

duplicate tracks, and number of false tracks. A track was

associated with a target if the average distance to the target

over the length of the track was less than 2000 distance units.

A duplicate track was declared if more than one track was

associated with a target for a given time. In-track percentage

was simply the ratio of the number of target truth points

for each target that were associated with a track to the

total number of truth points for that target. Fragmentation

was determined by counting the number of disjoint tracks

associated with a target, minus the number of duplicate tracks

(essentially the number of breaks in the track for a target).

Finally, the total number of false tracks was determined by

simply counting the number of tracks not associated with a

target. Each scenario was 60 minutes long, so the number of

false tracks is equivalent to false tracks per hour. For each

scenario, these metrics and a plot of a tracking example for

both ML-PDA and ML-PMHT are shown below.

1) Scenario 1: Performance metrics for scenario 1 (with

K-distribution clutter) are shown in Table II, and examples

of tracking runs for this scenario are shown in Figures 1

and 2. In terms of RMSE, duplicate tracks, and percentage

time in track, there was no dramatic performance difference

in this case between ML-PDA and ML-PMHT. In terms of

in-track percentage, ML-PMHT was slightly better than ML-

PDA (the 95-percent confidence intervals for the two values

did not overlap).

Table II
SCENARIO 1 PERFORMANCE METRICS

Target Fragmen- Duplicate Percentage RMSE
# tation Tracks Time in Track

ML-PDA

1 1.5 0.016 63% 77

ML-PMHT

1 0.8 0.014 68% 85

2) Scenario 2: Performance metrics for scenario 2 are

shown in Table III, and tracking run examples for this scenario

are shown in Figures 3 and 4. This scenario featured three

targets in close proximity to each other, and this was a

case where ML-PDA clearly outperformed ML-PMHT. Both

algorithms were able to track target number 2 almost 100

percent of the time. However, ML-PDA was able to track the

other two targets about 1/2 of the time, whereas ML-PMHT

was only able to track the other two targets 1/4 of the time.

This probably was due to the target assignment model and

the way that ML-PMHT handled multiple tracks. As described

above, for ML-PMHT, any number of measurements in a scan

may be assigned to a target. In the implementation of ML-

PMHT for this work, the likelihood ratio was optimized for

individual tracks one at a time while accounting for already

existing tracks. If a new target created a measurement near

an already existing track, the existing track could “claim”

the measurement in a probabilistic sense at the expense of

the new track. (This “claiming” happens because the ML-

PMHT likelihood ratio does not allow for a measurement to
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Figure 1. Scenario 1 ML-PMHT estimated tracks
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Figure 2. Scenario 1 ML-PDA estimated tracks

be assigned to more than one target simultaneously.) Future

work will examine if there is a better way to implement ML-

PMHT in a multitarget framework where the likelihood ratio

is optimized for multiple targets all at once.

3) Scenario 3: Performance metrics for scenario 3 are

shown in Table IV, and tracking run examples for this scenario

are shown in Figures 5 and 6. As with scenario 1, ML-PMHT

slightly outperformed ML-PDA in terms of percentage time in

track (again, the confidence intervals for the values obtained

did not overlap). This is interesting, because as with scenario

2, scenario 3 featured targets that were close to one another.

However, the targets were moving in opposite directions when

they were at their closest point to each other, so there was only

a limited time where one measurement could probabilistically

claim the other target’s measurement as seemed to happen with

Table III
SCENARIO 2 PERFORMANCE METRICS

Target Fragmen- Duplicate Percentage RMSE
# tation Tracks Time in Track

ML-PDA

1 0.48 0.44 47% 124
2 0.04 1.24 91% 47
3 0.40 0.46 45% 66

ML-PMHT

1 0.00 0.12 22% 86
2 0.00 1.51 100% 40
3 0.01 0.08 22% 57
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Figure 3. Scenario 2 ML-PMHT estimated tracks
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Figure 4. Scenario 2 ML-PDA estimated tracks
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Table IV
SCENARIO 3 PERFORMANCE METRICS

Target Fragmen- Duplicate Percentage RMSE
# tation Tracks Time in Track

ML-PDA

1 0.70 0.25 59% 170
2 1.06 0.02 45% 245

ML-PMHT

1 0.28 0.12 68% 195
2 0.46 0.01 57% 214
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Figure 5. Scenario 3 ML-PMHT estimated tracks

scenario 2. Other metrics were for the most part consistent

between the two algorithms.

4) Scenario 4: Performance metrics for scenario 4 are

shown in Table V, and tracking run examples for this scenario

are shown in Figures 7 and 8. For this scenario, there were 13

targets — 10 slow-speed targets and 3 higher-speed targets.

In Table V one representative low-speed target and one repre-

sentative high-speed target are shown. Again, as with scenario

1, ML-PMHT slightly outperformed ML-PDA in terms of in-

track percentage.

5) Scenario 5: Performance metrics for scenario 5 are

shown in Table VI, and tracking run examples for this scenario

are shown in Figures 9 and 10. Again, ML-PMHT does

better than ML-PDA in terms of in-track percentage. This

Table V
SCENARIO 4 PERFORMANCE METRICS

Target Fragmen- Duplicate Percentage RMSE
# tation Tracks Time in Track

ML-PDA

7 0.46 0.023 59% 80
13 0.34 0.026 41% 95

ML-PMHT

7 0.82 0.039 69% 191
13 0.59 0.072 64% 125
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Figure 6. Scenario 3 ML-PDA estimated tracks
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Figure 7. Scenario 4 ML-PMHT estimated tracks

is interesting, since for a portion of this scenario, the two

tracks are close to one another, so as with scenario 2, we

might expect ML-PDA to best ML-PMHT in terms of in-track

percentage. However, the targets are only close for about 1/3

of the scenario – in scenario 2, they were close the entire time.

The performance of ML-PMHT when the targets are separate

may be the dominant factor in this situation.

6) Scenario 1 with Rayleigh clutter: All of the above

scenarios were run with K-distribution clutter and a relatively

high threshold (12 dB for scenarios 1-4 and 14 dB for scenario

5). Scenario 1 was redone with Rayleigh clutter, a lower

initial target SNR (8 dB down from the other scenario 1

run) and a much lower threshold (2 dB). Results from this

are shown in Table VII, along with tracking run examples

in Figures 11 and 12. Here, ML-PDA seems to be slighly

outperforming ML-PMHT in terms of in-track percentage,
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Figure 8. Scenario 4 ML-PDA estimated tracks

Table VI
SCENARIO 5 PERFORMANCE METRICS

Target Fragmen- Duplicate Percentage RMSE
# tation Tracks Time in Track

ML-PDA

1 0.81 0.28 78% 167
2 0.68 0.34 63% 148

ML-PMHT

1 0.51 0.05 90% 112
2 0.51 0.03 77% 97
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Figure 9. Scenario 5 ML-PMHT estimated tracks
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Figure 10. Scenario 5 ML-PDA estimated tracks

Table VII
SCENARIO 1 PERFORMANCE METRICS (RAYLEIGH CLUTTER)

Target Fragmen- Duplicate Percentage RMSE
# tation Tracks Time in Track

ML-PDA

1 0.73 3.3 76% 497

ML-PMHT

1 0.68 1.9 71% 416

which would contradict the results from the other scenario

1 run. However, examining the false track results, shown in

Table VIII, indicates why this might be the case. The false

alarm rate (or average number of false tracks per run) was

higher for ML-PDA than it was for ML-PMHT, indicating

that the threshold used for declaring tracks for ML-PDA

might have been set too low. These thresholds were set in

accordance with [5] and [6] with the goal of having equivalent

false track rates for the two algorithms. The thresholds were

determined by simulating clutter-only enviroments, fitting the

results to an Extreme-Value distribution [5], and then picking

a threshold commensurate with an appropriate false track

rate for each algorithm. This was done for all the scenarios;

however, this scenario had a very high clutter level due

to the low measurement thresholding, and therefore took a

long to time to complete an individual run. As a result, a

relatively small number of realizations were run (1000) for

this scenario’s clutter threshold determination compared with

the other scenarios (5000-10000). For this level of clutter

and low target SNR, even a small difference in the threshold

makes a significant difference in the results, so inaccuracies

in determining the threshold may be biasing the results.

IV. CONCLUSIONS

The ML-PDA and ML-PMHT tracking algorithms were

applied to five different multistatic scenarios with Monte Carlo

trials. Overall, both algorithms performed well. In several
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Figure 11. Scenario 1 ML-PMHT estimated tracks with Rayleigh clutter
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Figure 12. Scenario 1 ML-PDA estimated tracks with Rayleigh clutter

Table VIII
AVERAGE NUMBER OF FALSE TRACKS.

ML-PDA ML-PMHT

Scenario 1 0.07 0.045

Scenario 2 1.09 1.22

Scenario 3 0.29 0.40

Scenario 4 0.01 0.05

Scenario 5 2.49 4.26

Scenario 1 7.62 3.73
(Rayleigh)

of the scenarios where there was either only one target

or the targets were separated for much of the time, ML-

PMHT seemed to perform slightly better in terms of in-track

percentage. However, although the ML-PMHT likelihood ratio

is very naturally extended to multiple targets (while the ML-

PDA likelihood ratio is not), ML-PMHT was outperformed by

ML-PDA in the scenario where targets were closely spaced.

This was due to the manner in which ML-PMHT was imple-

mented, where an existing track could probabilistically claim

a measurement from a new track. Future work will investigate

how to use ML-PMHT as a true multitarget tracker by using

the multitarget likelihood ratio to search for and declare the

presence of multiple targets simultaneously.
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