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Abstra
tTime optimal 
ontrol problems for a 
lass of linear multi-input systems are
onsidered. The problems are regularized and the asymptoti
 and monotonebehavior of the regularisation pro
edure is investigated. For the regularisedproblems the appli
ability of semi-smooth Newton methods is veri�ed. Firstnumeri
al tests are presented whi
h show that the proposed approa
h, di�er-ently from other methods, does not rely a-priory information of the swit
hingstru
ture.



1 Introdu
tionThis paper addresses time optimal 
ontrol for a 
lass of linear multi-input
ontrols systems for ordinary di�erential equations. Due to their pra
ti
alrelevan
e and inherent stru
tural diÆ
ulties, time optimal 
ontrol has beenre
eiving a 
onsiderable amount of attention for de
ades. Mu
h of the lit-erature up to the late sixties is 
overed in [HL℄. Many re
ent results 
anbe found or are referen
ed in [BPW, KLM, MO℄. Time optimal 
ontrol forin�nite dimensional systems is 
onsidered in [Fa℄, for example.The optimality system asso
iated to time optimal 
ontrol problems withpointwise 
onstraints on the 
ontrols is 
ompli
ated due to la
k of smoothnessof the optimal 
ontrols. In fa
t, the �rst order optimality system for timeoptimal 
ontrol problems 
ontains a multivalued operation whi
h impedes theuse of fast numeri
al methods. For this reason we introdu
e a regularizationto the time optimal problem. In se
tion 2 the behavior of the solutions ofthe regularized problems as the regularization parameter " tends to zero isinvestigated. In parti
ular monotoni
 stru
ture of the solutions with respe
tto " is shown. An optimality system for the regularized problems is derivedunder a 
ondition whi
h is stronger than 
ontrollability and weaker thannormality. The optimal 
ontrols of the regularized problems areW 1;1 regularand 
onverge to a minimum norm solution of the original problem as theregularization parameter tends to zero.The optimality system of the regularized problems is still not C1 so thatse
ond order methods with lo
al quadrati
 
onvergen
e order are not dire
tlyappli
able. However, suÆ
ient 
onditions will be obtained in se
tion 3 whi
himply that semi-smooth Newton methods [IK2℄ are wellposed and lo
allysuperlinearly 
onvergent.Se
tion 4 
ontains a brief des
ription of numeri
al results. We 
omparethe 
hosen regularization to an alternative one, whi
h has stronger regular-ization properties. Sin
e the optimal 
ontrols of the original time optimalproblems are typi
ally not 
ontinuous, it appears that our 
hoi
e of regu-larization whi
h leads to W 1;1 regularized 
ontrols is preferable over otherregularization strategies whi
h provide smoother 
ontrols. More detailed nu-meri
al tests are available in [XK℄.Let us note that the approa
h that we propose for solving time optimalproblems deviates from traditional approa
hes, whi
h are frequently groupedinto dire
t and indire
t methods. Indire
t methods based on multiple shoot-ing te
hniques [Ke℄ solve the two point boundary value problem des
ribing1



�rst order ne
essary 
onditions. Equipped with a good initial guess for allunknowns, in
luding the swit
hing fun
tion, the shooting method is reportedto 
onverge fast and to generate very a

urate solutions. The methods thatwe propose also originates from the �rst order 
ondition, but di�erently fromthe shooting method it does not require a

urate information on the swit
h-ing stru
ture in advan
e.Dire
t methods on the other hand, 
onsider time optimal problems as agenuine nonlinear programming problems. They are used in several variants,whi
h frequently involve reparametrization of the 
ontrols as the unknowns.The new unknowns 
an be the swit
hing times as in [MB℄ or the ar
 durationsas in [KN℄.2 The time-optimal problem and itsregularizationConsider the time-optimal 
ontrol problem for the linear multi-input system(P ) 8>>><>>>:min��0 R �0 dtsubje
t toddtx(t) = Ax(t) +Bu(t); ju(t)j`1 � 1; x(0) = x0; x(�) = x1;where A 2 Rn�n ; B 2 Rn�m ; x0 2 Rn ; x1 2 Rn are given, u(t) 2 Rm , u ismeasurable, and j � j`1 denotes the in�nity-norm on Rm . The 
olumns of Bare denoted by bi. It is assumed that x1 
an be rea
hed in �nite time by anadmissible 
ontrol. Then (P ) admits a solution with optimal time denotedby � �, and asso
iated state x� and 
ontrol u�.The �rst order optimality system for (P ) 
an be expressed in terms ofthe adjoint p and the HamiltonianH(x; u; p0; p) = p0 + pT (Ax +Bu);
2



as(2.1) 8>>>>>>><>>>>>>>:
_x = Ax+Bu; x(0) = x0; x(�) = x1;� _p = ATp;u = argminjvj`1�1H(x; v; p0; p); a.e. in (0; �);p0 + p(t)T (Ax(t) +Bu(t)) = 0; p0 � 0;where the supers
ript T denotes transposition, see e.g. [MS℄, 
hapter V, pg.109, 110. Further p is not identi
ally 0, so that there exists a nontrivialve
tor q 2 Rn su
h that p(t) = exp (AT (� � t)) q:Due to the spe
ial stru
ture of H the optimal 
ontrol 
an be expressedas(2.2) ui = ��(bTi p) = ���bTi exp (�AT (� � t)) q�;where � denotes the 
oordinate-wise operation�(s) 2 8><>:�1 if s < 0[�1; 1℄ if s = 01 if s > 0:(2.3)The last equation in (2.1) holds everywhere rather than a.e. on [0; � ℄. Infa
t, p and x are 
ontinuous and p(t)TBu(t) = �Pmi=1 jp(t)T bij.Let us re
all the notions of 
ontrollability and normality, whi
h will bereferred to below.(2.4) ( The pair (A;B) is 
alled 
ontrollable ifrank fB;AB; : : : ; An�1Bg = n(2.5) ( The pair (A;B) is 
alled normal if (A; bi)is 
ontrollable for all 
olumns bi of B:Normality of (A;B) implies 
ontrollability. Moreover, if (A;B) is normal,then the optimal 
ontrol u� to (P ) is unique, it is bang bang, and pie
ewise
onstant, see e.g. [MS, HL℄. 3



The requirement(2.6) p0 > 0is referred to as stri
t transversality. In this 
ase it 
an be assumed thatp0 = 1, whi
h 
an be a
hieved by s
aling q. If stri
t transversality holds then(x�; u�; � �) is a stri
t lo
al minimum, in the sense that there exists Æ > 0su
h that x1 is not in the attainable set for t 2 (� � � Æ; � �), [HL℄, pg.89.With (2.6) holding, we 
an express the optimality 
ondition as
(2.7) 8>>>>>>><>>>>>>>:

_x = Ax+Bu; x(0) = x0; x(�) = x1;� _p = ATp;u = argminjvj`1�1H(x; v; p); a.e. in (0; �);1 + p(�)T (Ax(�) +Bu(�)) = 0:Here we eliminate the variable p0 from the notation for H sin
e it was �xedto be 1.Introdu
ing the transformation t̂ = t� and settingx̂(t̂) = x(� t̂) = x(t); p̂(t̂) = p(� t̂) = p(t); û(t̂) = u(� t̂) = u(t);we obtain the following equivalent system to (2.7), where for the ease ofpresentation we omit the supers
ripts ^:
(2.8) 8>>>>>>><>>>>>>>:

_x = �(Ax +Bu); x(0) = x0; x(1) = x1;� _p = �ATp;u = argminjvj`1�1H(x; v; p); a.e. in (0; �);1 + p(1)T (Ax(1) +Bu(1)) = 0:The non-di�erentiable operation involved in 
hara
terizing the optimal
ontrol, u = ��(BTp);
ompare (2.2), prohibits the use of Newton-type methods for solving (2.8)numeri
ally. 4



Therefore a family of regularized problems given by(P") 8>>><>>>:min��0 R �0 (1 + "2 ju(t)j2) dtsubje
t toddtx(t) = Ax(t) +Bu(t); ju(t)j`1 � 1; x(0) = x0; x(�) = x1;with " > 0 is 
onsidered. The norm j � j used in the 
ost-fun
tional denotesthe Eu
lidean norm. It is straightforward to argue the existen
e of a solution(u"; x"; �").Convergen
e of the solutions (x"; p"; u"; �") of (P") to a solution (x�; p�; u�; � �)of (P ) is 
onsidered next. Note that � � is unique.Proposition 2.1. For every 0 < "0 < "1 and any solution (� �; u�) of (P )we have(2.9) � � � �"0 � �"1 � � �(1 + "12 );(2.10) ju"1jL2(0; �"1 ) � ju"0jL2(0; �"0 ) � ju�jL2(0; ��):If u� is a bang-bang solution, then(2.11) 0 � ju�j2L2(0; ��) � ju"j2L2(0; �") � meas ft 2 [0; � �℄ : ju"(t)j < 1gfor every " > 0.Proof. From the de�nition of � � and �" we have� � � �" for every " > 0;and �" + "2 Z �"0 ju"j2 dt � � � + "2 Z ��0 ju�j2 dt;hen
e ju"jL2(0; �") � ju�jL2(0; ��); and � � � �" � � �(1 + "2):For 0 < "0 < "1 we haveZ �"00 (1 + "02 ju"0j2) dt � Z �"10 (1 + "02 ju"1j2) dt;5



where we used the fa
t that the pair (�"0 ; u"0) is optimal for (P"0). Adding12("1 � "0) R �"10 ju"1j2 dt on both sides implies that(2.12) �"0 + "12 Z �"10 ju"1j2 dt+ "02 � Z �"00 ju"0j2 dt� Z �"10 ju"1j2 dt�� Z �"10 (1 + "12 ju"1j2) dt � �"0 + "12 Z �"00 ju"0j2 dt:Estimating the �rst by the last expression in (2.12) implies that"1� Z �"10 ju"1j2 dt� Z �"00 ju"0j2 dt� � "0� Z �"10 ju"1j2 dt� Z �"00 ju"0j2 dt�;and hen
e(2.13) ju"1jL2(0; �"1 ) � ju"0jL2(0; �"0 ):Estimating the �rst by the se
ond expression in (2.12) we obtain�"0 + "02 ju"0j2L2(0; �"0 ) � �"1 + "02 ju"1j2L2(0; �"1 )and by (2.13) � � � �"0 � �"1 :These estimates imply (2.9) and (2.10).If u� is bang-bang, then0 � ju�j2L2(0;��) � ju�j2L2(0;�")� Rft2(0;��):ju"(t)j<1g(1� ju"(t)j2) dt � measft 2 (0; � �) : ju"(t)j < 1g;so that (2.11) holds.Theorem 2.1. For " ! 0+ we have �" ! � � and every 
onvergent subse-quen
e of solutions f(u"; x")g">0 to (P") 
onverges in L2(0; ��;Rm)�W 1;2(0; ��; Rn)to a solution (u�; x�) of (P ), where u� is a minimum norm solution.6



Here 
onvergen
e of u" to u� is de�ned asZ 10 ju"(�" t)� u�(� � t)j2 dt! 0and analogously for fx"g, and for weak 
onvergen
e.Proof. The �rst 
laim follows from Proposition 2.1. Sin
e fu"(�"�)g">0 andfx"(�"�)g">0 are bounded in L2(0; 1;Rm) andW 1;2(0; 1; Rn), there exist weaka

umulation points u� 2 L2(0; � �;Rm); and x� 2 W 1;2(0; � �; Rn). Subse-quently we avoid subsequential indi
es. Passing to the limit in _x"(�" �) =�"(Ax"(�" �) + Bu"(�" �)) and x"(0) = x0; x"(�") = x1 it follows that x� isadmissible. Due to weak 
losedness of fu 2 L2(0; 1;Rm) : ju(x)j`1 � 1 a:e:gwe have that u� is admissible as well. Sin
elim"!0+ �" + "2 Z �"0 ju"j2 dt = � �;the triple (� �; u�; x�) is optimal for (P ). By Proposition 2.1 and weak lowersemi-
ontinuity of norms(2.14) lim"!0 sup ju"jL2(0;�") � ju�jL2(0;��) � lim"!0 inf ju"jL2(0;�")and hen
e lim"!0 ju"jL2(0;�";Rm) = ju�jL2(0;��;Rm). As a 
onsequen
e u" andx" 
onverge strongly in L2(0; �"), respe
tively W 1;2(0; �"; Rn), to u� and x�.Let û denote another optimal 
ontrol for (P ) with jûj < ju�j. Then by (2.10)and (2.14)lim"!0 sup ju"jL2(0;�";Rm) � jûjL2(0;��;Rm) < ju�jL2(0;��;Rm) � lim"!0 inf ju"jL2(0;�";Rm);whi
h is a 
ontradi
tion. Consequently (P ) has a minimal norm 
ontrol andthe 
laimed strong 
onvergen
e properties hold.Corollary 2.1. If (2.5) holds, then the solution u� to (P ) is unique, it isbang-bang, and u" ! u� in L2 as "! 0+.Proof. (2.5) implies that the solution to (P ) is unique and it is bang-bang.The remainder of the 
orollary follows from Theorem 2.1.7



We turn to the optimality 
ondition for (P"). Let�"(s) 2 8><>:�1 if s � �"s" if jsj < "1 if s � ":(2.15)If �" is applied to a ve
tor, then it a
ts 
oordinate-wise.We shall use a 
ontrollability assumption whi
h is stronger than 
ontrol-lability and weaker than normality.(H1) There exists i� su
h that (A; bi�) is 
ontrollable:Theorem 2.2. Assume that (H1) holds and let (x"; u"; �") be a solution of(P"). If there exist � > 0 and an interval Ii� � (0; 1) su
h that(2.16) j (û")i�(t)j`1 � 1� � for a.e. t 2 Ii�;then there exists an adjoint state p" su
h that
(2.17) 8>>>>>>><>>>>>>>:

_x" = Ax" +Bu"; x"(0) = x0; x"(�") = x1� _p" = ATp"u" = ��"(BT p")1 + �2 ju"(�")j2Rm + p"(�")T (Ax"(�") +Bu"(�")) = 0:Proof. We use a Lagrange multiplier argument for the reparameterized for-mulation of (P") whi
h is given by(2.18) 8>>><>>>:min��0 R 10 (� + �"2 jû(t)j2) dtsubje
t toddt x̂(t) = �(Ax̂(t) +Bû(t)); û 2 C; x̂(0) = x0; x̂(1) = x1;where C = fû 2 L2(0; 1;Rm) : jûj`1 � 1g. Here (û; �) are treated asindependent and x̂ as dependent variable. Further û 2 C is 
onsidered8



as expli
it 
onstraint and a Lagrange multiplier �0 is introdu
ed for the
onstraint e(û; �) = x̂(1)� x1 = 0. The resulting Lagrangian isL(û; �; �0) = Z 10 (� + �"2 jû(t)j2) dt+ �T0 (x̂(1)� x1);where x̂(1) is de�ned through the di�erential equation and the initial 
ondi-tion.We now argue that e : C � R � L2(0; 1;Rm) � R ! Rn satis�es theregular point 
ondition in the sense of Maurer-Zowe [MZ, IK2℄. Thus wehave to verify that(2.19) 0 2 int fe0(û"; �")�(C � û")� R�g;where e0(û"; �") denotes the linearisation of e at (û"(� �"); �").Considering e0(û"; �") in dire
tions Æ� = 0 and Æu satisfying (Æu)i = 0 fori 6= i� and (Æu)i� = 0 in (0; 1) n (�; �+ Æ), with (�; �+ Æ) := Ii� , we �nde0(û"; �")(Æu� û"; 0) = R �+Æ� e�A(1�t) � bi� (Æu(t)� û"(t))i� dt= R Æ0 e�A(Æ�t) ~bi� (Æu(t+ �)� û"(t+ �))i� dt;where ~bi� = �e�A(1�Æ��)bi� . Thene0(û"; �")(Æu� û"; 0) = Z Æ0 e�A(Æ�t)~bi�(Æ~u(t)� ~u"(t))i� dt;where Æ~ui�(t) = Æui�(t+ �); ~u";i�(t) = û";i�(t+ �). Note that by (2.16)f(Æ~u� ~u")i� : [0; Æ℄! R1 j j(Æ~u)i�j � 1g � S := fv : [0; Æ℄! R1 ; jvj � �2g:Observe that 
ontrollability of (A; bi�) implies that (A;~bi�) is 
ontrollable aswell. Controllability of the single input system (A;~bi�) implies that(2.20) 0 2 intfZ Æ0 e�A(Æ�t)~bi�v dt j v 2 Sg:In fa
t the set on the right of (2.20) 
ontains 0 and it has nonempty interior,see e.g. [LM℄, page 77, 133. Moreover, if 0 was a boundary point of thisset, then the 
orresponding 
ontrol v = 0 is an extremal 
ontrol, whi
h isimpossible, e.g. [LM℄, page 133. Now (2.20) implies (2.19).9



With the regular point 
ondition satis�ed, we 
an 
on
lude the station-arity properties(2.21) L� (û"; �"; �0) = 0;Lu(û"; �"; �0)(Æu� û") � 0 for all Æu with jÆuj`1 � 1:From the se
ond property in (2.21) we have,Z 10 ("û" +BT e�AT (1�t)�0)(Æu� û") dt � 0:Setting(2.22) p(t) = e��AT tq with q = e�AT�0;this implies Z 10 ("û" +BT p̂")(Æu� û") dt � 0;for all Æu as in (2.21). The se
ond and third 
laim in (2.17) follow withp"(t) = p̂"(��1 t).Exploiting the �rst property in (2.21) implies thatL�(û"; �"; �0) = 1 + "2 R 10 jû"j2 dt+�T0 �Ae�Ax0 + R 10 e�A(1�t)Bû"(t) dt+ R 10 A(1� t)e�A(1�t)�Bû"(t) dt�= 1 + "2 R 10 jû"j2 dt+ �T0 (Ae(�(1�t)+�t)Ax0+R 10 e�A(1�t)Bû"(t) dt+ R 10 Ae�A(1�t) R t0 e�A(t�s)�Bû"(s)) ds dt = 0:This implies(2.23) L� (û"; �"; �0) = 1+ "2 Z 10 jû"j2 dt+Z 10 pT (t) �Ax̂"(t)+Bû"(t)� dt = 0:From u" = ��"(BTp") we 
on
lude that u" 2 W 1;1(0; �";Rm).We introdu
e the Hamiltonian for (P") asH"(x; u; p) = 1 + "2 juj2Rm + pT (Ax +Bu):10



It is 
onstant along the optimal solution. In fa
t we have almost everywhereon (0; 1)ddtH"(x̂"; û"; p̂") = "ûT" ddt û" + 1�" ddt p̂T" ddt x̂" + p̂T" A ddt x̂" + p̂T"B ddt û"= ("û" +BT p̂")T ddt û" = 0:Combined with (2.23) this implies that1 + "2 jû"j2Rm + p̂T" (Ax̂" +Bû") = 0 on [0; 1℄:This implies the 
laim.The proof revealed extra regularity of u":Corollary 2.2. Under the assumptions of Theorem 2.2 we have u" 2 W 1;1(0; �";Rm).Remark 2.1. Condition (2.16) requires that the modulus of at least one ofthe 
oordinates of û" is not almost everywhere equal to 1. On
e it is knownfrom Corollary 2.2 that û" is 
ontinuous this amounts to requiring that atleast one of the 
oordinates of u� swit
hes from 1 to �1 or vi
e versa.Under the assumptions of Theorem 2.2 the �rst order ne
essary optimality
ondition for (P") after the transformation t! t� is given by
(2.24) 8>>>>>>><>>>>>>>:

_x = �(Ax +Bu); x(0) = x0; x(1) = x1� _p = �AT pu = ��"(BTp)1 + �2 ju(1)j2 + p(1)T (Ax(1) +Bu(1)) = 0;where for 
onvenien
e of notation the dependen
e on " and the supers
ripthat were dropped.In the following se
tion we shall investigate semi-smooth Newton methodsfor solving (2.24).We 
lose this se
tion with a simple example whi
h illustrates some of thefeatures of the regularization approa
h.11



Example 2.1. Consider the two-dimensional time optimal problem for thesimple 
ontrol system ( _x1 = u1_x2 = u2;with so that A is the zero, and B the identity matrix, with initial 
ondition(1; 12) and terminal 
ondition the origin. This system is 
ontrollable but it isnot normal. The optimal time is � � = 1, the �rst 
oordinate of an optimal
ontrol is uniquely determined u�1 = �1 , with asso
iate state x1 = 1 � t.There are in�nitely many 
hoi
es for optimal solutions u�2 of bang-bang andnon bang-bang type. The asso
iated 
onstant adjoints are (p1; p2) = (1; 0).They satisfy u = ��(p) 2 � �1[� 1; 1℄ � :The transversality 
ondition 1 + pTBu = 0 is satis�ed.For the regularized problem we �nd �" = 1. Di�erently from the un-regularized problem the solution to the regularized problem is unique. Theoptimal 
ontrol and traje
tory are given by(u1; u2) = (�1;�:5) with (x1; x2) = (1� t; :5(1� t)):In this parti
ular example the solution of the regularized problem does notdepend on ". Note that this solution is also one of the minimum normsolutions of the unregularized problem. The adjoint is p" = (1 + 3"8 ; "2). Itsatis�es u = ��"(pT" ) = � �1�12 �and the transversality 
ondition 1 + "2 juj2 + pT"Bu = 0:
3 Semi-smooth Newton methodIn this se
tion the semi-smooth Newton method for solving the regularizedoptimality system (2.24) is des
ribed and analyzed. It will allow that (2.24)
an be solved eÆ
iently inspite of the fa
t that �" is not di�erentiable.12



Throughout we assume (H1) to hold. We �x " > 0 and denote by(x"; u"; �") 2 W 1;2(0; 1) � L2(0; 1) � R a solution to (P") with asso
iatedadjoint p" 2 W 1;2(0; 1). It is assumed that(H2) there exists �s 2 (0; 1) su
h that j1" bTi�p"(�s)j = j(u")i�(�s)j < 1;and(H3) jbTi p"(1)j 6= "; for all i = 1; : : : ; m:Assumption (H2) 
orresponds to (2.16), where we now use the fa
t that as a
onsequen
e of Theorem 2.2 the 
ontrol u" is 
ontinuous. With (H2) and (H3)holding there exists a neighborhood Up" of p" inW 1;2(0; 1;Rn); �t 2 (0; 1), anda nontrivial interval (�; �+ Æ) � (0; 1) su
h that for p 2 Up" we havejbTi p(t)j 6= " for all t 2 [�t; 1℄; and i = 1; : : : ; mand(3.1) jbTi�p(t)j < " for t 2 (�; � + Æ):We set U = fu 2 L2(0; 1;Rm) : uj[�t; 1℄ 2 W 1;2(�t; 1;Rm)g endowed with thenorm jujU = (juj2L2(0;1) + j _uj2L2(�t;1)) 12 ;and introdu
eF : DF � X ! L2(0; 1;Rn)� L2(0; 1;Rn)� U � Rn � Rwhere DF =W 1;2(0; 1)� Up" � U � R;X = W 1;2(0; 1;Rn)�W 1;2(0; 1;Rn)� U � R;and
(3.2) F (x; p; u; �) = 0BBBBBBBB�

_x� �Ax� �Bu� _p� �AT pu+ �"(BTp)x(1)� x11 + "2 ju(1)j2 + p(1)T (Ax(1) +Bu(1))
1CCCCCCCCA :

13



Note that F = (F1; : : : ; F5) is well-de�ned. This is obvious for F1; F2 andF3. For F4; F5 it follows from the fa
t that W 1;2(0; 1) embeds 
ontinuouslyinto C(0; 1). Morevover F (x"; p"; u"; �") = 0: We shall keep x"(0) = x0 asan expli
it 
onstraint.Remark 3.1. The need for introdu
ing U in su
h a way that its elementsare more regular at 1 is due to the fa
t that we use here the point-wisetransversality 
ondition rather than the integrated form (2.23). - Condition(H3) will be needed to prove superlinear 
onvergen
e of the Newton iteration.Applying Newton's method to F = 0 is impeded by the non-di�erentiabilityof �". We use G�"(s) := (1" if jsj < "0 if jsj � "(3.3)as a generalized derivative and argue that the resulting Newton iteration issemi-smooth and hen
e lo
ally superlinearly 
onvergent. The Newton itera-tion step is given by(3.4) DF (x; p; u; �)(Æx; Æp; Æu; Æ�) = �F (x; p; u; �)where Æx(0) = 0 and DF denotes the Fre
het-derivative in all terms of F ex-
ept for p! �"(BTp), for whi
h the generalized derivative is taken a

ordingto (3.3). For further referen
e we give the detailed form of (3.4):
(3.5)

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ddtÆx� �AÆx� �B Æu� Æ�(Ax +Bu) = �F1; Æx(0) = 0� ddtÆp� �AT Æp� Æ�AT p = �F2Æu+G�"(BTp)BT Æp = �F3Æx(1) = �F4p(1)T (AÆx(1) +BÆu(1)) + Æp(1)T (Ax(1) +Bu(1))+"u(1)T Æu(1) = �F5;where the 
oordinates of G�"(BTp)BT Æp are given by G�"((BTp)i))(BT Æp)i.A possible initialization may 
onsist in 
hoosing ((u)0; �0), setting (x)0 asthe linear interpolation between x0 and x1, and determining (p)0 su
h thatthe transversality 
ondition and the adjoint equation are satis�ed.14



We now brie
y summarize those fa
ts from semi-smooth Newton methodswhi
h are relevant for this paper. Let X and Z be Bana
h spa
es and letF : DF � X ! Z be a nonlinear mapping with open domain DF .De�nition 3.1. The mapping F : DF � X ! Z is 
alled Newton-di�erentiableon an open subset U � DF , if for ea
h x 2 U there exists a generalizedderivative DF (x) 2 L(X; Z) and(3.6) limh!0 1jhjX jF (x+ h)� F (x)�DF (x+ h)hjZ = 0:Theorem 3.1. Suppose that x� 2 U is a solution to F (x) = 0 and that F isNewton-di�erentiable in an open set U 
ontaining x�. If further fkDF (x)�1k :x 2 Ug is bounded, then the Newton-iteration xk+1 = xk �DF (xk)�1 F (xk)
onverges q-superlinearly to x�, provided that jx0�x�jX is suÆ
iently small.For the statement and proof of superlinear 
onvergen
e of the time-optimal
ontrol problem, some further notation is required. For (x; p; u; �) 2 DF wede�ne A 2 R(n+1)�(n+1) by A =  A11 A12A21 0 ! ;where(3.7) A11 = "�1� Z 10 e�A(1�t)B�IBT e�AT (1�t) dt 2 Rn�n ;(3.8) A12 = "�1� R 10 e�A(1�t)B�IBT R 1t e��AT (t�s)AT p(s) ds dt� R 10 e�A(1�t)(Ax+Bu) dt 2 Rn ;(3.9) A21 = (Ax(1)+Bu(1))T�(pT (1)B+"uT (1))G�"(BTp(1))BT 2 (Rn)T ;with �I = diag(�I1; : : : ; �Im) and �Ii the 
hara
teristi
 fun
tion of the setIi = Ii(p) = ft : j(BTp)ij < 1"g; i = 1; : : : ; m15



whi
h is nonempty for p 2 Up" and i = i�. The 
ontrollability assumption(H1) together with (H2) imply that the symmetri
 matrix A11 is invertiblewith uniformly bounded inverse with respe
t to p 2 Up" and � in 
ompa
tsubsets of (0;1). In fa
t, sin
e Ii�(p) � (�; �+ Æ) we obtain for some �
 > 0A11 = "�1� Z 10 e�A(1�t) mXi=1 bi�IibTi e�AT (1�t) dt� "�1� Z �+Æ� e�A(1�t) bi�bTi� e�AT (1�t) dt= "�1�e�A(1��) Z Æ0 e��At bi�bTi� e��AT tdt e�AT (1��) dt > �
;where we use that the 
ontrollability GramianZ Æ0 e��Atbi�bTi�e��AT t dt;is uniformly positive de�nite for � in 
ompa
t subsets of (0;1).For our analysis we shall utilize the fa
t that the S
hur 
omplementA21A�111 A12 2 Rof A for (x; p; u; �) in a neighborhood of (x"; p"; u"; �") is nontrivial. IfA21A�111 A12 6= 0 at (x"; p"; u"; �"), we 
annot 
on
lude that A21A�111 A12 6= 0for (x; p; u; �) in a neighborhood of (x"; p"; u"; �"), sin
e, while with (H2)holding, A21 is 
ontinuous with respe
t to (x; p; u; �) 2 X, this is not the
ase for A�111 and A12 due to the term �I . We therefore assume that(H4) 8>>><>>>:there exists a bounded neighborhoodU � DF � X of (x"; p"; u"; �") and 
 > 0 su
h thatjA21A�111 A12j � 
 for all (x; p; u; �) 2 U :Theorem 3.2. If (H1){(H4) hold and (x"; u"; �") denotes a solution to(P") with asso
iated adjoint p", then the semi-smooth Newton algorithm 
on-verges superlinearly, provided that the initialization is suÆ
iently 
lose to(x"; p"; u"; �"): 16



For the proof we require the following lemma.Lemma 3.1. Suppose that (H1) { (H4) hold. Then there exists a 
onstantC su
h that for every (x; p; u; �) 2 U , and F 2 L2(0; 1)� L2(0; 1)� U � RDF (x; p; u; �)(Æx; Æp; Æu; Æ�) = �Fadmits a unique solution (Æx; Æp; Æu; Æ�) 2 X and(3.10) j(Æx; Æp; Æu; Æ�)jX � C jF jL2�L2�U�R:Proof. Let (x; p; u; �) 2 U and note that system (3.5) is equivalent to(3.11)8>>>>>>>>>><>>>>>>>>>>:
Æx(t) = R t0 e�A(t�s)(�F1 + �b Æu+ Æ�(Ax +Bu)) dsÆp(t) = e�AT (1�t)Æp(1) + R 1t e��AT (t�s)(Æ�AT p� F2) dsÆu+G�"(BTp)BT Æp = �F3Æx(1) = �F4p(1)T (�AF4 +B Æu(1)) + Æp(1)T (Ax(1) +Bu(1)) + "Æu(1) = �F5:On Ii we have (G�"(BTp))i = "�1. The third equation in (3.11) 
an beexpressed as(3.12) Æu = �F3 � "�1�I BT Æp a.e. in (0; 1):Let us setF̂1 = � Z 10 e�A(1�t)F1(t) dt; F̂2 = "�1� Z 10 Z 1t e�A(1�t)B�IBT e��AT (t�s)F2(s) ds dt;F̂3 = ��B Z 10 e�A(1�t)F3(t) dt:From (3.12), and the �rst and fourth equation in (3.11) we have(3.13)�F4 = Æx(1)= �"�1� R 10 e�A(1�t)B�IBT Æp dt+ Æ� R 10 e�A(1�t)(Ax +Bu) dt+ F̂1 + F̂317



Repla
ing Æp by the se
ond equation in (3.11) we �nd� F4 = �"�1� Z 10 e�A(1�t)B�IBT e�AT (1�t)Æp(1) dt� "�1�Æ� Z 10 e�A(1�t)B�IBT Z 1t e��AT (t�s)ATp(s) ds dt+ F̂2+ Æ� Z 10 e�A(1�t)(Ax +Bu) dt+ F̂1 + F̂3;whi
h involves Æp(1) and Æ� as unknowns, and 
an be expressed as(3.14) A11Æp(1) + A12Æ� = F̂1 + F̂2 + F̂3 + F4 =: r1:Eliminating Æu(1) from the last equation in (3.11) by means of the thirdequation implies(3.15) A21Æp(1) = �F5 + F3(1)T (BTp(1) + "u(1)) + p(1)TAF4 =: r2:Combining (3.14) and (3.15) we obtain the following linear system for (Æp(1); Æ�) :(3.16) A Æp(1)Æ� ! =  r1r2 ! :By (H1), (H2), and (H4) its unique solution is given by(3.17) Æ� = (A21A�111 A12)�1(A21 A�111 r1 � r2); Æp(1) = A�111 (r1 � A12Æ�):Moreover there exists a 
onstant C = C(�; jxjC(0;1); jpjC(0;1); jujL2(0;1); ju(1)j);su
h that jÆp(1)j+ jÆ� j � C jF jL2�L2�U�R:From (3.5) and (3.11), C 
an also be 
hosen su
h thatj(Æx; Æp; Æu; Æ�)jX � C jF jL2�L2�U�R:
18



Proof of Theorem 3.2. We apply Theorem 3.1 with x� = (x"; p"; u"; �").Lemma 3.1 implies the required uniform bound of the generalized inversesDF in the neighborhood U � DF of (x"; p"; u"; �"). Therefore it suÆ
es toargue Newton-di�erentiability of F in DF . This is obvious for all 
oordinatesof F ex
ept for F3, and spe
i�
ally for the mappingF : p! �"(BTp)from Up" � W 1;2(0; 1; Rn) ! U . Utilizing the de�nitions of Up" and �" itsuÆ
es to 
onsider the restri
tion of F from W 1;2(0; �t; Rn) to L2(0; �t; R1)whi
h we again denote by F . Note that F 
an be de
omposed asF = F3 Æ F2 Æ F1;whereF1 :W 1;2(0; �t; Rn)! W 1;2(0; �t; R); F2 : W 1;2(0; �t; R) ! L4(0; �t; R);F3 : L4(0; �t; R) ! L2(0; �t; R);are given byF1(u) = BTu; F2(v) = max(�1; v"); F3(v) = min(1; v):In [HIK, IK2℄ it was shown that v ! max(0; v) is Newton di�erentiablefrom Lp(
) to Lq(
) if 1 � p > q � 1, if 
 is a bounded domain. Sin
emin(1; v) = 1 + min(0; v � 1) this implies that F3 and similarly that F2 areNewton di�erentiable. From the 
hain rule for Newton di�erentiable mappingin [HK℄ it follows that F3 Æ F2 is Newton di�erentiable. The 
hain rule fora linear mapping, here F1, followed by the Newton di�erentiable mappingsF3 Æ F2; [IK1℄, implies that F is Newton di�erentiable in DF : �4 A numeri
al exampleThe semi-smooth Newton method is used to solve a 
lassi
al time optimalproblem related to the harmoni
 os
illator with three swit
hing points. We
onsider 19



(4.1) 8>>><>>>:min��0 R �0 dtsubje
t toddtx(t) = Ax(t) +Bu(t); ju(t)j � 1; x(0) = x0; x(�) = x1;whereA = � 0 1�1 0� ; B = �01� ; x0 = ��55 � ; x1 = �00� :The optimal minimal time for the 
ontinuous problem is known to be � � =10:5871. To solve (4.1) numeri
ally a time dis
retization based on the CrankNi
olson method with equidistant grid points was applied to (3.5). Theinitialisation for the state was 
hosen as a semi
ir
le 
onne
ting x0 and x1.Then u(1) was 
hosen to be a
tive, and p was 
hosen so that the transversality
ondition and the adjoint equation hold. With respe
t to the 
hoi
e of theparameter 
 = 1" we utilized a 
ontinuation pro
edure, starting with a smallvalue and in
reasing it, using the solution from the smaller value of 
 asinitialization for the next larger 
-value. Certainly this pro
edure 
an beautomated as has been done elsewhere, but this was not the fo
us of thispaper. In Table 1 we show the number of iterates of the Netwon iteration(outer loop) that was required for this 
ontinuation pro
edure with respe
tto 
. The Newton iteration was stopped when the residual of the optimalitysystem in the L2-norm was below 10�8. Also in Table 1 we depi
t the optimalminimal times � �(
). These results are obtained for meshsize h = 132 . Then
 1 5 10 20No. of iterations 8 8 4 7Final Time 11:26515 10:84455 10:82977 10:81781Table 1the results for 
 = 1 are interpolated to the �ner grid h = 1128 and the
ontinuation pro
edure with respe
t to 
 is repeated. The results are depi
tedin Table 2. The graphs for the 
orresponding 
ontrols are given in Figure 1.The same pro
edure with h = 1=512 and 
 = 100 gives the optimal time10:588. In some 
ases, typi
ally at the beginning of the iterations and for20




 1 10 50 100 200No. of iterations 5 46 4 4 3Final Time 11:1088 10:6092 10:6034 10:6033 10:6031Table 2
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Figure 1: N = 128 and 
 = 1(left), 10(middle) and 100(right)the lowest values of 
 the full Newton step was too large. Therefore we useda one-dimensional line sear
h based on a quadrati
 polynomial interpolationfor the L2� norm of the residual 
ombined with an Armijo rule.Table 3 depi
ts the quotients juk+1�u�(
)jL2juk�u�(
)jL2 , where u�(
) is the solution tothe dis
retized version of (2.17) for 
 = 50. It shows that the algorithm is infa
t superlinearly 
onvergent.No. of iterations 1 2 3 4
k 0:94138 0:00037 0:00001 0:00000Table 3In this paper we 
hose to regularize � by the ramp fun
tions �" within
reasing slops as " ! 0+. Certainly other alternatives are possible as forinstan
e ~�
(s) = 2� atan(
 s): This family of C1� fun
tions also has theproperty that it 
onverges to � as 
 ! 0, but it appears to be less apt forthe purpose of approximating the dis
ontinuous swit
hing stru
ture of theoptimal 
ontrols sin
e 
 has to be taken signi�
antly larger for ~�
 than for� 1
 to obtain 
omparable results.A
knowledgement: We thank Mrs. J. Rubesa for providing us with thenumeri
al example. 21
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