
Semi-smooth Newton Methods forTime-Optimal Control for a Class of ODEsKazufumi Ito1 Karl Kunish2February 12, 2010

1Department of Mathematis, North Carolina State University, Raleigh, NorthCarolina, 27695-8205, USA; researh partially supported by the Army ResearhOÆe under DAAD19-02-1-0394 and the Air Fore OÆe of Sienti� Researhunder FA9550-09-1-02262Institut f�ur Mathematik, Karl-Franzens-Universit�at Graz, A-8010 Graz, Aus-tria, supported in part by the Fonds zur F�orderung der wissenshaftlihenForshung under SFB 32, "Mathematial Optimization and Appliations inBiomedial Sienes".



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
12 FEB 2010 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 
Semi-smooth Newton Methods for Time-Optimal Control for a Class of 
ODEs 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
North Carolina State University,Center for Research in Scientific
Computation,Department of Mathematics,Raleigh,NC,27695-8212 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
CRSC-TR10-04 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

25 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



AbstratTime optimal ontrol problems for a lass of linear multi-input systems areonsidered. The problems are regularized and the asymptoti and monotonebehavior of the regularisation proedure is investigated. For the regularisedproblems the appliability of semi-smooth Newton methods is veri�ed. Firstnumerial tests are presented whih show that the proposed approah, di�er-ently from other methods, does not rely a-priory information of the swithingstruture.



1 IntrodutionThis paper addresses time optimal ontrol for a lass of linear multi-inputontrols systems for ordinary di�erential equations. Due to their pratialrelevane and inherent strutural diÆulties, time optimal ontrol has beenreeiving a onsiderable amount of attention for deades. Muh of the lit-erature up to the late sixties is overed in [HL℄. Many reent results anbe found or are referened in [BPW, KLM, MO℄. Time optimal ontrol forin�nite dimensional systems is onsidered in [Fa℄, for example.The optimality system assoiated to time optimal ontrol problems withpointwise onstraints on the ontrols is ompliated due to lak of smoothnessof the optimal ontrols. In fat, the �rst order optimality system for timeoptimal ontrol problems ontains a multivalued operation whih impedes theuse of fast numerial methods. For this reason we introdue a regularizationto the time optimal problem. In setion 2 the behavior of the solutions ofthe regularized problems as the regularization parameter " tends to zero isinvestigated. In partiular monotoni struture of the solutions with respetto " is shown. An optimality system for the regularized problems is derivedunder a ondition whih is stronger than ontrollability and weaker thannormality. The optimal ontrols of the regularized problems areW 1;1 regularand onverge to a minimum norm solution of the original problem as theregularization parameter tends to zero.The optimality system of the regularized problems is still not C1 so thatseond order methods with loal quadrati onvergene order are not diretlyappliable. However, suÆient onditions will be obtained in setion 3 whihimply that semi-smooth Newton methods [IK2℄ are wellposed and loallysuperlinearly onvergent.Setion 4 ontains a brief desription of numerial results. We omparethe hosen regularization to an alternative one, whih has stronger regular-ization properties. Sine the optimal ontrols of the original time optimalproblems are typially not ontinuous, it appears that our hoie of regu-larization whih leads to W 1;1 regularized ontrols is preferable over otherregularization strategies whih provide smoother ontrols. More detailed nu-merial tests are available in [XK℄.Let us note that the approah that we propose for solving time optimalproblems deviates from traditional approahes, whih are frequently groupedinto diret and indiret methods. Indiret methods based on multiple shoot-ing tehniques [Ke℄ solve the two point boundary value problem desribing1



�rst order neessary onditions. Equipped with a good initial guess for allunknowns, inluding the swithing funtion, the shooting method is reportedto onverge fast and to generate very aurate solutions. The methods thatwe propose also originates from the �rst order ondition, but di�erently fromthe shooting method it does not require aurate information on the swith-ing struture in advane.Diret methods on the other hand, onsider time optimal problems as agenuine nonlinear programming problems. They are used in several variants,whih frequently involve reparametrization of the ontrols as the unknowns.The new unknowns an be the swithing times as in [MB℄ or the ar durationsas in [KN℄.2 The time-optimal problem and itsregularizationConsider the time-optimal ontrol problem for the linear multi-input system(P ) 8>>><>>>:min��0 R �0 dtsubjet toddtx(t) = Ax(t) +Bu(t); ju(t)j`1 � 1; x(0) = x0; x(�) = x1;where A 2 Rn�n ; B 2 Rn�m ; x0 2 Rn ; x1 2 Rn are given, u(t) 2 Rm , u ismeasurable, and j � j`1 denotes the in�nity-norm on Rm . The olumns of Bare denoted by bi. It is assumed that x1 an be reahed in �nite time by anadmissible ontrol. Then (P ) admits a solution with optimal time denotedby � �, and assoiated state x� and ontrol u�.The �rst order optimality system for (P ) an be expressed in terms ofthe adjoint p and the HamiltonianH(x; u; p0; p) = p0 + pT (Ax +Bu);
2



as(2.1) 8>>>>>>><>>>>>>>:
_x = Ax+Bu; x(0) = x0; x(�) = x1;� _p = ATp;u = argminjvj`1�1H(x; v; p0; p); a.e. in (0; �);p0 + p(t)T (Ax(t) +Bu(t)) = 0; p0 � 0;where the supersript T denotes transposition, see e.g. [MS℄, hapter V, pg.109, 110. Further p is not identially 0, so that there exists a nontrivialvetor q 2 Rn suh that p(t) = exp (AT (� � t)) q:Due to the speial struture of H the optimal ontrol an be expressedas(2.2) ui = ��(bTi p) = ���bTi exp (�AT (� � t)) q�;where � denotes the oordinate-wise operation�(s) 2 8><>:�1 if s < 0[�1; 1℄ if s = 01 if s > 0:(2.3)The last equation in (2.1) holds everywhere rather than a.e. on [0; � ℄. Infat, p and x are ontinuous and p(t)TBu(t) = �Pmi=1 jp(t)T bij.Let us reall the notions of ontrollability and normality, whih will bereferred to below.(2.4) ( The pair (A;B) is alled ontrollable ifrank fB;AB; : : : ; An�1Bg = n(2.5) ( The pair (A;B) is alled normal if (A; bi)is ontrollable for all olumns bi of B:Normality of (A;B) implies ontrollability. Moreover, if (A;B) is normal,then the optimal ontrol u� to (P ) is unique, it is bang bang, and pieewiseonstant, see e.g. [MS, HL℄. 3



The requirement(2.6) p0 > 0is referred to as strit transversality. In this ase it an be assumed thatp0 = 1, whih an be ahieved by saling q. If strit transversality holds then(x�; u�; � �) is a strit loal minimum, in the sense that there exists Æ > 0suh that x1 is not in the attainable set for t 2 (� � � Æ; � �), [HL℄, pg.89.With (2.6) holding, we an express the optimality ondition as
(2.7) 8>>>>>>><>>>>>>>:

_x = Ax+Bu; x(0) = x0; x(�) = x1;� _p = ATp;u = argminjvj`1�1H(x; v; p); a.e. in (0; �);1 + p(�)T (Ax(�) +Bu(�)) = 0:Here we eliminate the variable p0 from the notation for H sine it was �xedto be 1.Introduing the transformation t̂ = t� and settingx̂(t̂) = x(� t̂) = x(t); p̂(t̂) = p(� t̂) = p(t); û(t̂) = u(� t̂) = u(t);we obtain the following equivalent system to (2.7), where for the ease ofpresentation we omit the supersripts ^:
(2.8) 8>>>>>>><>>>>>>>:

_x = �(Ax +Bu); x(0) = x0; x(1) = x1;� _p = �ATp;u = argminjvj`1�1H(x; v; p); a.e. in (0; �);1 + p(1)T (Ax(1) +Bu(1)) = 0:The non-di�erentiable operation involved in haraterizing the optimalontrol, u = ��(BTp);ompare (2.2), prohibits the use of Newton-type methods for solving (2.8)numerially. 4



Therefore a family of regularized problems given by(P") 8>>><>>>:min��0 R �0 (1 + "2 ju(t)j2) dtsubjet toddtx(t) = Ax(t) +Bu(t); ju(t)j`1 � 1; x(0) = x0; x(�) = x1;with " > 0 is onsidered. The norm j � j used in the ost-funtional denotesthe Eulidean norm. It is straightforward to argue the existene of a solution(u"; x"; �").Convergene of the solutions (x"; p"; u"; �") of (P") to a solution (x�; p�; u�; � �)of (P ) is onsidered next. Note that � � is unique.Proposition 2.1. For every 0 < "0 < "1 and any solution (� �; u�) of (P )we have(2.9) � � � �"0 � �"1 � � �(1 + "12 );(2.10) ju"1jL2(0; �"1 ) � ju"0jL2(0; �"0 ) � ju�jL2(0; ��):If u� is a bang-bang solution, then(2.11) 0 � ju�j2L2(0; ��) � ju"j2L2(0; �") � meas ft 2 [0; � �℄ : ju"(t)j < 1gfor every " > 0.Proof. From the de�nition of � � and �" we have� � � �" for every " > 0;and �" + "2 Z �"0 ju"j2 dt � � � + "2 Z ��0 ju�j2 dt;hene ju"jL2(0; �") � ju�jL2(0; ��); and � � � �" � � �(1 + "2):For 0 < "0 < "1 we haveZ �"00 (1 + "02 ju"0j2) dt � Z �"10 (1 + "02 ju"1j2) dt;5



where we used the fat that the pair (�"0 ; u"0) is optimal for (P"0). Adding12("1 � "0) R �"10 ju"1j2 dt on both sides implies that(2.12) �"0 + "12 Z �"10 ju"1j2 dt+ "02 � Z �"00 ju"0j2 dt� Z �"10 ju"1j2 dt�� Z �"10 (1 + "12 ju"1j2) dt � �"0 + "12 Z �"00 ju"0j2 dt:Estimating the �rst by the last expression in (2.12) implies that"1� Z �"10 ju"1j2 dt� Z �"00 ju"0j2 dt� � "0� Z �"10 ju"1j2 dt� Z �"00 ju"0j2 dt�;and hene(2.13) ju"1jL2(0; �"1 ) � ju"0jL2(0; �"0 ):Estimating the �rst by the seond expression in (2.12) we obtain�"0 + "02 ju"0j2L2(0; �"0 ) � �"1 + "02 ju"1j2L2(0; �"1 )and by (2.13) � � � �"0 � �"1 :These estimates imply (2.9) and (2.10).If u� is bang-bang, then0 � ju�j2L2(0;��) � ju�j2L2(0;�")� Rft2(0;��):ju"(t)j<1g(1� ju"(t)j2) dt � measft 2 (0; � �) : ju"(t)j < 1g;so that (2.11) holds.Theorem 2.1. For " ! 0+ we have �" ! � � and every onvergent subse-quene of solutions f(u"; x")g">0 to (P") onverges in L2(0; ��;Rm)�W 1;2(0; ��; Rn)to a solution (u�; x�) of (P ), where u� is a minimum norm solution.6



Here onvergene of u" to u� is de�ned asZ 10 ju"(�" t)� u�(� � t)j2 dt! 0and analogously for fx"g, and for weak onvergene.Proof. The �rst laim follows from Proposition 2.1. Sine fu"(�"�)g">0 andfx"(�"�)g">0 are bounded in L2(0; 1;Rm) andW 1;2(0; 1; Rn), there exist weakaumulation points u� 2 L2(0; � �;Rm); and x� 2 W 1;2(0; � �; Rn). Subse-quently we avoid subsequential indies. Passing to the limit in _x"(�" �) =�"(Ax"(�" �) + Bu"(�" �)) and x"(0) = x0; x"(�") = x1 it follows that x� isadmissible. Due to weak losedness of fu 2 L2(0; 1;Rm) : ju(x)j`1 � 1 a:e:gwe have that u� is admissible as well. Sinelim"!0+ �" + "2 Z �"0 ju"j2 dt = � �;the triple (� �; u�; x�) is optimal for (P ). By Proposition 2.1 and weak lowersemi-ontinuity of norms(2.14) lim"!0 sup ju"jL2(0;�") � ju�jL2(0;��) � lim"!0 inf ju"jL2(0;�")and hene lim"!0 ju"jL2(0;�";Rm) = ju�jL2(0;��;Rm). As a onsequene u" andx" onverge strongly in L2(0; �"), respetively W 1;2(0; �"; Rn), to u� and x�.Let û denote another optimal ontrol for (P ) with jûj < ju�j. Then by (2.10)and (2.14)lim"!0 sup ju"jL2(0;�";Rm) � jûjL2(0;��;Rm) < ju�jL2(0;��;Rm) � lim"!0 inf ju"jL2(0;�";Rm);whih is a ontradition. Consequently (P ) has a minimal norm ontrol andthe laimed strong onvergene properties hold.Corollary 2.1. If (2.5) holds, then the solution u� to (P ) is unique, it isbang-bang, and u" ! u� in L2 as "! 0+.Proof. (2.5) implies that the solution to (P ) is unique and it is bang-bang.The remainder of the orollary follows from Theorem 2.1.7



We turn to the optimality ondition for (P"). Let�"(s) 2 8><>:�1 if s � �"s" if jsj < "1 if s � ":(2.15)If �" is applied to a vetor, then it ats oordinate-wise.We shall use a ontrollability assumption whih is stronger than ontrol-lability and weaker than normality.(H1) There exists i� suh that (A; bi�) is ontrollable:Theorem 2.2. Assume that (H1) holds and let (x"; u"; �") be a solution of(P"). If there exist � > 0 and an interval Ii� � (0; 1) suh that(2.16) j (û")i�(t)j`1 � 1� � for a.e. t 2 Ii�;then there exists an adjoint state p" suh that
(2.17) 8>>>>>>><>>>>>>>:

_x" = Ax" +Bu"; x"(0) = x0; x"(�") = x1� _p" = ATp"u" = ��"(BT p")1 + �2 ju"(�")j2Rm + p"(�")T (Ax"(�") +Bu"(�")) = 0:Proof. We use a Lagrange multiplier argument for the reparameterized for-mulation of (P") whih is given by(2.18) 8>>><>>>:min��0 R 10 (� + �"2 jû(t)j2) dtsubjet toddt x̂(t) = �(Ax̂(t) +Bû(t)); û 2 C; x̂(0) = x0; x̂(1) = x1;where C = fû 2 L2(0; 1;Rm) : jûj`1 � 1g. Here (û; �) are treated asindependent and x̂ as dependent variable. Further û 2 C is onsidered8



as expliit onstraint and a Lagrange multiplier �0 is introdued for theonstraint e(û; �) = x̂(1)� x1 = 0. The resulting Lagrangian isL(û; �; �0) = Z 10 (� + �"2 jû(t)j2) dt+ �T0 (x̂(1)� x1);where x̂(1) is de�ned through the di�erential equation and the initial ondi-tion.We now argue that e : C � R � L2(0; 1;Rm) � R ! Rn satis�es theregular point ondition in the sense of Maurer-Zowe [MZ, IK2℄. Thus wehave to verify that(2.19) 0 2 int fe0(û"; �")�(C � û")� R�g;where e0(û"; �") denotes the linearisation of e at (û"(� �"); �").Considering e0(û"; �") in diretions Æ� = 0 and Æu satisfying (Æu)i = 0 fori 6= i� and (Æu)i� = 0 in (0; 1) n (�; �+ Æ), with (�; �+ Æ) := Ii� , we �nde0(û"; �")(Æu� û"; 0) = R �+Æ� e�A(1�t) � bi� (Æu(t)� û"(t))i� dt= R Æ0 e�A(Æ�t) ~bi� (Æu(t+ �)� û"(t+ �))i� dt;where ~bi� = �e�A(1�Æ��)bi� . Thene0(û"; �")(Æu� û"; 0) = Z Æ0 e�A(Æ�t)~bi�(Æ~u(t)� ~u"(t))i� dt;where Æ~ui�(t) = Æui�(t+ �); ~u";i�(t) = û";i�(t+ �). Note that by (2.16)f(Æ~u� ~u")i� : [0; Æ℄! R1 j j(Æ~u)i�j � 1g � S := fv : [0; Æ℄! R1 ; jvj � �2g:Observe that ontrollability of (A; bi�) implies that (A;~bi�) is ontrollable aswell. Controllability of the single input system (A;~bi�) implies that(2.20) 0 2 intfZ Æ0 e�A(Æ�t)~bi�v dt j v 2 Sg:In fat the set on the right of (2.20) ontains 0 and it has nonempty interior,see e.g. [LM℄, page 77, 133. Moreover, if 0 was a boundary point of thisset, then the orresponding ontrol v = 0 is an extremal ontrol, whih isimpossible, e.g. [LM℄, page 133. Now (2.20) implies (2.19).9



With the regular point ondition satis�ed, we an onlude the station-arity properties(2.21) L� (û"; �"; �0) = 0;Lu(û"; �"; �0)(Æu� û") � 0 for all Æu with jÆuj`1 � 1:From the seond property in (2.21) we have,Z 10 ("û" +BT e�AT (1�t)�0)(Æu� û") dt � 0:Setting(2.22) p(t) = e��AT tq with q = e�AT�0;this implies Z 10 ("û" +BT p̂")(Æu� û") dt � 0;for all Æu as in (2.21). The seond and third laim in (2.17) follow withp"(t) = p̂"(��1 t).Exploiting the �rst property in (2.21) implies thatL�(û"; �"; �0) = 1 + "2 R 10 jû"j2 dt+�T0 �Ae�Ax0 + R 10 e�A(1�t)Bû"(t) dt+ R 10 A(1� t)e�A(1�t)�Bû"(t) dt�= 1 + "2 R 10 jû"j2 dt+ �T0 (Ae(�(1�t)+�t)Ax0+R 10 e�A(1�t)Bû"(t) dt+ R 10 Ae�A(1�t) R t0 e�A(t�s)�Bû"(s)) ds dt = 0:This implies(2.23) L� (û"; �"; �0) = 1+ "2 Z 10 jû"j2 dt+Z 10 pT (t) �Ax̂"(t)+Bû"(t)� dt = 0:From u" = ��"(BTp") we onlude that u" 2 W 1;1(0; �";Rm).We introdue the Hamiltonian for (P") asH"(x; u; p) = 1 + "2 juj2Rm + pT (Ax +Bu):10



It is onstant along the optimal solution. In fat we have almost everywhereon (0; 1)ddtH"(x̂"; û"; p̂") = "ûT" ddt û" + 1�" ddt p̂T" ddt x̂" + p̂T" A ddt x̂" + p̂T"B ddt û"= ("û" +BT p̂")T ddt û" = 0:Combined with (2.23) this implies that1 + "2 jû"j2Rm + p̂T" (Ax̂" +Bû") = 0 on [0; 1℄:This implies the laim.The proof revealed extra regularity of u":Corollary 2.2. Under the assumptions of Theorem 2.2 we have u" 2 W 1;1(0; �";Rm).Remark 2.1. Condition (2.16) requires that the modulus of at least one ofthe oordinates of û" is not almost everywhere equal to 1. One it is knownfrom Corollary 2.2 that û" is ontinuous this amounts to requiring that atleast one of the oordinates of u� swithes from 1 to �1 or vie versa.Under the assumptions of Theorem 2.2 the �rst order neessary optimalityondition for (P") after the transformation t! t� is given by
(2.24) 8>>>>>>><>>>>>>>:

_x = �(Ax +Bu); x(0) = x0; x(1) = x1� _p = �AT pu = ��"(BTp)1 + �2 ju(1)j2 + p(1)T (Ax(1) +Bu(1)) = 0;where for onveniene of notation the dependene on " and the supersripthat were dropped.In the following setion we shall investigate semi-smooth Newton methodsfor solving (2.24).We lose this setion with a simple example whih illustrates some of thefeatures of the regularization approah.11



Example 2.1. Consider the two-dimensional time optimal problem for thesimple ontrol system ( _x1 = u1_x2 = u2;with so that A is the zero, and B the identity matrix, with initial ondition(1; 12) and terminal ondition the origin. This system is ontrollable but it isnot normal. The optimal time is � � = 1, the �rst oordinate of an optimalontrol is uniquely determined u�1 = �1 , with assoiate state x1 = 1 � t.There are in�nitely many hoies for optimal solutions u�2 of bang-bang andnon bang-bang type. The assoiated onstant adjoints are (p1; p2) = (1; 0).They satisfy u = ��(p) 2 � �1[� 1; 1℄ � :The transversality ondition 1 + pTBu = 0 is satis�ed.For the regularized problem we �nd �" = 1. Di�erently from the un-regularized problem the solution to the regularized problem is unique. Theoptimal ontrol and trajetory are given by(u1; u2) = (�1;�:5) with (x1; x2) = (1� t; :5(1� t)):In this partiular example the solution of the regularized problem does notdepend on ". Note that this solution is also one of the minimum normsolutions of the unregularized problem. The adjoint is p" = (1 + 3"8 ; "2). Itsatis�es u = ��"(pT" ) = � �1�12 �and the transversality ondition 1 + "2 juj2 + pT"Bu = 0:
3 Semi-smooth Newton methodIn this setion the semi-smooth Newton method for solving the regularizedoptimality system (2.24) is desribed and analyzed. It will allow that (2.24)an be solved eÆiently inspite of the fat that �" is not di�erentiable.12



Throughout we assume (H1) to hold. We �x " > 0 and denote by(x"; u"; �") 2 W 1;2(0; 1) � L2(0; 1) � R a solution to (P") with assoiatedadjoint p" 2 W 1;2(0; 1). It is assumed that(H2) there exists �s 2 (0; 1) suh that j1" bTi�p"(�s)j = j(u")i�(�s)j < 1;and(H3) jbTi p"(1)j 6= "; for all i = 1; : : : ; m:Assumption (H2) orresponds to (2.16), where we now use the fat that as aonsequene of Theorem 2.2 the ontrol u" is ontinuous. With (H2) and (H3)holding there exists a neighborhood Up" of p" inW 1;2(0; 1;Rn); �t 2 (0; 1), anda nontrivial interval (�; �+ Æ) � (0; 1) suh that for p 2 Up" we havejbTi p(t)j 6= " for all t 2 [�t; 1℄; and i = 1; : : : ; mand(3.1) jbTi�p(t)j < " for t 2 (�; � + Æ):We set U = fu 2 L2(0; 1;Rm) : uj[�t; 1℄ 2 W 1;2(�t; 1;Rm)g endowed with thenorm jujU = (juj2L2(0;1) + j _uj2L2(�t;1)) 12 ;and introdueF : DF � X ! L2(0; 1;Rn)� L2(0; 1;Rn)� U � Rn � Rwhere DF =W 1;2(0; 1)� Up" � U � R;X = W 1;2(0; 1;Rn)�W 1;2(0; 1;Rn)� U � R;and
(3.2) F (x; p; u; �) = 0BBBBBBBB�

_x� �Ax� �Bu� _p� �AT pu+ �"(BTp)x(1)� x11 + "2 ju(1)j2 + p(1)T (Ax(1) +Bu(1))
1CCCCCCCCA :
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Note that F = (F1; : : : ; F5) is well-de�ned. This is obvious for F1; F2 andF3. For F4; F5 it follows from the fat that W 1;2(0; 1) embeds ontinuouslyinto C(0; 1). Morevover F (x"; p"; u"; �") = 0: We shall keep x"(0) = x0 asan expliit onstraint.Remark 3.1. The need for introduing U in suh a way that its elementsare more regular at 1 is due to the fat that we use here the point-wisetransversality ondition rather than the integrated form (2.23). - Condition(H3) will be needed to prove superlinear onvergene of the Newton iteration.Applying Newton's method to F = 0 is impeded by the non-di�erentiabilityof �". We use G�"(s) := (1" if jsj < "0 if jsj � "(3.3)as a generalized derivative and argue that the resulting Newton iteration issemi-smooth and hene loally superlinearly onvergent. The Newton itera-tion step is given by(3.4) DF (x; p; u; �)(Æx; Æp; Æu; Æ�) = �F (x; p; u; �)where Æx(0) = 0 and DF denotes the Frehet-derivative in all terms of F ex-ept for p! �"(BTp), for whih the generalized derivative is taken aordingto (3.3). For further referene we give the detailed form of (3.4):
(3.5)

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ddtÆx� �AÆx� �B Æu� Æ�(Ax +Bu) = �F1; Æx(0) = 0� ddtÆp� �AT Æp� Æ�AT p = �F2Æu+G�"(BTp)BT Æp = �F3Æx(1) = �F4p(1)T (AÆx(1) +BÆu(1)) + Æp(1)T (Ax(1) +Bu(1))+"u(1)T Æu(1) = �F5;where the oordinates of G�"(BTp)BT Æp are given by G�"((BTp)i))(BT Æp)i.A possible initialization may onsist in hoosing ((u)0; �0), setting (x)0 asthe linear interpolation between x0 and x1, and determining (p)0 suh thatthe transversality ondition and the adjoint equation are satis�ed.14



We now briey summarize those fats from semi-smooth Newton methodswhih are relevant for this paper. Let X and Z be Banah spaes and letF : DF � X ! Z be a nonlinear mapping with open domain DF .De�nition 3.1. The mapping F : DF � X ! Z is alled Newton-di�erentiableon an open subset U � DF , if for eah x 2 U there exists a generalizedderivative DF (x) 2 L(X; Z) and(3.6) limh!0 1jhjX jF (x+ h)� F (x)�DF (x+ h)hjZ = 0:Theorem 3.1. Suppose that x� 2 U is a solution to F (x) = 0 and that F isNewton-di�erentiable in an open set U ontaining x�. If further fkDF (x)�1k :x 2 Ug is bounded, then the Newton-iteration xk+1 = xk �DF (xk)�1 F (xk)onverges q-superlinearly to x�, provided that jx0�x�jX is suÆiently small.For the statement and proof of superlinear onvergene of the time-optimalontrol problem, some further notation is required. For (x; p; u; �) 2 DF wede�ne A 2 R(n+1)�(n+1) by A =  A11 A12A21 0 ! ;where(3.7) A11 = "�1� Z 10 e�A(1�t)B�IBT e�AT (1�t) dt 2 Rn�n ;(3.8) A12 = "�1� R 10 e�A(1�t)B�IBT R 1t e��AT (t�s)AT p(s) ds dt� R 10 e�A(1�t)(Ax+Bu) dt 2 Rn ;(3.9) A21 = (Ax(1)+Bu(1))T�(pT (1)B+"uT (1))G�"(BTp(1))BT 2 (Rn)T ;with �I = diag(�I1; : : : ; �Im) and �Ii the harateristi funtion of the setIi = Ii(p) = ft : j(BTp)ij < 1"g; i = 1; : : : ; m15



whih is nonempty for p 2 Up" and i = i�. The ontrollability assumption(H1) together with (H2) imply that the symmetri matrix A11 is invertiblewith uniformly bounded inverse with respet to p 2 Up" and � in ompatsubsets of (0;1). In fat, sine Ii�(p) � (�; �+ Æ) we obtain for some � > 0A11 = "�1� Z 10 e�A(1�t) mXi=1 bi�IibTi e�AT (1�t) dt� "�1� Z �+Æ� e�A(1�t) bi�bTi� e�AT (1�t) dt= "�1�e�A(1��) Z Æ0 e��At bi�bTi� e��AT tdt e�AT (1��) dt > �;where we use that the ontrollability GramianZ Æ0 e��Atbi�bTi�e��AT t dt;is uniformly positive de�nite for � in ompat subsets of (0;1).For our analysis we shall utilize the fat that the Shur omplementA21A�111 A12 2 Rof A for (x; p; u; �) in a neighborhood of (x"; p"; u"; �") is nontrivial. IfA21A�111 A12 6= 0 at (x"; p"; u"; �"), we annot onlude that A21A�111 A12 6= 0for (x; p; u; �) in a neighborhood of (x"; p"; u"; �"), sine, while with (H2)holding, A21 is ontinuous with respet to (x; p; u; �) 2 X, this is not thease for A�111 and A12 due to the term �I . We therefore assume that(H4) 8>>><>>>:there exists a bounded neighborhoodU � DF � X of (x"; p"; u"; �") and  > 0 suh thatjA21A�111 A12j �  for all (x; p; u; �) 2 U :Theorem 3.2. If (H1){(H4) hold and (x"; u"; �") denotes a solution to(P") with assoiated adjoint p", then the semi-smooth Newton algorithm on-verges superlinearly, provided that the initialization is suÆiently lose to(x"; p"; u"; �"): 16



For the proof we require the following lemma.Lemma 3.1. Suppose that (H1) { (H4) hold. Then there exists a onstantC suh that for every (x; p; u; �) 2 U , and F 2 L2(0; 1)� L2(0; 1)� U � RDF (x; p; u; �)(Æx; Æp; Æu; Æ�) = �Fadmits a unique solution (Æx; Æp; Æu; Æ�) 2 X and(3.10) j(Æx; Æp; Æu; Æ�)jX � C jF jL2�L2�U�R:Proof. Let (x; p; u; �) 2 U and note that system (3.5) is equivalent to(3.11)8>>>>>>>>>><>>>>>>>>>>:
Æx(t) = R t0 e�A(t�s)(�F1 + �b Æu+ Æ�(Ax +Bu)) dsÆp(t) = e�AT (1�t)Æp(1) + R 1t e��AT (t�s)(Æ�AT p� F2) dsÆu+G�"(BTp)BT Æp = �F3Æx(1) = �F4p(1)T (�AF4 +B Æu(1)) + Æp(1)T (Ax(1) +Bu(1)) + "Æu(1) = �F5:On Ii we have (G�"(BTp))i = "�1. The third equation in (3.11) an beexpressed as(3.12) Æu = �F3 � "�1�I BT Æp a.e. in (0; 1):Let us setF̂1 = � Z 10 e�A(1�t)F1(t) dt; F̂2 = "�1� Z 10 Z 1t e�A(1�t)B�IBT e��AT (t�s)F2(s) ds dt;F̂3 = ��B Z 10 e�A(1�t)F3(t) dt:From (3.12), and the �rst and fourth equation in (3.11) we have(3.13)�F4 = Æx(1)= �"�1� R 10 e�A(1�t)B�IBT Æp dt+ Æ� R 10 e�A(1�t)(Ax +Bu) dt+ F̂1 + F̂317



Replaing Æp by the seond equation in (3.11) we �nd� F4 = �"�1� Z 10 e�A(1�t)B�IBT e�AT (1�t)Æp(1) dt� "�1�Æ� Z 10 e�A(1�t)B�IBT Z 1t e��AT (t�s)ATp(s) ds dt+ F̂2+ Æ� Z 10 e�A(1�t)(Ax +Bu) dt+ F̂1 + F̂3;whih involves Æp(1) and Æ� as unknowns, and an be expressed as(3.14) A11Æp(1) + A12Æ� = F̂1 + F̂2 + F̂3 + F4 =: r1:Eliminating Æu(1) from the last equation in (3.11) by means of the thirdequation implies(3.15) A21Æp(1) = �F5 + F3(1)T (BTp(1) + "u(1)) + p(1)TAF4 =: r2:Combining (3.14) and (3.15) we obtain the following linear system for (Æp(1); Æ�) :(3.16) A Æp(1)Æ� ! =  r1r2 ! :By (H1), (H2), and (H4) its unique solution is given by(3.17) Æ� = (A21A�111 A12)�1(A21 A�111 r1 � r2); Æp(1) = A�111 (r1 � A12Æ�):Moreover there exists a onstant C = C(�; jxjC(0;1); jpjC(0;1); jujL2(0;1); ju(1)j);suh that jÆp(1)j+ jÆ� j � C jF jL2�L2�U�R:From (3.5) and (3.11), C an also be hosen suh thatj(Æx; Æp; Æu; Æ�)jX � C jF jL2�L2�U�R:
18



Proof of Theorem 3.2. We apply Theorem 3.1 with x� = (x"; p"; u"; �").Lemma 3.1 implies the required uniform bound of the generalized inversesDF in the neighborhood U � DF of (x"; p"; u"; �"). Therefore it suÆes toargue Newton-di�erentiability of F in DF . This is obvious for all oordinatesof F exept for F3, and spei�ally for the mappingF : p! �"(BTp)from Up" � W 1;2(0; 1; Rn) ! U . Utilizing the de�nitions of Up" and �" itsuÆes to onsider the restrition of F from W 1;2(0; �t; Rn) to L2(0; �t; R1)whih we again denote by F . Note that F an be deomposed asF = F3 Æ F2 Æ F1;whereF1 :W 1;2(0; �t; Rn)! W 1;2(0; �t; R); F2 : W 1;2(0; �t; R) ! L4(0; �t; R);F3 : L4(0; �t; R) ! L2(0; �t; R);are given byF1(u) = BTu; F2(v) = max(�1; v"); F3(v) = min(1; v):In [HIK, IK2℄ it was shown that v ! max(0; v) is Newton di�erentiablefrom Lp(
) to Lq(
) if 1 � p > q � 1, if 
 is a bounded domain. Sinemin(1; v) = 1 + min(0; v � 1) this implies that F3 and similarly that F2 areNewton di�erentiable. From the hain rule for Newton di�erentiable mappingin [HK℄ it follows that F3 Æ F2 is Newton di�erentiable. The hain rule fora linear mapping, here F1, followed by the Newton di�erentiable mappingsF3 Æ F2; [IK1℄, implies that F is Newton di�erentiable in DF : �4 A numerial exampleThe semi-smooth Newton method is used to solve a lassial time optimalproblem related to the harmoni osillator with three swithing points. Weonsider 19



(4.1) 8>>><>>>:min��0 R �0 dtsubjet toddtx(t) = Ax(t) +Bu(t); ju(t)j � 1; x(0) = x0; x(�) = x1;whereA = � 0 1�1 0� ; B = �01� ; x0 = ��55 � ; x1 = �00� :The optimal minimal time for the ontinuous problem is known to be � � =10:5871. To solve (4.1) numerially a time disretization based on the CrankNiolson method with equidistant grid points was applied to (3.5). Theinitialisation for the state was hosen as a semiirle onneting x0 and x1.Then u(1) was hosen to be ative, and p was hosen so that the transversalityondition and the adjoint equation hold. With respet to the hoie of theparameter  = 1" we utilized a ontinuation proedure, starting with a smallvalue and inreasing it, using the solution from the smaller value of  asinitialization for the next larger -value. Certainly this proedure an beautomated as has been done elsewhere, but this was not the fous of thispaper. In Table 1 we show the number of iterates of the Netwon iteration(outer loop) that was required for this ontinuation proedure with respetto . The Newton iteration was stopped when the residual of the optimalitysystem in the L2-norm was below 10�8. Also in Table 1 we depit the optimalminimal times � �(). These results are obtained for meshsize h = 132 . Then 1 5 10 20No. of iterations 8 8 4 7Final Time 11:26515 10:84455 10:82977 10:81781Table 1the results for  = 1 are interpolated to the �ner grid h = 1128 and theontinuation proedure with respet to  is repeated. The results are depitedin Table 2. The graphs for the orresponding ontrols are given in Figure 1.The same proedure with h = 1=512 and  = 100 gives the optimal time10:588. In some ases, typially at the beginning of the iterations and for20



 1 10 50 100 200No. of iterations 5 46 4 4 3Final Time 11:1088 10:6092 10:6034 10:6033 10:6031Table 2
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Figure 1: N = 128 and  = 1(left), 10(middle) and 100(right)the lowest values of  the full Newton step was too large. Therefore we useda one-dimensional line searh based on a quadrati polynomial interpolationfor the L2� norm of the residual ombined with an Armijo rule.Table 3 depits the quotients juk+1�u�()jL2juk�u�()jL2 , where u�() is the solution tothe disretized version of (2.17) for  = 50. It shows that the algorithm is infat superlinearly onvergent.No. of iterations 1 2 3 4k 0:94138 0:00037 0:00001 0:00000Table 3In this paper we hose to regularize � by the ramp funtions �" withinreasing slops as " ! 0+. Certainly other alternatives are possible as forinstane ~�(s) = 2� atan( s): This family of C1� funtions also has theproperty that it onverges to � as  ! 0, but it appears to be less apt forthe purpose of approximating the disontinuous swithing struture of theoptimal ontrols sine  has to be taken signi�antly larger for ~� than for� 1 to obtain omparable results.Aknowledgement: We thank Mrs. J. Rubesa for providing us with thenumerial example. 21
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