Synthetic Infrared Scene

Improving the KARMA IRSG module and signature modelling tool
SMAT

Marc-André Labrie

Eric Rouleau

Jonathan Richard

Mathieu Desmeules

Alexandre Bastien

Louis Tanguay Informatique inc.

Geoffroy Rivet-Sabourin
Technologie Intelligence Image inc.

Prepared By:

Louis Tanguay Informatique inc.
825 Boulevard Lebourgneuf, Bureau 204
Québec, Canada G2J 0B9

Contractor's Document Number: LTI-SIS-2011-1

Contract Project Manager: Marc-André Labrie

PWGSC Contract Number: W7701-082234/001/QCL

CSA: Jean-Francois Lepage, Defence Scientist, 418-844-4000 Ext.: 4192

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada - Valcartier
Contract Report
DRDC Valcartier CR 2011-167
March 2011

(Ld

Canadi

Synthetic Infrared Scene

Improving the KARMA IRSG module and signature modelling tool
SMAT

Marc-André Labrie

Eric Rouleau

Jonathan Richard

Mathieu Desmeules

Alexandre Bastien

Louis Tanguay Informatique inc.

Geoffroy Rivet-Sabourin
Technologie Intelligence Image inc.

Prepared By:

Louis Tanguay Informatique inc.
825 Boulevard Lebourgneuf, Bureau 204
Québec, Canada G2J 0B9

Contractor's Document Number: LTI-SIS-2011-1

Contract Project Manager: Marc-André Labrie

PWGSC Contract Number: W7701-082234/001/QCL

CSA: Jean-Francois Lepage, Defence Scientist, 418-844-4000 4192

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada — Valcartier

Contract Report
DRDC Valcartier CR 2011-167
March 2011

Principal Author

Original signed by Marc-André Labrie

Marc-André Labrie
Project Manager

Approved by

Original signed by Jean-Francois Lepage

Jean-Francois Lepage
Contract Scientific Authority

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2011

© SaMagesté laReine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2011

Abstract

The main objective of the contract “ Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA
simulation environment. The work was carried out from November 2008 to March 2011. This
contract report focuses on presenting the new functionalities that were added to the infrared scene
generator (IRSG) module which is part of the KARMA framework. Modifications were al'so done
to the signature modelling and analysis tool (SMAT) which uses the IRSG to perform various
kind of analysis.

Résumé

L'objectif principal du contrat "Scene Infrarouge Synthétique” (W7701-082234) a été
d'augmenter le niveau de fidélité d’ engagements impliquant des autodirecteurs infrarouges dans
I'environnement de simulation KARMA. Le travail a été réaisé a partir de novembre 2008
jusgu’a mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles fonctionnalités
qui ont éé goutées au module de génération de scéne infrarouge (IRSG) faisant partie de
I’environnement KARMA. Des modifications ont également été apportées a I'outil de
modélisation et d'analyse de signature infrarouge (SMAT) qui utilise I'lRSG pour effectuer
différents types d'analyse.

DRDC Valcartier CR 2011-167 i

This page intentionally left blank.

DRDC Valcartier CR 2011-167

Executive summary

Synthetic Infrared Scene: Improving the KARMA IRSG module
and signature modelling tool SMAT

M.-A. Labrie; E. Rouleau; J. Richard; M. Desmeules; A. Bastien; G. Rivet-
Sabourin; DRDC Valcartier CR 2011-167; Defence R&D Canada — Valcartier;
March 2011

The main objective of the contract “ Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA
simulation environment. The work was carried out from November 2008 to March 2011. This
contract report focuses on the new functionalities that were added to the infrared scene generator
(IRSG) module which is part of the KARMA framework. Modifications were also done to the
signature modelling and analysis tool (SMAT) which uses the IRSG to perform various kind of
anaysis.

The main improvements to the IRSG module include: the use of advanced rendering libraries and
mechanisms to exploit graphical processor units, better atmospheric modelling including the use
of a wideband corrdlated-k mode for increased performances, better representation of
backgrounds, better representation of surface reflections, implementation of a zoom antiaiasing
algorithm, and representation of scattering effects. The SMAT tool was improved to take account
of the new IRSG features and to add new modelling abilities.

These improvements should reflect in the ability to build better signature models and ultimately
in an increased fidelity of the generated scene for a wider range of conditions (including
atmospheric conditions, engagement geometry, etc.). This will contribute to a significant increase
of fidelity of the results obtained within the KARMA framework.

The work done within this contract was aimed at fully digital simulation, so increasing

performances was not driving the development. Eventually, some aspects, such as the zoom
antialiasing algorithm, may need to be optimized to increase the frame rate.

DRDC Valcartier CR 2011-167 iii

Sommaire

Synthetic Infrared Scene: Improving the KARMA IRSG module
and signature modelling tool SMAT

M.-A. Labrie; E. Rouleau; J. Richard; M. Desmeules; A. Bastien; G. Rivet-
Sabourin; DRDC Valcartier CR 2011-167;R & D pour la défense Canada —
Valcartier; Mars2011.

L'objectif principal du contrat "Scene Infrarouge Synthétique" (W7701-082234) a été
d'augmenter le niveau de fidélité d’ engagements impliquant des autodirecteurs infrarouges dans
I'environnement de simulation KARMA. Le travail a été réaisé a partir de novembre 2008
jusgu’a mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles fonctionnalités
qui ont éé goutées au module de génération de scéne infrarouge (IRSG) faisant partie de
I’environnement KARMA. Des modifications ont également été apportées a I'outil de
modélisation et d’'analyse de signature infrarouge (SMAT) qui utilise I'lRSG pour effectuer
différents types d'analyse.

Les principales améiorations apportées au module IRSG comprennent: ['utilisation de
bibliothégues de rendu avance et des mécanismes permettant d'exploiter les processeurs de rendu
graphique, une meilleure modéisation de |'atmosphére incluant I'utilisation d'un mode a large
bande basé sur les k-corrélés pour des performances accrues, une meilleure représentation des
arriere-plans, une meilleure représentation des réflexions sur les surfaces, la mise en ceuvre d'un
algorithme d’ anticrénelage (zoom antialiasing), et la représentation des effets de diffusion. L'outil
SMAT aété amélioré afin de tenir compte des nouvelles caractéristiques de I’ IRSG et d'ajouter de
nouvelles capacités de modélisation.

Ces amédliorations devraient se refléter dans la capacité de construire des signatures de modeles de
meilleure qualité et, en fin de compte, en une fidélité accrue de la scéne générée pour un plus
large éventail de conditions (y compris les conditions atmosphériques, la géométrie de
I”engagement, etc.) Cela contribuera a une augmentation significative de la fidélité des résultats
obtenus avec KARMA.

Le travail effectué durant ce contrat visait a améliorer les ssimulations entiérement numériques :
I"aspect consistant a améliorer les performances n'était pas ce qui a dirigé les efforts.
Eventuellement, certains aspects pourraient étre optimisés pour augmenter la fréquence des
images générés, tels que I'algorithme d’ anticrénelage dével oppé.

iv DRDC Valcartier CR 2011-167

Table of contents

N o1 1= o SR [
RESUIMIE. ettt b bbbt bt e b e b e b e e et e st e bt e bt bt s b et et e st e b e e beneennan [
EXECULIVE SUMIMBIY ...ttt s b e et b e en e b e e e e e e e e nneenenreas iii
0] .10 =R URSPR iv
QLI o] L= o) oo 0= 01T %
LISt OF TIQUIES ...ttt b b n e e et nr e nennen s viii
LISt OF TBIIES ...ttt bbb nne e Xi
R 1 11 oo LB (o1 o o PSP 1
2 Scene generation FEFACLONINGuieiirerereeieisie sttt et b e b e e 2
20 N | = SRS 2

2.2 Adapting for KARMA ..ottt sttt st e st s sresteeaesne s 2

2.3 AdAptNG fOr SMAT .. e s e te s e e s ae e saeesneeeeeereenreens 3
231 GUI UNCOUPIING. ...ttt e 4

3 Advanced rendering tEChNIQUES..........cuiiriiiriiiese e 6
3.1 Migrating from OSG 2.2.X 10 OSG 2.8.0ceeeririiriiriesierie et 6

3.2 Migrating from Mesato OPENGL........cccoceeieii et 7

GG T o = 0101 o1 = 0 o=t R 8
3.3 1 CONLEXE CONFIICE....eieieeeeeieee et 9

34 KARMA @rChitECIUIE ..ot see e 10

4 Apparent radiance and reflECHIONScceviieeie e 11
41 Reflectionsin KARMA SIMUILIONS.........ccociiiriinieieirinisie s 15

4.2 ReEflECtONSTN SMAT ..ottt ee bt be e et e 16

5 AtMOSPNENiC MOUUIE......c..oiieiieieieie ettt 18
51 ENVIroONMENt rEfaCtOrNNG.cevrerreruirieriereeieeeesesie st e e sse e sre e seeeeeeneas 18

5.2 Anatmospheric model based on SMARTooviiiiiece e 19
521 INItialiSAION FEVIBW.....coiuiieeeie sttt ae s 22

522 Calculation mode SEIECHIONcccueiiieeii e 22

L N 11 = = g o R 24
6.1 Zoom antialiaSing tEChNIQUE..........ccceiririiirieeeieeee e 24
6.1.1 Method deSCriPlioncccviuieieieiiece s 24

6.1.2 Zoom antialiasing aCtiVation..........ccccceeceeiieieeie s 31

6.1.3 TroubleShOOtingccccceeiiiiiiiese e 31

B.1.4 RESUITS. ...ttt bbb nre 32

6.1.4.1 PErfOrMENCE.ccviiieee e 32

6.1.4.2 ACCUIBCY ...ttt sn e nne e 33

6.1.4.3 (DR o U1 o o TP 35

DRDC Valcartier CR 2011-167 v

10

11

vi

6.2 OSG rendering liBrary ..o 36

6.21 Zoom antialiasing CapaCityccceieiieieeiiiiieseseece s 37

6.2.2 MUIti-pasS rENAEIINGccceeveieieeie et ae e ennens 38
6.2.2.1 (oSSR 0 (o[£ 50 = 0] (O P RSSN 39

B.2.3 ULHHTIES .ttt 39

6.24 Object’ ssize based level-of-detailcccovviieceii i 40

2 =0t o (00 o SRS 41
7.1 Multiples background VAIUES...........coeiieieieeese et 41
7.1.1 Background gEOMELNYcceeeieireniirieriesieneeeee s sie st ss e e neen 42

7.1.2 Using SMART to obtain background ValUEs..............cccoeviieneieieninencnine 44

7.2 SKY @Nd tEITAIN TEXIUMNES.........eiuiieirieieree ettt nre 45
25 R S 4/ oo) SRR 45

722 TETaiN gEOMELIY ...ccuiieeeiectiee et se st e ee e se et e st s te s reeaesbesneesaesreennens 46

7.2.3 Skybox and terrain iN IRSGcccooiiiiiiniesee e 46

7.3 SOIar AISCINTRSG.....c.ciiiiirieiiriee et nre 48
A = 3= 0T 1= 1 oo S 49
A R & (= (= 10 (= o 0T - SRR 49

75 KARMA @rChitECIUIEoiieiee ettt neas 50
DLz 2107z S Y o1 00] 0= 1= TSSOSO 52
8.1 User defiNed SPECLIUM.....c..civieieci ettt sreens 52
8.1.1 User defined spectrum file format...........ccocoveveevinvin s, 54

8.1.2 Temperature ProPErtiEScccecieiicieeiiecteecee sttt ste e s re e st reeresre s 54

8.2 Temperature |0OKUP tADIEScci i e 57
S0 TR (V= oo = o (o | S 57
o 1= 1o S 59
SN (VI 0 = = o= = USSP 59
9.2 USING MTF fOF SCAIEITNG ...cveeeeeeeerieeieerie ettt ee et see e e e eesneeeeseeens 61
LS 0 TR o= | RS 65
SMAT COMLIOIS ...ttt b et b e e ettt b e bbb e e s 67
0 I R @0 {0 11 0 (=Y (= 1 PSSR 67
FO.2 SUN VECLON ...ttt ettt ettt b e sttt et e ke e sb e e sae e sae e e bt e sbeesaeesmnesmneenreebeenseens 67
10.3 Mode-View ManiPUIBLOccooiiieeeise et sie e see e e e eesee e eneeneeas 67
10.4 Temperature Profil€..... ...t 68
10.5 IMAQES COMPAITISON.....ecueeieiieeeeete et estesteesteste e e e ste s e etesbeesaestesseensesteesaessesseensesseeneeseennes 68
O T =o' o] o SRS 69
10.6.1 Camera-AzZimuUth MOOE.......ccoiiiieeeeee e 70

10.6.2 Camera-Elevation MOCE...........ccoceiireiiieeiese e 70

10.6.3 MOdEl-YaW MOUEcoiuiiieeeieee e ee e 70

10.7 RAiGliVE OULPULS......cceiicieccieesieeseeseeseeseeeee e e e s e s sreesaeesaeesneeenteereesseesreesressneesnsesnsenns 70
Using OSG formats Within the IRSG...........ooiiiiieece e 72

DRDC Valcartier CR 2011-167

11.1 Usingthe OSG UserData field.........cooiriiiiiiiiieeeieeseserese et 72

11.2 Required MOifiCaliONScceiieeieciiceeie et eaenne s 72
11.3 Converting amodel (FLT t0 OSG).....cccciciiieeiieieeriee e seeeseeesteesreeses e saeesseessessnnens 73
12 SCAlING PAIAMELENS.eeeeiee ettt ettt ettt e e s ee et e teseeeseetesseeneesteeneeneesaeeneeseesseenseneeas 74
13 Evauating Performance Validator t00]cccveieiiieeieiice et 77
13.1 Evauating Performance Validator overhead............cccooeeeiieieeiiseece e 77
13.2 Test 1: Evauating method without child CallS ..o, 78
13.3 Test 2: Evaluating a method with repeated child callS.........ccoovveeiiiinceii e 78
13.4 Test 3: Evaluating a method with numerous child calls...........ccccoovveevivicecceneiee, 79
135 DISCUSSION ..ottt sttt sttt be st e ettt ettt b et b e a et et b et e b e nb et et e e ne e 80
I @0 0 11 o] o U PRSTRTS 81
REFEIENCES..... it e et e e s te et e e tesbeese e tesseeneesbesseenaeseeenneseenneentens 82
Annex A .. AtmosphereSmart XML parametersfile example.ccccevvveeve v 83
List of symbols/abbreviations/acronyms/initialiSmSccooceeiiiieieiiee e 88

DRDC Valcartier CR 2011-167 vii

List of figures

Figure 1: Architecture of the IRSG adapted for KARMAL. ..o 3
Figure 2: Architecture of the IRSG adapted for SMAT. ..o 4
Figure 3: Architecture of the IRSG related to the HDR hardware rendering.ccccceveeeveenienen. 10
Figure 4: Different reflections added on @a3D MOEL.cooeiiirierinireeee s 11
Figure 5: An example showing images obtained without (left) and with (right) reflections......... 15
Figure 6: Defining the sun parametersinSide SMAToo e 16
Figure 7: Parameters causing reflectionsin SMAT ..o 17
Figure 8: The relation between Environment and AtMOSPNEre.ocoverereinienenene e 18
Figure 9: Model class diagram for the KARMA AtmosphereSmart atmospheric model. 20
Figure 10: Setting the SMART configuration fileinside SMAT. ... 21
Figure 11: Setting the execution mode (wideband-ck/spectral) in SMAT during an analysis. 23
Figure 12: Zoom camera view based on bounding sphere (solid line) compared to view based

on exact model extends (dashed).cocvieiieiicecc e 25
Figure 13: An example showing frustra for the main scene's camera and azoom camera. 26
Figure 14: General downsampling ProCess (2X and 4X).ccueerererereereneeieeesesesseseeseeseeseeeens 26
Figure 15: Multi-pass downsampling wWith Shaders.cceoeiirieiii e 27
Figure 16: Downsampling ProCess VIa OSEG.ccciveieereeierire e esteesieesteesressaessesseesseenseenseensens 27
Figure 17: Switching between the 3D model and a quad during ZAA ProCess........ccceevvveveenennens 29
Figure 18: An overview Of the ZAA PrOCESS. ..ottt 30
Figure 19: Zoom antialiasing activation Within SMATccco i 31
Figure 20: Parameters used for the ZAA performance analysSiS........cccvveeveneeceveseese s 32
Figure 21: Time (ms) required to produce one image for the available antialiasing algorithms

and when the platform (CC130) is located at various ranges (M).ccoceeervereereeenne 33
Figure 22: Contrast intensity vs. range for various antialiasing modes.cccocvvveevevieeeeniennene 34
Figure 23: Contrast intensity vs. range for ZAA ModeS only..........ccoeviieieinienienienire e 34
Figure 24: Parameters used for the ZAA acCuraCy analySiS........cccooviirerereneeienienesese e 35
Figure 25: The packages defined in the OsgRendering library.ccccccvvvvirccccie v, 36
Figure 26: OsgRendering Class diagram...........ccviieieieiiese et sre e 37
Figure 27: Zoom antialiasing capacity as astrategy Pattern..........ccoevrerererereneeiesesesesee s 38
Figure 28: GENeriC MUII-PESS VIEW......cccuviieeiecriee e see e sie e e e esteesreesreesseessessessaeenseesseesanssnnes 38
Figure 29: Camera’ s frustum repreSEntation.ccoeieeieeieieeie et sre e 39

viii DRDC Valcartier CR 2011-167

Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43 :
Figure 44:
Figure 45:
Figure 46:
Figure 47:

Figure 48:
Figure 49:

Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:

Bounding box (left) and bounding sphere (right) representation of a 3D model. 40
Single background value (from 1 LOS) vs. multiple values (from 4 LOS). 41
GL_QUADSVS. GL_QUAD _STRIP.ootiiiiiitesieieeeeeese et 42
Interpolation within the QUAD_STRIP.ccooviieieceeese e 42
Using the non-uniform background in SMAT. ... 44
Using SMART to calculate background radiance in SMATcccovvieeiievieeneeneennens 45
AN eXampPle OF SKYDOX. ...ocviiiiiieii ettt st b e ereene s 45
An example Of terrain gEOMELTY.cooiiiiirieieeee e 46
Using a skybox and terrain to model the background in SMATcccovvrievnieeeeeene 47
Activating the solar disCin SMAT. ..o e e 48
Processing of the final background image.cccccvvveeereiicce e 50
Non-uniform background class diagram.cccoererirereneineee e 51
User defined Spectrum import tah.ocoeeeiiiiee e 53
Spectrum reference diStanCe.ccvveecie e e 54
Temperature tab with use temperature MOE.cc.ooveerirerinereeeee s 55
Temperature tab with user defined spectrum mMode. ..o 56
Material tab with the N angle factor. ..o 58
Modulation factor computed according to the view angle and for different N angle

7= (=P 58
Image degraded by the atmOSphere. ... 59

Reproduction of Figure 5 from [11]. “Comparison of MTF simulated with the
Undique Monte Carlo simulator and the stratified model for water droplets 100
micronsin diameter and 8 different optical depths. The gray lines show the
stratified model results and the black superimposed lines show the Monte Carlo
results’ —the grey lines deviate from the dotted curves (Monte Carlo simulator) at

high spatial frequencies since the optical system isincluded in the later. 60
Different quads involved in different teChniqUES.ccccocee e e, 62
General processto apply MTF 0N theteXtUre.ccooveceviieeeese e 62
Flow chart of APPlYMTFE fUNCLION.cccoiiiiiieeieresese e 63
Method tO Create 2D MTF. ..ot s 64
LGz 0410 L= 2 I I N 64
Image of the sphere model without (left) and with (right) scattering effect. 66
Activating the Scattering iN SMAT . ..o 66
Model VIEW INSIAE SMAT ... s 67
Camera and model manipulators inSide SMAT 68

DRDC Valcartier CR 2011-167 iX

Figure 59: Setup and view atemperature Profile.cooeoerireninereseeeeee s 68

Figure 60: Comparing imageS With SMATooiiiiiee s 69
Figure 61: Polar plot analySISWIth SMAToo e e 69
Figure 62: Radiative outputs generator inSIde SMAT ..o s 70
Figure 63: Sun irradiance spectrum obtained from SMART ... 71
Figure 64: Setting the scales activation iNSIde SMAT.ccoe e e s 76
Figure 65: Performance Validator timing mechanisms.ccccveieiiieeiese e 77

X DRDC Valcartier CR 2011-167

List of tables

Table 1: Mapping between deprecated and updated methods of OSG 2.8.0........cccccevevecevvvieeienee. 6
Table 2: Prosand cons Of USING MESA 3D.cceeieriiiiieciee e see sttt e e e e 7
Table 3: Prosand cons of using OPENGL ICD.ccooiiieieciceece e 8
Table 4: Definition of an off-screen floating-point texture in OSG.cccooeirerinieneneseseeeeee 9
Table 5: Render to texture using FBO INOSG.........ooiiiiieieinesesee e 9
Table 6: Code to avoid conflicts between the SMAT/IRSG OpenGL contexts.ccoeveereerenenne 9
Table 7: Vertex shader used iNthe IRSG.ovviiiiineenee s 12
Table 8: Fragment shader used inthe IRSG........c.ooiiiiiniee e 13
Table 9: KARMA'’s environment parametersrelated tothe sun.cccccevev v cceccecveeveecenne 15
Table 10: An example of Accept() method for an atmospheric model.ccccccevviecceiiceenene, 19
Table 11: Adding an atmospheric module in the Environment’ s composition.cccccccveeennee. 21
Table 12: Vertex shader for the background gEOMELTY.ccoveiiiiriiinereeee e 43
Table 13: Fragment shader for the background EOMELY........ccccveeeieieeie e 43
Table 14: Fragment shader for the skybox and terrain.ccceeceeveieeveese s 46
Table 15: Fragment shader fOr the SUN.cooiiiiiie e 48
Table 16: Using two pre-render cameras before the main Camera.cccocvverenenenescseciesennens 49
Table 17: Blending function when rendering the background geometry.cccocvveceeveeneennnnne 50
Table 18: User defined spectrum file format example.ccooveveceii e 54
Table 19: Time dependence |ookup table file format example. ... 57
Table 20: Angle dependence lookup table file format example.cccoovevevie i, 57
Table 21: Description of the MTF binary fOrmat.ccocevviieiiiicce e 60
Table 22: APPlY MTE FUNCHION.oiiiiiiieeee e 64
Table 23: An example of batch file used to convert a3D model from FLT to IVE...................... 73
Table 24: An example defining ascale parameter inside an XML file. ..., 75
Table 25: Code for the evaluation of amethod call. ..o 78
Table 26: Evaluation of aportion Of COUE FESUILS...........coeierririne e 78
Table 27: Code for the evaluation of a method call with 10,000 child calls.ccoovveveeeiiiecennee. 79
Table 28: Repeated Method CallS TESUILS.cuevieieiicecece e e 79
Table 29: Code for the evaluation of a method call with 1,000,000 child calls.cccccooveeeneee. 80
Table 30: Numerous method CallS rESUILS........cc.o e 80

DRDC Valcartier CR 2011-167 Xi

This page intentionally left blank.

Xii DRDC Valcartier CR 2011-167

1 Introduction

The main objective of the contract “ Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared scenes to be used in infrared guided weapon engagement
simulations within the KARMA simulation environment. The work was carried out from
November 2008 to March 2011. This contract report focuses on the new functionalities that were
added to the infrared scene generator (IRSG) module which is part of the KARMA framework.
Complementary information about the recent modifications is also detailed in [1]. More details
about the state of the IRSG prior to this contract can be found in [2]. The report also presents
modifications to the signature modelling and analysis tool (SMAT). Thistool is used to build the
signature models by populating the model databases, and generating various kind of analysis
through images generated by the IRSG module. The current version of SMAT is 3.11. The first
iteration of development, which produced the version 2.00 of SMAT prior to this contract, is
presented in detailsin [3] and [4].

The maor modifications to the IRSG and SMAT are divided as described below. The
architectural review of the IRSG is presented in Section 2. The efforts done to improve the low-
level rendering techniques are documented in Section 3. The computation of apparent radiance
and the addition of reflections caused by the sun and the background on scene’'s models are
discussed in Section 4. An atmospheric module based on MODTRAN was also integrated in the
KARMA framework in order to improve the atmospheric parameters; its mechanisms are detailed
in Section 5. The antialiasing technique developed to improve the results of the IRSG is presented
in Section 6. Important modifications were also done related to the background of generated
images to produce non-uniform textures, as presented in Section 7. New parameters were aso
included in the temperature and material database of a model used in the IRSG process (Section
8). Degradation of images due to atmospheric scattering was also implemented, such as described
in Section 9. Other minor modifications which are helpful in data generation, analysis, etc. are
also presented to keep track of the changes made during this contract (Sections 10, 11, 12 and
13).

DRDC Valcartier CR 2011-167 1

2 Scene generation refactoring

Scene generation is done either through a KARMA simulation or through the SMAT modelling
tool. At the beginning of this contract, a KARMA service (KARMA: : SceneGener at or 3D) was used
by both “clients’ and was based on other simulation services such as KARMA: : Theatre,
KARMA: : Envi ronnent , €tc. This approach was quite straightforward for a simulation as the scene
was driven by models and parameters of a scenario. However, SMAT was required to emulate a
simulation by creating models and parameters similarly to a KARMA scenario. This task was
done in SMAT by the SMAT: : Anal ysi sGener at or class which invokes the scene generation
module. Therefore, SMAT was tightly coupled to the simulation framework. To remove
unwanted dependencies, the architecture of the scene generation module had to be revisited.

21 IRSG

The scene generation functionalities have been isolated into the KARMA: : | RSG class and an
application programming interface (API) has been created to allow controlling the scene and the
rendering parameters. Such an interfacing requires to create a lot of methods and data storage to
foster the usability and flexibility of the IRSG.

The IRSG still performs rendering of the infrared (IR) scene using OpenSceneGraph (OSG) for
the 3D scene management. It is almost a standalone application as it is independent from the
KARMA simulation, but the IRSG is available as a part of the KARMA: : SceneGener at or 3D
library. The following KARMA libraries are required: KARMA: : Mat eri al s, KARMA: : Dat aTypes,
KARMA: : AdvancedTypes and KARMA: : Coor di nat es. The IRSG would be further isolated from the
KARMA simulation framework by using its own library.

2.2 Adapting for KARMA

The scene generation service in KARMA has been easily adapted to the IRSG. Indeed, most of
the source code of the KARMA: : SceneGener at or 3D has been relocated into the IRSG. The
responsibility of the KARMA: : SceneGener at or 3D is now to adapt the IRSG for a KARMA
simulation instead of implementing scene generation, as shown in Figure 1.

2 DRDC Valcartier CR 2011-167

IRSG SensorCkData
‘\R'SGO m_temperaturesGrid : continuousGrid <ﬂnat>
‘«staﬂc» Getinstance() std: mapﬂm std mapﬂm KARMA ‘WidebandType=» m,em\ssNWSn\avCKData
‘De\E‘EEMWO st ma;mm std; ma;mm MR’MA ‘WidebandType=> m,veﬂecwwsmavckoata
‘UpdatEEnN‘/O std:map=int, std::map=int, KARM KDat:
‘Genevatesceneo stdzmap<int, std.map=int, KARN KDat:
‘SE‘Ma‘ENa\SO &m_ usevDerneuwmeBanuspecuum st map<sm string, KARMA WWidebandType>
SetatmosphericTransmission(&m,
¥setPathRadiance(&m_th It sm lidebandType™=
$SetUpFlug —
$5etDownFlux) ‘¥sensorCkDatal)
:Setsumnamanceo $=<yirtual>> ~SensorCkDatal)
‘Gemme() “¥3etCkSpectralResponse()
'SE‘TWEO $5etCkEmissivities)
GetBoundingSphereRadius() $5etC kReflectivities()
:SE‘CDNPMEPaMRama"cEO $SetCkTransmissivities()
‘SE‘CDNPMENeavFaVO $GetCkSpectralResponse(
#m_theSceneGeneratar ‘SE‘SUPE'W“P“"EO $GeCKEmissivity ()
‘GE‘thS‘EF SGetCReflectivity)
O ‘Unda‘esu"PnsmﬂﬂO $GetCKTransmissivity(
‘SetthStepO $SetCkLutLbb()
Sresoomaraiony
¥
Podivnali et o A§e‘u_sevl}ev‘lnedyywdegandgpectvumg
/ \ . [EE8 SR ety
“sUmmmaﬂack R0 &m_ckUpFIThermal | KARMA: WidebandType™
N D D @m_ckDownFIuGolar | KARMA WidebandType™
SAQBRYBON0 &m_ckDownFluxThermal : KARMA:WidebandType*
“m_theEnvironment G o @m_ckPathRadianceSolar | KARMA iidebandType®
<<HML=> SlsSiyBodvated &m_ckPathRadianceThermal | KARMA WidebandType™
&m_ambientTemperature : DataTypes: Dol

L uble
(rom Amazphers) . & _scattering : st:vector< std: pair < double, double» »

Do & m_loadedogel osg:ref_pir<osg:Node>
SoetEriyDatabase &m elativcPawer: double X
S IRy & m_efectiesimasphericTransrrission : KARMA:Spectrury

$astonsts> lsUseStattening()
$activateScattering(

& ConfigureEnvironmentCamera
SactivateTeraing
SisTerainctivated)
$aguTenaing
SoetskyboxParameters)
¥5et3ensorSunimradiance
$SetSensorckaUniadianceq
addsung
SactivateBung
$<<const=> lsSunActivated))
$SetTermanParameters)
$GeiTenainParameters)

Figure 1: Architecture of the IRSG adapted for KARMA.

SEntiyinfog
$=svirtual>> ~Enttyinfog

2.3 Adapting for SMAT

In SMAT, scene generation is still invoked by the SMAT: : Anal ysi sGener at or class, but now
using the KARMA: : | RSG class instead of the KARMA: : SceneGener at or 3D class. Similarly to the
KARMA: : SceneGener at or 3D, the SMAT:: Anal ysi sGenerat or adapts the IRSG for infrared
analysisin SMAT. The use of the IRSG allowed to reduce the dependencies on KARMA. Besides
the libraries required by the IRSG, the SMAT: : Anal ysi sGener at or uses some KARMA libraries
to gather appropriate parameters for the rendering (e.g. KARMA: : Smar t Adapt er, Scat t eri ng), as
shown in Figure 2. The method SMAT: : Anal ysi sGener at or : : Set Kar maPar anet er s() isused to
gather these parameters and configure the IRSG accordingly.

DRDC Valcartier CR 2011-167 3

<<singleton>>
AnalysisGenerator

&m_minimurmavelengthSmart : double

IRSG

(from Soenedeneraton

SRSG)

Q<yitual>> ~RSGH)
Vsstaticrr Getlnstance()
SAddEntity()

®Dslete Entity()
SUpdateEntity()

SGenerate Scene)
dSetMaterials)
SSetAtmosphericTransmission()
¥SetPathRadiancef)
BsetUpFlux(
SSetDownFlux)
¥SatSunlradiance)
BGetTime()

QSetTima()

¥GetBoundingS phereRadius()
SSetComputePathRadiance()

&t_maimurriavelengthSmart : double Pe

i Set ComputeNearF.

om_adapterSmart | KARMA: SmartAdapter * ;Sitszgﬁ::m;‘a;gsm

m_ KARMA gAdap :GelLbbStepO
UpdateSunPosit

ComputeTatallntensity() ’SZ[EEZS:J;;JODEI ion()

SExportimage()
SExpartPalarPlat)
SExportSpectrum()
SGeneratelmagel)
SeneratePolarPlot)
$GenerateRangsPlot()
“GenerateSpectrum()
enerateTimePlot()
SGenerateTemperaturePrafile()

9ZetAmbient Ternperature ()

SCheck Configuration()

SConfigureRend ering()

CloseOpenGIContext)

@ReadFramebufferobject)

UpdateCalor(

<<fiiend,const>> KARMA; PreDrawCallback::operator ()
Scomputelbhy)

UpdateS:
S sy iy
-§m_instance 3§na£/5'55§"5'am'0 . PGetEntitylnfo)
etiarmaParameters| —_— RN
—_— pproximatePathRadianca()
0.1 | gComputeBackgroundintensity() e Vet CkAtmosphericTransmission()
&ComputeBackgroundintensity() —— ¥SetCkPathRadiance)
:CnnvenLamhﬂaTnWaveNumherO Smarhdant T et CkSolarlradiancel)
Importimage() marAdapter St CKUpF
SComparelmages() from Atmosphere) .S:tcmgw:g‘?mo

S<ayirtugl=> ~AnalysisGenerator)
®nitializeSmart()
S|pdateSunPasition()
¥nitialize\Widebandhiade()

SSmartAdapter])
cayitual>> ~Smarthdapter()
YsSmartnitialized]

dsetSensorCkSpectralResponsel)
SSetSensor CkEmissivityData(
¥SetSensorCkReflectivit yDatal)
¥SatSensorCkTransmissivityData()

G ethinimumWWavelengthSmart() *addSpecic Sensor) S
SGethvaximumWavelengthSmart() *RemoveSpeciicSensor(éi‘.ﬁﬂ@ammo
SnitializeScatterin SGetUpFlux(9

al) oot QGetimagelrradiance()
SUninitializeSmart() Get Down Flux()

SImportSpectrum()
SCreateScaleSamplel)

SGetSolarlra dian cef)
SGetPathRadiance()

d5etlUserDefin edWideBandSpectrumi)
#hConfigureBack groundCamera()

SAddBackgound
:GEtEackgrnundRadlancE() ygetcmeﬂgenggmg
'gz:mﬁ;mﬁeg@mo VSetBackgroundPararmeters()
o p @&t BackgroundilumberDfRows)
Qrups e G etBackgrou ndhurmb erfCalurins
@Tnsgzcuumo :SetEa:kgruundRad\an:e()
+in_adapterSmart SChangesSunPosition() Qiitnciff,:gkféi;:dedo‘anteo
<
0.1 ‘Ge\UpFMO $5etUselniformBackgound()
Get Down Flux() AddSkyBox)
“GetPathRadiance() pctivateSkyb ox)
Gt Solarlrradian ce s.agkyanxﬁ:wmao
GetB d) “
SGetTrans rittancel) SMARTI ané;thwama:ﬁpr jis s
e R M etEflectiveAtm osphericTransmission()
e St CkEfective Atmospheric Transmission)
@Ggwﬂ:‘hmw :xo SGetEntityDatabase()
QGE Sal Ia ‘dﬂ_ﬂteo ¥SetAtmosphereScatteringLUT()
et Solarlrra dian cef) P<<conste> lslseScattering()
gGetEackgmundRadlance() SactivateScatte ing()
et rans ritianced @ CanfigureEmvironmentCameral)
UpdateGenericSen sor() S,
N ActivateT erain()
UpdateSpecificSensor() sTerrainActivated()
¥sSpecificSensoRegistered() Py
BGet CkUpFlux() AT
Y
S Get 3k ybosParameters(

¥Get CkSolarlradiance()
¥Get CkPathRadiance()

¥SetSensorSunliradiance)
VsetSensorCkSuniradiance()

Get CkBackgroundRadiancer) :ﬁgff;!gmo

SBetCkTrans mitanca(Se<const>> IsSunActivated()

el VSt TermainPararmeters))
onvenS pect umTo

et SmarSensoric) *GetTerrainParameters()

[UpdateSensor

STowidebandType(

ToWvidebandType(

(#StorSens orLoc ation()

e Get Sensorl ocation()

St Onlywide Mode

sl Onlyw ide Mode)
&P at chiSpectumLimitsfy

Figure 2: Architecture of the IRSG adapted for SVIAT.

2.3.1 GUI uncoupling

Basically, the purpose of the SMAT: : Anal ysi sGener at or iSto operate and configure the IRSG to
perform infrared analysis. In order to increase reusability of this class and alow automated
testing, the SMAT: : Anal ysi sGener at or has been revisited to remove any dependencies to the
graphical user interface (GUI) of SMAT. The following classes have been gathered into alibrary
named Smat Cor e:

e the SMAT::Settings class acts as a container for the SMAT application settings,
including the scene generation settings;

4 DRDC Valcartier CR 2011-167

e the SMAT: : Anal ysi sDat a class acts as a container for the input parameters and the output
results of an infrared analysis; and

e the SMAT: : Anal ysi sGener at or class acts as a manager of the scene generation settings
and performs various infrared analyses based on images generated by the IRSG: image,
intensity spectrum, polar plot, time plot and range plot.

When a SMAT analysis is created, the SMAT: : Anal ysi sGener at or Di al og class is the GUI that
gathers the input parameters of the analysis, stores the corresponding information in a
SMAT: : Anal ysi sDat a object and triggers the SMAT: : Anal ysi sGenerator to start an infrared
anaysis.

DRDC Valcartier CR 2011-167 5

3 Advanced rendering techniques

Infrared scene generation has to deal constantly with rendering issues. It is desirable that the
scene generation performance and scene realism increase in order to obtain accurate data while
the simulation length is not too much impacted. Naturally, the rendering libraries and mechanisms
used to accomplish the scene generation process have a crucial impact. The modifications done to
the IRSG module in regards to low-level rendering are described in this section.

3.1 Migrating from OSG 2.2.x to OSG 2.8.0

OSG is an open source 3D graphical toolkit that is used to manage and render 3D models in
visible and infrared modes. The toolkit is written in C++ and is based on the lower level API of
Open Graphic Library (OpenGL). In order to be compatible with Delta3D 3.2, which is used by
the KARMA 3D viewer, and to benefit of the enhancements (including severa bug fixes) of the
latest version at thistime, the OSG library used by the IRSG was updated to version 2.8.0.

The most notable change of this migration was the replacement of the osgutil:: SceneVi ew
class, which has been declared deprecated, by the osgViewer::Viewer class. Table 1
summarizes the updated methods corresponding to the deprecated methods.

Table 1: Mapping between deprecated and updated methods of OSG 2.8.0.

Deprecated methods
(osgUtil :: SceneVi ew)

Updated methods

set Def aul t

None

set C ear Col or

0sg: : Camer a: : set d ear Col or

set SceneDat a

osgVi ewer : : set SceneDat a

cull 0osg:: Viewer::renderingTraversal s
set Conput eNear Far Mode 0sg: : Caner a: : set Conput eNear Far Mode
get Caner a osgVi ewer : : get Caner a

updat e osgVi ewer: : event Traver sal

osgVi ewer : : updat eTr aver sal

set FrameSt anp

osgVi ewer: : set FranmeSt anmp

set Vi ewport 0sg: : Camer a: : set Vi ewport
set Vi ewat ri x 0sg: : Camer a: : get Vi ewat ri x
dr aw osgVi ewer: : renderi ngTraversal s

flushAl | Del et edG.(bj ect s

None

Since the osgVi ewer : : renderingTraversal s() method performs both the cull and the draw
operations, the call to the | RSG : Updat eCol or () method has been placed in a pre-draw callback.
This allows updating the color after the culling and before the draw.

6 DRDC Valcartier CR 2011-167

3.2 Migrating from Mesa to OpenGL

OpenGL isan API for performing 3D rendering. However, it is not a software product and it does
not have any source code. OpenGL is only a specification that describes an interface and its
expected behaviour. Therefore, to use the OpenGL API, an OpenGL implementation is required.

On Windows operating system (OS), a very basic implementation of OpenGL (1.1 or 1.4
depending of the OS version) is provided through opengl 32. dI | . It is important to understand
that this standard Windows library alone does not provide any hardware acceleration. In order to
get hardware acceleration and implementation of the newer OpenGL specification (1.5 to 4.1),
video drivers from graphics card manufacturer (like AMD/ATI, Intel, NVIDIA) need to be
installed. These drivers are called OpenGL Installable Client Driver (ICD). Installing a video
driver will not replace opengl 32. dI | : it is a system file and belongs to Windows (meaning that
only Microsoft may update it). When avideo driver isinstalled, another file will be copied on the
system (nvogl v32.dlIl in the case of NVIDIA) and the registry will be modified. Then,
opengl 32.dI I will cal into the real GL driver (nvogl v32. dl I'). The OpenGL runtime accesses
the registry to determine which ICD to load.

For programmers, installing video card drivers will not make gl . h or opengl 32.1i b available.
Those are files that come with the compiler and there are no updated gl . h and opengl 32.1i b
files. These are stuck at GL 1.1 and are likely to be forever. This means that it is not possible to
link directly to any function provided by newest OpenGL versions or extensions. In order to use
these newer functions, gl ext. h and wgl ext. h shall be used to get function pointer at runtime
with the wgl Get ProcAddress cal. Fortunately, some libraries such as GLEW and GLEE were
developed to make available function pointers.

Mesa 3D is an open-source implementation of an APl which is very similar to OpenGL. In fact,
the Mesa 3D implementation tries to follow the OpenGL specification (with a certain delay in
comparison to graphic card manufacturers) but does not guarantee the respect of it. Table 2
presents pros and cons of using Mesa 3D.

Table 2: Pros and cons of using Mesa 3D.

Pros Cons

- Completely platform independent since | - OSMesa APl is software only.
rendering is done via software.
- Need to use its own OpenGL32. dI | (not the
- The offscreen rendering APl (OSMesa), standard Windows one).
in 16/32 hits, is easy to use.
- Does not support all OpenGL specifications.

- Not up-to-date with the latest OpenGL
release.

- Small developer community.

DRDC Valcartier CR 2011-167 7

Initially, the KARMA high dynamic range rendering was implemented using the Mesa’'s off-
screen rendering APl (OSMesa). The OSMesa interface supports 16-bit and 32-bit color channels
rendering into user-allocated blocks of memory.

An important requirement of this project was to migrate from Mesa 3D to OpenGL ICD in order
to gain access to hardware acceleration and latest features of OpenGL. Table 3 presents the pros
and cons of using OpenGL ICD.

Table 3: Pros and cons of using OpenGL ICD.

Pros Cons

- Hardware accel erated rendering. - Availability of certain features (OpenGL
extension) is hardware dependant.

- Up-to-date with the OpenGL features.
- Computation results may be dlightly different
- Use the standard Windows Opengl 32. dI | . depending on hardware.

- Up-to-date with the GLSL features.

- Large community of users.

- Used by OSG.

A good OpenGL implementation will render with hardware acceleration whenever possible.
However, the implementation is free to render without hardware acceleration. OpenGL does not
provide a mechanism to ensure that an application is using hardware acceleration, nor to query
that it is using hardware acceleration.

3.3 Framebuffer object

Usually, images have a 8-bit format for each channel (red, green and blue). Thus, each component
value can range from 0 to 255. In some situations, like in the case of radiance calculation for
infrared scene generation, this range is not sufficient i.e. does not provide enough possible values.
Framebuffer objects (FBO) alow storing images with a high-dynamic range (HDR), in 32-bit
floating point values. Without HDR, clipping will occurs, meaning that areas that are too dark
will betotally black (RGB(0,0,0)) and areas that are too bright will be totally white (RGB(1,1,1)).

Thus, the OpenGL FBO extension has been used to perform the off-screen rendering into a 32-bit
floating-point texture. By default, OpenGL uses the default framebuffer as the final rendering
destination. Everything that is put in this buffer is automatically drawn to the screen. On the other
hand, the FBO mechanism allows generating an image (2D array of pixels) in a buffer (other than
the default OpenGL framebuffer) which can be post-processed. The image is not necessarily
drawn on the screen: only if it isinstructed to do so. Table 4 shows how to initialise the floating
point texture within OSG.

8 DRDC Valcartier CR 2011-167

Table 4: Definition of an off-screen floating-point texture in OSG.

int i negeWdth = 500;

int inageHei ght = 500;

0sg: : Text ur eRect angl e* of fscreenTexture = new o0sg:: Text ur eRect angl e;
of f screenText ur e- >set Text ureSi ze(i nageW dt h, i mageHei ght);

of f screenText ur e- >set Sour ceFor mat (GL_RGBA) ;
of f screenText ur e- >set Sour ceType(GL_FLQOAT) ;
of f screenText ur e- >set | nt er nal For mat (GL_RGBA32F_ARB) ;

Table 5 shows how to configure an osgVi ewer : : Vi ewer 1o render into a floating point texture
instead of using the standard framebuffer.

Table 5: Render to texture using FBO in OSG.

/1l Get the main canmera fromthe viewer
0sg: : Canera* canera = vi ewer->get Canera();

/] Set the canera to render in the FBO
camer a- >set Render Tar get | npl ement ati on(osg: : Caner a: : FRAME_BUFFER_OBJECT) ;

/1l Attach a texture to the FBO
caner a- >attach(osg: : Canera: : COLOR_BUFFER, offscreenTexture.get(), 0, 0, false,

0, 0);

3.31 Context conflict

Unlike in OSMesa, a FBO needs an OpenGL context to get working. A conflict between the
SMAT/IRSG OpenGL contexts appeared when a new OpenGL context was created for the FBO.
The solution retained to avoid this conflict was to memorize and make current the right context
when calling the scene generation of the IRSG from SMAT. Table 6 shows the code used to
avoid the OpenGL context conflict.

Table 6: Code to avoid conflicts between the SMAT/IRSG OpenGL contexts.

HGLRC KARMA: : | RSG : m gl Cont ext ;
HDC KARMA: : | RSG : m devi ceCont ext ;

/1 Menorize the current OpenCGL context
m_devi ceCont ext = m_opengl W ndowCont ext - >get HDC() ;
m gl Cont ext = m opengl W ndowCont ext - >get WGLCont ext () ;

/1l Activate the OpenGL context of the IRSG (avoids conflicts with SMAT)
i f(wgl GetCurrentDC() !'= m devi ceContext ||
wgl Get Current Context () != m. gl Context)

wgl MakeCurrent (m devi ceCont ext, m gl Cont ext)

DRDC Valcartier CR 2011-167 9

3.4

KARMA architecture

Figure 3 and the following text show the modifications that were done to the KARMA
architecture to make possible the changes discussed previously in this section of the report.

10

IRSG

B3m_contextld : int
ESm_deviceContext : HDC

E&m_glContext : HGLRC
E&m_graphicContext : 0sg::GraphicsContext *

Inherit from
0sg::Camera::DrawCallback

DrawCallback

E&m_multisampledFBO : bool

E5m_offscreenTexture : osg::ref_ptr<osg::TextureRectangle> <<uses>> SDrawCallback()
E5m_openglWindowContext : osgViewer::GraphicsWindowWin32 * - ’~DrawCaI|_back()
B3m_preDrawCallback : osg::ref_ptr<osg::Camera::DrawCallback> - — ’<<00”SFMVTU3|>> operator ()()
B5m_scene : osg::ref_ptr<osg::Group> W¥SetMultisampledFBO()
E5m_shaderProgram : osg::ref_ptr<osg::Program>
& m_supersampling : int
B3m_viewer : osg::ref_ptr<osgViewer::Viewer>

Inherit from
SCheckConfiguration() 0sg::Camera::DrawCallback
% CloseOpenGIContext() <<uses>> ﬁ
S ConfigureRendering() _ \
SGenerateScene() ~__ ‘

¥Getimagelrradiance()

SGetimageRadiance()
EP¥ReadFramebufferObject()
E#¥UpdateColor()
E¥updateScene()

PreDrawCallback

SPreDrawCallback()
%-~PreDrawCallback()
S<<const,virtual>> operator ()()

Figure 3: Architecture of the IRSG related to the HDR hardware rendering.

I RSGis the class which handle the scene generation based on the osgVi ewer : : Vi ewer . It
implements the high dynamic range hardware rendering using an off-screen texture, a
FBO (viathe osgVi ewer: : Vi ener camera settings) and a shader program. It also takes
care of the OpenGL context manipulation.

The oper at or () method of the PreDr awcal | back is executed after the culling operation
and before the draw operation. It has the responsbility of caling the
| RSG : Updat eCol or () method.

The operator () method of DrawcCal | back is executed after the draw operation. Its

responsibility is to bind the right FBO to be read by the
| RSG : ReadFr aneBuf f er Cbj ect () method.

DRDC Valcartier CR 2011-167

4 Apparent radiance and reflections

The addition of reflections to the IRSG module’'s computations is important to bring realism to
infrared (IR) scenes. As mentioned in [5], various components (like the sun, the background,
flares and plumes) can produce reflections on other entities in a scene, which can have an impact
on an IR sensor.

During this contract, the computation of apparent radiance has been improved to vary spatially
and to include contributions from reflections of the sun and fluxes (from the sky and the ground).
Figure 4 shows how these reflections are combined to the emitted radiance of a spherical 3D
model. These contributions are calculated and modulated for each rendered pixel, based on
pixel’s normal compared with the sun position (vector oriented toward the sun); and the zenith
vector for fluxes.

Downward contribution
Sun contribution

Upward contribution I

. J/

Figure 4: Different reflections added on a 3D model.

Since the contributions of the apparent radiance depend on the geometry, the shader technology is
used. It was a natural choice because it is possible to access the normal (interpolated from the
surrounding vertices' normal) of each rendered pixd of the 3D model in order to combine and
modulate these contributions at the rendering stage. Obviously, doing computations for each pixel
can add an overhead, but this process is done via the graphics processing unit (GPU) which
accelerates the overall process. Indeed, modern GPUs are very efficient to make operations in
parallel such asthose described previously.

The vertex shader presented in Table 7 is used to compute the normal and position of each vertex
composing the 3D model. These values are interpolated in the fragment shader to obtain the
normal and position for each fragment located between vertices.

DRDC Valcartier CR 2011-167 11

Table 7: Vertex shader used in the IRSG.

varyi ng vec3 nornal ;
varying vec3 position;

voi d mai n(voi d)

{
normal = normalize(gl_Normal Matrix * gl _Normal).xyz;
position = normalize(gl_Mdel Viewvatrix * gl _Vertex).xyz;
gl _Position = ftransforn();

}

The in-band apparent radiance of thermal, path and reflected components are calculated in the
IRSG while the fragment shader presented in Table 8 is used to compute the final value of pixels
of arendered 3D model, taking into account the polygon-geometry dependant components. This
value represents the combination of the three components. These components, initially computed
such as described in [5], are now computed as described below.

The thermally emitted contribution to the apparent radiance as seen through the atmosphere is
now given by

Ltat]:;;m = 8sca.ling COSN (e)jemrf (7\‘) Lbb (Tsurf ’X)Tpath (2’7\‘) Rsens (7\,)(:”\, ’ (1)

where ec.1ing 1S @ emissivity scaling that is detailed in Section 12 and N is the N angle factor
detailed in Section 8.3.

The apparent radiance component from the atmosphere located between the surface and the
sensor is gtill given by

L j Lo (1) R (A) 11 @

The apparent radiance component from reflections on a surface is now given by

8 =222 [0 ()5 1.2 R 1)

1[19—j [(90 ()2 (2R ()81, ®

+%Cos(eisun)_“ Ean (k)psurf (k)ﬁcpath (7\" Z) &Q‘S(k)dk

12 DRDC Valcartier CR 2011-167

where W' (1) is the upward flux, W~ (A) is the downward flux and Eg, (}) is the sun
irradiance.

The uni f or m parameters at the beginning of the shader are values which come from the IRSG

while the var yi ng parameters are the result of a previous computational stage done in the vertex
shader.

Table 8: Fragment shader used in the IRSG.

/1 different contributions used to calculate reflected
/1 radiance at target surface position

uni form fl oat LUpRef App;

uni form fl oat LDownRef App;

uni form fl oat LSunRef App;

/1 sun position in eye coordinates
uni form vec3 sunPosi tionEye;

/1 zenith unit vector in eye coordinates
uni form vec3 zenit hVecEye;

/1 thermal radiance
uni form fl oat LTher mApp;

/'l path radiance
uni form fl oat LAt mApp;

/'l transparency
uni form fl oat transparency;

/'l factor affecting LTher mAPP
uni form float nFactor;

LELETELLEET L r i i r i i i i riiirrry
/1 I'nputs from pixel shader (interpolated)
PELETELLEEE i rr i i i r i i r i i i iirrry

varyi ng vec3 nornal;
varying vec3 position;

voi d mai n(voi d)
TELELTLLEE LT i it i i i i i irriini
/'l Constants
PELLETELEE i r i n i i n i r i r i iin i

float Pl = radians(180.0);
float PI_ON_TWO = radi ans(90.0);

vec3 fragnmentNormal = normalize(normal); //Inportant: after interpolation normal nodulus !'= 1.
vec3 fragnent Position = normalize(position);

PEEELTLEEE LT r i i r i r i i n i r i n e r i rriin i
/1 Thernal radiance
TELELTILEE i r i i i n i r i i n i n i iiriinsi

float viewFactor = 0.0;
vec3 viewec = normalize(-position);

/1 Ensure that the dot product is between the interval [-1.0, 1.0]
float dotProduct = max(-1.0, mn(1.0, dot(viewec, fragnentNormal)));

float viewAngle = acos(dot Product);

/| Conpute view factor when view angle is not 90 degrees fromthe normal (O otherwi se)
if(viewAngle !'= PI_ON_TWO)
{

vi ewFactor = 1.0;
if(nFactor != 0.0)

/1 Conpute view factor using cosine of angle between view vector and surface’s nornal
vi ewFactor = pow(abs(dotProduct), nFactor);

}

/1 WNMbdul ate thermal radiance using view factor
float LThermAppContribution = viewFactor * LTher mApp;

PICELLLELEE T r i n i n i i r i n i n i i i r i r i i i r i ri i irins g
// Sun contribution

DRDC Valcartier CR 2011-167 13

FEEEETETETE i r i r i r i i ri il
float LSunRefAppContribution = 0.0;
vec3 sunVec = normalize(sunPositionEye-position);

/1 Ensure that the dot product is between the interval [-1.0, 1.0]
dot Product = max(-1.0, min(1.0, dot(sunVec, fragmentNormal)));

float sunAngle = acos(dot Product);

/1 Solar reflection is visible only when the view vector is on the surface's side where the reflection occurs
if(sign(cos(viewAngle)) == sign(dotProduct))
{

/1 NMbdul ate sun contribution using cosine of angle between sun and surface normal
LSunRef AppCont ri bution = abs(dotProduct) * LSunRef App;
}

TILELELEEE LT i i r i i i i i irriini
/1 Upward and Downward contributions
PELELTLLEE i i i i i i i i r i i i irirriini

/1 Ensure that the dot product is between the interval [-1.0, 1.0]
dot Product = max(-1.0, min(1.0, dot(zenithVecEye, fragmentNormal)));

float angl eZenith = acos(dot Product);

/1 Contributions are inverted when the view vector is on the surface's backside
if(viewAngle > PI_ON_TWO
{

angl eZenith = Pl - angl eZenith;

}

/1 Mbdul ate contribution using angl e between zenith and surface normal
float LUpRef AppContribution = (angleZenith/Pl) * LUpRefApp;

/1 Nbdul ate contribution based on angle between zenith and surface nornmal
float LDownRef AppContribution = (1-(anglezZenith/Pl)) * LDownRef App;

TELELTLLEE LT r i n i i n i i r i i i irriinsi
/'l Reflected radiance
PELLETLLEE i r i n i i r i r i iin g

float LRefAppContribution = LUpRefAppContribution + LDownRef AppContribution + LSunRef AppContri bution;
PICELLLELEE T r i n i i i r i r i i i r i r i r i i r i ri i iringy
/| Total apparent radiance = Ltherm+ Lref + Latm

PEEEEEEEEEEEE b i r bbb r i r e r b r i r e r i rr

/1 total perceived radiance
float conputedCol or = LTher mAppContri bution + LRef AppContribution + LAt mApp;

/1 set the fragment col or
gl _FragCol or = vec4(conputedCol or, conputedCol or, conputedCol or, 1.0-transparency);

In order to supports double-sided surfaces, the fragment shader uses the view angle 6,qy, defined
as the angle between the view vector and the surface’s normal, when it modulates LTher mApp,
LSunRef App, LUpRef App and LDownRef App components:

e Thermal radiance LTher mis the same whether the surface is seen from front (Byiey < 90°)
or behind (Byiey > 90°).

e Sun reflection LSunRef App is not seen (component set to 0) when the surface is seen from
the opposite side where the reflection occurs.

e Upward LUpRefApp and downward LDownRef App reflections contributions are
interchanged when the surface is seen from behind (0yiey > 90°).

Notice that the vertex and fragment shaders described in Table 7 and Table 8 are directly
embedded in the code, in the | RSG. cpp file (i.e. they are not defined in external files). Figure 5

14 DRDC Valcartier CR 2011-167

shows the effect of reflections on a platform: a nice gradient effect is visible. The sun isin front
of the platform with an elevation of 45.0 degrees (above horizon).

x *t

Figure 5: An example showing images obtai ned without (left) and with (right) reflections.

4.1 Reflections in KARMA simulations

The reflections are always taken into account (i.e. activated) in KARMA simulations. The sun
azimuth and elevation are defined in the Envi ronment model and can be modified in its XML
parametersfile, as shown in Table 9.

Table 9: KARMA's environment parameters related to the sun.

<par anmet er nanme="SunAzi nut h" >
<doubl e>0</ doubl e>
<docunent ati on>
The sun azinmuth in radi ans neasured East from
North. This paraneter is used by the visual environnment (display
the sun in a viewer) and can al so be used by the sinulation. The
value range is fromO to 2Pl
</ docunent at i on>
</ par anet er >
<par anmet er nanme="SunEl evati on">
<doubl e>0. 7854</ doubl e>
<docunent at i on>
The sun elevation in radians. This paraneter is
used by the visual environnent (display the sun in a viewer) and
can al so be used by the sinmulation. The value range is from-Pl/2
to +PI/2
</ document at i on>
</ par anet er >

DRDC Valcartier CR 2011-167 15

4.2 Reflections in SMAT

SMAT does not have access to the Envi ronment model. However, the sun parameters can be
modified viathe Analysis Settings dialog box as show in Figure 6.

Figure 6: Defining the sun parametersinside SMAT.

Figure 7 shows the parameters of an analysis, sun and fluxes, causing the reflections. They can be
activated or deactivated, based on the values selected. On the figure, the value selected (i.e.
SMART which is described in Section 5), refers to the atmospheric model used to compute the
components. It can be noted that, for backward compatibility and work using simple atmosphere
models, a geometry independent reflection such as described in [5] can be computed by selecting
Approx. in those fields.

16 DRDC Valcartier CR 2011-167

Figure 7: Parameters causing reflectionsin SVIAT.

DRDC Valcartier CR 2011-167

17

5 Atmospheric module

To improve IR scenes computed in the IRSG, an objective of this project was to use MODTRAN
to obtain precise radiometric values depending of the current environment conditions to be
recreated in the scene. There was already an effort at DRDC-Va cartier to produce a C++ library
which is built on top of MODTRAN. This library is named SMART (not to be confused with
SMAT) for Suite for Multi-resolution Atmospheric Radiative Transmission [6][7]. An interface,
SMARTI, is dso available to facilitate communications with another software. The main purpose
of SMART is the calculation of atmospheric values such as transmitted solar irradiance,
atmospheric fluxes, path and background radiances, and transmittance. This library can produce
outputs in both spectral or wideband correlated-k (CK) format.

5.1 Environment refactoring

The Environnment is a model aready defined in KARMA. What needed to be added is the
concept of atmospheric model. Thus, to integrate this new concept, the Envi r onnment model was
modified to increase the modularity: the Envi r onment gathers At mosphere objects which are
able to calculate atmospheric parameters depending on the current context (see Figure 8).

<<XML>>
Environment <<Abstract>>
(from Environment) Atmosphere
(from Atmosphere)

SEnvironment()
FEnvironment() WAtmosphere()
W<<virtual>> ~Environment() W<<virtual>> ~Atmosphere()
B¥<<virtual>> InitializeComposite() ¥nitializeComposite()
FGetTransmittance() ®<<abstract>> Accept()
¥GetPathRadiance() W<<abstract>> Accept()
¥GetBackgroundRadiance() W<<virtual>> GetTransmittance()
YGetSolarlradiance() W<<virtual>> GetPathRadiance()
WGetUpFlux() . W<<virtual>> GetBackgroundRadiance()
WGetDownFlux() 0.. W<<virtual>> GetSolariradiance()
®GetAtmosphere() B<<virtual>> GetUpFlux()
WGetAtmosphere() W<<virtual>> GetDownFlux()
FGetCkTransmittance() M<<virtual>> GetCkTransmittance()
WGetCkPathRadiance() <<virtual>> GetCkPathRadiance()
WGetCkBackgroundRadiance() W<<virtual>> GetCkBackgroundRadiance()
WGetCkSolarlradiance() W<<virtual>> GetCkSolarlradiance()
WGetCkUpFlux() W<<virtual>> GetCkUpFlux()
FGetCkDownFlux() <<virtual>> GetCkDownFlux()
FiswidebandModeAvailable() R<<virtual>> GetAmbientTemperature()
BGetAmbientTemperature()

Figure 8: The relation between Environment and Atmosphere.

At this moment, the values which can be calculated by an At nospher e are:

transmittance;

path radiance;

sky (or background) radiance;
solar irradiance;

upward flux;

downward flux; and

ambient temperature.

18 DRDC Valcartier CR 2011-167

Envi ronnent traverses its list of atmospheric models and returns the appropriate data
corresponding to the first atmospheric model found that meet the selection criteria. For each data
mentioned previously which isrequired, Envi r onment verifies, viathe Accept () method, that the
atmospheric model can provide this kind of data and uses an appropriate spectral band for
processing this data. For example, the following model (Table 10) can handle six data types (with
their correlated-k version):

Table 10: An example of Accept() method for an atmospheric model.

Dat aTypes: : Bool ean KARMA: : At nbpspher eExanpl e: : Accept (Dat aTypes: : Doubl ewavel engt hM n,
Dat aTypes: : Doubl ewavel engt hMax,
int property)

{

if (property != KARMA: : At nosphere:: Transmittance_Type&&
property !'= KARMA: : At nosphere: : CkTransnmi ttance_Type&&
property !'= KARMA: : At nospher e: : Pat hRadi ance_Type&&
property != KARMA: : At nospher e: : CkPat hRadi ance_Type&&
property != KARMA: : At nosphere: : Backgr oundRadi ance_Type&&
property != KARMA: : At nospher e: : CkBackgr oundRadi ance_Type&&
property != KARMA: : At nosphere: : Sol ar |l rradi ance_Type&&
property != KARMA: : At nosphere: : CkSol ar | rradi ance_Type&&
property !'= KARMA: : At nospher e: : UpFl ux_Type&&
property !'= KARMA: : At nospher e: : CkUpFl ux_Type&&
property != KARMA: : At nospher e: : DownFl ux_Type&&
property != KARMA: : At nospher e: : CkDownFl ux_Type)

return fal se;
/1 See if the range is ok
i f (mbaseWavel engt hM n <= wavel engt hM n & & m baseWavel engt hMax >= wavel engt hMax)
return true;
el se
return fal se;
}

5.2 An atmospheric model based on SMART

To make available the SMART library into KARMA based simulations, an atmospheric model,
At mospher eSmar t , was defined and is presented in Figure 9.

DRDC Valcartier CR 2011-167 19

<<XML>>
Environment
(from Environment)

SWEnvironment()
SEnvronment()
W<<virtual>> ~Environment()
¥<<virtual>> InitializeComposite()
WGetTransmittance()
WGetPathRadiance()
WGetBackgroundRadiance() <<Abstract>>
WGetSolarirradiance()
SGetUpFlux()
®GetDownFlux()
WGetAtmosphere() 7
WGetAtmosphere() ’%
SGetCkTransmittance()
WGetCkPathRadiance() ‘
SGetCkBackgroundRadiance()
WGetCkSolarlradiance()
WGetCkUpFlux()
WGetCkDownFlux()
®iswidebandModeAvailable()
SGetAmbientTemperature()

Atmosphere
(from Atmosphere),

<<XML>>
AtmosphereSmart
(from Atmosphere)

SmartAdapter
(from

SMARTI | [SMART | | MoDTRAN
| I | |
|

Figure 9: Mode class diagram for the KARMA AtmosphereSmart atmospheric model.

At nospher eSmart s the atmospheric model developed based on SMART which can be
used in KARMA simulations to obtain values from SMART. A XML file contains the
parameters which characterize this model (see file example shown in Annex A).

Smar t Adapt er is used to call methods from SMART and transform data from the IRSG
to a SMART compliant format (and vice versa). An object of this class manages the
complexity of the manipulation of objects and data (e.g. coordinate system conversion)
inside SMART. Thus, At nospher eSmart is not aware of how SMART works. Notice that
SMAT uses this component directly (i.e. SMAT does not use the At nospher eSmart
model) when SMART values are required.

SMARTI is the interface to the SMART library which is based on MODTRAN. Notice that
SMART is using a precise version of MODTRAN: MODTRAN 4 version 3 release 1,
available in “KARMA _ROOT% Sof t war es\ Modt r an.

The KARMA: : Spect rum data type is used to manipulate the SMART spectral format. For the
wideband-ck mode, a wrapper was created (W debandType) which encapsulates SMART
wideband types (Nor nTypeCk, RadTypeCk, Nor nilype).

For KARMA simulations, the At mospher eSmart model shall be defined in the composition of an
Envi ronment model, as shown in Table 11; its parameter file will alow initializing the
atmospheric model in an appropriate way.

20

DRDC Valcartier CR 2011-167

Table 11: Adding an atmospheric module in the Environment’s composition.

<conposi te name="SMARTI ">
<conponent >At nospher eSnart </ conponent >
<par anet er s>$(KARMA_ROOT) \ Model Reposi t or y\ xm \ Par anet er s\
O her\ At nrospher eSnart . xm
</ par anet er s>
<conposi ti on>none</ conposi ti on>
<priority>0</priority>
<docunent at i on>
At nospheric nodel based on SMART/ MODTRAN allowing the calculation of
transmttance, path radiance, background radiance, solar irradiance, up
flux, down flux; in spectral and/or w deband correl at ed-k.
</ docunent ati on>
</ conposi t e>

Inside SMAT, even though SmartAdapter is used directly without accessing the
At nospher eSmart model, the atmospheric settings are still described by the parameters file of
At nospher eSmar t . Then, the parameters file of this model must be configured properly and set as
shown in Figure 10 in order to initialize SMART appropriately.

Figure 10: Setting the SMART configuration file inside SVIAT.

DRDC Valcartier CR 2011-167 21

521 Initialisation review

For the wideband-ck mode, a pre-calculation phase must take place. Before beginning the
execution of asimulation, each spectrum necessary for the scene generation process are converted
into their CK equivalent. Thus, for each sensor, the following data are converted using the
Sensor’ s conversion space:

e the spectral response of the sensor (solar and thermal);

e gpectral characteristics (reflectivity, transmissivity, emissivity) of materials (solar and
thermal);

e |ookup table of blackbody radiance as a function of temperature (wideband-ck): LBB (T,
A) >Lbb_therm (T, ck). The table is constructed, using a SMART data structure, with a
minimum value of 200 K and a maximum value of 2200 K with steps of 12.5 K. SMART
returns an interpolated value if the table is interrogated with a temperature in between
two table values.

A container class, Sensor CkDat a, iS used to store the converted data and is available to the IRSG
module.

5.2.2 Calculation mode selection

Inside KARMA simulations, the calculation mode (spectral or wideband-ck) is defined for each
I magi ngSensor and set inside its parameters file. If the parameter Cal cul ati onMbde is Set to 1,
the sensor uses the spectral mode; while the value 2 indicates that the sensor uses the wideband-
ck mode. When the wideband-ck mode is selected, the apparent radiance components are
computed in wideband format using the SMART data structure, the wideband atmospheric
quantities returned by SMART, and the previously converted properties, as presented in Section
5.2.1.

Inside SMAT, a combo box inside an analysis dialog box (Figure 11) allows the user to set if the
process shall be executed in wideband-ck or in spectral mode.

22 DRDC Valcartier CR 2011-167

Analysis Generator, - Image

Target State
Entity Time {s)
Ambient Temperature Mode
Ambient Temperature (K)
Mach Mumber
Relative Power

Target Altibude {m)

Detection Parameters
Horizontal Resalution (pixel)
Wertical Resolution (pixel}
Tokal Horizonkal FOW {rad)
Total Yertical FOV (rad)
Distance {m)

Sensor Spectral Response

User defined

W

& [E|[2] 8] B g g
gl [z
HNERERE E 2
< <

N

FWIR {3-Sum;)

Calrulation Paramerer

Calculation Mode

Figure 11: Setting the execution mode (wideband-ck/spectral) in SMAT during an analysis.

DRDC Valcartier CR 2011-167

Atmospheric Components
Atmospheric Transmittance
Path Radiance

Background Radiance

Mone

Mone

hone

>

<

Generate Cancel

23

6 Antialiasing

One limit of infrared scene generation is that platforms can be located very far in front of infrared
sensors and subtend only few pixels or less than one pixel. Depending on the sampling method
used, platforms may have a poor representation, or even worst, not be represented at all on the
screen, even if the sensor is supposed to detect energy (referred as the apparent radiance). This
will lead to radiometric inaccuracies, affecting sensors based on the IRSG and therefore, the
results of the engagements.

Sampling is the process during which a continuous function is mapped on a discrete one. This
mechanism is used in computer rendering process to map analog data on a digital system. Since a
pixel is the smallest unit of a computer graphic (it is filled or not i.e. cannot be partly filled), it
will then produce jagged edges on objects where the pixel grid is visible. Sampling methods can
aso produce scintillation phenomenon when an object is moving and crossing pixel boundaries,
producing arapid variation of the color.

To reduce these phenomena, antialiasing techniques were developed. Among these, a technique
more appropriate for the purpose of infrared scene generation is called zoom antialiasing (ZAA).

6.1 Zoom antialiasing technique

Rather than supersampling over the entire screen, the zooming window technique allows
supersampling areas of the screen that are susceptible of causing aliasing artefacts. Ref. [8]
describes a procedure that renders only portions of the screen at higher resolution. More recently,
[9] describes the implementation of the ZAA procedure in the GPU, which is named CgAA. The
implementation is based on the Cg shader programming language and uses multiple rendering
passes for reducing visual artefacts caused by aliasing.

ZAA is much more efficient than full screen antialiasing (FSAA) because it focuses on areas of
the screen where aliasing is more likely to occur. However, the implementation is more
complicated since the algorithms are not embedded into the hardware (i.e. graphics card).
Nevertheless, ZAA gives more control on the antialiasing technique and more precision regarding
the calculated apparent radiance.

In brief, ZAA consists to 1) produce high definition images (i.e. textures with way more samples
than the number of pixels covered by the model) of each scene model; 2) produce accurate low
definition images (i.e. textures with a number of texels near the number of pixels covered by the
model) for each high definition image; and 3) substitute scene elements by their corresponding
low definition images. This technique is described with more details in the following sub-
sections.

6.1.1 Method description

A basic approach based on the models' bounding sphere was developed and may eventually be
upgraded to obtain more accurate results. This technique is inspired by the approach presented in
[9]. Notice that GLSL was chosen over CG because it is natively supported by OSG.

24 DRDC Valcartier CR 2011-167

| Phase 1: Produce high definition images of each scene' s element.

General approach
For each scene’ s entity, i.e. 3D model, a high definition image is produced.
Technical considerations

For each 3D model in the scene, a zoom camera (osg: : Caner a) is created. The area covered by
the bounding sphere in the main camera' s view is calculated in term of pixels. The zoom camera
will adjust itsfield of view based on this value: if the value is a power of two, this value is taken;
otherwise, the field of view isincreased to reach a dimension (always a square) corresponding to
a power of two. Notice that the minimum FOV is 2x2 pixels. A more accurate way would have
been to zoom on the exact area covered by the model (see Figure 12) but this technique is more
complicated to implement. The downsampling process used in the following phase is eased given
the fact that the image generated by the zoom camerais square and a power of two.

Figure 12: Zoom camera view based on bounding sphere (solid line) compared to view based on
exact model extends (dashed).

After the zoom camera s set, it rendersits view into atexture. Notice that there is no background
(e.g. skybox, sun) in the zoom camera view: it is only viewing one 3D model. This also means
that a zoom camera does not see two modelsin its view if models are one beside the other or one
behind the other. The size of thistexture depends on the user selection. The current system allows
selecting a dimension of 512x512, 256x256 or 128x128 pixels, depending on the performance
and precision desired. The mechanism that allows choosing the size is explained in Section 6.1.2.
Notice that the origin of the zoom camera(s) is the same as the main camera to respect the object
perspective (see Figure 13).

DRDC Valcartier CR 2011-167 25

Figure 13: An example showing frustra for the main scene's camera and a zoom camera.

| Phase 2: Post-process high definition images.

General approach

Each high definition image (texture) is reduced to the size the image must fit in.

Technical considerations

Shaders are used during this phase to regroup texels in order to reduce images to the size
mentioned in the previous phase. Two shaders were defined for the downsampling process. The

first one alows using 4 samples of the input texture (2x factor); and the second one, by using 16
samples of the input texture (4x factor) as demonstrated in Figure 14.

Downsampling 2x Downsampling 4x

Original texture Downsampled texture Original texture Downsampled texture
8x8 pixels 4x4 pixels 8x8 pixels 2x2 pixels

Figure 14: General downsampling process (2x and 4x).

Thus, the texel value (i.e. color) in the downsampled texture is the average of 4 or 16 samples,
depending on the downsampling factor. By applying multiple combinations of these shaders, one
after another, it is possible to reduce the input texture (which is a power of two) to the size of the

26 DRDC Valcartier CR 2011-167

output texture (which is also a power of two) as shown in Figure 15. Consequently, a maximum
of 4 passes are necessary to downsample the worst case scenario: from 512 pixelsto 2 pixels (512
214128 2/,32 2,8, 2).

Multi-pass downsampling

e initialSize IS the size of the input texture (512, 256 or 128},
e targetSize is the size to which the input texture must be reduced to;
e currentSize is the intermediate size of the texture currently processed.

(- P)

currentSize := initialSize

currentSize := currentSize/4

Is currentSize/4 > targetSize

Apply shader
16 samples

no

Is currentSize/2 > targetSize

Apply shader
4 samples
no

f currentSize := currentSize/2

Figure 15: Multi-pass downsampling with shaders.

The downsampling task is realized via OSG objects with the help of shaders and cameras. An
example of the processis depicted in Figure 16. This example shows how to downsample from a
512x512 pixels texture to a size of 128x128 pixels.

RTT PASS Downsampling
PASS 1

Viewport
28x128

Zoom camera view

High-

def. Input

:"> Texture

512x512

Texture
128x128

Texture
512x512

Figure 16: Downsampling process via OSG.

DRDC Valcartier CR 2011-167 27

The steps introduced in the previous image are explained below.

1 A zoom camera takes a snapshot of its associated 3D model in high definition:
512x512 pixels (could also be 256x256 or 128x128 depending on the user selection).

2. This high definition texture is the input of afirst downsampling pass.

3. A new camerais created and its viewport is set to the desired downsampling sizei.e.

128x128 (as mentioned previously, ZAA’s shaders can reduce the input size by a
factor 2x or 4x). A quad is added as a child to this camera to receive the
downsampled texture.

4, The high definition texture is an input of the shader.

5. The shader downsamples the texture and assigns a color to each fragment of the
quad.

6. The cameratakes a snapshot of the quad, producing the downsampled texture.

7. This new texture is the final one in this example, but it could have been the input of

another downsampling passif required.

| Phase 3: Replace each scene’s element by its low definition image.

General approach

For each element of the scene, create a quad, which shall replace the original 3D model, facing
the camera; and apply the low definition texture generated previously on that quad.

Technical considerations

The ZAA capacity uses osg: : Bi | | boar d in order to create a quad in the scene which will hold a
texture to be displayed. Basically, billboards are quads which rotate around an axis or a point.
They are often used in 3D environments to represent a tree, rotating about its Z axis to give the
impression of a 3D object to an observer located on the ground. For the ZAA needs, quads will
rotate about their center to always face the camera. The advantage for the ZAA capacity is that it
does not need to calculate rotation to be applied on quads for each frame, since this is
automatically done viathe internal processing of billboards.

To ease the process of replacing a model by its corresponding quad, the system takes advantage
of the level-of-detail (LOD) mechanism. In general, a LOD object uses a model with a higher
number of polygons when located near the camera and switches to a model containing fewer
polygons when moving away from the camera (range based). Another kind of LOD, least known,
is also available, which is more appropriate to the context of antialiasing. This second LOD bases
its “switch” mechanism (from a model to another one) on the size of the initial model bounding
sphere diameter into a camera’'s view. The result is the same as the range based LOD: passed a
certain distance, the LOD will display a different geometry. However, it is easier and more

28 DRDC Valcartier CR 2011-167

intuitive to specify that when a model covers X pixels, to activate the ZAA and replace it by a
quad. Notice that the minimum quad size displayed is 2x2 pixels.

In the current implementation, three modes can be selected by the user:

1. ZAA 128 pixels,

2. ZAA 256 pixels;, and

3. ZAA 512 pixels.
The mode selected specifies the dimension of the camera’ s viewport but also the size at which the
LOD will replace the 3D model by a quad (threshold value as depicted in Figure 17). For
example, if the first mode is selected i.e. ZAA 128 pixels, the “high definition” image generated

by the zoom camera will be 128x128 pixels and the 3D model will be replaced by a quad when
the model’ s bounding sphere dimension is less than 128 pixels.

Far plane

Near plane

Figure 17: Switching between the 3D model and a quad during ZAA process.

Finally, arender to texture phase will produce the final frame corresponding to the sensor’s view.
During the rendering process, each quad is rasterized, and fragments receive their color from the
downsampled texture. Since there is not a 1 on 1 correspondence for texels of the generated
texture and screen pixels (i.e. texels are the same size but do not line up exactly with the pixels of
the display), there will be a sampling error when rendering the final frame. Various sampling
methods are available with OpenGL (nearest, bi-linear, etc.). The sampling error is, of course,
affected by the method selected and the choice of a sampling method compared to another will
affect the performance of the rendering process. As a compromise between speed and precision,
the bi-linear interpolation method was selected. Notice that a blending mechanism is used to

DRDC Valcartier CR 2011-167 29

merge each quad’ s texture and the background in the generated image. The global ZAA processis
resumed in Figure 18.

Zoom antiaiiasing process
overview

Screen area (dashed)
covering the model’s
bounding sphere (up to
nearest power of two in
terms of pixels).

l"'——
£

Texture generation
- o S Yy,

/

D h’

Smallest power of two
square that encompasses Post-process result
the model’s bounding (downsample, etc.).
sphere.

High definition image
obtained from the zoom
camera.

- || Create a quad covering the
zoom area to receive the
downsampled texture.

Final generated frame
from the IRSG (after
rasterization and bi-
linear filtering).

Figure 18: An overview of the ZAA process.

30 DRDC Valcartier CR 2011-167

6.1.2 Zoom antialiasing activation
Inside the KARMA framework, it is possible to configure the antialiasing method for an
I magi ngSensor through its XML parameters file, using the parameter Anti al i asi ngMode
(contains a predefined value):

e 0: None;

e 1: Supersampling 2x;

e 2: Supersampling 4x;

e 3:Zoom antialiasing 128 pixels;

e 4 Zoom antialiasing 256 pixels; and

e 5:Zoom antialiasing 512 pixels.

Inside the SMAT tool, the Options dialog box shall be used to select the antialiasing mode which
will be applied during the analysis as shown in Figure 19.

Figure 19: Zoom antialiasing activation within SMAT.

6.1.3 Troubleshooting

3D models may contains range based LOD(s). To be used with ZAA, it is highly recommended to
remove any LOD(s) inside models with an appropriate model editor. Otherwise, the textures
generated could be empty (except for the background) i.e. the model is hidden because it is
located farther than the range defined by the maximal range LOD. Also, it is undesirable that the
zoom camera renders an intermediate LOD i.e. a model containing fewer polygons than the full

DRDC Valcartier CR 2011-167 31

details LOD. Eventually, LODs could be deactivated directly in the code or the range limit could
also be increased.

6.1.4 Results

In this section, some results obtained via the SMAT tool are presented to show the performance
and precision of the ZAA modes compared to other antialiasing mechanisms.

6.1.4.1 Performance

The time required to generate an image was monitored for each antialiasing methods; and when
no antialiasing method (baseline) is applied. The CC130 model was used during those tests.
Figure 20 shows the parameters used during the analysis. The distance at which the moddl is
located from the sensor (Di st ance parameter in Figure 20) is changed to obtain results at various
ranges. Rendering times are presented in Figure 21

Figure 20: Parameters used for the ZAA performance analysis.

32 DRDC Valcartier CR 2011-167

Figure 21: Time (ms) required to produce one image for the available antialiasing algorithms
and when the platform (CC130) is located at various ranges (m).

6.1.4.2 Accuracy

To analyze the accuracy of antialiasing methods, the SMAT range plot analysis was used to
generate graphs showing the contrast intensity as a function of range. The plots are generated
without atmospheric attenuation and path radiance. The parameters used during those tests are
shown in Figure 24. As a result, the variations of intensity with range represent the radiometric
errors due to aliasing effect. The values obtained with the different antialiasing modes are
presented in Figure 22. Considering that the results for the ZAA modes are not clearly visible,
Figure 23 shows the results only for these modes. Notice that a simple sphere model, which has a
radius of 1 meter, was used during those tests. It must be noted that the results are valid for the
sensor settings (resolution and FOV) presented in Figure 24.

DRDC Valcartier CR 2011-167 33

Intensity (W/sr/um)

JOo

600

g

200

100

/ ———Mone
—55 Ix

.
AL/ / —

i |
>/v \ / Tmase
l/(

““““““““““““““““ — |
o o h=3 [=3 (=3 [=3 (=3 k=3 [=3 (=3 [=3 (=3 k=3 i=3 i= |
8 8 8 8 3 8 8 8 8 3 8 8 8 8 3 |
8 8 3 ST S S S S S S S] S =3 S S |
« w o o ~ a w3 a o0 ~ o uw) o ™~ |

— - o~ o~ o~ [l o0 < < < wn bl !

Distance {m)

Figure 22: Contrast intensity vs. range for various antialiasing modes.

Figure 23: Contrast intensity vs. range for ZAA modes only.

DRDC Valcartier CR 2011-167

Simulation Parameters

Model Mame UnitSphereWMormals. fit

Time (s) 1]
Ambient Temperature (K) 298
Mach Number 0
Target Altitude (m) 1000

Relative Power 0.8
Target Azimuth (deg, East of Morth) 0O
Sun Azimuth (deg, East of North) a
Sun Elevation (deg, above horizon) 0

SMART Config File AtmosphereSmart,xml

Detection Parameters
Horizontal Resolution {pixel) 500
Wertical Resolution {pixel) 500
Total Horizontal FOV (rad) 0.05
Total Vertical FOV (rad) 0.05
Distance {m) a

Sensor Spectral Response MWIR (3-5um)

Calculation Parameter

Calculation Mode Wideband

Atmospheric Components

Atmospheric Transmittance Mone

Path Radiance None

Background Radiance Mone
Sun Irradiance None
Upward Flux Mone
Downward Flux None
Analysis Parameters
Step (m) 1000
Minimum Scale {m) 1000
Maximum Scale {m) 60000

Figure 24: Parameters used for the ZAA accuracy analysis.

6.1.4.3 Discussion

The time required to produce an image, for the ZAA methods, increase when the platform is
located far from the camera (c.f. Figure 21). Given the current implementation, this is expected
because more downsampling passes are required as a model covers fewer pixels. At far distances,
the ZAA methods take a lot of time to execute when compared to Super sanpling 4x. In the
context of infrared guided weapon engagement simulations (distance smaller than 10,000 m.), the
rendering times for the ZAA methods are comparable to the supersampling mechanism. The first
iteration of the ZAA development focused on mechanisms development to increase accuracy i.e.
no performance optimizations were done. A second iteration would allow reducing execution
times for the ZAA methods.

The contrast intensity values obtained at various ranges clearly indicates that the results obtained
under a reasonable distance (60,000 meters) are better with the ZAA modes than the
supersampling modes. Note that the 3D model covers 34.64 pixels in the sensor’s view at 1000
meters, and 0.5774 pixel at 60,000 meters.

DRDC Valcartier CR 2011-167 35

6.2 OSG rendering library

To implement the ZAA approach described in Section 6.1, new methods were required to
manipulate OSG abjects as well as some debugging methods. A library was developed to gather
the new functionalities.

To ease reutilization and maximize modularity, the library is divided into three packages as
depicted in Figure 25. A first package contains high-level functionalities for the ZAA capacity
(zoomAntii al i asi ng). This package uses a second one containing methods allowing multi-pass
rendering (Mul ti passRender i ng). These two packages use a third one which contains basic OSG
methods to efficiently manage OSG objects (CsgUtilities).

ZoomAntialiasing MultipassRendering

\ /

OsguUtilities

Figure 25: The packages defined in the OsgRendering library.

Figure 26 presents an overview of the classes defined in the library. These classes are explained
in the following sections.

36 DRDC Valcartier CR 2011-167

UtilityFunctions
(rom OsgRendering)

Si<<static>> AddBoundingBoxComers() PixelSizeBasedLod
Si<<static>> AddBoundingBoxVolume() (trom OsgRendering)
S<<static>> AddBoundingSphereVolume() BIm_curentsize : float
®<<static>> DrawFrusumFromCamera() Bm_lastLodIndex : int
Update B¥m_identifier : std::string

Si<<static>> CameraLookAtNode() EIm_verboseSwitches: bo...|
<. djustC:
. Ci od()
®<<static>> GetNextPowerOf Two() ®-PixelSizeBasedLod()

ZoomAntialiasingManager S<<siatic>> GetViewDimensions) S<<vitual>> traverse()

G Render Si<<static>> GetScreenDimensions() SGetCurrentsize()
Bm_viewer : osgViewer::Viewer*

S<<static>> RotateCamera()
S<<static>> FrusumWidthAtPosition()
Si<<static>> CreateSquare()

.

BIm_zaaScene : 0sy::Group*
Bm_lastUsedStrateqgy : int

Em_disableLights : bool i OfTwoSize() DownsamplingPass
Em_disableTextures: bool S<<static>> ViewCameralnsideViewport() EC
E5m_drawCallback : osg::Camera::DrawCallback* &Jm_rootGroup : osg::ref_ptr<osg::Group>
émicameva osg:iref_ptr<osg::Camera>
®ZoomAntialiasingManager() -m_firstPass jm_inTexture : 0sg:ref_ptr<osg:Texture2D>
MultipassComposer e =
$-ZoomAntialiasingManager() mﬂﬂ"’owe M:ﬂg) -m_secondPass | Im_outTexture : osg::ref_ptr<osy::Texture2D>
Supdate) Bm_ro0tGroup : osg:iref_ptr<osg::Group> m_thirdPass [e
E¥chooseZoomAntialisingStrategy() - by = BJm_textureHeight : int
& m_quadXFom : osg::ref_ptr<osy::PositionAttitudeTransform> f P s P .
{8m_geode : osg::ref_ptr<osg::Geode> -m_fourthPass &Jm_fragmentProgram : osg::ref_ptr<osg::Program:
- e m_fifthPass Bm_stateSet : osg::ref_ptr<osg::StateSet>
-m_currentStrategy $\iultipassComposer() B8 _image : osg::ref_ptr<osg:image>
S
= M:mpagcumpusero BoownsamplingP
é" ate() $-DownsamplingPass()
AbstractZoomAntialiasngStrategy ‘CE‘ROZ‘O @ SGetRoot()
(rom OsgRendering) reateQua <
SUpdateQuadLocation() CooupUexUIe)
- SinsertFloatuniform()
WAbstractZoomAntialiasingStrategy() etQuad(®AaddsamplerUniform()
<. ®setFragmentShader()
®<<abstract>> Update() tipassC EficreateTexturedQuad()
-m_multipassComposer EcreateOutputTexture()
BBsetupCamera()
ZoomEntitylnfo -m_zeroPass
Bm_zaalod : osg:ref_ptr<OsgRendering::PixelSizeBasedLod>
SillsBasedStrategy Bm_node : osg::ref_ptr<osg::Node>
Bm_zoomCamera : osg::ref_ptr<osg::Camera>
Bm_viewer : osgViewer::Viewer* B%m_disanceToMainCamera : float RitPas
Bm_zaaScene : 0sg::Group* B%m_alwaysDisplayQuad : bool e
&3m_quadsAndC o0sg:iref_ptr<osg::Group: B o = i 1 “[(T
Sin_disabeLighie: boo Szoomenuyinto) DR R RO R
Em_disableTextures : bool ®-zoomEntitylnfo() —Image : osg:iref_ptr<osp::imag
m_ std::vector T |E®cetNode() .
E5m_drawCallback : 0sg::Camera::DrawCallback* SGetzoomCamera() RitPas)
$-RttPass)
SGetMultipassObject(BGetoatputT exure(
$sillBasedStrategy() SsetDistanceFromMainCamera() @mam"exmmo
®-sillsBasedStrategy() SGetDistanceFromMainCamera()
[E¥setupcamera()
Supdate() SsetMultipassObject()
BisorQuadsAnd: OnDistance() SGetzaaLod() B¥checkconfiguration()

Ssetzaalod()
SsetAlwaysDisplayQuad()
SGetAlwaysDisplayQuad()

Figure 26: OsgRendering class diagram.

6.2.1 Zoom antialiasing capacity

As mentioned previoudly, a simple technique was developed but more sophisticated algorithms
may aso be deployed in the future. Thus, a system supporting multiple techniques is required.
The algorithm may also have to be changed during a simulation to adapt to the current context.
For example, it shall be possible to use an algorithm if an object subtends less than 1 pixel and
another one if more than 1 pixel. To this end, a design pattern, named Strategy pattern, is used to
ease the development by providing a mechanism to switch from one agorithm to another. The

modularity that this approach brings allows defining new algorithms without having to change the
architecture. Figure 27 shows the architecture that was defined.

DRDC Valcartier CR 2011-167 37

ZoomAntialiasingManager AbstractZoomAntialiasingStrategy

RSG (from OsgRendering) (from OsgRendering)
(omiscen o) ®ZoomAntialiasingManager() $AbstractZoomAntialiasingStrategy ()
®-~ZoomAntialiasingManager() $~AbstractZoomAntialiasingStrategy ()
®Update() S<<abstract>> Update()

SillsBasedStrategy
(from OsgRendering)

WsillsBasedStrategy()

®-sillsBasedStrategy()

FUpdate()
@¥sortBasedOnDistances()

Figure 27: Zoom antialiasing capacity as a strategy pattern.
e | RSGisthe module which uses the zoom antialiasing capacity;

e ZoomAnti al i asi ngManager controls the creation of strategies and which strategy shall be
used;

e AbstractZoomAnti al i asi ngStrategy iS a base class from which each ZAA strategy
needs to inherit from; and

e SillsBasedStrategy isthe current developed strategy based on the works of [9].

6.2.2 Multi-pass rendering

A multi-pass capacity is necessary as it allows the use of multiple fragment shaders, one after the
other, to generate a single frame. For example, it is possible to use multiple shaders to
downsample a texture instead of using only one. Figure 28 depicts a generic view of what is
currently possible with the capacity: during a render stage, a texture is consecutively modified by
aseries of shaders.

Multi-pass rendering

Texture Texture 1 Texture 2 Textyre n

Figure 28: Generic multi-pass view.

38 DRDC Valcartier CR 2011-167

6.2.2.1 Pass aggregator
Mul t i passConposer iSaclass responsible to create the pipeline of passes that atexture must pass
through during rendering. A render to texture pass can be used to generate the first texture which

will be used as input of the following pass. At this moment, downsampling passes can be used in
the next passes to reduce the size of the texture.

6.2.2.1.1 Render to texture pass

The render to texture (RTT) technique, also called off-screen rendering, allows rendering a scene
into a texture i.e. a buffer is copied into a texture. The frame buffer object (FBO) extension
allows RTT in a platform-independent way. RTT is commonly used to implement a variety of

image filters and post-processing effects by capturing images that would normally be drawn to
the screen. Rt t Pass can be used to accomplish this task.

6.2.2.1.2 Downsampling pass

The class Downsanpl i ngPass is used to downsample an input texture by afactor 2 or 4.

6.2.3 Utilities

Some utility functions, regrouped in the class Uti | i t yFuncti ons, were also developed to help
manipul ating OSG objects.

It alows:
e guads manipulation to receive atexture;
e cameras manipulation, to control field of view, position/rotation. It is also possible to
create a geometry which represents the frustum of the camera (see Figure 29). This is

purely a feature to help the debugging process, to see the zoom camera's frustum
compared to the main camera’ s frustum for instance (as previously show in Figure 13);

Figure 29: Camera’s frustum representation.

DRDC Valcartier CR 2011-167 39

¢ bounding volumes representation which can help validating the overall zoom antialiasing
effort (see Figure 30).

Figure 30: Bounding box (left) and bounding sphere (right) representation of a 3D model.

6.2.4 Object’s size based level-of-detail

Pi xel Si zeBasedLod is a class which inherits from osg: : LOD. The process to switch from an
object to another one, when the first object reaches a certain size, is aready defined in the
superclass. Pi xel Si zeBasedLod simply:

e keepsthe currently calculated size in amember variable avail able via an accessor;

e writes a message in the console when a switch occurs (from a 3D mode to the quad; and
vice versa).

40 DRDC Valcartier CR 2011-167

7 Background

Prior to this contract, the background representation was really simplistic. A uniform background
was assumed based on a spectrum value defined in the Envi r onnent parametersfile: the resulting
color, computed by the SceneGener at or 3D, was associated to each pixel of the background,
without considerations of the atitude, the LOS, etc. Thus, to enhance the background
representation, various mechanisms were developed. The first step was to implement variations of
the background value according to the value returned by the atmospheric model for given sensor
atitude and LOS. The apparent background radiance is then computed as:

Lo — j Ly (1) Rore (1) @

In the following sections, the definition of a non-uniform background, created from samples taken
at multiple LOS within a frame, is presented. The blending of textures with this background to
create clutter effectsis also documented.

7.1 Multiples background values

A uniform background is now defined using a single value taken in the middle of a sensor field of
view and applied to each pixel of the background. A non-uniform background is created by
obtaining multiple values from different LOS and by placing the values at the appropriate
position on the background. An interpolation between those values is done to fill the remaining
space between the calculated values. Figure 31 shows the two mechanisms that can be used.

2 3

Figure 31: Sngle background value (from 1 LOS) vs. multiple values (from 4 LOS).

DRDC Valcartier CR 2011-167 41

7.1.1 Background geometry

The background geometry is defined with a series of GL_QUAD_STRI P. The apparent background
radiances are associated to the vertices of this geometry, and OpenGL interpolation is performed
between the vertices.

A QUAD_STRI P isagroup of connected quadrilaterals. One quadrilateral is defined for each pair of
vertices presented after the first pair. Note that the order in which vertices are used to construct a
quadrilateral from strip data is different from that used with independent data. Figure 32 shows
the difference between the G._QUADS and G._QUAD_STRI P.

VE

Wi

w0 Vo

GL_QUADS GL_GUAD STRIP
Figure 32: GL_QUADSVs. GL_QUAD_STRIP.

Figure 33 shows how the background geometry is constructed with GL_QUADS_STRI P and the
result of the interpolation.

GL_aUADS_STRIP 1

[
-+

|

|

|

|

| o
+—
|

|

|

|

lu—-
—

Figure 33: Interpolation within the QUAD_STRIP.

42 DRDC Valcartier CR 2011-167

The geometry has a color binding property that needs to be set with Bl ND_PER _VERTEX to be able
to use a different color (radiance value) for each vertex. The vertex and fragment shaders
presented in Table 12 and Table 13 are also required to get interpolated colors between those
vertices. When a constant background is used, the color binding is set to BI ND_OVERALL. It tells
OpenGL to consider only one color per geometry instead of per vertex.

Table 12: Vertex shader for the background geometry.

varyi ng vec4 vertexCol or;

voi d mai n(voi d)
{
vert exCol or
gl _Position

gl _Col or;
ftransform);

Table 13: Fragment shader for the background geometry.

varyi ng vec4d vertexCol or;
voi d mai n(voi d)

gl _FragCol or = vertexCol or;

In KARMA simulations, the parameters file of an I nagi ngSensor alows to control the
uniform/non-uniform background, via the | suni f or nBackgr ound parameter. To define a non-
uniform background, the parameters Nunmber Of Backgr oundCol unms and
Nurber O Backgr oundRows shall be used.

In SMAT, the Options dialog box, shown in Figure 34, alows to control the
activation/deactivation of the non-uniform background. If the non-uniform background is
selected, the user can enter the number of rows and columns to be used to represent the
background.

DRDC Valcartier CR 2011-167 43

Scene Parameters

Antialiasing Mode None A

Use Scattering

Non-Uniform Background
Background Row 2
Background Column 2
Sun |
Skybax O
Skybox Texture Radiance Slope
Skybox Texture Calor Offset

Terrain |:|

Terrain Texture Radiance Slope

Terrain Texture Color Offset

Materials and Temperatures
Use XML Scalings [F

LEB Step (um) 0.01

[0K] [Cancel] [Apply]

Figure 34: Using the non-uniform background in SVIAT.

7.1.2 Using SMART to obtain background values

An important consideration with the non-uniform background is that SMART shall be used to
obtain different values for each LOS. For KARMA simulations, if the At nospher eSmart model is
not in the Envi r onment composition, a default behaviour will take place. This behaviour depends
on the calculation mode of the | magi ngSensor model (see Cal cul at i onMode parameter).

e |n spectra mode, a default background value will be returned by the Envi r onnent based
on the spectrum defined in its parameters file (see Backgr oundRadi anceVWavel engt hs
and Backgr oundRadi anceVal ues parameters);

e In wideband-ck mode, a default background value will be returned by the Envi r onnent
(NULL isreturned).

Inside SMAT, the parameters of an analysis allow selecting SMART to compute the background
radiance, as shown in Figure 35, in order to have a non-uniform background (if this feature is
activated in SMAT Options dialog box).

44 DRDC Valcartier CR 2011-167

Abriosphetic Components

Akmospheric Transmikttance Mone W
Path Radiance Mone w
Background Radiance SMART W

Sun Irradiance

Upward Flux Mone W
Dawnward Flux Mone w
w
[Generate] [Cancel l

Figure 35: Using SVIART to calculate background radiance in SVIAT.

7.2 Sky and terrain textures

The multiple point background presented above can reproduce realistic values of background
radiance within a frame. However, it may not be sufficient when sources of clutter, such as clouds
or land, need to be represented. As presented below, the previously discussed background can
then be blended with sky and land textures to further increase the scene realism.

7.2.1 Skybox

In video games, the background is often simulated by encapsulating the game level into a cube
with carefully chosen textures on each face. These textures are used to represent distant objects
such as the sky, mountains or unreachable buildings to give the impression that the background is
infinite. Moreover, it is common for the skybox to remain stationary with respect to the viewer.
This technigue enforce the illusion of being very far away since other objects in the scene appear
to move, while the skybox does not. Figure 36 shows an example of skybox.

Figure 36: An example of skybox.

DRDC Valcartier CR 2011-167 45

Notice that the skybox texture shown above includes a sun. It would be preferable to not have this
artefact embedded in the texture since the sun is aready modeled has an entity in the scene (more
details are presented below). Otherwise, the sun located on the skybox texture would appear with
wrong position and radiance on the images generated by the IRSG.

7.2.2 Terrain geometry

The skybox gives a good realistic effect when the sensor FOV contains sky and far away land
only. However, as the skybox remains stationary with respect to the sensor (i.e. follows the
sensor), the skybox is not suited to reproduce the relative motion of terrain seen from a sensor.
Whenever sources of moving clutter are needed, a fully textured terrain geometry representing a
real terrain can be used as shown in Figure 37. The terrain geometry does not remain stationary
with respect to sensor as the skybox does; it rather uses a fixed position in the scene.

Figure 37: An example of terrain geometry.

7.2.3 Skybox and terrain in IRSG

The fragment shader shown in Table 14 is used to scale each pixels of the origina texture (for
both skybox and terrain) before being combined with background radiance pixels as detailed in
Section 7.4. The color to radiance scaling can be customized with the t ext ur eRadi anceSl ope
and textureCol or O f set parameters. textureRadi anceSl ope represents the variation of
radiance associated with a variation of 1 (from pure black to pure white) in texture color, while
t ext ureCol or O f set is the texture color value (between O to 1) producing no variation in
background radiance. Texture values above t ext ureCol or O f set are additive, while values
below are subtractive.

Table 14: Fragment shader for the skybox and terrain.

uni f orm sanpl er 2D texture
uni form fl oat textureRadi anceSl ope
uni form fl oat textureCol or O f set;

voi d main (void)

46 DRDC Valcartier CR 2011-167

vec4 textureColor = texture2D(texture, gl _TexCoord[0].st);
float final Red = textureRadianceSlope * (textureColor.r - textureCol orOffset);
gl _FragCol or = vec4(final Red, 0.0, 0.0, 1.0);

}

For KARMA simulations, the t ext ur eRadi anceSl ope and text ureCol or O f set parameters
(for the skybox and the terrain) are defined for each | magi ngSensor , in their parametersfile. Two
booleans allows controlling the activation of these features. UseSkyboxBackground and
UseTer rai nBackgr ound. The skybox textures and terrain aready defined in Environnent are
also reused.

In the case of SMAT, Figure 38 shows where the skybox and terrain parameters can be modified
in the Options dialog box. The terrain is currently hardcoded to use the following model:
$(KARMA_ROOT)\ Utilities\ViewerDelta3d\3dWbdel s\ Rel easabl e\ Terrai n\ ArabTown. k3d.
For the skybox, the following textures are used:

e S$(KARVA ROOT)\\Utilities\\SMAT\\skybox\\current\\S.jpg;

o $(KARMA ROOT)\\Utilities\\SMAT\\skybox\\current\\N.jpg;

e $(KARMA ROOT)\\Utilities\\SMAT\\skybox\\current\\Wj pg;

e $(KARMA ROOT)\\Utilities\\SMAT\\skybox\\current\\E.jpg;

e $(KARMA ROOT)\\ Utilities\\SMAT\\ skybox\\current\\Up. | pg; and
o $(KARMA ROOT)\\Utilities\\SMAT\\ skybox\\current\\ Down.j pg.

Scene Parameters

Antialiasing Mode None v

Use Scattering
Mon-Uniform Background [F

Background Row

Background Column

Sun |:|
Skybox

Skybox Texture Radiance Slope | 1.000000

Skybox Texture Color Offset 0.000000
Terrain

Terrain Texture Radiance Slope | 1.000000

Terrain Texture Color Offset 0.000000

Materials and Temperatures
Use ¥ML Scalings [F]

LBB Step (um) 0.01

[0K] [Cancel] [Apply]

Figure 38: Using a skybox and terrain to model the background in SMAT.

DRDC Valcartier CR 2011-167 47

7.3 Solar disc in IRSG

The solar disc isimplemented as a 3D sphere into the scene. It always appears with a 0.53 degree
diameter in the sensor’s FOV. Like the skybox, the solar disc remains stationary with respect to
the sensor. Its position relative to the sensor is set using sun azimuth and elevation defined in
Envi ronment . [ts apparent radiance is given by

1
Lo = 5 | Eun (RO, ®

where Qg isa constant equal to 6.72x10” (with 0.53° angular size), Eq,()) isthe sun irradiance
at sensor’ s position (returned by the atmosphere model), and R(A) is the sensor’ s spectral
response. The simple fragment shader shown in Table 15 is used to set the color of the sun.

The sun disc is aways activated in KARMA simulations. Figure 39 shows the activation
parameter for the sun disc inside the Options dialog box in SMAT.

Table 15: Fragment shader for the sun.

uni form fl oat sunRadi ance
void main (void)

gl _FragCol or = vec4(sunRadi ance, 0.0, 0.0, 1.0);

Options @

Scene Parame ters
Antialiasing Mode None -
Use Scattering
Mon-Uniform Background O
Background Row
Background Column

I Sun I

Skybose O
Skybox Texture Radiance Slope
Skybox Texture Calor Offset
Terrain O

Terrain Texture Color Offset

Materials and Temperatures
Use XML Scalings F

LEB Step (um) 0.01

Figure 39: Activating the solar discin SVIAT.

48 DRDC Valcartier CR 2011-167

7.4 Rendering

In order to achieve a redlistic effect, the background geometry needs to be blended with the
skybox and the terrain. However, the terrain needs to occlude the skybox without any blending
between these two geometries. To achieve this, both are rendered opaquely before being blended
(additive) with the background geometry (defined in section 7.1.1).

7.4.1 Pre-render camera

OSG offers multiple mechanisms to control rendering order of geometries. Since the background
geometry needs to be rendered over the entire FOV, it needs to be rendered using an orthogonal
projection matrix, associated with a pre-render camera (it cannot be done using a single camera).
This kind of feature is widely used in video games when rendering heads-up display (HUD) over
the game scene.

As shown in Table 16, two pre-render cameras are needed to control the rendering order before
the main camera renders the scene. The first camera renders the skybox, the sun and the terrain
(in this order) using a perspective projection matrix into the texture. The next camera renders the
background geometry over the same texture using an additive blending function. This blends the
radiance variations caused by sun, skybox, and terrain with the radiance from the atmosphere
models (associated to the background geometry).

Table 17 details the equation of the background geometry blending function. Figure 40 shows

how a non-uniform background, i.e. the multiple background values computed using SMART, is
combined with the skybox.

Table 16: Using two pre-render cameras before the main camera.

/1 draw t he background first
m _backgr oundCaner a- >set Render Or der (0sg: : Caner a: : PRE_RENDER, 1);
m_envi r onment Caner a- >set Render Or der (0sg: : Caner a: : PRE_RENDER) ;

/' Background and environment canera both render into the FBO

m backgr oundCaner a- >set Render Tar get | npl enment at i on(0osg: : Caner a: : FRAVE_BUFFER_OBJECT) ;
m _backgr oundCaner a- >att ach(osg: : Caner a: : COLOR_BUFFERO,

m of f screenTexture.get(), 0,0, fal se, 0,0);

m_envi r onment Caner a- >set Render Tar get | npl enent ati on(o0sg: : Caner a: : FRAME_BUFFER_OBJECT) ;
m_envi r onnent Caner a- >at t ach(osg: : Caner a: : COLOR_BUFFERO,
m of f screenTexture.get(), 0,0, fal se, 0,0);

/1 Add the canmera to the viewer
m vi ewer - >addS| ave(m backgroundCanera, false);
m vi ewer - >addS| ave(m envi ronnent Canera, fal se);

/1 The GL_COLOR BUFFER BI T MJUST be cleared w th opaque bl ack
m_envi r onment Caner a- >set C ear Col or (0sg: : Vec4f (0. 0f , 0. 0f , 0. Of , 1. Of)) ;

/1 The GL_COLOR BUFFER BIT nust NOT be cl eared
m _backgr oundCaner a- >set Cl ear Mask(G._DEPTH_BUFFER_BI T) ;
m vi ewer - >get Caner a() - >set Cl ear Mask(GL_DEPTH_BUFFER BI T) ;

DRDC Valcartier CR 2011-167 49

Table 17: Blending function when rendering the background geometry.

Destination factor = (DO, Dy, Dy, D) = (1, 1, 1, 1) and source factor = (S, S5, S, Sa) = (1,

1, 1, 1)
(R G B, A = (RS + RD, GS + GDy, BsSy + BuDy, AS: + ADy)

(R G B A = (R(1) + Ri(1l), G(1) + G(1), Bs(1) + Ba(1), A(1) + Au(1))
(R G B A = (R+Ry, G+Gi, Bs*+Bu, As+Ad)

Non-uniform background generated with 4
points from SMART (OpenGL interpolates
the value between the 4 points)

Texture of the skybox

Blending with GL_ONE and
GL_ONE as parameters

pixel = interpolatedSMARTPoint pixel = textureRadianceSlope * (textureColor.r - textureColorOffset)

Final background image

pixel = interpolatedSMARTPoint + textureRadianceSlope * (textureColor . r-textureColorOffset }

Figure 40: Processing of the final background image.

7.5 KARMA architecture

Figure 41 and the following text show the modifications that were done to the KARMA
architecture to make possibl e the changes discussed previously in this section of the report.

50 DRDC Valcartier CR 2011-167

IRSG
EPm_backgroundCamera : osg::ref_ptr<osg::Camera>
m,

B5m_backgroundSwitch : osg::ref_ptr<osg::Switch>
_currentSensorld : int

'y Sky WithEy ePointTransform>
rexture2D> (6]
0sg:: Geometry> (6]

SensorCkData

Bim_
Bm

SGetBackgroundRadiance()

pes: Boolean
lumns : DataTypes::Dou
ws : DataTypes::Double

S<<const>> GetNumberof Columns()

Figure 41: Non-uniform background class diagram.

e The BackgroundGeode class encapsulates a background geometry used to provide a
uniform or non-uniform background in the IRSG. When the background is uniform, one
color (radiance) is assigned to the whole geometry while one color is assigned to each
vertex when the background is non-uniform.

e The skybox class encapsulates the skybox. The skybox is parameterized using six
textures and two uni f or mvariables.

e The Terrai nGeode class encapsulates the terrain geometry. The terrain is parameterized
using a 3D model and two uniform variables.

e The SunGeode class encapsulates the solar disc geometry. No texture is required since
the geometry is uniformly colored dynamically using sun radiance at the sensor's
location.

e The MyveEart hSkyW t hEyePoi nt Tr ansf or m class contains the transformation to allow a
osg: : Node to follow the eye point (sensor). This is used by the skybox and the sun to
give theimpression that they are located at an “infinite” distance.

e The 1 RsSG class handles background camera, background switch, skybox activation and
served as interface to other classes (Backgr oundGeode, Skybox and Sensor CkDat a).

e The ImgingSensor contains the background and skybox parameters to alow a
configuration for each sensor.

DRDC Valcartier CR 2011-167 51

8 Database properties

For each model which participates in the scene generation process, a database file is associated to
the 3D model file, and contains the infrared properties. In this section, the modifications that were
made to the database are presented.

8.1 User defined spectrum

The signature of each model is characterized by materials and temperature properties, associated
to material and temperature indexes in the 3D model. These features can be edited by the way of
SMAT database editor dialog. Initialy, the temperature was defined using an equation and then
used in the Planck equation to compute radiance. A new approach called user defined spectrum
has been added, allowing to define surface radiance using a combination of one or more radiance
spectrums. These spectrums are called components. When this mode is used, the thermally
emitted contribution to the apparent radiance as seen through the atmosphere is given, as opposed
to equation (1), by

Lt:;m = €qaling cos" (B)IZC]. (t,q))Lj (X)Tpath (Z5,) Rens (M) d, (6)
j

where L(A) is the radiance spectrum of a component of index j and ¢(t,¢) is its weighting factor
according to the entity’s time and the angle between the entity’ s orientation vector and the view
vector.

Some changes in SMAT database dialog editor window were necessary to support the user
defined spectrum mode. The first change was to add a new tab to manage user defined spectrum
importation. Figure 42 shows the tab in the database editor dialog to import a set of user defined
spectrums.

52 DRDC Valcartier CR 2011-167

Figure 42: User defined spectrumimport tab.

e The user defined spectrums are imported from a CSV file by using the Import button. The
fileisread and stored in the database file of a given signature model. A list of spectrumis
displayed in the list on the left side of the tab.

e |tispossibleto view imported datain table format by using the View button.
e The Delete button can be used to clear imported spectrums.

e The Spectrum reference distance is used to specify the distance used to measure the user
defined spectrum (i.e. distance from the object).

It is necessary to take into account Spectrum reference distance in atmospheric transmittance
computation. As shown on Figure 43 two situations can occur. In the first situation (A), the sensor
is within the reference distance (nearer), thus no additional transmittance is computed since it is
already taken into account in the user defined spectrum. In the second situation (B) the sensor is
outside the reference distance (farter), thus the atmospheric transmittance will be computed using
the sensor distance minus the Spectrum reference distance (green distance).

DRDC Valcartier CR 2011-167 53

Figure 43 : Spectrum reference distance.

8.1.1 User defined spectrum file format

The user defined spectrums are stored in a comma separated values (CSV) format. This format
stores a table that is easy to see and modify using a commercial spreadsheet tool such as MS
Excel. Table 18 shows an example of the file format. The first column of this table is the
frequency values of the spectrums; al spectrums, referred as component, share the same
frequency values. The first cell of this column defines the units of the frequency values: the tag
“um” defines that the spectrum is given in wavelength while the tag “cm-1" indicates a spectrum
defined in wave number. Internally, the spectrum is stored in wavelength; therefore the input data
read in wave number is converted to wavelength. The following columns define the values for
each spectrum component. The first cell of each column defines the name of the component; this
name will be displayed in spectrum list as shown earlier in Figure 42.

Table 18: User defined spectrum file format example.

cm-1 | BB(T1) BB(T2) BB(T3) CO2(T4) H20

1900 | 7.76E-05 | 3.61E-05 | 2.24E-05 | 4.55E-05 | 0.000159
1902 | 6.75E-05 | 3.15E-05 | 1.96E-05 | 5.00E-05 | 0.000134
1904 | 4.53E-05 | 2.13E-05 | 1.32E-05 | 5.43E-05 | 9.03E-05
1906 | 2.08E-05 | 9.96E-06 | 6.28E-06 | 5.25E-05 | 4.59E-05
1908 | 1.46E-05 | 7.11E-06 | 4.53E-06 | 4.46E-05 | 3.26E-05

8.1.2 Temperature properties

The temperature tab of the database editor dialog has been modified to add the user defined
spectrum mode settings. The Mode property has been added to allow selecting one mode or
another. The former approach based on a temperature equation is still available using the Use
Temperature mode as shown in Figure 44. The equation parameters have been grouped in a tab.

54 DRDC Valcartier CR 2011-167

The properties of the selected mode are shown in atab section to distinguish the properties of this
mode and the user defined spectrum mode.

Figure 44: Temperature tab with use temperature mode.

Figure 45 shows the dialog in user defined spectrum mode. This mode allows the user to define a
radiance spectrum using a combination of components (e.g. CO2, H20) defined in the Spectrum
tab. Notice that user defined spectrums must be imported as presented previously before using the
user defined spectrum mode.

DRDC Valcartier CR 2011-167 55

Figure 45: Temperature tab with user defined spectrum mode.

The user can select angle and time factors to apply on each component of the spectrum using the
Selection property. These factors can be defined with a constant or with alookup table.

e The lookup tables are imported from a CSV file by using the Import button. The file is
read and stored in the temperature properties and a list of components is displayed in the
list in the middle of the tab.

e Itispossibleto view imported datain table format by using the View button.
e The Time dependence lookup table alows the user to define tempora evolution of the
factor for each component of the spectrum. The Use loop mode checkbox allows to define

periodic time lookup table.

e The Angle dependence lookup table alows the user to define angular evolution of the
factor for each component of the spectrum.

The lookup tables are stored in CSV format. Table 19 and Table 20 show an example of the file

format for time and angle factor. The first column of the Angle dependence lookup table is the
angle defined in degrees while the first column of the Time dependence lookup table is the

56 DRDC Valcartier CR 2011-167

entity’s time defined in seconds. For both lookup tables, the first cell of this column should be
empty. The following columns contain factors for each spectrum component. The lookup tables
must use spectrums, using their name, already imported in the User defined spectrum tab.

Table 19: Time dependence lookup table file format example.

BB(T1) | BB(T2) | BB(T3) | CO2(T4) | H20
0 0.5 0.7 0.1 0.1 0.1
1 0.6 0.8 0.2 0.2 0.2
2 0.7 0.9 0.3 0.3 0.3
3 0.8 1.0 0.4 0.4 0.4
4 0.9 1.0 0.5 0.5 0.5

Table 20: Angle dependence lookup table file format example.

BB(T1) | BB(T2) | BB(T3) | CO2(T4) | H20
0 0.3 0.4 0.1 0.7 1.0
45 0.4 0.5 0.2 0.8 1.0
90 0.5 0.6 0.3 0.9 1.0
135 | 06 0.7 0.4 1.0 1.0
180 | 0.7 0.8 0.5 1.0 1.0

8.2 Temperature lookup tables

The temperature equation used in the Planck equation is now referred as Use temperature mode.
Using this mode, the surface temperature is defined using an equation, as shown previously in
Figure 44. Additional contributions have been implemented to allow modelling the temperature
according to the entity’ s conditions; its altitude, its speed and its power. The surface temperature
isgiven by

T :T0+aTarm{1+0.2rM2+A_l:rﬂ}+ f (t)+ f (power)+ f (alt)+f (M), 7

amb
where f(power), f(alt) and f(M) are the power, atitude and speed lookup tables respectively.

8.3 N angle factor

The emissivity of a surface is defined spectrally in the material tab of the database editor dialog.
This tab has been modified to include a property named N angle factor, as shown in Figure 46,
which is used to reproduce emissive materials with either spatially uniform or spatially varying
radiance. This property is used in the fragment shader presented in Section 4 to modulate the
thermal radiance according to the view angle using the following factor: |cos"(Byiey)|, Where N is
the N angle factor and 6,;e, is the angle between the view vector and the surface’s normal. The
factor is applied to the emissive component in both temperature and user defined spectrum
modes, as shown in equations (1) and (6). Figure 47 shows the resulting factor as a function of the

DRDC Valcartier CR 2011-167 57

view angle for different N angle factor. Therefore, a spatially uniform radiance is obtained when
the N angle factor is 0 as the modulation factor is always 1 no matter the view angle.

58

Figure 46: Material tab with the N angle factor.

0,5 \

NS
A

0,25 \

Modulation Factor

SN

O T T

0 30 60

View Angle (deg.)

——N=0

——N=0.25
N=1

——N=3

Figure 47: Modulation factor computed according to the view angle and for different N angle

factors.

DRDC Valcartier CR 2011-167

9 Scattering

As a conseguence of light scattering on aerosols, the atmosphere degrades images in terms of
light intensity and sharpness. For example, an object that appears as a black and white
chesshboard, when seen at a certain distance, will eventually appear as a homogeneous gray square
if it is seen at a farther distance. Figure 48 [10] shows contrasts fading as mountains are farther
from the observer. This effect has been included in the IRSG by applying afilter on images. The
filter is based on the modulation transfer function (MTF), i.e. the point spread function (PSF) in
the frequency domain.

Figure 48: Image degraded by the atmosphere.

9.1 MTF database

The stratified model used to generate the scattering induced MTF has been developed by
Tremblay et al. and is explained in [11]. Figure 49 presents a reproduction of Figure 5 from [11].
It presents eight curves of the MTF as a function of the optical depth (OD) 1. This model has been
used to create a MTF database to gather the variation of MTF as a function of optical depth for
specific atmospheric conditions. A Matlab function has been used to write the MTF database
binary file. The file format is described in Table 21. The first part of the file is the header. It
contains MTF parameters than can be displayed to the user to identify the current database.

DRDC Valcartier CR 2011-167 59

1 1
: ------ ono
0.9 \\sff'"-.. oDl
\\'\ \\\\ \\ ------- on2
0.8 N N
AN N
07 [NRNRA D “ | N --- o004
\ VI
\\ \' \l N\ | e — \ — — _o0Ds
o6 _\:-‘ \ '\\\ \ - —-oos
' - "t
E 0.5 \\\3 L W NS \ —--—oDn7
'_ ‘ \ \ ‘s‘ "o
0.4 ——————\'-7 4\ Seeel
VN T e
0.3 \\\ e ‘ T
. 3 hY ~ el
WA\, T
0.2 NN ——
0.1 \L\;::"»L--—-.:.'_‘_'.""_'--..._\
- - e e e L T A,
-
0 |
0.01 0.1 1 10
Spatial frequency (cycles/mrad)

Figure 49: Reproduction of Figure 5 from [11]. “ Comparison of MTF simulated with the
Undique Monte Carlo simulator and the stratified model for water droplets 100 microns in
diameter and 8 different optical depths. The gray lines show the stratified model results and the
black superimposed lines show the Monte Carlo results’ — the grey lines deviate from the dotted
curves (Monte Carlo simulator) at high spatial frequencies since the optical systemisincluded in
the later.

Table 21: Description of the MTF binary format.

Type Description
doubl e FOV
doubl e FOI
doubl e Particle diameter
doubl e frequency
int Number of MTF
i nt Number of pointsinthe MTF
doubl e * Number of points Frequency values
For all MTF
doubl e tau
doubl e * Nunber of points MTF values

For agiven optical depth, the MTF is applied on an image as

60 DRDC Valcartier CR 2011-167

L.s(6,.8,)= [P;PJTF {MTF (k)*TF{L(6,.6,)}}. ®

u

The scaling factor before the inverse Fourier transform is necessary since atmospheric
transmission is already taken into account by the IRSG. It is equivalent to

R +Ps _ 1
R, MTF (max freq) ©)

where MTF(max freq) corresponds to the asymptotic MTF value of the stratified model at high
spatial frequency. This scaling factor is directly included while populating the database. Hence,
the MTFs are normalized to one at high frequency.

9.2 Using MTF for scattering
The MTF is used inside the IRSG to blur the image according to atmospheric scattering. The
image is filtered at the end of the rendering step. It is necessary to apply the MTF individually on

each object of the scene because the scattering is a function of the optical depth. For a given
object, the optical depth is estimated by

j atm Rsensor ()
—In (10)
J‘ Rsmsor '

where Ty is the atmosphere transmittance and Rensor 1S the spectral response of the sensor.

To obtain one image for each object, the process uses the OsgRendering library (presented in
Section 6.2), which replaces each 3D model by a quad in the scene. The quad size is near the size
of the model’ s bounding sphere. However, for the scattering effect to take place appropriately, the
3D model shall be replaced by a quad having the same size (in pixels) as the sensor which is
using the IRSG (Figure 50). Obviously, the range based LOD mechanism, as presented in
Sections 6.1.1 and 6.2.4, is deactivated i.e. the quad is always displayed whatever the distance is
between the platform and the sensor. An OSG post-draw callback is used to filter the texture
which was applied on the quad with the MTF. The main disadvantage of this approach isthat it is
necessary to transfer texture data from the GPU to the CPU to perform texture filtering, which
increases the process duration.

DRDC Valcartier CR 2011-167 61

I I
! I
! I
! I
J- I
J_ I
|
T —: I
| |
C @ — O |
I I
[E— |
- |
|
- :
|
- :
! I
Sensor seeing an Quad (dashed) Quad (dashed)
object covering 2x2 produced for the produced for the
pixels ZAA technique scattering process

Figure 50: Different quads involved in different techniques.

Thelibrary FFTW isused to apply MTF on the resulting quad of each entity. Thislibrary isafree
open source product in the context of non-profit product (GPL licence). A commercial version is
aso available and it is used in many commercial products like Matlab. The use of this library
includes only a limited number of changes in KARMA solution. The files of FFTW have been
added in the %<ARMA_ROOT% Sof t war es\ directory.

Figure 51 presents a flowchart of major steps to apply MTF on the quad of each entity. The
process is divided in three main operations. The first one is to get the data from the texture and
copy vaues in a FFTW buffer. The second step is to apply the MTF on the image. Finally, the
filtered dataistaken from the FFTW buffer and put back in the texture.

Quad texture

Transfer data from texture to
FFTW buffer

Y
Apply MTF

Y
Transfer data from FFTW buffer to

texturre

A

Modified texture
buffer

Figure 51: General processto apply MTF on the texture.

62 DRDC Valcartier CR 2011-167

The Appl yMIF function is the central part of the algorithm. This function filters image with a
given MTF.

The flowchart of the Appl yMIF function is shown at Figure 52. The MTF 1D, interpolated from
the MTF database, is one of the two inputs of the function. It is necessary to transform the 1D
MTF to 2D MTF according to image dimensions. The method is illustrated on Figure 53. The
MTF computed by the model is a 1D curve. The filter buffer is filled by rotating the 1D MTF
around central point. The MTF is applied only on the FOV of the sensor. The points outside the
FOV are set to the last value of the MTF. The result of this operation is illustrated on Figure 54.
Thisresult isput in a2D FFTW buffer ready for filtering operation.

1D MTF Image

4

‘ Image padding (square dimensions}

» Generate 2D MTF

Compute image frequency domain
transform (image FFT}

l

Normalize image by the size
of the buffer

v

‘ Multiply image by the MTF ‘

.

Transform image to spatial domain
(image inverse FFT)

v

Normalize image by the size
of the buffer

v

‘ Compute image norm ‘

|

Crop image to initial buffer
dimensiosn

Filtered image

Figure 52: Flow chart of ApplyMTF function.

DRDC Valcartier CR 2011-167 63

Figure 53: Method to create 2D MTF.

Figure 54: Example of 2D MTF.

The following steps apply the MTF filter on an image. The first step computes the image
transform in frequency domain. This step is performed by FFTW. The second step isto apply the
filter on the image by multiplying each buffer element to element. The third step is the inverse
FFT transform computed by FFTW. The inverse transformation function of FFTW gives an
unnormalized transform. It is necessary to normalize the result by the size of the buffer (number
of rows * number of columns). Finally, the image is cropped to get a buffer that is the same size
of theinitial buffer.

Table 22: Apply MTF function.

voi d Appl yMIF(std::vector<std::pair <double, double>> &MJIF, doubl eFOV, int sizeX, int
sizeY, fftw_conplex **inage)
{

int sizeXlnit = sizeX;
int sizeYlnit = sizeY;

64 DRDC Valcartier CR 2011-167

if (sizeX != sizeY)

{
Padl mage (inmge, sizeX, sizeY);
if (sizeX > sizeY)
sizeY = sizeX;
el se
sizeX = sizeY;
}

/| Conpute MIF
fftw_conpl ex *MIF2D = NULL;
Gener at e2DMITF(MTF, si zeX, sizeY, FOV, &MIF2D);

/'l conmpute FFT of the inage
fftw conpl ex *i mageFFT = NULL;
fftw_pl anpl an;

i mageFFT = (fftw_ conplex*) fftw nmalloc(sizeof (fftw conplex) * sizeX * sizeY);

plan = fftw_plan_dft_2d(sizeX, sizeY, *image, imgeFFT, FFTWFORWARD, FFTW ESTI MATE);
fftw_execute(plan);

/1 shifting
FFTShi ft (i mageFFT, sizeX, sizeY);

/1 multiply inage by the mf (frequency)
for(int i =0; i < sizeY*sizeX; ++i)
{
i megeFFT[i][0] = imageFFT[i][0] * MIF2D[i][O];
imageFFT[i][1] = imageFFT[i][1] * MIF2D[i][O];
}

FFTShi ft (i mageFFT, sizeX, sizeY);

/1 conpute inverse transform

fftw destroy_pl an(plan);

plan=fftw plan_dft_2d(sizeX, sizeY, imageFFT, *image, FFTW BACKWARD, FFTW ESTI MATE);
fftw execute(plan);

FFTNor mal i ze(*i mage, sizeX, sizeY);
Nor nConpl ex (*i nage, sizeX, sizeY);

//Crop inage to get the original size

Cropl mage(i mage, sizeX, sizeY, 0, 0, sizeXlnit, sizeYlnit);
sizeX = sizeXlnit;

sizeY = sizeYlnit;

fftw destroy_pl an(plan);
fftw free (inmageFFT);

9.3 Results

This section presents images produced by the process described in the previous section. Figure 55
presents images with and without the scattering effect on a simple sphere model. Notice that this
is not the expected result. The image should rather show a diffuse circle rather than a cross. Due
to the project ending, an investigation of the error leading to that result could not be conducted.

DRDC Valcartier CR 2011-167 65

Figure 55: Image of the sphere model without (left) and with (right) scattering effect.

In KARMA simulations, the parameter UseAt mospher eScat t eri ng of an | magi ngSensor allows
to control the activation/deactivation of scattering. Notice that an atmospheric module (e.g.
At mospher eScat t er i ngLUT), which can manage scattering requests, shall also be defined in the
environment’s composition. Figure 56 shows the scattering activation in the Options dialog box
in SMAT. Notice that the zoom antialiasing (128, 256 or 512) must be activated in order to be
ableto use thisfeaturein KARMA simulations and in SMAT.

66

Scene Parameters

Antialiasing Mode

Zoom Antialiasing 128

Use Scattering

Mon-Uniform Background [F
Background Row
Background Column
Sun il
Skybox O
Skybox Texture Radiance Slope
Skybox Texture Color Offset

Terrain |:|

Terrain Texture Radiance Slope

Terrain Texture Color Offset

Materials and Temperatures
Use XML Scalings O

LBB Step (um) 0.01

[oK] [Cancel] [Apply

]

v

Figure 56: Activating the scattering in SMAT.

DRDC Valcartier CR 2011-167

10 SMAT controls

During the project, some new controls and enhancements were done to SMAT. The following
sections describe these new features.

10.1 Coordinate system
The view coordinate system was added at the left bottom side of the model viewer. The model

coordinate system was also integrated and is located at the center of the model. Figure 57 shows
these new additions. These coordinate systems can be shown or hidden via the View menu.

Figure 57: Model view inside SVIAT.

10.2 Sun vector

The sun vector is represented by a yellow line originating from the center of the model and
pointing towards the sun (see Figure 57). This vector can also be shown or hidden via the View

menu.

10.3 Model-View manipulator

The manipulators were reviewed alowing a more intuitive and precise control over the scene.
The camera is controlled with dliders, and now it is also possible to control the model’s
orientation. Such a control is required with the addition of a terrain and skybox in the scene.
Values can a'so be entered in text fields, which allow inserting precise values (see Figure 58).

DRDC Valcartier CR 2011-167 67

Model Manipulator

Azimuth: East of Morth (deg)
-180 0 180

J o

Elewation: above horizon (deg)
90

-30

Location: NEH (m)

-117.081;0; 0]

Model
Vaw: z-axis (deq)
-180 a 180

Pitch: x-axis {deg)
180

O > o

-180

Roll: y-axis (deg)

-180

a

180

J o

Figure 58: Camera and model manipulatorsinside SMAT.

10.4 Temperature profile

A new functionality was added to SMAT which allows generating a chart where the temperature
is obtained from SMART for arange of altitudes (see Figure 59). A dialog box allows setting the
analysis parameters (the minimum and maximum altitudes and the step) used to generate the
chart.

Figure 59: Setup and view a temperature profile.

10.5 Images comparison

A new tool in SMAT allows comparing images produced by SMAT or KARMA simulations in
the CSV format. It is very useful to obtain the differences between two images to see, for
example, the impact of an algorithm on the IRSG. Figure 60 shows an example where an image
was produced without antialiasing (top left) and another one, with the ZAA 512 activated (top
right). The image created from the comparison (bottom) shows where the differences are (around
the propellers and the plumes).

68 DRDC Valcartier CR 2011-167

Figure 60: Comparing images with SVIAT.

10.6 Polar plot

The polar plot analysis was reviewed to add a third execution mode. The first two modes were
aready developed but are still explained. Figure 61 shows the polar plot types available.

Figure 61: Polar plot analysis with SVIAT.

DRDC Valcartier CR 2011-167 69

10.6.1 Camera-Azimuth mode

The camera is placed on the horizontal plane, in front of the 3D model and looking at the center
of the model. The camera will rotate around the model on the horizontal plane, around the scene
Height axis (up axis); clockwise when viewed from the model. The view offset can be used to
give an elevation to the camera.

10.6.2 Camera-Elevation mode

The camerais placed in front of the 3D model, in the horizontal plane of the model and looking at
the center of the model. The camera will rotate counterclockwise around the X axis of the model.
The camera begins its rotation by moving down.

10.6.3 Model-Yaw mode

The mode pitch and roll are set to 0.0 and the model is rotated around its own Z axis (up axis) to
face the camera. The camerais at the current position in the model viewer, and looking at the
center of the model. The model rotates counterclockwise around its own Z axis.

10.7 Radiative outputs

A tool was added to SMAT to interrogate SMART (if SMART is correctly initialized) and obtain
different spectrums that could be used into image-based analysis using the IRSG. This tool is
accessible viathe Tools menu, under Radiative Output... menu item as shown in Figure 62.

Radiative Outputs Generator E]

Parameters
Target Altituds: (m)
Distance™® {m}) 1000

*Sensor position is set according to distance
and view angle,

SMART Radiative Oukputs

Atmospheric Transmitkance
[Path Radiance
[Background Radiance
[Jsun Irradiance

[up Flux

[JDown Flux

[oK] [Cancel]

Figure 62: Radiative outputs generator inside SVIAT.

It allows obtaining atmospheric transmittance, path radiance, background radiance, sun
irradiance, up flux and down flux. The aspect of the 3D model (also referred as target) presented
in the model viewer is used for this analysis and the only values necessary to SMART asinput are
the model altitude and the distance between the target and the sensor. Figure 63 shows an
example where a sun irradiance spectrum is generated.

70 DRDC Valcartier CR 2011-167

Figure 63: Qun irradiance spectrum obtained from SMART.

DRDC Valcartier CR 2011-167

71

11 Using OSG formats within the IRSG

The IRSG uses OpenFlight models because this format contains | RCol or and | Rvat eri al fields
which are used by the IRSG to compute the thermal radiance of 3D models. These attributes are
native in OpenFlight models but are not in OSG files. A mechanism to convert OpenFlight
models in OSG format is then required. This is a first step to have a format which will be
modifiable by a custom editor, removing the dependency to OpenFlight format and its associated
model editors.

An important requirement is to keep the OSG files compliant with its own format and readable on

other computers, even if they do not have the appropriate (modified) reader to process the newly
included parameters. In order to respect this criterion, the User Dat a field of OSG files was used.

11.1 Using the OSG UserData field
Any object inheriting from osg: : Obj ect and placed in the User Dat a attribute of a Node will
automatically be written into the UserbData field of that object inside an .osg file (c.f.
oj ect _writ eLocal Dat a inside the OSG plugin).
However, these data structures will not automatically be written or read inside the binary format
version of OSG. As reveded by the code (c.f. DataCutputStream:witebject() and
Dat al nput St ream : readQbj ect () methods of the IVE plugin), only objects from the following
classes (or inheriting from) can be read/write from/to an . i ve file from/to the User Dat a field
without modifying the plug-in:

e 0sQ:: Node;

e 0sQ.:StateSet;

e 0sQ::StateAttribute;

e o0sg::Drawabl e; and

e 0sgSi m: ShapeAttri butelist.

11.2 Required modifications

The shapeAt tri but eLi st data structure perfectly suits the needs of the IRSG. As stated before,
this structure is automatically managed for the User Dat a field. No modifications to the OSG and
IVE plug-ins are necessary to read or write the IRSG parameters. The ShapeAt tri but eLi st data
structureis a container of ShapeAt tri but e. A ShapeAt tri but e isan object defined by:

e aname(const char *);and

e atypevaue(int, doubl e, string).

72 DRDC Valcartier CR 2011-167

So, the I RCol or and | Rvat eri al OpenFlight fields are used as names for a ShapeAt tri but e and
their value (database indices) are stored as integers. However, those fields are not supported in
OSG nodes. The file Geonet ryRecords. cpp has been modified to read those fields and store
them as User Dat a. Thus, the osgdb_openflight.dl | is modified to include the | RCol or and
| Rvat eri al parameters in the OSG structure.

In flt::Face::readRecord() method, the following code is used to gather | RCol or and
| Rvat eri al inthe geometries:

/1l Set I RColor and | Rvaterial properties (not available in OSGQ
0sgSi m : ShapeAttributeList* attributelList = new osgSi m: ShapeAttributelList();
0sgSi m : ShapeAttribute* irColorAttribute = new osgSi m: ShapeAttribute("lRColor", |RColor);

0sgSi m : ShapeAttribute* irMaterial Attribute = new 0sgSi m: ShapeAttribute("|Rvaterial",
| Rvaterial);

attribut eLi st->push_back(*irCol orAttribute);
attributelist->push_back(*irMaterial Attribute);

_geonetry. get()->setUserData(attributelist);

11.3 Converting a model (FLT to OSG)

A simple way to convert amodel from aformat to another one is to create a batch file in the same
folder as the model to be converted. This batch file must invoke the osgconv. exe utility located
iN %KARVA ROOT% Sof t war es\ OpenSceneG aph\ bi n\ .

In the example presented in Table 23, osgconv is converting the cc130_I R model from an
OpenFlight format to an OSG binary format. Notice that the PATH is also defined to ensure that
the correct dil (osgdb_openf I'i ght . dI |), modified from the original one, isloaded.

Table 23: An example of batch file used to convert a 3D model from FLT to I VE.

@cho of f
PATH=%ARMA_ROOT% Sof t war es\ OpenSceneG aph\ dl

" KARMA_ROOT% Sof t war es\ OpenSceneG aph\ bi n\ osgconv. exe" -0 “preserveCbj ect preserveFace” CCI30_IR flt
CC130_I R ive

pause

DRDC Valcartier CR 2011-167 73

12 Scaling parameters

To perform Monte Carlo based simulations, a requirement emerged stating that surface’
temperature and emissivity can vary dynamicaly. These values are defined in a binary file
(database) which is associated to a model. Instead of manipulating directly the binary file, the
solution developed uses two new files (two files are required for each database to be modified):
one containing the temperatures which must vary and the second, containing emissivity
parameters to change.

Thus, for each parameter that needs to vary, three parameters must be defined:

1. minima limit;
2. maximal limit; and
3. distribution type:
a. Uniform Distribution : 0
b. Normal Distribution : 1
c. Exponentia Distribution : 2
d. Laplace Distribution : 3
e. Cauchy Distribution : 4
f. Rayleigh Distribution : 5

Log Normal Distribution : 6

Levy Alpha Stable Distribution : 7
Gamma Distribution : 8

j. Chi-Squared Distribution : 9

k. F Distribution : 10

[. T Distribution : 11

m. BetaDistribution : 12

n. Pareto Distribution : 13

0 @

0. Poisson Distribution : 14

A KARMA internal library (9<ARMA_ROOT% Uti i ti es\ Mont eCarl o) is used to obtain a random
value from these parameters which is then applied to a material’s temperature and/or emissivity.
Notice that the random values are obtained when the database is loaded i.e. when a 3D model is
added in the scene generation module.

To control the value, mi n and max can be set to the same value. For example, if ni n and nax are
set to 1, the value returned by the distribution will be 1.

74 DRDC Valcartier CR 2011-167

Table 24: An example defining a scale parameter inside an XML file.

<data xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNamespaceSchemaLocat i on="C: \ Kar ma\ xnl \ schera\ par anet er s. xsd" >
<fil eType>Paraneters</fil eType>

<paraneter nanme="1"> <l-- database indice -->
<vect or 3>
<doubl e>0. 0</doubl e> <!l -- nmin -->
<doubl e>1. 0</ doubl e> <! -- npax -->
<doubl e>0</ doubl e> <!-- distribution -->

</ vect or 3>
<docunent ati on>fl at gray pai nt</docunentation>
</ par anet er >
</ dat a>

At run time, the scales are loaded from XML files and stored into the database that is associated
to a 3D model. This database is used by the IRSG to compute the apparent radiance as presented
in Section 4. Note that a temperature scale is not used when a temperature is based on a user
defined spectrum (introduced in Section 8.1) while a emissivity scale is always used, ho matter if
the surface’ s emitted radiance is computed from atemperature or a user defined spectrum.

For KARMA simulations, scales are automatically loaded and used if they respect the following
rules:

e The names of files must be the same as the 3D model files with one of the following the
concatenated string, depending on the scale type, (emissivitiesScalings).xm or
(tenperaturesScal i ngs). xm . For example, for the model cc130_IR fIt, the name
shall be:

O CCl30_I R(enissivitiesScalings).xm,or
0 CCl30_I R(tenperaturesScalings).xmn
o Thefiles must be located in the same folder as the 3D modd!.

For SMAT analysis, it shall be explicitly set if scales must be used. This is done in the options
dialog box as shown in Figure 64.

DRDC Valcartier CR 2011-167 75

Scene Parameters

Antialiasing Mode Znom Antialasing 512 w

Use Scakkering [F
Maon-Uniform Background

Background Row
Background Column

Sun
Skybox

Terrain

Delta Radiance
Texture Average

Delka Texture

il

I A

g e

o5 0

[Ok] [Cancel] [Apply]

Figure 64: Setting the scales activation inside SMAT.

Notice that SMAT can create automatically the two scale files. When a user edits a temperature
and material database, and this database is saved on disk via the Save Database command in the
File menu, the files are generated (if they do not exist!) with default values.

76

DRDC Valcartier CR 2011-167

13 Evaluating Performance Validator tool

The IRSG consumes a lot of computer resources and its performance affect the duration of
KARMA simulations. In order to find bottlenecks, a commercia tool was used to evauate the
time required to perform the scene generation process. Performance Validator is a commercial
tool which allows profiling code execution. Many statistics are available like the total time a
method took to execute, the number of times a method was called, etc. An important aspect of
Performance Validator is that it is not intrusive: the tool binds itself to binary files. no tags or
additional code need to be inserted in the code.

Prior using this tool, the accuracy of timing results obtained with Performance Validator was
evaluated. To accomplish thistask, asimple in-house tool (name Custom Tool in the remainder of
this section) using standard timing functions inserted directly in the source code to be evaluated
was developed. This tool alows obtaining the total timing for different methods i.e. the
cumulative method duration during for the whole software lifetime.

The following sections present the results obtained with Performance Validator and Custom Tool

to calculate some code execution duration. These are just some basic teststo obtain a certain level
of confidence with the tool.

13.1 Evaluating Performance Validator overhead

There are different performance timing mechanisms available in Performance Validator. As
shown in Figure 65, Performance Counters mechanism was used to realize the timing operations.
Thisisthe most accurate method available.

Figure 65: Performance Validator timing mechanisms.

DRDC Valcartier CR 2011-167 77

13.2 Test 1: Evaluating method without child calls

An important concern was that Performance Validator is adding a lot of code to hook/analyze a
software component. The result would then be that extra time, i.e. overhead, is added to method
duration. To analyze this phenomenon, a method with an a priori estimated time was defined. By
using the C++ Sl eep(DWORD dwM | | i seconds) function, which pause the normal execution flow
in terms of millisecond (specified in argument), the theoretic time to execute a portion of code is
known before its execution. Then, it is possible to observe atool precision to profile this method.

For different reasons mentioned in the Performance Validator user guide, some methods may not
be instrumented by the profiler (the method is too short for instance). If the method to be tested
only contains a single call to sl eep(..), it will not be evaluated. To be profiled, the method shall
contain extra code (some callsto st d: : cout () or Sl eep(0) for instance).

Table 25: Code for the evaluation of a method call.

int main(int argc, char* argv[])

Run();
}

voi d Run()

Sl eep(10000);// 10,000 ns sleep

Table 26 presents the results obtained for the preceding code (i.e. profiling the Run() method)
with Performance Validator and the tool devel oped for comparison purpose.

Table 26: Evaluation of a portion of code results.

. Duration
Profiling Tool (ms)
Performance Validator 9,999.63
Custom Tool 10,001.03

Thus, Performance Validator does not add significant extratime to cal culate a method which does
not include calls to other methods.

13.3 Test 2: Evaluating a method with repeated child calls

Another concern was that Performance Validator is adding alot of code to hook/analyze a method
which calls other methods, adding an extra time to method duration.

78 DRDC Valcartier CR 2011-167

Table 27: Code for the evaluation of a method call with 10,000 child calls.

int main(int argc, char* argv[])

Run();
voi d Run()
for(int i =0; i < 10000; i++)
Short Sl eep();

}
voi d Short Sl eep()

Sleep(1); // 1 ns sleep

Table 28 presents the results obtained for the previous code (profiling the Run() and the
Short Sl eep() methods) with Performance Validator and the custom tool developed.

Table 28: Repeated method calls resullts.

Total time
Profiling Tool (ms)
Run Short Sl eep
Performance Validator 19,538.27 19,483.61
Custom Tool 19,538.99 19,522.21

Notice that 10,000 calls to a method containing a 1 ms sleep take more than 10,000 ms to execute
since there is an extra cost to call a non-inline method, independently from its content. With the
results obtained, Performance Validator gives accurate results for a method which call a repeated
(but relatively low compared to the next test) number of child methods.

13.4 Test 3: Evaluating a method with numerous child calls
Another test was elaborated to observe a method which calls another method very often. With

preliminary tests done with Performance Validator, the tool seems to overestimate some method
duration when these methods are called a high number of times.

DRDC Valcartier CR 2011-167 79

Table 29: Code for the evaluation of a method call with 1,000,000 child calls.

std::vector<int> val ues;
int main(int argc, char* argv[])

Run();
}

voi d Run()
for(int i = 0; i < 1000000; i++)// 1,000,000 calls
I ncreaseVector ();

}

voi d | ncreaseVector()

{
}

val ues. push_back(1);

Table 30 presents the results obtained for the previous code (profiling the rRun() and the
I ncreaseVect or () methods) with Performance Validator and the custom tool developed.

Table 30;: Numerous method calls results.

Total time
Profiling Tool (ms)
Run I ncr easeVect or
Performance Validator 12,175.60 9,979.53
Custom Tool 9,943.97 9,227.98

13.5 Discussion

Performance Validator has proved to be an interesting tool helping in the process of obtaining
C++ methods execution time. This software is easy to use and do not required code modifications
in classes to be profiled. The tested case consisting to obtain the execution times required for a
method with numerous child calls showed that there could be situations where the tool is not
totally accurate. However, there are no equivalent situations in the IRSG module.

80 DRDC Valcartier CR 2011-167

14 Conclusion

During the contract “Synthetic Infrared Scene” (W7701-082234), many new features were
developed to increase the fidelity of the infrared scene generator module of the KARMA
framework. The signature and modelling analysis tool (SMAT) was also modified to take
advantage of the recent development. New tools were also added to SMAT to support the
analysis.

The main improvements to the IRSG module include: the use of advanced rendering libraries and
mechanisms to exploit graphical processor units, better atmospheric modelling including the use
of a wideband-ck mode for increased performances, better representation of backgrounds, better
representation of surface reflections, implementation of a zoom antialiasing algorithm, and
representation of scattering effects.

At this moment, the zoom antialiasing algorithm is working fine but some optimizations are
necessary to decrease the time require to generate an image. In fact, the performances of the
IRSG still need to be addressed because it has a major impact on the simulations. To this end, the
tool Performance Validator could be used to detect bottlenecks and make necessary changes and
optimizations.

As presented in Section 9.3, the scattering effect is not fully functional. Indeed, the process

generates a result which looks like a cross instead of a diffuse circle. Some investigations should
alow detecting what stage of the mechanism produces this unexpected resuilt.

DRDC Valcartier CR 2011-167 81

References

[1] Lepage, J., Labrie, M., Rouleau, E., Richard, J., Ross, V., Dion, D., Harrison, N., "DRDC's
approach to IR scene generation for IRCM simulation” in Technologies for Synthetic
Environments: Hardware-in-the-Loop X V|, edited by Scott B. Mobley, Proceedings of SPIE
Vol. 8015 (SPIE, Bellingham, WA 2011) 80150F.

[2] Rouleau, E. (2008). “Infrared Scene Generation (IRSG): Developer’s Guide’, DRDC-
Valcartier CR 2008-258.

[3] Richard, J. (2008). “ Signature Modelling and Analysis Tool (SMAT): User's Guide”, DRDC-
Valcartier CR 2008-260.

[4] Richard, J. (2008). “ Signature Modelling and Analysis Tool (SMAT): Developer’'s Guide’,
DRDC-Valcartier CR 2008-259.

[5] Lepage, J.-F., Rouleau, E., Richard, J., & Harrison, N. (2010). “Infrared scene generation for
countermeasures simulations: Implementation in the KARMA framework, phase 1", DRDC
Vacartier TR 2010-284, in publication process, UNCLASSIFIED.

[6] Ross, V. (2010). The SMARTI library.

[7] Ross, V. and Dion, D., " SMART and SMARTI: visible and IR atmospheric radiative transfer
libraries optimized for wide-band applications," Proc. SPIE 8014, paper 26 (2011).

[8] Sills, T. G., & Williams, O. M. (2004). Aliasing and scintillation reduction in real-time
computer graphics. Optical Engineering, 43(8), 1908-1915.

[9] Sills, T. G. (June 2006). Anti-aliasing for infrared scene generation using programmable
graphics and the NVIDIA Cg toolkit. Optical Engineering, 066401-1,066401-5.

[10] Mountain. (2011). Retrieved from Wikipedia: http://en.wikipedia.org/wiki/Mountain.

[11] Tremblay, G., Roy, G., & Cao, X. (2010, December). Imaging through aerosols: asimple
model based on the Modulation Transfer Function properties. RDDC-Valcartier.

82 DRDC Valcartier CR 2011-167

Annex A AtmosphereSmart XML parameters file
example.

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>

<I--Created by KARVA XML file |ogger-->

<l--

Copyright Her Majesty the Queen as represented by the Mnister of National Defence,

Terms of rel ease:
The informati on contained herein is proprietary to Her
Maj esty and is provided to the recipient on the
understanding that it will be used for information and
eval uation purposes only. Any conmercial use
i ncluding for manufacture is prohibited. Release to
third parties of this publication or information
contained herein is prohibited without the prior
written consent of Defence R&D Canada.
-->
<data xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : noNamespaceSchemaLocation="..\..\..\..\..\..\xnl \schena\ par anet ers. xsd">
<fil eType>Paraneters</fil eType>
<t ype>/ At nospher eSmar t/ Root / At nospher e/ At nospher eSmart </t ype>
<Obj ect _Model _I dentificati on_Tabl e>
<Nare/ >
<Ver si on/ >
<Dat e/ >
<Pur pose/ >
<Appl i cati on_Domai n/ >
<Sponsor/ >
<POC/ >
<POC_Or gani zati on/ >
<PCC_Tel ephone/ >
<PCC_Emai | / >
</ Cbj ect _Model _Identification_Tabl e>

2011

<docunent at i on>At nospheri c nodel based on SMART/ MODTRAN al | owi ng the cal cul ati on of
transm ttance, path radi ance, background radi ance, solar irradiance, up flux, down fl ux;

in spectral and/or wi deband correl at ed-k. </ docunent ati on>

<par anet er nane="Aer osol Model ">
<doubl e>0</ doubl e>
<docunent at i on>Aer osol nodel .

MODTRAN rural aerosol nodel

MODTRAN ur ban aer osol nodel
MODTRAN naritime aerosol nodel
MODTRAN nam aer osol nodel

MODTRAN t r opospheri c aerosol nodel
MODTRAN advective fog aerosol nodel
MODTRAN r adi ati ve fog aerosol nodel
MODTRAN desert aerosol nodel

NogaRwNREQ

</ docunent ati on>
</ par anet er >

<par anmet er nane="Ai r Mass" >

<doubl e>3</ doubl e>

<docunent ati on>Air mass paraneter, |CSTL paraneter in MODTRAN. </ docunentation>
</ par anet er >

<par anet er nanme="Al bedoVal ues" >
<vect or >
<doubl e>0. 71</ doubl e>
<doubl e>0. 56</ doubl e>

DRDC Valcartier CR 2011-167

83

84

<doubl e>0. 38</ doubl e>
<doubl e>0. 13</ doubl e>
<doubl e>0. 2</ doubl e>
<doubl e>0. 2</ doubl e>
<doubl e>0. 2</ doubl e>
<doubl e>0. 18</ doubl e>
<doubl e>0. 15</ doubl e>
<doubl e>0. 12</ doubl e>
<doubl e>0. 1</ doubl e>
<doubl e>0. 08</ doubl e>
</vect or>
<docunent at i on>Sur face al bedo (unitless).</docunmentation>
</ par anet er >

<par anet er nanme="Al bedoWavel engt hs" >
<vect or >
<doubl e>1. 5</ doubl e>
<doubl e>2</ doubl e>
<doubl e>2. 5</ doubl e>
<doubl e>3</ doubl e>
<doubl e>3. 5</ doubl e>
<doubl e>4</ doubl e>
<doubl e>5</ doubl e>
<doubl e>6</ doubl e>
<doubl e>8</ doubl e>
<doubl e>10</ doubl e>
<doubl e>12</ doubl e>
<doubl e>14</ doubl e>
</ vect or>
<docunent ati on>Spectral grid of albedo data (m crons).</docunentation>
</ par anet er >

<par amet er name="At nospher eModel ">
<doubl e>2</ doubl e>
<docunent ati on>Sel ects one of the six geographical -seasonal nodel atnospheres

Tropi cal Atnosphere (15 deg North Latitude).
M d- Latitude Sumnmer (45 deg North Latitude).
M d-Latitude Wnter (45 deg North Latitude).
Sub-Arctic Sunmmer (60 deg North Latitude).
Sub-Arctic Wnter (60 deg North Latitude).
1976 US St andard At nbsphere

QuhwNE

</ docunent ati on>
</ par anet er >

<par anmet er nane="BaseWavel engt hMax" >

<doubl e>5</ doubl e>

<docunent at i on>Upper spectral boundary (max. is 40 mcron).</docunentation>
</ par anet er >

<par anmet er nanme="BaseWavel engt hM n" >

<doubl e>3</ doubl e>

<docunent at i on>Lower spectral boundary (min. is 0.2 micron).</docunmentation>
</ par anet er >

<par anet er nanme="Cl oudBaseAl titude">
<doubl e>- 1</ doubl e>
<docunent ati on>Cl oud base altitude relative to ground |level (CALT paraneter in
MODTRAN)

greater than or equal to 0 : Coud base altitude relative to

ground level (m.
less than 0 : Use default cloud base altitude
</ docunent ati on>
</ par anet er >

<par anmet er nanme="C oudExti nction">

DRDC Valcartier CR 2011-167

<doubl e>0</ doubl e>
<docunentation>Cloud liquid water droplet and ice particle vertical extinction (CEXT
paraneter in MODTRAN)

greater than 0 : Cloud water particle vertical extinction (m1).
| ess than or equal to 0 : Do not scale extinction coefficients.
</ docunent ati on>
</ par anet er >

<par anet er nane="C oudMbdel ">
<doubl e>0</ doubl e>
<docunent at i on>MODTRAN cl oud/rai n nodel (0-10), |CLD paraneter in MODTRAN.

0: No clouds or rain.

1: Cumulus cloud |l ayer: base 0.66 km top 3.0 km

2: Altostratus cloud layer: base 2.4 km top 3.0 km

3: Stratus cloud layer: base 0.33 km top 1.0 km

4: Stratus/stratocunulus |ayer: base 0.66 km top 2.0 km

5: N nmbostratus cloud |layer: base 0.16 km top 0.66 km

6: 2.0 mm hr ground Drizzle (npdeled with cloud 3 and 0.86 mm/ hr
at 1.0 km.

7: 5.0 mm hr ground Light rain (nmodeled with cloud 5 and 2.6 mm/
hr at 0.66 kn.

8: 12.5 mm hr ground Mdderate rain (nodeled with cloud 5 and 6.0
mm/ hr at 0.66 knj.

9: 25.0 mm hr ground Heavy rain (nodeled with cloud 1 and to 0.2
mm/ hr at 3.0 knm).

10: 75.0 mm hr ground Extreme rain (nodeled with cloud 1 and 1.0
mm/ hr at 3.0 km.

18: Standard Cirrus nmodel (64 nm node radius for ice particles).

19: Sub-visual Crrus nodel (4 nm node radius for ice particles).

</ documnent at i on>
</ par anet er >

<par anet er name="C oudThi ckness" >
<doubl e>0</ doubl e>
<docunent at i on>Cl oud t hi ckness (CTH K paraneter in MODTRAN)

greater than 0 : Coud vertical thickness (m.
less than or equal to 0 : Use default cloud thickness.
</ docunent ati on>
</ par anet er >

<par anmet er nanme="G oundTenper at ure">

<doubl e>20</ doubl e>

<docunent ati on>Lower surface (ground or sea) tenperature (C).</docunentation>
</ par anet er >

<par amet er nanme="1rradi anceMbde" >
<doubl e>1</ doubl e>
<docunent at i on>I rradi ance node.

1: 1D pre-cal cul ati on node
2: 2D on-the-fly cal culati on node
</ docunent ati on>
</ par anet er >

<par amet er nane="Measur enent Hei ght " >
<doubl e>5. 0</ doubl e>
<docunent at i on>Measur enent height for tenperature, pressure and relative humdity (n.
Valid from2 to 40 m Only affects DRDC neteo nodel .
</ docunent ati on>
</ par anet er >

<par anmet er nanme="Met eoMbdel ">
<doubl e>1</ doubl e>
<docunent ati on>Use standard MODTRAN nodel s, or nodified MODTRAN nodel s (tenperature,

DRDC Valcartier CR 2011-167 85

pressure and water content profile of the | ower atnosphere).

1: Modtran node
2: DRDC npde
</ docunent ati on>
</ par anet er >

<par anmet er nanme="Mdel Type" >
<entityType>SMART_ATMOSPHERI C_MODEL</ enti tyType>
<docunent ati on>Used to save the nodel type
</ docunent ati on>

</ par anet er >

<par anmet er name="PressureVHd" >
<doubl e>1013</ doubl e>
<docunent ati on>Pressure at measurenment height (mbar). Valid from800 to 1200 nbar.
Only affects DRDC neteo nodel .
</ docunent ati on>
</ par anet er >

<par amet er nanme="Rel ativeHum dityM"'>
<doubl e>50</ doubl e>
<docunentati on>Rel ative hum dity at neasurement height (% . Valid fromO0 to 100 %
Only affects DRDC neteo nodel .
</ document at i on>
</ par anet er >

<par anmet er nanme="Resol ution">
<doubl e>5</ doubl e>
<docunent at i on>Wavenunber resol ution

1: 1 cml
5 5cml
15: 15 cm 1

</ docunent ati on>
</ par anet er >

<par anet er nanme="Scatt eri nghbde" >
<doubl e>2</ doubl e>
<docunent ati on>Scattering approxi mati on node affects the accuracy (and speed) of the
scattering calculations. Setting the scattering node to single
scattering is faster but |ess accurate.

1: single scattering
2: two flux multiple scattering (required for clouds nodelisation
and up-down flux cal cul ation)
</ docunent ati on>
</ par anet er >

<par anet er nanme="Tenper at ur eALTO" >
<doubl e>20</ doubl e>
<documentation>Air tenperature (altitude 0) (C). Valid from-10 to 40 C. (the absolute
di fference between this paraneter and TenperatureVH cannot exceed 10
C.). Only affects DRDC neteo nodel . </docunentati on>
</ par anet er >

<par anmet er name="Tenper at ur eMd"' >
<doubl e>20</ doubl e>
<docunentati on>Air tenperature at neasurenment height (C). Valid from-40 to 40 C. (the
absol ute difference between this paranmeter and TenperatureALTO cannot
exceed 10 C.). Only affects DRDC nmeteo nodel . </ docunent ati on>
</ par anet er >

<paraneter name="Visibility">

<doubl e>0</ doubl e>

<docunent ati on>Koschmi eder visibility (m, 0 for nodel default.</docunentation>
</ par anet er >

86 DRDC Valcartier CR 2011-167

<par anmet er nanme="W ndDi recti on">

<doubl e>0</ doubl e>

<documnent ati on>Current wi nd direction (East of North) (rad).</docunmentation>
</ par anet er >

<par anet er name="W ndSpeed" >
<doubl e>5</ doubl e>
<document ati on>W nd speed at neasurenent height (m's). Valid fromO0.1 to 30 ni's
</ docunent ati on>

</ par anet er >

<par anmet er nanme="W ndSpeedAver age24" >
<doubl e>5</ doubl e>
<docunent ati on>W nd speed average in last 24 hours (nfs). Valid from0.1 to 30 nis.
</ docurnent ati on>

</ par anet er >

<par anmet er nanme="W ndSpeedMeasur enent Hei ght " >
<doubl e>10</ doubl e>
<docunent at i on>Measur enent height for wind speed (n). Valid from2 to 40 m
</ docunent ati on>
</ par anet er >
</ dat a>

DRDC Valcartier CR 2011-167

87

List of symbols/abbreviations/acronyms/initialisms

2D
3D
API
ATM
CG
CK
CPU
CR
Ccsv
DND
DRDC
FBO
FFT
FOI
FOV
FSAA
GPL
GPU
HDR
HUD
ICD
ID

IR
IRSG
LBB
LOD
LOS
MTF
OpenGL
O]

88

Two Dimensions

Three Dimensions
Application Program Interface
Atmosphere

C for Graphics

Correlated-K

Central Processing Unit
Contract Report
Comma-Separated Vaues

Department of National Defence

Defence Research & Development Canada

Framebuffer Object

Fast Fourier Transform
Field Of Interest

Field Of View

Full Screen Antialiasing
General Public License
Graphics Processing Unit
High Dynamic Range
Heads-Up Display
Installable Client Driver
Identifier

Infrared

Infrared Scene Generator
Black Body Radiance
Level Of Details

Line Of Sight
Modulation Transfer Function
Open Graphic Library
Operating System

DRDC Valcartier CR 2011-167

0SG
PSF
R&D
RTT
SMAT
XML
ZAA

OpenSceneGraph

Point Spread Function

Research & Development

Render To Texture

Signature Modelling and Analysis Tool
Extensible Markup Language

Zoom Antialiasing

DRDC Valcartier CR 2011-167

89

90

This page intentionally left blank.

DRDC Valcartier CR 2011-167

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR(The name and address of the organization preparing the 2. SECURITY CLASSIFICATION
document.Organi zations for whom the document was prepared, e.g. Centre sponsoring a (Overall security classification of the document
contractor's report, or tasking agency, are entered in section 8.) including special warning termsif applicable.)
Louis Tanguay Informatique inc. UNCLASSIFIED

825 Boul. Lebourgneuf, Bureau 204
Québec, Canada
G2J 0B9

3. TITLE(The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after thetitle.)

Synthetic Infrared Scene: Improving the KARMA IRSG module and signature modelling tool
SMAT

4. AUTHORS(last name, followed by initials— ranks, titles, etc. not to be used)

Labrie, M.-A.; Rouleau E.; Richard J.; Bastien A.; Desmeules M.; Rivest-Sabourin G.

5. DATE OF PUBLICATION 6a. NO. OF PAGES 6b. NO. OF REFS
(Month and year of publication of document.) (Total containing information, (Total cited in document.)
including Annexes, Appendices,
etc.)
March2011 106 11

7. DESCRIPTIVE NOTES(The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report

8. SPONSORING ACTIVITY(The name of the department project office or laboratory sponsoring the research and development — include address.)

Defence R&D Canada — Valcartier
2459 Pie-XI Blvd North

Quebec (Quebec)

G3J 1X5 Canada

9a. PROJECT OR GRANT NO.(If appropriate, the applicable researchand [9b. CONTRACT NO.(If appropriate, the applicable number under

development project or grant number under which the document which the document was written.)
was written. Please specify whether project or grant.)
Project 13ng W7701-082234/001/QCL
10a. ORIGINATOR'S DOCUMENT NUMBER(The official document 10b. OTHER DOCUMENT NO(s).(Any other numbers which may be
number by which the document is identified by the originating assigned this document either by the originator or by the sponsor.)

activity. This number must be unique to this document.)

LTI-SI1S-2011-1 DRDC Valcartier CR 2011-167

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. Thiswill normally correspond to
theDocument Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, awider announcement
audience may be selected.))

Unlimited

13.

ABSTRACT(A brief and factua summary of the document. It may also appear elsewherein the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both officia languages unless the text is bilingual .)

The main objective of the contract “ Synthetic Infrared Scene” (W7701-082234) was to increase
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA
simulation environment. The work was carried out from November 2008 to March 2011. This
contract report focuses on presenting the new functionalities that were added to the infrared
scene generator (IRSG) module which is part of the KARMA framework. Modifications were
also done to the signature modelling and analysis tool (SMAT) which usesthe IRSG to perform
various kind of analysis.

L'objectif principal du contrat " Scéne Infrarouge Synthétique”" (W7701-082234) a été
d'augmenter le niveau de fidélité d’ engagements impliquant des autodirecteurs infrarouges dans
I'environnement de simulation KARMA. Letravail a ééréalisé a partir de novembre 2008
jusgu’a mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles
fonctionnalités qui ont été ajoutées au module de génération de scene infrarouge (IRSG) fai sant
partie de I’ environnement KARMA. Des modifications ont également été apportées al’ outil de
modélisation et d'analyse de signature infrarouge (SMAT) qui utilise I'|RSG pour effectuer
différents types d'analyse.

14.

KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurusidentified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with thetitle.)

Infrared scene generation; Infrared signature; Modelling and simulation (M& S); OpenGL;
Shaders

Defence R&D Canada R & D pour la défense Canada

Canada’s Leader in Defence Chet de file au Canada en matiere
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

www.drdc-rddc.gc.ca

