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Abstract

Time optimal control problems for a class of linear multi-input systems are
considered. The problems are regularized and the asymptotic and monotone
behavior of the regularisation procedure is investigated. For the regularised
problems the applicability of semi-smooth Newton methods is verified. First
numerical tests are presented which show that the proposed approach, differ-
ently from other methods, does not rely a-priory information of the switching
structure.



1 Introduction

This paper addresses time optimal control for a class of linear multi-input
controls systems for ordinary differential equations. Due to their practical
relevance and inherent structural difficulties, time optimal control has been
receiving a considerable amount of attention for decades. Much of the lit-
erature up to the late sixties is covered in [HL]. Many recent results can
be found or are referenced in [BPW, KLM, MO]. Time optimal control for
infinite dimensional systems is considered in [Fa], for example.

The optimality system associated to time optimal control problems with
pointwise constraints on the controls is complicated due to lack of smoothness
of the optimal controls. In fact, the first order optimality system for time
optimal control problems contains a multivalued operation which impedes the
use of fast numerical methods. For this reason we introduce a regularization
to the time optimal problem. In section 2 the behavior of the solutions of
the regularized problems as the regularization parameter £ tends to zero is
investigated. In particular monotonic structure of the solutions with respect
to ¢ is shown. An optimality system for the regularized problems is derived
under a condition which is stronger than controllability and weaker than
normality. The optimal controls of the regularized problems are W1 regular
and converge to a minimum norm solution of the original problem as the
regularization parameter tends to zero.

The optimality system of the regularized problems is still not C'* so that
second order methods with local quadratic convergence order are not directly
applicable. However, sufficient conditions will be obtained in section 3 which
imply that semi-smooth Newton methods [IK2] are wellposed and locally
superlinearly convergent.

Section 4 contains a brief description of numerical results. We compare
the chosen regularization to an alternative one, which has stronger regular-
ization properties. Since the optimal controls of the original time optimal
problems are typically not continuous, it appears that our choice of regu-
larization which leads to W% regularized controls is preferable over other
regularization strategies which provide smoother controls. More detailed nu-
merical tests are available in [XK].

Let us note that the approach that we propose for solving time optimal
problems deviates from traditional approaches, which are frequently grouped
into direct and indirect methods. Indirect methods based on multiple shoot-
ing techniques [Ke| solve the two point boundary value problem describing



first order necessary conditions. Equipped with a good initial guess for all
unknowns, including the switching function, the shooting method is reported
to converge fast and to generate very accurate solutions. The methods that
we propose also originates from the first order condition, but differently from
the shooting method it does not require accurate information on the switch-
ing structure in advance.

Direct methods on the other hand, consider time optimal problems as a
genuine nonlinear programming problems. They are used in several variants,
which frequently involve reparametrization of the controls as the unknowns.
The new unknowns can be the switching times as in [MB] or the arc durations
as in [KNJ.

2 The time-optimal problem and its
regularization

Consider the time-optimal control problem for the linear multi-input system
minTZO fOT dt

(P) { subject to

%x(t) = Ax(t) + Bu(t), |u(t)]pe <1, 2(0) = zo, (1) = 21,
where A € R B € R"™™ xy € R*, x; € R* are given, u(t) € R”, u is
measurable, and |- |s~ denotes the infinity-norm on R™. The columns of B
are denoted by b;. It is assumed that x; can be reached in finite time by an
admissible control. Then (P) admits a solution with optimal time denoted
by 7*, and associated state * and control u*.

The first order optimality system for (P) can be expressed in terms of
the adjoint p and the Hamiltonian

H(mauapmp) = Po "‘pT(A«T + BU’);



as
(i = Az + Bu, z(0) = xy, (1) = 21,
_p = ATpa

(2.1)
u = argmin, < H(z,v,py, p), a.e. in (0,7),

[ po +p(t)" (Az(t) + Bu(t)) = 0, py > 0,

where the superscript 7" denotes transposition, see e.g. [MS], chapter V, pg.
109, 110. Further p is not identically 0, so that there exists a nontrivial
vector ¢ € R" such that

p(t) = exp (A" (T — 1)) q.

Due to the special structure of H the optimal control can be expressed
as

(2.2) u; = —o(blp) = —U(biTeXp (—AT(r — 1)) q),

where o denotes the coordinate-wise operation

-1 if s <0
(2.3) o(s) € <[-1,1] if s=0
1 if s> 0.

The last equation in (2.1) holds everywhere rather than a.e. on [0,7]. In
fact, p and « are continuous and p(t)T Bu(t) = — >"1", [p(t)7by).

Let us recall the notions of controllability and normality, which will be
referred to below.

2.4 The pair (A, B) is called controllable if
24

rank {B,AB,..., A" !B} =n
(25) The pair (A, B) is called normal if (A, b;)
2.5

is controllable for all columns b; of B.

Normality of (A, B) implies controllability. Moreover, if (A, B) is normal,
then the optimal control u* to (P) is unique, it is bang bang, and piecewise
constant, see e.g. [MS, HL].



The requirement
(26) po >0

is referred to as strict transversality. In this case it can be assumed that

po = 1, which can be achieved by scaling q. If strict transversality holds then

(x*,u*, 7*) is a strict local minimum, in the sense that there exists § > 0

such that z; is not in the attainable set for ¢ € (7* — 0, 7*), [HL], pg.89.
With (2.6) holding, we can express the optimality condition as

(i = Ax + Bu, z(0) = g, (1) = x4,

_p = ATpa
(2.7)
u = argmin, < H(z,v,p), a.e. in (0,7),

|1 + p(7) T (Az(7) + Bu(r)) = 0.

Here we eliminate the variable py from the notation for H since it was fixed
to be 1.
Introducing the transformation t = f and setting

~

i(t) = a(rt) = w(t), p(t) = p(rf) = p(1), @(f) = u(ri) = u(t),

we obtain the following equivalent system to (2.7), where for the ease of
presentation we omit the superscripts :

(i = 7(Az + Bu), z(0) =z, z(1) = x4,
_p = TATpa
(2.8) <

u = argmin, < H(z,v,p), a.e. in (0,7),

|1 +p(1)"(Az(1) + Bu(1)) = 0.

The non-differentiable operation involved in characterizing the optimal

control,
U= _U(BTp)a

compare (2.2), prohibits the use of Newton-type methods for solving (2.8)
numerically.



Therefore a family of regularized problems given by
ming>o [y (145 |u(t)[?) dt
(P.) 1 subject to

%x(t) = Ax(t) + Bu(t), |u(t)]pe <1, 2(0) = zo, (1) = 21,

with € > 0 is considered. The norm |- | used in the cost-functional denotes
the Euclidean norm. It is straightforward to argue the existence of a solution
(Ue» e, Te).

Convergence of the solutions (z., p., ue, 7.) of (P.) to a solution (z*, p*, u*, 7%)
of (P) is considered next. Note that 7* is unique.

Proposition 2.1. For every 0 < gy < &1 and any solution (7%, u*) of (P)

we have
(2.9) " <1y <1 <TH(1 4 %),
(210) |u€1|L2(0,T€1) S |u€0|L2(0,T50) S |U*|L2(O,T*)-

If u* is a bang-bang solution, then
(211) 0 < [u'|Zo0, ey — lucltoq,ny < meas {t € [0,7°] : |uc(t)] < 1}

for every € > 0.

Proof. From the definition of 7* and 7. we have
7" <71, forevery £ >0,

and

T5—|—£/ |u5|2dt§7'*+5/ lu*|? dt,
2 /o 2 Jy

hence ]
|UE|L2(0,TE) < |U'*|L2(0,q—*), and 7" < 71, < 7'*(1 + 5)

For 0 < g9 < &1 we have
Teg e Teq e
/ (14 2 g ) dt < / (14 2, Py dt,
0 2 0 2
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where we used the fact that the pair (7., u.,) is optimal for (P,

.,)- Adding
$(e1 —€0) f;™ |ue, [* dt on both sides implies that

e [ 2 o o [T 2 = 2
(2.12) 7, + — |ue, [P dt + = ( |ug, |2 dt — |ue, [? dt)
2 0 2 0 0

Tep I I Teg
< / (1+ -1 lug, |?) dt < 7. + -1 / e, |? dt.
0 2 2 Jo

Estimating the first by the last expression in (2.12) implies that

Tey Teg Tep Teg
51(/0 |ugl|2dt—/0 ey ? d) ggo(/o |ugl|2dt—/0 ey 2 d),

and hence

(213) |U'81|L2(0,T51) S |u€0|L2(0,T50)'

Estimating the first by the second expression in (2.12) we obtain

Teo T 5 |U’80|L2(0,7’50) ST+ 5 |U’81|L2(0,7’51)

and by (2.13)
7" < Ty < Tey

These estimates imply (2.9) and (2.10).
If u* is bang-bang, then

0< |U*|2L2(o,7*) - |u€|%2(0,7'g)
< f{tE(O,T*):\ug(t)Kl}(l — Jus(t)]?) dt < meas{t € (0,7%) : |u.(t)| < 1},

so that (2.11) holds.

Theorem 2.1. For ¢ — 07 we have 7. — 7° and every convergent subse-
quence of solutions {(u., x:)}eso to (P.) converges in L*(0, 7; R™)xW12(0, 7; R™)
to a solution (u*, x*) of (P), where u* is a minimum norm solution.



Here convergence of u. to u* is defined as

1
/ (7 t) — u ()2 dt = 0
0

and analogously for {z.}, and for weak convergence.

Proof. The first claim follows from Proposition 2.1. Since {u.(7.-)}.>0 and
{xe(7:) }es0 are bounded in L?(0, 1; R™) and W12(0, 1; R"), there exist weak
accumulation points u* € L?(0,7% R™), and 2* € W20, 7*; R*). Subse-
quently we avoid subsequential indices. Passing to the limit in &.(7.-) =
T.(Az (7. ) + Bu.(7.-)) and 2.(0) = xy, x.(7.) = 1 it follows that z* is
admissible. Due to weak closedness of {u € L*(0, 1;R™) : |u(z)|p~ < la.e.}
we have that u* is admissible as well. Since

Te
, £
lim 7. + = lu.|* dt = 17,
e—0+ 2 0

the triple (7%, u*, z*) is optimal for (P). By Proposition 2.1 and weak lower
semi-continuity of norms

(2-14) lig%sup |U’E|L2(U,Tg) < |u*|L2(U,T*) < lg% inf |U’S|L2(0,Te)

and hence lim._,o |uc|2(0,mmm) = |U*|12(0,7+mm). As a consequence u. and
x. converge strongly in L?(0, 7.), respectively WH2(0, 7.; R*), to u* and z*.
Let @ denote another optimal control for (P) with |4| < |u*|. Then by (2.10)
and (2.14)

. N X .
lg% sup |UE|L2(0,TE;RW‘) < |U|L2(0,T*;Rm) <|u |L2(0,T*;Rm) < llga inf |uE|L2(U,T5;Rm)7

which is a contradiction. Consequently (P) has a minimal norm control and
the claimed strong convergence properties hold. O

Corollary 2.1. If (2.5) holds, then the solution u* to (P) is unique, it is
bang-bang, and u. — u* in L? ase — 07,

Proof. (2.5) implies that the solution to (P) is unique and it is bang-bang.
The remainder of the corollary follows from Theorem 2.1. O



We turn to the optimality condition for (P.). Let

-1 if s < —¢
if |s] < €

(2.15) o.(s) € Q¢
1 if s> e.

If o, is applied to a vector, then it acts coordinate-wise.
We shall use a controllability assumption which is stronger than control-
lability and weaker than normality.

(H1) There exists i* such that (A, b;<) is controllable.

Theorem 2.2. Assume that (H1) holds and let (z.,u.,7.) be a solution of
(P.). If there exist n > 0 and an interval I« C (0,1) such that

(2.16) | ()i (t)]e= <1 —m for a.e. t € I,
then there exists an adjoint state p. such that

(i'g = Ax. + Bu., x.(0) = xy, z.(7.) = 23
—p. = ATp.

(2.17)
Ue = _UE(BTPE)

L+ Slue (7o) [ + pe(7) T (Ao (72) + Bue () = 0.

Proof. We use a Lagrange multiplier argument for the reparameterized for-
mulation of (P.) which is given by

mingso [ (7 + 2 () [?) dt
(2.18) subject to

L3(t) = T(AZ(t) + Ba(t)), a € C, £(0) = zo, (1) = a1,

where C = {4 € L*(0,1;R™) : |d]p~ < 1}. Here (4,7) are treated as
independent and z as dependent variable. Further ¢ € C is considered



as explicit constraint and a Lagrange multiplier po is introduced for the
constraint e(a,7) = Z(1) — x; = 0. The resulting Lagrangian is

clirgm) = [+ T P e+ 60) = ),

where z(1) is defined through the differential equation and the initial condi-
tion.

We now argue that e : C x R C L?(0,1;R™) x R — R" satisfies the
regular point condition in the sense of Maurer-Zowe [MZ, IK2]. Thus we
have to verify that

(2.19) 0 € int {e'(., 7.) ((C — @) x R) },
where €'(i., 7.) denotes the linearisation of e at (a.(-7.), 7).
Considering €'(4., 7.) in directions d7 = 0 and Ju satistying (du); = 0 for
i # 1" and (6u);» =01in (0,1) \ (o, v +6), with (o, + ) := I;- , we find
¢ (i1, 7.) (Ju — 1, 0) = [0 €m0 1 by (Su(t) — (1)) dt
= [T AN by (ult + ) — ac(t + @));- dt,

where by = 7e7A1=0-a)p.. Then
' (te, 7.) (0u — i, 0) = /66 AO=D b (Su(t) — G (t))s dt,
0
where 0%, (t) = 0u;- (t + @), Ue - (t) = Ge 4+ (t + ). Note that by (2.16)
{67 — )i : [0,0] = R | |(6@)ir] <1} D S o= {v:[0,6] = R, |v] < g}.

Observe that controllability of (A, b;.) implies that (A, bi, ) is controllable as
well. Controllability of the single input system (A, b;+) implies that

(2.20) 0€mt{/ AODpydt | v e S).

In fact the set on the right of (2.20) contains 0 and it has nonempty interior,
see e.g. [LM], page 77, 133. Moreover, if 0 was a boundary point of this
set, then the corresponding control v = 0 is an extremal control, which is
impossible, e.g. [LM], page 133. Now (2.20) implies (2.19).

9



With the regular point condition satisfied, we can conclude the station-
arity properties

ET(?:\L€7T€, [L[]) = 0,

(2.21)
Lo, e, pio) (0u — ) > 0 for all du with |dume < 1.

From the second property in (2.21) we have,
! T
/ (et + BTe™ W=D o) (6u — @) dt > 0.
0

Setting
(2.22) p(t) = e ™A with g = ™" p,
this implies
/1(6@5 + BTp,) (6u — a.) dt > 0,
0

for all du as in (2.21). The second and third claim in (2.17) follow with

p:(t) = p(7711).
Exploiting the first property in (2.21) implies that

Lo (e, ey pio) = 1+ £ [ ac|? dt
ul (Ae™ag + [} e 0D Ba () dt + [} A1 — t)e™ D7 B (t) dt)
=1+ % [\ Jac P dt + pd (AeTO=0+0A5, 4
fol e A Ba(t) dt + fol AemA0-1) fot e™ A=) B (s)) ds dt = 0.

This implies
c 1 1
(2.23) L (te, 7oy pro) = 1+§/ |a€|2dt+/ p'(t) (Az.(t)+ Ba.(t)) dt = 0.
0 0

From u, = —o.(BTp.) we conclude that u, € WH(0, 7.; R™),
We introduce the Hamiltonian for (P:) as

£
H.(z,u,p) =1+ §|u|§m + pT(Az + Bu).

10



It is constant along the optimal solution. In fact we have almost everywhere
n (0,1)

d L S ATdA ATdA T A d A T
EHE(:EEJU’EJPE)_S gdtu8+7— dtpg dt +pgA xe +p€Bdtu5

Combined with (2.23) this implies that
+ %mg@m + pT(Az. + Bi.) = 0 on [0, 1].

This implies the claim. U
The proof revealed extra regularity of u.:
Corollary 2.2. Under the assumptions of Theorem 2.2 we have u. € WH(0, 7.; R™).

Remark 2.1. Condition (2.16) requires that the modulus of at least one of
the coordinates of 4, is not almost everywhere equal to 1. Once it is known
from Corollary 2.2 that u. is continuous this amounts to requiring that at
least one of the coordinates of u* switches from 1 to —1 or vice versa.

Under the assumptions of Theorem 2.2 the first order necessary optimality
condition for (P.) after the transformation ¢ — £ is given by

(i = 7(Az + Bu), z(0) = xo, z(1l) = 2,

—p=T1A"p
(2.24)
u = —o.(B"p)

1+ Slu(1)? +p(1)T (Az(1) + Bu(1)) = 0,

where for convenience of notation the dependence on ¢ and the superscript
hat were dropped.

In the following section we shall investigate semi-smooth Newton methods
for solving (2.24).

We close this section with a simple example which illustrates some of the
features of the regularization approach.

11



Example 2.1. Consider the two-dimensional time optimal problem for the
simple control system

i‘l = U

j"? = U3,

with so that A is the zero, and B the identity matrix, with initial condition
(1,%) and terminal condition the origin. This system is controllable but it is
not normal. The optimal time is 7* = 1, the first coordinate of an optimal
control is uniquely determined u] = —1 , with associate state z; = 1 — .
There are infinitely many choices for optimal solutions u} of bang-bang and
non bang-bang type. The associated constant adjoints are (py,p2) = (1,0).

They satisfy
-1
u=—o(p) € ( 1] )

The transversality condition 1 + p? Bu = 0 is satisfied.

For the regularized problem we find 7. = 1. Differently from the un-
regularized problem the solution to the regularized problem is unique. The
optimal control and trajectory are given by

(ur,ug) = (—1,—.5) with (xy,29) = (1 —t,.5(1 — t)).

In this particular example the solution of the regularized problem does not
depend on . Note that this solution is also one of the minimum norm
solutions of the unregularized problem. The adjoint is p. = (1 + %, 5). It

satisfies
-1
u=—aot)=( 2} )
2

and the transversality condition 1+ £|u|?> 4+ p! Bu = 0.

3 Semi-smooth Newton method

In this section the semi-smooth Newton method for solving the regularized
optimality system (2.24) is described and analyzed. It will allow that (2.24)
can be solved efficiently inspite of the fact that o. is not differentiable.

12



Throughout we assume (H1) to hold. We fix ¢ > 0 and denote by
(z., ue, 7.) € WH0,1) x L*(0,1) x R a solution to (P.) with associated
adjoint p. € W2(0, 1). It is assumed that

1
(H2) there exists 5 € (0,1) such that |- blp.(5)| = |(u.)s-(5)| < 1,
£

and
H3 b p. (1 e, foralli=1,...,m.
(H3) |b; p-(1)] # &, R

Assumption (H2) corresponds to (2.16), where we now use the fact that as a
consequence of Theorem 2.2 the control u, is continuous. With (H2) and (H3)
holding there exists a neighborhood U, of p. in W'#(0,1;R"), t € (0,1), and
a nontrivial interval (o, a4+ 6) C (0,1) such that for p € U, we have

bl p(t)| #cforallt€[t, 1], andi=1,...,m
and
(3.1) bLp(t)| < e for t € (o, + 6).

We set U = {u € L*(0, ;R™) : u|[t, 1] € W2(£,1;R™)} endowed with the
norm 1

luly = (|U|%2(0,1) + |u|%2(f,1))

and introduce

F:DpC X — L*(0,;R") x L*(0, ;R") x U x R" x R

where
Dp=W"(0,1) xU,. x U x R,
X =Wh(0,1;R") x WH(0,1;R") x U x R,

and

& —T1Ar — TBu

—p—TATp
(3.2) Flz,p,u,7)=| u+o.(B"p)

z(1l) — xy

L+ 5lu(M) +p(1)" (Az(1) + Bu(1))

13



Note that F' = (F1, ..., Fs) is well-defined. This is obvious for F, F, and
F3. For Fy, Fy it follows from the fact that W12(0,1) embeds continuously
into C'(0,1). Morevover F(z., p, u., 7.) = 0. We shall keep z.(0) = z as
an explicit constraint.

Remark 3.1. The need for introducing U in such a way that its elements
are more regular at 1 is due to the fact that we use here the point-wise
transversality condition rather than the integrated form (2.23). - Condition
(H3) will be needed to prove superlinear convergence of the Newton iteration.

Applying Newton’s method to F' = 0 is impeded by the non-differentiability
of o.. We use

1 if |s| < e
3.3 G < = €
(3:3) oe(s) {0 if |s| > ¢

as a generalized derivative and argue that the resulting Newton iteration is
semi-smooth and hence locally superlinearly convergent. The Newton itera-
tion step is given by

(3.4) DF(x, p, u, 7)(dz, dp, du, 61) = —F(x, p, u, 7)

where dz(0) = 0 and DF denotes the Frechet-derivative in all terms of F' ex-
cept for p — o.(B”p), for which the generalized derivative is taken according
to (3.3). For further reference we give the detailed form of (3.4):

(462 — TASx — 7B 6u — 07(Az + Bu) = —F, 6x(0) =0
—4op —TAop — 6TATp = —F,
du+ Go.(BTp)BTép = —F3
(3.5) g
p(1)T(Adz(1) + Bou(1)) + op(1)" (Az(1) + Bu(1))
\ +€U(1)T6U(]_) = —F5,

where the coordinates of Go.(BTp) BT §p are given by Go.((BTp);))(BTdp);.

A possible initialization may consist in choosing ((u)o, 7o), setting (x)o as
the linear interpolation between xy and z, and determining (p), such that
the transversality condition and the adjoint equation are satisfied.

14



We now briefly summarize those facts from semi-smooth Newton methods
which are relevant for this paper. Let X and Z be Banach spaces and let
F: Dp C X — Z be a nonlinear mapping with open domain Dp.

Definition 3.1. The mapping F' : Dp C X — Z 1is called Newton-differentiable
on an open subset U C Dp, if for each x € U there exists a generalized
deriwative DF (x) € L(X, Z) and

1
(3.6) lim —— |F(x + ) — F(x) — DF(x + h)h|, = 0.
h—0 |h|X

Theorem 3.1. Suppose that x* € U is a solution to F(x) = 0 and that F is
Newton-differentiable in an open set U containing x*. If further {||DF (x) || :
x € U} is bounded, then the Newton-iteration Xx11 = Xz — DF (xx) ™" F(x)
converges q-superlinearly to x*, provided that |xo — x*|x is sufficiently small.

For the statement and proof of superlinear convergence of the time-optimal
control problem, some further notation is required. For (z, p, u, 7) € Dp we

define A € RHDx(n+1) py
All A12
A= ,
AQ]_ 0

where
1
(37) All _ 517'/ 67'A(17t)BXIBT 67—AT(1—1§) dt € Rnxn)
0
38) A =e71r fol e A=Y By, BT ftl e_TAT(t_s)ATp(s) ds dt
3.8

— fol e™ DAz + Bu) dt € R",

(3.9) Ay = (Ax(1)+Bu(1))' - (" (1)B+eu’ (1)) Go.(BTp(1)) BT € (R")?,

with x; = diag(xy,, ..., xu,) and x;, the characteristic function of the set
T 1 :
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which is nonempty for p € U,  and ¢ = ¢*. The controllability assumption
(H1) together with (H2) imply that the symmetric matrix Aj; is invertible
with uniformly bounded inverse with respect to p € U, and 7 in compact
subsets of (0,00). In fact, since I;+(p) D («, @+ d) we obtain for some ¢ > 0

Ay = 6—17_/ A(1—t) szXI bT TAT(1-1) g4
a+0
> 6—17_/ e A=) bi*bz: eTAT(l—t) dt

s
_ EflTeTA(lfa) / efTAt bz*bz; efTATtdt 67'AT(1704) dt > ¢,
0
where we use that the controllability Gramian
§
/ e T bl e ™A dt
(3 * )
0 (3
is uniformly positive definite for 7 in compact subsets of (0, c0).
For our analysis we shall utilize the fact that the Schur complement
A A Ap eR

of A for (z, p, u, 7) in a neighborhood of (z., p., u., 7.) is nontrivial. If
Aoy AL Ay # 0 at (z., p., u., 7.), we cannot conclude that Ay A, Ay #0
for (z, p, u, 7) in a neighborhood of (z., pe, u., 7.), since, while with (H2)
holding, As; is continuous with respect to (z, p, u, 7) € X, this is not the
case for A1_11 and A5 due to the term y;. We therefore assume that

there exists a bounded neighborhood
(H4) U C Dp C X of (x, p, ue, 7.) and ¢ > 0 such that

|Agy A A > cforall (z, p, u, 7) €U.

Theorem 3.2. If (H1)-(H4) hold and (z., ue, 7.) denotes a solution to
(P.) with associated adjoint p., then the semi-smooth Newton algorithm con-
verges superlinearly, provided that the initialization is sufficiently close to

(xaapaa Ue, 7—5)-
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For the proof we require the following lemma.

Lemma 3.1. Suppose that (H1) — (H4) hold. Then there exists a constant
C such that for every (x, p, u, 7) €U, and F € L*(0, 1) x L*(0, 1) x U x R
DF(z, p, u, 7)(0z, dp, du, 07) = —F

admits a unique solution (0x, 0p,du, 6T7) € X and

(3-10) |(5$a op, ou, 57’)|X <C |F|L2><L2><U><R-

Proof. Let (x, p, u,7) € U and note that system (3.5) is equivalent to

(3.11)

(6x(t) = (feTA(t’S)(—Fl + 7bou + 07(Ax + Bu)) ds
op(t) = e =05p(1) 4 ftl e~ A=) (67 ATp — Fy) ds
{ du+ Go.(BTp)BTép = —F3

dx(l) = —Fy

(p(1)7(~AFy + Bou(D) + 6p(1)7 (Ax(1) + Bu(1)) + du(l) = ~F;.

On I; we have (Go.(BTp)); = e'. The third equation in (3.11) can be
expressed as

(3.12) bu=—F;—etx; B'6p ae. in (0,1).

Let us set

1
F = _/ AR () dt, Fy=¢ T/ / A0 By, BT e ™A %) By (s) ds dt,
0

Fy=—7B / TALD By (t) dt.
0

From (3.12), and the first and fourth equation in (3.11) we have
(3.13)

=7 fol e™ =) By BT §pdt + o7 fol e A=Az + Bu) dt + F, + Fj

17



Replacing dp by the second equation in (3.11) we find

1
—Fy = —517/ e A0 By BT ¢4 (10 65(1) dt
0
1 1 ; R
—6_17'57'/ eTA(l_t)BX[BT/ e =D AT () ds dt + Fy
0 ¢

1
+ 57/ e A0 (Az + Bu) dt + F) + F3,
0

which involves dp(1) and §7 as unknowns, and can be expressed as
(314) All(sp(l)+A12(ST: F]_ +F2+F3+F4 =:T.

Eliminating ou(1) from the last equation in (3.11) by means of the third
equation implies

(3.15)  Agdp(1) = —F5 + F5(1)T(BTp(1) + eu(1)) + p(1)TAF, =: ry.

Combining (3.14) and (3.15) we obtain the following linear system for (dp(1), d7) :

(3.16) A ( Zp(l) ) - ( " ) .

By (H1), (H2), and (H4) its unique solution is given by
(317) oT = (A21 Aﬁl Alg)il(A21 Aﬂl r — Tg), 6])(1) = Aﬂl (T1 - A1267').

Moreover there exists a constant C' = C(7, |2|c(0,1), |Plc0,1), |4|z20,1), [u(1)]),
such that
[0p(L)| 4+ [67] < C|F |2k 2 xuxr-

From (3.5) and (3.11), C' can also be chosen such that

|(6x, dp, du, 67)|x < C'|F|r2xr2x0 k-
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Proof of Theorem 3.2. We apply Theorem 3.1 with x* = (z., p., u., 7).
Lemma 3.1 implies the required uniform bound of the generalized inverses
DF in the neighborhood U C Dy of (z., pe, ue, 7.). Therefore it suffices to
argue Newton-differentiability of F'in Dp. This is obvious for all coordinates
of F' except for Fj, and specifically for the mapping

F:p— UE(BTp)

from U,. C WH*(0, 1; R*) — U. Utilizing the definitions of U, and o, it
suffices to consider the restriction of F from W12(0, t; R*) to L*(0, ; R')
which we again denote by F. Note that F can be decomposed as

F =Fs0F,0F,
where
Fi: W0, 5 R*) - WH(0, §; R), F: W0, & R) — L*(0, §; R),
Fs: L0, I; R) — L*(0, T; R),
are given by
Fi(u) = B"u, Fy(v) = max(—1, g), F3(v) = min(1,v).

In [HIK, IK2] it was shown that v — max(0,v) is Newton differentiable
from LP(2) to LI(2) if oo > p > ¢ > 1, if Q is a bounded domain. Since
min(1l,v) = 14 min(0, v — 1) this implies that F3 and similarly that F, are
Newton differentiable. From the chain rule for Newton differentiable mapping
in [HK] it follows that F; o F, is Newton differentiable. The chain rule for
a linear mapping, here Fi, followed by the Newton differentiable mappings
F3 0 Fy, [IK1], implies that F is Newton differentiable in Dp. O

4 A numerical example
The semi-smooth Newton method is used to solve a classical time optimal

problem related to the harmonic oscillator with three switching points. We
consider
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minq—zo fOT dt
(4.1) subject to

o) = Ax(t) + Bu(t), |u(t)] < 1, 2(0) = zo, 2(7) = 2,

where

U N G I}

The optimal minimal time for the continuous problem is known to be 7% =
10.5871. To solve (4.1) numerically a time discretization based on the Crank
Nicolson method with equidistant grid points was applied to (3.5). The
initialisation for the state was chosen as a semicircle connecting xy and ;.
Then u(1) was chosen to be active, and p was chosen so that the transversality
condition and the adjoint equation hold. With respect to the choice of the
parameter ¢ = % we utilized a continuation procedure, starting with a small
value and increasing it, using the solution from the smaller value of ¢ as
initialization for the next larger c-value. Certainly this procedure can be
automated as has been done elsewhere, but this was not the focus of this
paper. In Table 1 we show the number of iterates of the Netwon iteration
(outer loop) that was required for this continuation procedure with respect
to ¢. The Newton iteration was stopped when the residual of the optimality
system in the L2-norm was below 1078, Also in Table 1 we depict the optimal
minimal times 7*(¢). These results are obtained for meshsize h = 55. Then

c 1 ) 10 20
No. of iterations 8 8 4 7
Final Time 11.26515 | 10.84455 | 10.82977 | 10.81781
Table 1
the results for ¢ = 1 are interpolated to the finer grid h = ﬁ and the

continuation procedure with respect to ¢ is repeated. The results are depicted

in Table 2. The graphs for the corresponding controls are given in Figure 1.
The same procedure with h = 1/512 and ¢ = 100 gives the optimal time

10.588. In some cases, typically at the beginning of the iterations and for
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¢ 1 10 50 100 200
No. of iterations 5 46 4 4 3
Final Time 11.1088 | 10.6092 | 10.6034 | 10.6033 | 10.6031
Table 2
Figure 1: N =128 and ¢ = 1(left), 10(middle) and 100(right)

the lowest values of ¢ the full Newton step was too large. Therefore we used
a one-dimensional line search based on a quadratic polynomial interpolation
for the L?— norm of the residual combined with an Armijo rule.

k+1_,, * . . .
Table 3 depicts the quotients W’ where u*(c¢) is the solution to
L

the discretized version of (2.17) for ¢ = 50. It shows that the algorithm is in
fact superlinearly convergent.

No. of iterations | 1 2 3 4
Cr 0.94138| 0.00037| 0.00001| 0.00000
Table 3

In this paper we chose to regularize o by the ramp functions o. with
increasing slops as ¢ — 07. Certainly other alternatives are possible as for
instance o.(s) = 2atan(cs). This family of C°— functions also has the
property that it converges to o as ¢ — 0, but it appears to be less apt for
the purpose of approximating the discontinuous switching structure of the
optimal controls since ¢ has to be taken significantly larger for ¢. than for
o1 to obtain comparable results.

" Acknowledgement: We thank Mrs. J. Rubesa for providing us with the
numerical example.
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