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Chirp Excitation of Ultrasonic Guided Waves

Jennifer E. Michaels®, Sang Jun Lee*, Anthony J. Croxford?® and Paul D. Wilcox?

'School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA 30332-0250

Department of Mechanical Engineering, University of Bristol, Bristol, UK

ABSTRACT. Most ultrasonic guided wave methods require tone burst excitations to
achieve some degree of mode purity. In addition, it is often desirable to acquire data
using multiple frequencies, particularly during method development when the best
frequency for a specific application is not known. However, this process is inconvenient
and time-consuming, particularly if extensive signal averaging at each excitation
frequency is required to achieve a satisfactory signal-to-noise ratio. Both acquisition time
and data storage requirements may be prohibitive if responses from many narrowband
tone burst excitations are measured. Here chirp excitations are utilized to address the
need to both test at multiple frequencies and achieve a high signal-to-noise ratio. A
broadband chirp is used to acquire data at a wide range of frequencies, and deconvolution
is applied to extract multiple narrowband responses. If only a single narrowband
response is needed, a long-time narrowband chirp is used as an excitation, and the short-
time tone burst response is similarly extracted during post-processing. Results are shown

that demonstrate the efficacy of both broadband and narrowband chirp excitations.
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1. INTRODUCTION

Guided wave-based methods for ultrasonic nondestructive evaluation (NDE) and structural
health monitoring (SHM) are the primary techniques for long range damage detection and
characterization in plate-like structures. Because of the highly dispersive and multi-modal of
nature guided waves, it is customary to use narrowband excitations so that dispersive effects and
number of modes are minimized [1-3]. Typically both the transducer dimensions and the
excitation frequency are adjusted to maximize mode purity, which can further improve
interpretability of guided wave signals [4]. Often this mode tuning is done empirically by
exciting the transducer with a variety of tone burst signals of different center frequencies and
widths, and then selecting the one that generates the response exhibiting the best mode purity

with the shortest duration time domain pulses.

Guided wave measurements are frequently performed using low voltage excitations, particularly
as compared to typical bulk wave excitations in the hundreds of volts, and extensive signal
averaging is often employed to achieve a high signal-to-noise ratio (SNR). For ultrasonic bulk
wave testing, an alternative technique to improve SNR is to use coded excitations followed by
pulse compression [5,6]. For such an approach the transmitter is excited with a broadband but
long time signal such as a chirp, white noise signal, or a pseudo-random sequence. The energy
of the excitation is significantly increased, and post-processing via either a matched filter or
Wiener filter can map duplicates of the excitation pulses to short time impulse-like echoes [7].
Either filtering approach can be effective for many ultrasonic applications where a high SNR

broadband response is difficult to achieve, such as testing of concrete [8], air-coupled ultrasonic
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methods [9], ultrasonic imaging of wood [10], and characterization of scatterers [11]. In
contrast, for the problem considered here, a narrowband response is specifically desired to
facilitate signal interpretation by minimizing dispersive effects and maximizing mode purity.
The analysis approach taken is simple frequency domain deconvolution to map the measured
response to the desired response. The work shown here is an extension of that reported by the

authors in [12] and [13].

The main contribution of this paper is neither the signal processing, which is quite simple, nor
the idea of a chirp excitation, which is well-known, but the efficient implementation of guided
wave data acquisition. The authors, from two laboratories in different continents, were both
motivated by the practical concerns of efficiently acquiring high quality guided wave data, and
have experienced the enormous impact of using chirp excitations followed by rapid post-
processing. This paper is an attempt to convince all guided wave experimenters of not only the
significant advantages of such an approach, but that it is also an enabling technology for practical

field implementation.

2. THEORY

The term “chirp” refers to a sinusoidal signal for which the frequency is a function of time; the
amplitude may also vary. For a typical chirp, the frequency is linearly swept from a minimum
value to a maximum value over a fixed time interval while the amplitude is held constant. The

equation for such an excitation is,

2
s, (t) = w(t)sin (zﬂ fit+ ”_Er“ J ,
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where fy is the starting frequency, T is the duration of the chirp, and B is the chirp bandwidth.
The function w(t) is a unit amplitude rectangular window starting at t = 0 and having a duration

of T. The Fourier transform of s¢(t) is S¢(w), where w is the angular frequency.

Consider a guided wave transmitter excited by a known chirp function and the associated
receiver, and let h(t) be the corresponding impulse response and H(w) its Fourier transform, also
known as the transfer function. Included in H(w) are the transfer functions of the transmitter and
receiver, all instrumentation effects, and the Green’s function(S) needed to describe wave
propagation between transmitter and receiver. The entire system, which consists of the
instrumentation, transducers and structure, is well-modeled as a linear system, and the response
to the chirp excitation can thus be expressed in the frequency domain as,

R.(@) = H(@)S (). )
Let sq(t) be the desired excitation, which here is a tone burst. In the frequency domain,

Ry (@) = H(@)S, (). )
Since the chirp response is known via measurement and both excitations are known, the response
to sq(t) can be obtained as,

Sy (@)
SC (a))

Ry (@) = R, (@) =R (0)G(o). (4)

It can be seen that G(w) is a filter constructed from the Fourier transforms of the chirp and tone
burst excitations. If the bandwidth of the desired excitation falls within that of the chirp, then
division in the frequency domain is not problematic and G(w) can be readily computed.
Although a linear chirp with constant amplitude is given as an example in Eq. (1), any chirp

signal can be effectively used as long as the bandwidth is sufficient to enable the filter G(w) to
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be constructed. An additional advantage of this filtering is direct removal of incoherent noise

outside the bandwidth of interest.

3. BROADBAND CHIRP RESULTS

As an example of a broadband chirp excitation, consider the chirp signal shown in Figure 1(a)
where the frequency sweeps from 50 kHz to 500 kHz over a 200 us window. Suppose the
desired excitation is the tone burst signal of Figure 1(b), which is a Hanning-windowed sinusoid
centered at 400 kHz and with a duration of 5 cycles. The measured response to the chirp for two
PZT disc transducers mounted 191 mm apart on a 3.175 mm thick aluminum plate is shown in
Figure 2(a). Although this chirp response cannot be interpreted in the time domain, the response
to the tone burst can be computed as per Eq. (4). Figure 2(b) compares this computed response
to the separately measured tone burst response where the amplitudes are scaled so that both
signals have unit energy. The two signals are essentially identical down to even the smallest
details except that the one computed from the chirp response has slightly less noise than the

directly measured tone burst response, which is only evident on the zoomed signal.

The waterfall plot of Figure 3 shows a suite of tone burst responses computed from a single chirp
response by varying the center frequency from 100 kHz to 400 kHz in 25 kHz increments. Each
tone burst is a five cycle Hanning-windowed sinusoid, and the transducers were located 286 mm
apart on a 3.175 mm thick aluminum plate. Although the plate thickness is the same as that of
Figure 2, these signals were obtained from a plate larger in extent so that direct Ap and So
arrivals could be unambiguously identified. All waveforms of Figure 3 were normalized to unity

amplitude prior to plotting to emphasize the relative modal content of each signal. It can be seen
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that the response at 100 kHz is almost pure Ay, whereas the greatest purity of the faster So mode
is at 400 kHz. It is thus expected that these two frequencies would be most useful for typical

guided wave NDE and SHM applications for which mode purity is desired.

The same chirp response can also be used to investigate the effects of changing the number of
tone burst cycles for a particular excitation frequency. Since guided waves are dispersive, there
is generally a tradeoff between bandwidth and echo duration in the time domain. Unlike bulk
waves, a wide bandwidth does not necessarily lead to a short duration time domain pulse. For a
given propagation distance, there is usually an optimum number of cycles that leads to the
shortest duration echo. For example, Figures 4 and 5 show waterfall plots for 100 kHz and
400 kHz tone burst excitations, respectively, as the number of cycles varies from two to nine. It
can be seen in Figure 4 that the 2-cycle 100 kHz excitation results in the shortest duration direct
arrival pulse for the Ao mode, although the broader bandwidth of this pulse degrades mode purity
somewhat as can be soon by the slightly larger initial Sy arrival. The 3-cycle response offers
similar pulse duration with a smaller So contribution. In Figure 5, the 7-cycle 400 kHz excitation
appears to yield the shortest Sy direct arrival, although the distinction isn’t as clear as for the Ay
signals at 100 kHz. These observations are certainly not all-inclusive, but are typical of the

information that can be gleaned from a single chirp response.

Both the number of cycles and the frequency can be varied simultaneously to optimize both.
Using the results from Figures 4 and 5, the number of cycles is continuously varied from 3 to 7
as the frequency increases from 100 kHz to 400 kHz. The envelopes of the resulting signals are

calculated from their Hilbert transforms and are plotted in the form of an image in Figure 6. The
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frequency-dependent wave speeds of both the faster So mode and the slower Aq mode are clearly

visualized.

The implications of using broadband chirp excitations to record multi-frequency data can be
considerable. For example, consider a spatially distributed transducer array comprising eight
individual elements, which results in a total of 56 possible transducer pairs. For example, if it is
desired to record tone burst data from 50 to 525 kHz in increments of 25 kHz for all possible
pairs, then a total of 20 separate signals must be recorded for each pair. Using a chirp excitation
directly reduces both the time and data storage requirements by this factor of 20 assuming that all
data acquisition functions are fully automated. Another significant advantage of the chirp
excitation is that the number of cycles can be optimized for each frequency without recording

additional data.

4. NARROWBAND CHIRP RESULTS

A narrowband chirp excitation may be effectively used to significantly improve the signal-to-
noise ratio (SNR) without time domain averaging. Suppose the support, or length, of the desired
tone burst excitation is Ty, and the bandwidth is Fy,, and that a chirp is defined that distributes the
bandwidth of the tone burst over a longer time window of length N x Ty. If the tone burst
response is extracted as per Eq. (4), the SNR should increase by a factor of JN', which is the

same degree of improvement expected if N time signals are averaged.

(Bristol contribution: Does not need AFRL clearance)
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5. DISCUSSION AND CONCLUSIONS

This paper has presented a simple method for extracting narrowband tone burst responses using
chirp excitations, and has demonstrated the efficacy of this approach for both broadband and
narrowband chirps. The results presented here are representative of what the authors have
implemented to date, and are certainly not intended to be exhaustive. For example, nonlinear
chirp excitations could be readily implemented to enable simultaneous acquisition of multiple
distinct frequency ranges with a very high SNR. Similarly, responses to other narrowband
excitations, such as chirplets, could readily be extracted. In addition, the benefits of shorter
acquisition times, reduced data storage requirements, and higher SNR resulting from chirp
excitations are expected to be even more significant for full wavefield capture using, for
example, laser vibrometers or air-coupled transducers because of the unavoidably large amounts

of data required [14].

There are two minor downsides to using a chirp excitation. The first is that raw signals cannot
be directly interpreted in the time domain, which is not a limitation for an automated system and
is only a minor inconvenience in the laboratory. The second is that the time window for
acquisition must be longer than the desired time window for analysis by an amount equal to the
length of the chirp; this is only an issue during initial configuration of the data acquisition
system. It is therefore recommended that chirp excitations be routinely used for guided wave
inspection and monitoring applications, as is now done by the authors in laboratories at both the

Georgia Institute of Technology and the University of Bristol.
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Figure 1. (a) Linear chirp signal from 50 to 500 kHz. (b) Hanning-windowed tone burst
excitation centered at 400 kHz and with a duration of 5 cycles.
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Figure 2. Measured data for two transducers located 191 mm apart. (a) Response to the linear
chirp excitation. (b) Comparison of directly measured response to a 400 kHz excitation to that
calculated from the measured chirp response.
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Figure 3. Responses to 5-cycle, Hanning windowed tone bursts at various frequencies as
generated from the measured chirp response. The transducers were separated by 286 mm, and
they were attached to a 914 x 914 x 3.175 mm aluminum plate.
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Figure 4. Responses to 100 kHz, Hanning windowed tone bursts at various numbers of cycles as
generated from the chirp response. The transducers were separated by 286 mm, and they were
attached to a 914 x 914 x 3.175 mm aluminum plate.
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Figure 5. Responses to 400 kHz, Hanning windowed tone bursts at various numbers of cycles as
generated from the chirp response. The transducers were separated by 286 mm, and they were
attached to a 914 x 914 x 3.175 mm aluminum plate.
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Figure 6. Responses to Hanning windowed tone bursts from 100 kHz to 400 kHz while the
number of cycles are continuously varied from 3 to 7.
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