
 

 
 

 

Adaptive Maritime Video Surveillance 
  

Kalyan Moy Gupta
1
, David W. Aha

2
, Ralph Hartley

2
, Philip G. Moore

1 

1
Knexus Research Corp; 9120 Beachway Lane; Springfield, VA 22153 

           
2
NCARAI; Naval Research Laboratory; 4555 Overlook Ave, SW; Washington, DC 20375 

1
firstname.lastname@knexusresearch.com, 

2
firstname.lastname@nrl.navy.mil 

ABSTRACT 

Maritime assets such as ports, harbors, and vessels are vulnerable to a variety of near-shore threats such as small-boat 

attacks.  Currently, such vulnerabilities are addressed predominantly by watchstanders and manual video surveillance, which 

is manpower intensive.  Automatic maritime video surveillance techniques are being introduced to reduce manpower costs, 

but they have limited functionality and performance. For example, they only detect simple events such as perimeter breaches 

and cannot predict emerging threats. They also generate too many false alerts and cannot explain their reasoning.  To 

overcome these limitations, we are developing the Maritime Activity Analysis Workbench (MAAW), which will be a mixed-

initiative real-time maritime video surveillance tool that uses an integrated supervised machine learning approach to label 

independent and coordinated maritime activities. It uses the same information to predict anomalous behavior and explain its 

reasoning; this is an important capability for watchstander training and for collecting performance feedback.  In this paper, 

we describe MAAW’s functional architecture, which includes the following pipeline of components: (1) a video acquisition 

and preprocessing component that detects and tracks vessels in video images, (2) a vessel categorization and activity labeling 

component that uses standard and relational supervised machine learning methods to label maritime activities, and (3) an 

ontology-guided vessel and maritime activity annotator to enable subject matter experts (e.g., watchstanders) to provide 

feedback and supervision to the system. We report our findings from a preliminary system evaluation on river traffic video. 

1 INTRODUCTION 

US Navy assets are under a constant threat of terrorist attack as evidenced by USS Cole bombing event where 17 sailors lost 

their lives.
1
 Merchant ships are also a convenient target for terrorists attempting to harm a nation’s defenses and economy.  

There is a pressing need for decision support systems that improve maritime domain awareness and reduce such 

vulnerabilities.  Some existing research systems do perform activity pattern learning and anomalous activity prediction 

pattern learning.  However, they focus at a global level on big vessels and open ocean traffic using reliable tracking data 

from the automatic identification system (AIS).  However, no existing video surveillance systems focus on near-shore 

activities. Those that are available use limited perimeter-based surveillance approaches and do not detect threat intent prior to 

perimeter breach.  We are developing a system, called the Maritime Activity Analysis Workbench (MAAW), to fill this 

capability gap.    

MAAW is designed to be a mixed-initiative real-time maritime video surveillance tool that uses an integrated supervised 

machine learning approach to label independent and coordinated maritime activities. It shall use the same information to 

predict anomalous behavior and explain its reasoning. MAAW includes a pipeline of adaptive processors: (1) a video 

acquisition and preprocessing component that detects and tracks vessels in video images, (2) a behavior analysis component 

that performs vessel and activity classification using standard and relational supervised machine learning techniques, and (3) 

a threat analysis component that shall perform mixed-initiative data fusion to assess threat and raise alerts.  

We have developed a preliminary version of MAAW’s video processing and behavior analysis components and report the 

following two novel contributions about this version.  First, we represent contextual cues in a maritime scene and use them 

with an emerging technique called collective case-based inference to increase the accuracy of maritime object classification. 
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Second, we investigate the use of tandem classification where the output from an upstream classifier (e.g., object 

classification) is used to improve the performance of the downstream classification task (e.g., activity classification). We 

evaluate the effectiveness of these approaches on river traffic video data that we collected using MAAW. We found that 

exploiting contextual cues with collective case-based inference significantly increased vessel classification accuracy. We also 

show that tandem classification can significantly increase classification accuracy for low-level maritime activities and that its 

effectiveness can be dramatically improved by improving the performance of its upstream components (i.e., object 

classification).  

We organize the remainder of this paper as follows. We introduce the topic of maritime domain awareness in the next 

section. Next, we describe MAAW’s functional architecture and its component algorithms in Section 3. We evaluate our 

methods in Section 4 and we conclude with directions for future research in Section 6. 

2 MARITIME DOMAIN AWARENESS 

In an act of terrorism at the Yemini port of Aden, the bombing of the USS Cole (DDG 67) completely disabled the ship and 

claimed the lives of 17 sailors.  The scope of such acts is global, as evidenced by a similar attack on the French oil tanker 

Limburg, also off the coast of Yemen.
2
 Attack on military and commercial maritime assets is but one of the many possible 

ways to harm a nation’s defenses and its economy. Others types of harmful acts include trafficking people and other 

resources across waterways in preparation for future attacks. Maritime domain awareness is the effective understanding of 

anything associated with the maritime domain that could impact the security, safety, economy, or environment of the United 

States [1]. It involves securing various maritime assets [2], and continuous intelligence gathering to detect, deter, and prevent 

terrorist acts.  These efforts can occur at many levels. For example, at a global level, one could track merchant vessels and 

automatically detect non-routine behavior, such as unjustified rendezvous and deviation from manifest, to alert analysts 

about a potential threat.  Some programs and efforts such as the DARPA PANDA program [3] and those in the private sector 

[4] address the maritime domain awareness problem at this level. In contrast, at a local level, one could monitor maritime 

traffic at a port or harbor to detect unusual activity to prevent a terrorist plan from its intended execution.  

In this paper, we focus on maritime domain awareness at the local level. In particular, we focus on activities of small vessels 

in littoral areas such as bays, harbors, rivers, and channels. Our focus has its own share of problems and technical challenges 

that are substantially different from those at the global level. For example, small vessels can exploit a significant 

vulnerability in security infrastructure and operations because they are hard to detect and track using conventional 

surveillance methods. That is, they are not easily detected by conventional radar, they do not use AIS, and they are much 

more maneuverable and agile than large vessels. This vulnerability is compounded by the geographic limitations presented 

by the waterways in the littoral regions, where large vessels operate in a restricted maneuver mode [5].  A common but 

limited solution to this problem is to institute a perimeter-based surveillance approach using a combination of regular and 

thermal video cameras and radar sensors [6]. Perimeter-based surveillance entails detecting mobile objects such as people 

and vehicles and the breach of a virtual perimeter surrounding the target asset as the suspect objects move toward the target.  

This approach is limited in the following ways. First and foremost, it can only detect potential malicious intent when the 

virtual perimeter is breached. That is, it cannot evaluate intent outside of the perimeter.  Second, a large majority of existing 

surveillance systems require manual monitoring of the video images from multiple sensors. This is problematic in terms of 

the resources needed and the potential for missed detection due to human factors such as fatigue and information overload.  

Recently, some systems have begun to address the second issue by using automatic video analytic approaches [7],[8]. These 

systems use a combination of image processing and supervised classification approaches to detect and track objects within 

the area of interest under a variety of conditions with impressive results at roughly 500ft. They generate alarms based on a 

variety of rules that specify limits on the perimeter and/or on the set of activities. Their approach significantly reduces the 

manual effort needed for effective video surveillance. However, the task of malicious intent detection outside the threat 

boundary remains unaddressed.  
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In this paper, we address the problem of malicious intent

developing an interactive and adaptive video surveillance system

analysis, and threat prediction. Research in machine vision is concerned with the

a robust system called AVITRACK for scene understanding from video.

multiple cameras. It also performs motion detection, tracking, and broad categorization of objects 

spatial relationships in a scene to classify activities. Our approach is similar to theirs at the functional level. However, 

differs markedly in methodology, especially 

grained categorization of objects and activities over a 

instead of merely classifying vastly distinct object types such as 

(CBR) approach for supervised learning rather t

objects and behaviors whose categories are hierarchically represented 

scene. Finally, the design of our approach is 

analysis so as to improve MAAW’s reasoning and learning 

3 AN ADAPTIVE DECISION SU

ANALYSIS

Naval assets can be particularly vulnerable when they are moored or berthed in a harbor and when

restricted maneuver mode. This is often compounded by limitations on surveillance imposed by local authorities and laws. 

For example, a vessel may be restricted from using radar when moored at a port. The officers and sailors charged with 

protecting their vessel must process an enormous amount of information while balancing the 

defending themselves and preventing engagement

threat intention is the most difficult phase of 

developing a decision support tool to provide effective and efficient maritime 

protection (ATFP) missions in the US Navy. 

of watchstanders and officers on naval vessels 

channels and waterways.  ATFP operations aboard a ship require continuous monitoring of suspicious activity in 

warning, and threat zones (see Figure 1).

information processing and decision support capabilities and will acutely enhance situational awareness

enable detection of hostile intent much earlier 

Figure 1: Threat zones about a Navy ship of interest to

MAAW focuses on collecting and analyzing maritime surveillance video and fusing it with information from other sources to 

provide qualified threat assessments and issue alerts to the shipboard security personnel

processors, ranging from video acquisition to threat analysis, designed to interact with its user to issue alerts, provide threat 

In this paper, we address the problem of malicious intent detection before it becomes a threat.  Towards this goal, w

e and adaptive video surveillance system that includes fine-grained object categorization, activity 

in machine vision is concerned with these reasoning tasks. For example, 

for scene understanding from video. Their system includes 24/7

motion detection, tracking, and broad categorization of objects by 

activities. Our approach is similar to theirs at the functional level. However, 

, especially for activity analysis and threat prediction.  More specifically

activities over a classification hierarchy. We subcategorize overlapping vessel types 

instead of merely classifying vastly distinct object types such as human and truck. Second, we use a 

rather than a probabilistic approach (e.g., see [9]). We also use 

objects and behaviors whose categories are hierarchically represented and spatial relations to leverage 

our approach is intended to use iterative feedback between image processing and activity 

reasoning and learning capabilities. Section 3 details our approach

ADAPTIVE DECISION SUPPORT SYSTEM FOR MARITIME ACTIVITY AND 

ANALYSIS AND THREAT PREDICTION 

Naval assets can be particularly vulnerable when they are moored or berthed in a harbor and when

restricted maneuver mode. This is often compounded by limitations on surveillance imposed by local authorities and laws. 

example, a vessel may be restricted from using radar when moored at a port. The officers and sailors charged with 

protecting their vessel must process an enormous amount of information while balancing the 

eventing engagements with innocent bystanders or friendly forces. By far, the determination of 

threat intention is the most difficult phase of force protection in a constrained environment. To address 

provide effective and efficient maritime situation awareness for anti

protection (ATFP) missions in the US Navy. MAAW, when completed, shall support and adapt to the decision

of watchstanders and officers on naval vessels entering littoral regions such as harbors, bays, and ports

FP operations aboard a ship require continuous monitoring of suspicious activity in 

zones (see Figure 1). MAAW shall effectively expand the situation assessment zone based on its 

information processing and decision support capabilities and will acutely enhance situational awareness

enable detection of hostile intent much earlier than is possible with current methods. 
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assessments, and receive performance feedback with corrections (see Figure 2).   Currently, we have implemented 

preliminary versions for the following components: Video Acquisition, Video Processor, Behavior Interpreter, and the Track 

Viewer and Annotator. We detail these components in the following subsections, and report our findings from evaluating the 

performance of the Behavior Interpreter in Section 4. 

 
Figure 2: MAAW’s Functional Architecture   

3.1 Video Acquisition  

MAAW’s Video Acquisition component operates with fixed video cameras at a variety of resolutions.  For example, using 

the system, we recorded maritime traffic overlooking the Potomac River in Washington, DC, and the maritime traffic in 

Boston’s Inner Harbor from a publicly accessible web camera.
3
 The Potomac River images were recorded in a 1024x1024 

pixel 12 bit format at 1 second intervals. The Boston Harbor video was recorded at a lower resolution (320x240 pixels) and 

were collected at over 1 second intervals. Video Acquisition performs several low-level image processing operations such as 

image compression and cropping.  For example, it cropped the images to exclude most of the sky. The region of each image 

sequence representing the water surface is labeled by hand. The images from the web camera contained substantial 

compression artifacts. 

3.2 Image Processing  

The main task of the Image Processor is to detect and track moving vessels, which are performed by Detector and the 

Tracker subcomponents respectively.   

Object Detection 

The Detector identifies a moving object by a process of change detection. It does this by identifying those regions in 

individual frames that differ significantly from the background. It constructs a Gaussian Background Model of intensity for 

each pixel in the scene based on its recent history (e.g., [10]). It calculates the mean intensity � � and its standard deviation σ
2
 

of each pixel over a weighted time window. The value of the pixel in the image from time ts contributes to the background 

model used at the current time t with the weight: 
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The first term allows the model to adjust to changes in conditions and the second prevents the object from being included as 

part of the background model. For each pixel, it computes a significance score �� = (� − � �)� 	�⁄  and compares it with a 

threshold. The pixels above the threshold are filtered by a shrink and expand process and the connected components are 

extracted as a detected image object. Components that do not touch the water surface, or those that are too small to be boats, 

are discarded.   

For each detection, a base point must be determined to enable positional tracking. An important criterion for choosing the 

base point is that when the detected image is a vessel, its base point should be near the bottom of the detected object where it 

contacts the water. The base point is determined as the centroid of the detected image in the horizontal direction and the 

lowest vertical position of the image at which the width of the region is half its maximum.  

Tracking 

A track is a collection of individual detections representing a moving object. The Tracker takes as input the image object 

detections from the Detector and clusters them into segments. Segments are then pieced together into a track. Each segment 

is made up of a set of image detections that have roughly the same velocity. The base point locations of the detected images 

are converted into world coordinates by projecting them onto the horizontal surface of the water as follows: 

)( hyex=X iiw −
     

( )hyfe=Y iw −   

where (Xw, Yw) is the world position, (xi, yi) is the base point in the image (rotated to correct for camera roll if any),  f  is the 

focal length of the camera (in pixels), e is the elevation of the camera above the water (in meters), and h is the vertical 

position of the horizon in the image. Linear functions of time are fit to the base point locations using least squares estimation. 

The errors in the detected positions are in image space, and are related to changes in position in the world by a non-linear 

function. To take this into account, the error of each point is weighted by a matrix obtained by linearizing the detected 

position. The detected images are assigned to segments by minimizing the total cost of all the segments by simulated 

annealing, a heuristic approach to optimization. We include the total position error of the segments, the number of segments, 

the number of detections not assigned to any segment, the number of “gaps” in each segment (images in which the segment 

should have had a detection but didn't), and the variance in computed height of each segment in the cost function for 

simulated annealing.   

Segments are combined into complete tracks by stringing together segments that match at their start and end points. The 

assignment of detections to segments within each track are further tuned using the constraint that segments in a track must be 

disjoint in time; that is, the last detection of one segment must precede the first detection in the next. 

A major source of tracking error is that the base point of each detection does not always represent the same point on a vessel. 

The location of the base point is subject to noise from several sources. For example, the vessel may only be partially 

detected, occluded, or combined with part of its wake. In future work, image matching will be used to improve the alignment 

of the detections. 

3.3 Behavior Interpretation  

The Behavior Interpreter’s function is to take as input the track information extracted by the Video Processor and classify the 

objects in the track and its activity. A track is represented as a series of segments or events, each referring to a maritime 

object and its attributes. The Object Classifier and the Activity Labeler are the two components within the Behavior 

Interpreter that perform object and activity classification, respectively.      

At an abstract level, our classifiers are functions that take a vector of attributes as input and predict a label for the object 

represented by the input vector. For example, the Object Classifier in MAAW takes a vector containing features of an object 

such as its position, speed, and image signature and predicts the label of that object.  Such a classification function can be 

manually developed (e.g., one that uses hand-crafted decision rules). However, a more robust approach is to induce a 



 

 
 

 

classifier from the observed data, also called the training data, which includes the actual classification labels for the object. 

This approach, called supervised learning, has obvious advantages over a manually developed classifier. For example, if the 

conditions of the domain change, then a new classifier can be induced by adding new labeled data and re-running the 

learning algorithm. More specifically, changing the AT/FP location (e.g., a different port or harbor) could completely change 

the set of objects and activities of interest. New training data representing this change could be gathered and the Object 

Classifier could be retrained to address this change in the decision environment. Furthermore, when a classifier is used for 

supporting operations, the users can continue to provide feedback and correct mislabeled objects. This feedback can then be 

used to further increase a classifier’s accuracy. Numerous supervised learning methods for inducing classifiers exist. 

Commonly used approaches include support vector machines (SVM), the Naïve Bayes classifier, and case-based (e.g., k-

nearest neighbor) classifiers. In MAAW, we currently use case-based classifiers for all classification tasks. We briefly 

overview their application in MAAW classification tasks later in this section.  In our future work, we will explore additional 

methods.   

Although supervised learning approaches are more convenient to use than a manual development process, they require 

labeled observation data, which itself must be acquired manually. This can be expensive depending on the nature of the 

classification task, the domain, and the desired classification accuracy. Case-based methods have a potential advantage in 

this regard; they are simple to implement and explain, and can perform comparably to more complex classifiers (e.g., SVMs) 

with relatively few examples. Given that our project is in the initial phases and that we have a relatively small set of labeled 

data, we chose case-based methods for MAAW’s classification tasks.  

To classify a new problem case (e.g., a maritime event extracted by the Video Processor composed of attributes such as 

speed, location, and object signature), a case-based method reuses the classifications of previously classified cases that are 

the most similar to the new case. This requires a database of solved cases called a case base. For example, MAAW’s Object 

Classifier relies on a case base of maritime events that include the object labels generated from annotated tracks. We describe 

this process of annotating tracks later in this section. To assess the similarity of two cases (i.e., a problem case and a 

previously classified case), the classifier uses a similarity metric. For example, the Euclidean distance metric can be used to 

assess the similarity of the positions of two maritime objects. The cases that are the most similar to the unclassified object are 

called its nearest neighbors. The classifier retrieves the k nearest neighbors from the case base and uses a voting method to 

predict the class label of the problem case. Training the classifier for a task typically implies estimating the parameters of its 

similarity metric. We describe our case-based approaches to object and activity classification in Section 3.4. 

3.4 Maritime Object Classification 

We categorize maritime objects using a hierarchy of object categories that are encoded in a Maritime Ontology encoded 

using OWL.
4
 For example, our hierarchy includes “Touring and Sightseeing Vessels”, “Patrol Boats”, and “Trash Skimmers” 

as category labels. We developed this hierarchy in consultation with a subject matter expert and the navigation rules 

handbook [5].  In the supervision phase of our application, we use categories from this ontology to label/annotate the tracks 

that have been detected by the Video Processor (see Figure 5).   
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Figure 5: MAAW

Each event in an annotated track is then transformed into a case. 

following attributes: 

1. Object position: This represents the position of a maritime object in a two

<p
x
, p

y
> comprising two continuous real values.   

2. Object velocity: This represents the velocity vector (i.e., speed and direction) of a maritime object. Like object position, 

the velocity vector is represented in two dimensions using a tuple <

3. Object image moments: The Video Processor extracts images of objects from a scene including its shape, which it 

converts into a characteristic shape signature. Shape signatures or moments are a com

and comparison of 2D shapes. They capture information such as orientation, size, and shape boundary 

fourth-order moments, which is a tuple comprising 15 real continuous values <

The maritime object classification task can be challenging because tracks extracted by the Video Processor can be noisy 

depending on a variety of application conditions such as the weather, time of day, the size and the number of objects, and 

occlusion. For example, a single object in the scene could result in multiple spurious tracks with inaccurate attribute value 

estimates. We explore one way to address this problem

improve classification accuracy, even when f

employing the following group of relational

4. Closest track object: These three attributes encode the spatial relationship of a reference object (i.e.,

case represents) in a maritime scene to a related maritime object that is the closest to it. The distance between a reference

object and a related object is computed based on their positions in the two

attributes comprise a tuple of three values <

a. Related object category (roc): This is a categorical label of the related object selected from our Maritime Ontology.

b. Related object distance (rod): This is the distance of the related object from the referen

continuous real value greater than or equal to 0. (We define our distance function below.)

c. Related object bearing (rob): This is the angle between the velocity vector of the reference object and the position 

vector of a related object.  

We compute similarity across these four attributes to 

compute the overall similarity by a weighted aggregation of attribute similarities, where each attribute similarity is computed 

in a domain-specific manner (for details, please 

problematic because some of the values (e.g.,

process with our case-based classifier [13].  Briefly, 

 

MAAW’s user interface for annotating extracted tracks 
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monly used technique for analysis 

and comparison of 2D shapes. They capture information such as orientation, size, and shape boundary [11]. We generate 

t classification task can be challenging because tracks extracted by the Video Processor can be noisy 

depending on a variety of application conditions such as the weather, time of day, the size and the number of objects, and 

e object in the scene could result in multiple spurious tracks with inaccurate attribute value 

whether taking application and scene context into account can 

We include the context of a maritime scene by 

: These three attributes encode the spatial relationship of a reference object (i.e., the object that the 

case represents) in a maritime scene to a related maritime object that is the closest to it. The distance between a reference 

dimensional real world coordinates. The 

): This is a categorical label of the related object selected from our Maritime Ontology. 

ce object represented by a 

): This is the angle between the velocity vector of the reference object and the position 

the overall similarity of a new case to a stored case.  We 

ll similarity by a weighted aggregation of attribute similarities, where each attribute similarity is computed 

sing relational attributes in a case representation can be 

For this purpose, we use a collective inference 

uses a conventional case-based 



 

 
 

 

classifier with the non-relational attributes to predict the test objects’ labels. It then iteratively performs collective inference 

by (1) estimating the values of the relational attributes and (2) using them, along with the non-relational attributes, to re-

predict the test objects’ labels. In our implementation, the predictions converge quickly, and we simply use a pre-determined 

number of iterations (10) for this procedure. This algorithm is called the Iterative Classification Algorithm [14]. 

Activity Classification 

We classify maritime activities at two levels using two separate classifiers:  

1. Primary: This level takes the perspective of the asset under protection and identifies the basic maneuvers that a vessel 

can perform independently.  For example, “Crossing-left”, “Crossing-right”, and “Approaching” are some of the activity 

labels at this level. These labels are organized in a hierarchy of primitive activity types and are encoded in the Maritime 

Ontology.   

2. Secondary. This takes an asset independent view and considers activities at a functional level of the activity. For 

example, “Cruising”, “Sightseeing and Touring”, and “Bunkering” are some of the labels denoting activities at this level. 

Like the primitive activity labels, these activities are also hierarchically organized and encoded in the Maritime 

Ontology.     

The Primary Activity Classifier uses the following attributes for case representation.  Like the object classifier, it uses the 

position and the velocity of an object as attributes.  In addition, we use the “predicted object category” output by the Object 

Classifier as an additional attribute. Therefore, the Object Classifier and the Primary Activity Classifier must operate in 

tandem to classify primary activities. In other words, with the predicted object category as an attribute, the activity classifier 

must rely on the Object Classifier to provide its value and subsequently perform the activity classification. 

In addition to the attributes used by the Primary Activity Classifier, the Secondary Activity Classifier uses the “predicted 

primary activity” as an attribute.  Like the Primary Activity Classifier, it must operate in tandem with Object and Primary 

Activity Classifiers to predict secondary activities. We compute the similarity of predicted objects and predicted primary 

activities using taxonomic distance [15], the details of which we omit here due to lack of space. 

The Behavior Interpreter hands off the automatically labeled tracks to the Threat Analyzer, which shall fuse the labeled 

tracks with harbor database information to assess threats and issue alerts. End users will be able to accept or reject MAAW’s 

decisions and provide corrective feedback, which MAAW will use to update the track database. 

3.5 Threat Analysis  

The goal of the Threat Analyzer is to take the classification predictions from the Behavior Interpreter as its input and 

combine the data with additional information sources to further assess threat.  For example, the Behavior Interpreter could 

classify a particular vessel and/or its activity into an unknown category.  This would cause the Threat Analyzer to raise an 

alarm for the watchstander. However, the content of data bases such as a Harbor Masters Message Database, (e.g., a message 

about an onboard systems failure) could be used to reclassify the object or activity as non-threatening.  MAAW will include 

a conversational CBR [16] component for gathering and fusing data from electronic databases and/or human operators to 

offer a final threat classification. Conversational CBR systems progressively gather information as needed from end-users 

and systems to improve their precision in case retrieval. 

We have implemented a basic version of all the MAAW components except the Threat Analyzer.  Next, we report our 

findings from evaluating these components.   

 

 



 

 
 

 

4 EMPIRICAL STUDIES 

4.1 Objectives 

Our goals for evaluating MAAW’s Behavior Interpreter address the following questions: 

1. Does the use of relational attributes and collective inference improve object classification performance? 

2. Does tandem primary activity classification outperform a non-tandem version? 

3. Does tandem secondary activity classification outperform a non-tandem version? 

4.2 Method 

Data: We selected two days of video of maritime activities from the Potomac River in Washington, DC. We applied the 

Video Processor to this data to detect tracks of moving maritime objects and their attributes (e.g., position and velocities at 

different points in time). Using MAAW, we then labeled all the events in a track with appropriate object categories, primary 

activity labels, and secondary activity labels (see Figure 5). 

Our database included 1578 cases in 23 object categories from our Maritime Ontology, with proportions ranging from 

46.64% to 0.13%. The top three most populous labels were wave (46.64%), small-touring-vessel (9.76%), and wake (7.41%). 

Half the object categories (e.g., steam-paddle-touring-vessel) were relatively rare and occurred less than 2% of the time in 

our data set.  

The primary activity was labeled using 6 categories from the primary activity ontology.  A large majority of activities 

pertained to non-vessel phenomena such as waves and wakes (51.6%). The remainder were distributed between “crossing 

left” (24.72%), “crossing right” (21.93%), “approaching” (0.13%)” and “unknown activity” (1.57%). Likewise, the 

secondary activities were labeled using 14 category labels from the secondary activity ontology. The top five most populous 

labels in the set were “wave activity” (37.36%), “touring and sightseeing” (19.71%), “cruising” (19.52%), “non-vessel 

activity” (8.62%), and “wake activity” (5.64%). 

Algorithms: To answer the questions we raised earlier, we implemented the 8 algorithms using the Knexus Classification 

Workbench (KCLAW), a Java library for classification tasks (See Table 1). 

Table 1: Summary of classification algorithms evaluated in our experiments 

Task Algorithm Description 

Object 

Classification 

 

OC-R Case-based collective classifier that uses relational attributes representing the 

contextual cues from a maritime scene  

OC-NR Case-based classifier that performs a context free classification by using only 

non-relational attributes  

Primary 

Activity 

Classification 

 

PAT Tandem case-based classifier that uses labels predicted by the object classifier  

PAT-P Tandem case-based classifier that assumes perfect (P) (i.e., 100% accurate) 

object classification predictions as input 

PA Non-tandem case-based classifier that ignores the predicted object category 

attribute 

Secondary 

Activity 

Classification 

 

SAT Tandem case-based classifier that includes inputs from the Object Classifier in 

its first stage and from the Primary Activity Classifier in its second stage 

SAT-P Tandem case-based classifier that assumes perfect (P) (i.e., 100% accurate) 

object classification predictions and perfect primary activity classification 

SA Simple non-tandem classifier that ignores the predicted object and the predicted 

primary activity attributes 



 

 
 

 

Test Procedure: We used a leave-one-out cross validation (LOOCV) test procedure with some modifications. Conventional 

LOOCV procedures use one case from the database for testing and the remainder for training, cycling through the entire case 

base and averaging the results of individual tests. We cannot use this here because collective inference operates on a graph of 

related cases, and we chose to eliminate any relations between the training and test cases. Therefore, we grouped cases that 

refer to co-occurring tracks and events within the same track; each such grouping yields a single fold (i.e., each fold’s cases 

have no relations with cases in other folds). Next, we treated each fold as a test set and the union of cases from the remaining 

folds as the corresponding training set (i.e., the case base). This yields 1578 cases over 177 folds; this includes 77 relational 

folds containing 1315 cases that have relational attribute values. The average number of cases per fold across the entire data 

set is 8.92. The average number of cases in relational folds was marginally greater (10.79). All the algorithms were applied 

to each test set (i.e., fold) and their classification accuracy was recorded.  We analyzed the results using one-tailed paired t-

tests. 

4.3 Results 

The results of our evaluation are summarized in Table 2.  First, we compared the performance of a collective case-based 

classifier (OC-R) with a non-relational classifier (OC-NR) on the object classification task. We found that collective 

classification outperforms the non-relational classifier (56.22 % vs. 53.36%, p=0.0001).  This answers our first question: the 

use of relational attributes and collective inference significantly increases object classification accuracy.    

Next, we compared the three algorithms for primary activity classification to assess the effectiveness of tandem 

classification.  The tandem version (PAT) of the classifier outperforms the non-tandem version (PA) (82.69% vs. 81.29, 

p=0.050). This provides support for our second hypothesis: Tandem primary activity classification significantly increases 

activity classification accuracy versus a non-tandem method.   

To examine whether there is room for performance improvement, we reviewed the performance of PAT-P, an idealized 

version of the tandem classifier that assumes perfect object classification. Its performance is significantly higher (89.08%) 

compared to the non-idealized version (82.69%). This shows that the effectiveness of tandem classification can be 

dramatically improved by improving the performance of the Object Classifier.   

Finally, we compare the three algorithms for secondary activity classification.  The tandem version (SAT) attains a lower 

accuracy than the non-tandem version (63.19% vs. 62.83%, p=0.353), although this difference is statistically insignificant. 

Like the Primary Activity Classifier, we examined the potential for performance improvement by assessing the performance 

of an idealized version of the tandem classifier that assumes perfect object and primary activity classification. This is 

substantially higher (80.98% compared to 63.19%) than when using the (possibly incorrect) predicted values from the 

upstream classifiers. Thus, the performance of secondary classification can be substantially improved by increasing the 

accuracy of object and primary activity classification. 

Table 2. Average classification accuracies of the eight algorithms 

Object Classifier OC-R OC-NR 
56.22 53.36 

Primary Activity Classifier PAT PAT-P PA 
82.69 89.08 81.29 

Secondary Activity Classifier SAT SAT-P SA 
63.19 80.98 62.83 

 

5 CONCLUSION 

The existing surveillance infrastructure for maritime asset and force protection is vulnerable due to the lack of adequate 

decision support capabilities.  In this paper, we reported on the development and capabilities of a system to reduce this 

capability gap. Our system called MAAW uses a pipeline of processors that include a Video Processor, Behavior Interpreter, 

and a Threat Analyzer.  Together, these components shall provide a mixed-initiative threat assessment ability with the goal 



 

 
 

 

of improving the ability to detect malicious intent far beyond the immediate threat zone.  Although, the current version of 

MAAW is preliminary and partially implemented, we reported on two technical contributions. First, we applied an approach 

to classification over relational data called collective case-based classification to the task of maritime object classification. 

We successfully exploited the elements of a maritime scene to significantly increase maritime object classification accuracy. 

Second, we used a novel problem representation for maritime activity classification that requires a sequence of classifiers 

(i.e., tandem classification). We showed that using a suitable problem representation with the tandem classification approach 

can significantly increase accuracy, thereby illustrating the utility of our tandem classification approach. 

Like any preliminary research development effort, ours has many limitations and shall require much future work.  First, we 

reported results using video from one location. We will consider additional locations in our future evaluations. Second, we 

will complete the implementation of the Threat Analyzer components and include feedback from the Behavior Interpreter to 

the Image Processor to investigate the potential improvement for detection and tracking.  Third, we will conduct an empirical 

study of detection and tracking performance, which could have a significant bearing on the Behavior Interpreter.  Fourth, we 

will consider several algorithmic improvements to the basic case-based classifier such as similarity metric weight learning 

and representation discovery. Finally, we will investigate the effectiveness of alternative classification methods such as 

support vector machines in our architecture. 
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