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Abstract
Biometrics technologies have grown considerably in recent years with better computing 

and an expanding realm in which these tools are deployed. Among these, iris recognition 
demonstrates superior performance as a biometric, perhaps far exceeding the standard fingerprint 
recognition of past decades. Unfortunately, iris recognition is very computationally intensive, 
requiring near state-of-the-art traditional processing methods. Because of the complexity of iris 
recognition systems, many portable iris scanners are bulky, cumbersome and very expensive, 
often requiring laptop computers to carry out the computations. This is due to a reliance on 
sequential processing, the manner of computing we see in a typical personal computer. However, 
there is an alternative with parallel processing using multicore processors, field-programmable 
gate arrays (FPGAs) or application specific integrated circuits (ASICs). These devices can speed 
algorithms through parallel processing. Taking the algorithm developed by Dr. Robert Ives et al. 
of the United States Naval Academy for iris recognition, parallelizable parts of the algorithm can 
be translated for parallel processing. A parallel version of the algorithm may be substantially 
faster and physically much smaller implemented. This implementation is placed into an FPGA 
system in order to evaluate the performance of specific parts of the algorithm converted from 
sequential C code to parallel hardware logic with respect to speed and hardware footprint. 
Additionally, this project seeks to evaluate the feasibility of an entirely embedded iris 
recognition system comprised of both sequential C software and parallel hardware on a single 
chip and a discrete memory module. The resulting hardware is shown to be between 10 and 1000 
times faster than current methods while being entirely embedded and independent of a host 
system for processing. These chips could be deployed to offer a handheld, high-speed and palm-
sized iris recognition system with all the necessary functionality expected in a commercial iris 
recognition system.

Keywords: Biometrics, Iris Recognition, Systolic Architecture, Finite Impulse Response 
Filtering, Binary Morphology
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Chapter 1

Introduction

Biometric identification has exploded in recent years as the next generation of security 
and  authentication  systems.   Biometrics  is  the  study  and  measurement  of  the  physical 
characteristics  that  define  an  individual’s  “uniqueness.”1 For  example,  a  common  form  of 
biometrics that humans practice daily is facial recognition.  In our everyday interactions, we are 
able recognize friends and family by their familiar faces, which we measure and interpret with 
our eyes.  Humans can also readily recognize familiar people by their height and body shape, 
voice or even fashion sense.  Biometrics sums up all these traits and many more for qualitative 
or, in the case of computers, quantitative analysis.

While humans have mastered the art of biometric analysis through our natural means, 
computers offer us exceptionally powerful means of recognition that we have only recently been 
able to explore.  For example, humans lack the capacity to recognize the fine details of a friend’s 
iris beyond eye color, but a computer can document the complex, unique pattern of the iris and 
recall it later for recognition.  This process of recording biometric data into a computer is called 
enrollment.  Computers have also proven capable of other biometric identification tasks such as 
fingerprinting, DNA analysis, facial recognition, and even palm venous structure recognition.2 

Also, with the exception of DNA analysis, computers obtain most of this data in unobtrusive 
ways, resulting in no harm to the person being measured.  In some cases, a computer can enroll 
and recognize a person on the fly, which is the focus of portable iris recognition systems.3

Iris recognition stands out as one of the most reliable and growing biometric methods in 
existence.  The iris is an internal part of the eye that is protected by the cornea, sustaining its 
appearance after decades even after facial features and fingerprints have changed.  It consists of 
the  sphincter  pupillae  and  the  dilator  pupillae  muscles  to  vary  the  diameter  of  the  pupil. 
Together,  these muscles span a flat  surface that exhibits  a highly unique pattern with nearly 
infinite variability.4  An example iris photograph is depicted below.
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Figure 1.1: Typical human iris.  Also visible are eyelids, eyelashes, and glare.

Furthermore,  biometric  technology advancements  have  made  iris  recognition  systems 
nearly impossible to fool with high resolution photographs, printed contact lenses or even more 
menacing means.  The iris can be photographed at high resolution at a distance of up to a few 
meters, even through glasses or contact lenses and in varying light conditions which can alter the 
visible area of the iris.  

Basic iris recognition systems photograph the iris using near infrared (NIR) light and 
process it for matching.  Infrared light can be captured by a typical camera with a special filter 
lens  and  allows  the  camera  to  capture  the  structural  features  of  the  iris  unimpeded  by 
pigmentation or color lighting conditions.  Once a digital image of the iris is captured, the system 
begins  processing the image via  algorithms to  transform it  from a two dimensional  array of 
pixels  (picture  elements)  to  a  one dimensional  encoded string of  bits  for  comparison.   This 
transformation from pixels to information is a common digital signal processing technique. Iris 
recognition  systems  assume  that  the  features  of  the  iris  are  so  unique  that  they  are  like  a 
biological password.  This password is the information contained in the iris’ structural features 
and can be determined by noting the frequency and phase information of the iris’ features such as 
in John Daugman’s algorithm or other possible methods that will  be explored further in this 
paper.  Different iris recognition algorithms exist but Dr.  Robert Ives et al. of the United States 
Naval  Academy has  developed  an  algorithm,  known as  the  Ridge  Energy Direction  (RED) 
algorithm, which has proven a reliable method for iris recognition.5  In this algorithm, the first 
step is to identify the iris among other facial elements such as the eyelids, sclera (white part of 
the eye), pupil (dark circle in the center of the eye) and eyelashes.  The algorithm accomplishes 
this by scanning the image for the center of the pupil using several segmentation techniques and 
then uses a statistical approach to identify the outer radius of the iris (limbic boundary). This 
establishes  the central  point of the iris  within the image’s x and y coordinates,  allowing the 
computer to extract only the meaningful portions of the iris. 
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Figure 1.2: Measurable iris area detected by the algorithm.  Also visible is the associated 
one dimensional encoding of the iris image in the top left.6

The next step is to encode the iris image from two dimensions down to one, also known 
as a template, in order to compare the iris to a previously enrolled iris template. A template is a 
bit vector that uniquely represents the information contained in the iris. In biometric algorithms, 
it is necessary to record the information that the pixels of an image convey rather than the pixels 
themselves. This is because pixels will differ from one image to another but the information 
should be consistent if the iris within the image is in fact the same. In the RED algorithm, the iris 
is unwrapped using polar coordinates and the energy of each pixel is measured (the energy of 
each pixel is merely the square of the value of the infrared intensity within the pixel).  Then, the 
energy of m x n pixels is passed into four filters to emphasize the existence of ridges and their 
orientation.  The  filter  with  the  highest  output  indicates  this  orientation  and  the  algorithm 
represents the orientation using a single bit which is passed into the template. This process is 
demonstrated below.
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Figure 1.3a: Example transformation from pixel map to energy map (4x4 block of pixels)

Figure 1.3b: Demonstration of how the filtering is applied to the energy map and the 
corresponding bits that are passed into the template representing a piece of the iris. Note: 
this is not matrix multiplication but instead element by element multiplication and then 

summation for comparison (convolution). 7
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The characterization ignores variations in image size by scaling the area of interest with 
respect to the actual size of the captured iris.  This is intuitive due to the fact that everyone’s iris 
is  roughly  the  same  size  and  actual  dimensions  are  assumed  and  normalized.   The 
characterization encodes only 2,048 bits or 256 bytes in the RED algorithm, like the famous 
algorithm written by Dr. John Daugman, which records enough data to distinguish between all 
the irises in the world more than billions of times over.8  Therefore, the algorithm requires 1,024 
iterations of this process to encode a full iris image into a template which can be a slow and 
demanding computation using a single sequential process.

Once encoded, the iris recognition system must be able to reliably match the result with a 
previously enrolled person.  The newly encoded iris and its previously enrolled mate (or not) are 
matched using Hamming Distance (HD) and their associated masks (used to omit bits of data 
corrupted by eyelashes or noise).  Hamming distance is calculated within the algorithm using the 
following Boolean logic formula:

( )
HD=

codeA codeB maskA maskB

maskA maskB

⊕ ∩ ∩
∩

(1.1)

In this formula, Hamming distance is measured by first seeing how many bits between A 
and B agree and then modulating out those bits that may be corrupted.  The mask bits for a 
template (codeA or codeB here) are determined simultaneously with the template.  A mask bit 
signifies corrupted data because at the time of filtering, the template generation process could not 
determine a definite horizontal or vertical ridge.  Sidestepping an in depth statistical analysis of 
Hamming distance, the matching algorithm resembles a binomial distribution of 249 degrees of 
freedom (N=249) with the chance of a 1 or 0 in the encoded iris being p = .500.  From this 
understanding,  the system can be fine tuned to accept  varying HD values that  correspond to 
different  degrees  of  false  acceptance  rate  (FAR)  and  false  rejection  rate  (FRR)  using  the 
equivalent negative binomial distribution.9  Lower Hamming Distance correlates to exponentially 
lower odds of a false match.  

Each step of the algorithm requires varying times of execution. Depending on the number 
of templates that need to be matched, template matching can require the most time. Matching the 
information of a few people such as those in a household or a small  business would take a 
negligible amount of time while a database of an entire nation’s people would require significant 
time to process. The other major part of the algorithm to consume processing resources is the 
segmentation process. To accurately detect the location of an iris within an image, the algorithm 
uses extensive image processing techniques. Image processing without the assistance of a co-
processor  such  as  a  video  card  in  a  general  purpose  system  can  be  noticeably  slow.  This 
processing time can even be more pronounced when migrating the iris recognition system from a 
general purpose system with a high efficiency and high speed processor to a slower “mobile” 
solution. 
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Chapter 2

Background

2.1 Field-Programmable Gate Arrays and Programmable Logic 
Devices

Figure 2.1: Adaptive Logic Modules (ALMs) of the Stratix III FPGA are general purpose 
logic elements and are physically inside the Stratix III. When the FPGA is configured, these 

logic elements are interconnected by the 1000’s to implement any higher level hardware 
function.11

Designing and prototyping  integrated  circuits  were once a  challenging  and extremely 
expensive  process.  In  the  past,  all  integrated  circuits  designed  for  a  specific  application 
(application specific integrated circuits or ASICs) had to be carefully designed to avoid flaws 
and once fabricated, could not be changed. Recently, with the development of flash densities and 
fabrication  processes,  vendors  such  as  Xilinx  and  Altera  have  begun  producing  integrated 
circuits that have general purpose logic such as the logic seen in Figure 2.1 with programmable 
interconnectivity inside the chip shown in Figure 2.2 of the Stratix III architecture. These chips 
are  called  programmable  logic  devices  (PLDs) because the connections  between the internal 
logic  elements  can  be  programmed  much  like  loading  data  into  flash  memory.  The  logic 
elements of these PLDs are designed to serve any function from basic ‘AND’ and ‘OR’ gates to 
adders and even registers and memory. Thus, an engineer has the opportunity to configure the 
interaction and connectivity of the logic elements long after the PLD has been fabricated, a huge 
step forward from traditional hardware design with ASICs.
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Figure 2.2: Interconnection within the Stratix III FPGA

Larger PLDs with more advanced internal logic elements and design are called complex 
programmable logic devices (CPLDs) and even more advanced programmable logic with greater 
applicability are called field programmable gate-arrays (FPGAs). While PLDs were simple and 
had limited applicability in production level designs, FPGAs are getting so advanced that they 
are  able  to  compete  with  high  level  systems,  an  area  once  exclusively  the  realm  of 
microprocessors,  and  are  even  being  incorporated  into  supercomputers  as  co-processors. 
Someday, FPGAs or their future iterations may become so advanced that they fully supplant the 
need for ASIC design leaving only high end microprocessors and FPGAs. 

This rise in FPGA capability has given the electrical engineering design community an 
entirely new venue to build and test complex machines. Thus, not only are FPGAs themselves a 
focus of research but also provide a foundation for research in hardware design. State-of-the-art 
FPGAs allow rapid prototyping of entire systems in minutes through intuitive design software 
such as Altera’s Quartus II software and hardware description languages. Hardware description 
languages such as Verilog Hardware Description Language (Verilog HDL) and Very-high speed 
integrated circuit Hardware Description Language (VHDL) can describe combination properties 
of  hardware  (logic  gates).  Hardware  description  languages  allow  engineers  to  describe  the 
transformation of data from register to register inside the FPGA, inferring logic such as adders 
and multiplexers along the way.

This  research uses an FPGA to implement  and prototype  an entire  system,  designing 
hardware specifically targeted at iris recognition with the RED algorithm. Altera design software 
allows the use of Intellectual Property (IP) Core technology consisting of encrypted hardware 
description  files  that  instantiate  into  the  FPGA  many  common  and  advanced  components 
specially  designed  for  Altera  devices.  For  example,  rather  than  designing  an  entire  32  bit 
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microprocessor and its C compiler from the ground up, we can configure the FPGA with Altera’s 
already  tried  and  true  Nios  II  processor.  Subsequently,  we  can  also  connect  peripheral 
components  either  user-defined  or  pre-defined  in  the  Altera  Quartus  II  software  as  memory 
mapped input and output (I/O) for the Nios. The Nios II processor and the peripheral components 
together are called an  embedded system and this will be investigated in more detail later. An 
example Nios II system is shown in Figure 2.3.

Figure 2.3: Example Nios based embedded system

In the above example, the Nios II is instantiated with three peripheral components that 
serve various functions. The SRAM Controller is a common component that would give the Nios 
II processor access to program and data memory. Typically, a Nios based system requires at least 
one  memory  peripheral  for  program  and/or  data  memory  since  these  are  essential  to  any 
microprocessor that executes instructions. The timer can be set up to send an interrupt to the 
Nios II based on a predefined interval relative to the clock speed of the timer component. The 
timer can be configured to interrupt at 1 microsecond intervals by counting up to 50 with a 50 
MHz clock at the timer clock input. A timer is useful for calculating execution times (particularly 
for this research) by opening up the “ctime” library to the Nios processor. Lastly, user defined 
logic can be incorporated into a Nios based system to perform application specific computations. 
An engineer could design any type of component from his/her own SRAM controller or timer to 
much  more  advanced  components  such  as  a  direct  memory  access  (DMA)  controller  or  a 
VGA/HDMI interface for the Nios. All of this is possible because of the flexibility of Altera’s 
Avalon Bus which brings all  these individual components together into a single system. The 
Avalon Bus bridges the Nios and its peripheral  components by assigning base addresses and 
address ranges to each component. The Nios can then address the components and talk to them 
by reading and writing directly into the component from the Avalon Bus.

2.2 Software vs. Hardware Implementation

Functions can be implemented in either software or hardware. Typically, software is at a 
higher level than any hardware because, to put it simply, software is a roadmap to how existing 
hardware in a microprocessor works. Software is made up of instructions that engage different 
parts  of a microprocessor’s  hardware in a step by step process to accomplish more complex 
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functions than with the individual hardware components alone. For example, a hardware adder 
can only ‘add’ but with a set of instructions an adder could be used repeatedly to multiply or 
divide. However, depending on the algorithm or software in question, software execution can 
take short amounts of time or continue ad infinitum.

Software can implement  any hardware function  but  hardware can only execute  hard-
bounded software functions. For example, software multiplication such as squaring could make 
use of an ‘add’ and a ‘count’ variable while hardware could use a look-up table to find the 
answer as shown in Figure 2.4. Software multiplication is more portable since it can make use of 
the same basic binary logical add as long as the registers that hold the variables are large enough 
to prevent overflow. Hardware on the other hand requires the input to be hard bounded to the 
size of the input of the look up table and would produce a hard bounded output with twice as 
many bits as the input. Therefore, software can operate on variable inputs and outputs such as 
packets while hardware implementation would be impractical. Yet, hardware is capable of tasks 
software can have difficulty executing. In the multiplication example, the software requires a 
loop to repeatedly make use of an add function while the hardware equivalent could have the 
answer  in  a  single  step.  In  systems  where  the  hardware  design  can  be  changed  to  fit  the 
application  (such as  an ASIC or  FPGA),  having  a  hardware  squaring  function  compute  the 
square could be advantageous for speed and power if the software often squares large numbers. 

Figure 2.4: Software vs. hardware implementation of a basic squaring function.

One could argue that a look-up table is not actually hardware. In fact, it is a little of both 
worlds since the hardware for a look-up table already exists for any system that can execute 
software.  Compilers  can  instantiate  a  look-up  table  in  memory  that  the  software  can  then 
reference  at  run-time.  However,  look-up  tables  are  extensively  used  in  hardware 
implementations for various reasons (some even to act as a kind of mini-software for a hardware 
device). In both hardware and software, a look-up table consists of a decoder that converts the 
“question” to an address that points to the “answer”. In the previous example with the look-up 
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table,  this  is  a  very  basic  alternative  to  using  software  to  repeatedly  use  an  adder  for 
multiplicative computations.

2.3 Systolic Architecture

Before designing any hardware specific to a function already implemented in software 
(the  kind  of  implementation  addressed  in  this  research),  we  must  investigate  a  concept  in 
hardware architecture that is very useful when approaching a hardware design problem known as 
systolic  architecture.  Both  software  and  hardware  offer  many degrees  of  freedom  in 
implementation and there is rarely if ever only one way to implement something in either case. 
However, since an implementation in software is fairly easy to change and an implementation in 
hardware is nearly impossible to change (by nature of how hardware design is like painting a 
picture), we must narrow the hardware implementation design flow to a specific approach. A key 
difference  between software and hardware is  the opportunity  for hardware to  perform many 
operations in parallel. 

Figure 2.5: Systolic architecture examples. The top left is a generic interaction between a 
microprocessor (μP) and a processing element (PE). The top right is a pipeline style systolic 

architecture. The bottom is a parallel input and pipelined style systolic architecture.

Designing  hardware  to  execute  something  in  parallel  is  a  vague  concept.  A  formal 
approach to define what the parallel hardware seeks to accomplish can be very helpful. For this, 
a systolic architecture is essentially defined as an architecture that accomplishes a task with the 
maximum throughput given finite optimization constraints.12 While this sounds even more vague 
than parallel hardware, it means that when designing parallel hardware, we want to perform the 
most  computations  we  can  around  the  greatest  bottleneck  in  the  system.   Optimization 
constraints could be the interconnectivity of elements or the structure being pipelined or parallel. 
In most systems, this is usually input and output (I/O) between the microprocessor and memory 
or the microprocessor and its peripherals. The processor can only transfer for example, 8, 16, 32 
or 64 bits at a time depending on its architecture. That means that if the microprocessor were to 
transmit  8  bits  to  a  peripheral  component,  that  component  would want  to  perform the most 
computations  possible  given  that  8-bit  input.  There  are  many  different  forms  of  systolic 
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architecture  and  a  few  possible  architectures  are  shown  in  Figure  2.5.  Thus,  the  systolic 
architecture  that  this  research  will  use  is  one  that  is  designed around performing  maximum 
parallel computations at the input of the peripheral device.

2.4 Embedded System

Building an iris recognition system using exclusively hardware would be exceptionally 
difficult.  Naturally,  since  general  purpose  systems  lack  the  ability  to  have  their  hardware 
reconfigured easily, the hardware designs cannot be placed in a general purpose system. Thus, 
this  research will  first  set  up a test  system that  migrates  the algorithm code from a general 
purpose system such a PC running Windows to a system where application specific hardware can 
be implemented along with the software of the iris recognition algorithm. As mentioned before, 
the Nios II microprocessor can be implemented along with many peripheral components to form 
an embedded system on an FPGA.  These peripherals can be hardware versions of functions in 
the algorithm C code. This paper will refer to C code as the entire category of C programming 
languages  with  C++  code  or  simply  C++  being  more  specific.  In  other  papers  and 
documentation, C code may refer to a totally separate programming language from C++ but that 
is not the case here. First, we look at the overall system design using Altera’s SOPC Builder 
shown in Figure 2.6 which is a design suite intended for putting together embedded systems 
based around Altera’s Nios II processor.

Figure 2.6a: Embedded system concept
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Figure 2.6b: Embedded system in the SOPC Builder

This system is implemented onto a board that allows the FPGA to be configured with 
hardware and programmed with software. FPGAs rarely come standalone since their integration 
with other systems is hardly “plug and play.” Thus, many FPGAs for research are purchased as a 
development board. Development boards allow engineers to design and prototype without having 
to put together a circuit board (PCB) and all the power supply and analog circuits to support the 
digital system. For this research, the TerasIC DE3 Development and Education Board was used 
for board level testing of the iris recognition algorithm and hardware designs. The DE3 board is 
shown in Figure 2.7.
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Figure 2.7: TerasIC DE3 Development and Education Board

The FPGA is configured with hardware and memory loaded with software through the 
dedicated JTAG connection which goes directly into the FPGA. This connection also serves as a 
debugger and allows the user to read console output from programs running on the Nios through 
a terminal on the JTAG host machine. Since the algorithm’s C code is approximately 680kB, the 
program is much too big for on-chip memory (limited at approximately 260kB) and must be 
loaded into the only other memory on the DE3 board, the DDR2 SDRAM SO-DIMM (the green 
module at the bottom left of Figure 2.7). Lastly, the JTAG connection is insufficient for loading 
images into the DE3 board so a separate USB interface was developed and driver software for 
Windows written to parse images from a host machine and download them into the DE3 board 
for processing.

Having set up the environment for which a hardware design can be implemented and 
tested,  we are  now ready to  proceed  with  developing  hardware  alternative  functions  to  the 
algorithm’s software functions. Testing is done by evaluating the software timing by placing start 
and  end timers  before  and after  the  software  function  call  respectively  and  evaluating  over 
thousands of iterations. The software function call is then replaced with a hardware “function 
call” that interfaces the algorithm process with a hardware alternative instead. The timing for this 
function is evaluated in the same way the software is evaluated.

Establishing an embedded system for testing the algorithm can be a difficult feat in itself. 
While the Quartus II software significantly reduces the design process, understanding the dual 
data  rate  (DDR)  interface  and  the  USB  protocol  are  critical  to  successful  implementation. 
Additionally,  the  Nios  II  IDE  compiles  an  earlier  version  of  C++  than  what  the  existing 
Windows-based console application C code is written and thus extensive knowledge of C++ is 
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necessary to convert the C code into code that can be compiled for the Nios II processor. This 
included converting the Windows C++ code from using templates to macro classes for the Nios 
II IDE. These three challenges, C++ conversion of the original source code, DDR2 interfacing 
and USB interfacing  are  the core of this  project,  proving the feasibility of a chip-based iris 
recognition system.

2.4.1 Programming the RED Algorithm into the FPGA with C++

The original algorithm code was written for MATLAB and later converted to C++ for 
higher throughput research. The C++ code uses templates in the class declarations which tend to 
be a more advanced coding practice only supported by leading edge compilers such as Visual 
Studio  by Microsoft.  Classes  are  a  container  object  in  C++ for  building  more  abstract  data 
structures such as a queue, matrix or image within memory.  Templates are a convenient way to 
implement a class by declaring the datatypes at the class instantiation. Thus, templates eliminate 
the  need  for  writing  a  separate  class  for  every  datatype  used.  Since  the  Nios  Integrated 
Development  Environment  (IDE)  does  not  support  templates  in  classes,  the  C++  templates 
needed to be converted to classes with macros and copied for every possible instantiation of the 
class. A macro is similar to a template in that when the code is compiled, the compiler replaces 
all instances of a certain keyword with the definition of that keyword such as an integer or float 
datatype.  This  requires  significantly  larger  program footprint  by  more  than  quadrupling  the 
amount  of  code.  Yet,  once  the  software  is  loaded  into  the  Nios  II  embedded  system,  the 
algorithm sequential  processes are  now independent  of a host  machine running an operating 
system environment such as Microsoft Windows or Linux which can be a significant advantage 
for portability and speed. Because some changes had to be made to the algorithm code during the 
conversion for the Nios IDE compiler, the RED algorithm software is actually a close match to 
the original software and produces approximately the same results with less precision in some 
parts of the algorithm since the macro based classes sometimes used less precise datatypes in 
some functions.  Some datatypes had to be restricted for simplicity and reduced from long to 
short or from double to float. These changes do not corrupt the algorithm since the less precise 
datatypes  do not  alter  the distributions  of various calculations  such as the mean or standard 
deviation used throughout the software.

2.4.2 Integrating Advanced Memory

The DDR2 interface is an advanced memory interface used in commercial PCs available 
everywhere. Both the algorithm code and the space needed to store multiple working copies of 
images required far more space than what was available on the Stratix III FPGA. This required 
the use of the DE3 board’s only other memory option – the DDR2 discrete memory module on 
the side of the board.  Communicating  with DDR2 requires an interface because the Nios II 
addressing and data communication is much different that the addressing and data of the DDR2. 
This  interface  requires  a  controller  to  convert  the  language  of  the  Nios  II  processor  into 
something  understood by the  DDR2 module.  An in-depth  explanation  of  these  interfaces  is 
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unnecessary  and  beyond  the  scope  of  this  paper.  However,  interfacing  the  DDR2  proved 
exceptionally challenging and created many problems for this project. 

DDR2 requires extremely complex and precise timing that caused the embedded system 
to be meta-stable and only meet timing within tens of picoseconds. Data transfer from register to 
register is stable when the register is not clocked at the same time data is switching.  Narrow 
timing margin means the register is clocked very close to the switching of the data. This meta-
stability is the result of a design flaw in the DE3 board due to improper routing of the DDR2 
traces and physical connections with the Stratix III, forcing the internal FPGA system to cope 
with poor pin locations chosen when the board was printed. Timing stability in the picoseconds 
provides  only  extremely  narrow  margins  for  successful  operation  even  for  true  ASICs  and 
microprocessors running in excess of gigahertz.  For an FPGA which has lower performance 
logic than these other devices and clock frequencies in the 10’s and 100’s of megahertz, working 
with stability in the picoseconds requires other parameters of operation such as temperature to 
possibly be as narrow as tenths of degrees. Temperature directly influences the silicon die of the 
FPGA and higher  temperatures  create  more  unpredictable  timing of  a  signal  through longer 
length routing. Since the system has functioned for brief periods of time, temperature seems to 
be  a  possible  factor  contributing  to  the successful  operation  of  the algorithm but  cannot  be 
controlled on the DE3 board at the necessary precision. Yet, many things could cause timing 
instability  and since  it  is  impossible  to  pear  inside  the  chip  the  actual  cause  of  the  system 
instability is unknown. Since the software is being run from the DDR2 memory, instability either 
makes the system very difficult to program or the program to halt halfway through due to bad or 
illegal instructions (software). The data memory is less susceptible to memory instability but 
errors in data can certainly cause issues in the processing of images. However, this was never 
investigated since problems with memory caused failure  for both instructions  (software) and 
data. If the Nios was able to successfully execute the entire algorithm, it can be assumed that the 
data was stable and reliable throughout the entire execution.

2.4.3 Building Interfaces with the DE3 Board

Lastly,  the  other  challenging  development  for  the  embedded  system  was  the  USB 
interface.  The embedded system does not  have a  camera  dedicated  to  capturing images  and 
placing them into memory for processing. Thus, some means of getting images into the DE3 
board was necessary. The DE3 board has limited interfacing, with only USB host and device 
ports readily available. Again, the USB protocol is exceptionally complicated and beyond the 
scope of this paper. To bring images into the embedded system, driver software had to be written 
for the Nios II microprocessor to talk to the USB port as well as driver software for a host system 
(Microsoft Windows Vista based) to detect the DE3 board as a slave device and transmit images. 
Using the  Microsoft  Developer  Network’s  WinDDK, driver  software was written  to  parse a 
bitmap image of any format into a matrix of 8-bit values, open a connection with the DE3 board 
and transmit the image in a series of 32 byte packets. Transmission of a typical 640x480 VGA 
image required a little over 9600 packets (1 byte in each packet acts as a header) and took only 
about 1 second. Due to the simplicity of the driver on the Nios II side, another image cannot be 
pushed to the DE3 board until the algorithm is fully executed. 
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For  demonstration  purposes,  a  human  interface  was  developed  so  the  user  can  get 

feedback of the system operation. The DE3 board is equipped with LEDs that can be red, green 
or blue or any combination of those colors for each. These LEDs are initially all in the unlit state. 
When a new unrecognized eye is loaded onto the DE3 board, the system sets one of the LEDs 
red (up to 8 possible unique eyes). When an eye that is recognized as a previously loaded eye, it 
will  light the corresponding LED to that eye  green momentarily and back to red.  Images  of 
unrecognized eyes will instead light a new LED red.

2.5 Bringing Everything Together

The fully implemented software and interfaces now allows for the testing of hardware 
devices  integrated  into  the  embedded  system.  These  hardware  devices  can  be  parallel 
implementations and are meant to ease the processing burden of the Nios II processor by pushing 
the data  to a hardware based function rather  than using the original  software functions.  The 
embedded  system  allows  for  testing  and  evaluation  of  the  hardware  based  functions  and 
comparisons to be drawn because both implementations can be compared on the same system.
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Chapter 3

Binary Morphology

Computer  systems  which  this  paper  will  refer  to  as  general  purpose  systems  are 
electronic machines that execute instructions known as software. Many computer systems have 
operating systems that run in the background along with many other concurrent processes or 
programs that can slow the general purpose system down. Iris recognition algorithms are usually 
written in C code and compiled into an application that the operating system runs among other 
programs. For the purpose of optimization, the iris recognition software would ideally be isolated 
from the parent system and concurrent processes. This could allow a processor to focus its full 
throughput on the execution of the algorithm software. Furthermore, general purpose systems are 
not especially mobile (with the exception of very lightweight laptop computers) and thus may 
not  serve  every  venue  where  iris  recognition  systems  could  be  deployed.  Thus,  a  hardware 
implementation of an iris recognition system is especially interesting as it could be exceptionally 
faster than its general purpose counterpart while also being small enough to be part of a digital 
camera or camera phone with sufficient resolution to detect fine iris features.

3.1 Iris Recognition Segmentation

Segmentation searches for the iris within an image of an eye. For template generation to 
be  successful,  the  segmentation  process  must  properly  extract  the  iris  from  the  image.  As 
humans,  we  have  an  exceptionally  powerful  image  processor  working  for  us  as  a  result  of 
millions of years of development that allows our brains to effortlessly segment out objects in our 
field of view. For a computer, segmenting objects from an image is similar to trying to inspect a 
photograph by looking through a coffee straw. Computers lack the ability to see the “big picture” 
and must use lengthy and complex image processing functions to break down the image. 

The iris is bounded by the pupil at the inner radius and the limbic boundary at the outer 
radius.  Finding these boundaries  begins with finding the pupil  since it  is  assumed to be the 
easiest part of the image to segment with the assumption that it is simply a large black circle 
somewhere in the image. To identify the pupil, the original image undergoes contrast limited 
histogram  equalization  (CLAHE)  to  adjust  contrast  and  better  differentiate  the  difference 
between minimum and maximum values across the image before thresholding all the values. All 
values above the threshold (typically the mean plus one standard deviation of all pixels in the 
image) are assigned a value of ‘0’ and all values below are assigned a ‘1.’ This leaves only the 
pupil and other very dark objects such as some eyelashes and perhaps some of the eyebrow. 
However, due to the nature of the cornea being at its apex right above the pupil, there are often 
glare  artifacts  directly over the pupil  and cause the pupil  to be obfuscated and irregular.  To 



23
correct for artifacts and find the existence of objects in the image, the segmentation process uses 
a series of binary morphology functions to dilate, erode and assign values to the objects based on 
area and perimeter.

Once the pupil is detected by comparing the different objects in the image, the pupil’s 
center is used as a starting point back in the original image for finding the limbic boundary. 
Local statistics compute the kurtosis of 3 by 3 windows all around the image. The algorithm then 
picks values radially from around the area of the limbic boundary and accumulates the values. 
Segmentation then steps left  and right of the pupil  center  recalculating the sum of the local 
kurtosis. The smallest value is most likely the true location of the limbic boundary and the iris 
can be located and unwrapped for template generation.

3.2 Binary Morphology

Binary morphology functions operate on the image after it has been thresholded in order 
to find the existence of relevant objects such as the pupil. When an image is thresholded, the 
pixel values in the image are reduced to a single bit for logical operation.  Approximately half of 
the algorithm’s segmentation execution time is consumed by binary morphology functions. The 
most difficult of these functions are the dilation and erosion functions which are slow even when 
pre-processing  the  image  to  find  objects  for  dilation  and  erosion  to  operate  on.  Figure  3.1 
illustrates a single step dilation and erosion and how the resulting object is roughly the same 
shape but without the artifact in the center.

 

Figure 3.1: Binary morphology demonstration.
Left: image before dilation and erosion. Middle: one step of dilation. Right: one step of 

erosion. Note that the artifact (hole) was filled in the final image but the general shape is 
retained.
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Logically, dilation and erosion are the same function. Dilation looks at all the ‘1’ values 

in the image and places a ‘1’ in every immediately adjacent pixel above, below, left and right. 
Similarly,  erosion  places  a  ‘0’  value  pixel  adjacent  to  every  ‘0’  pixel  in  the  image.  These 
functions must scan all the relevant pixels and make non-linear adjustments around the image. 
Therefore, binary morphology even when ideally optimized is a growth function. However, with 
many objects and many pixels in the image, binary morphology can become increasingly messy 
and complex, consuming much of the general purpose processor’s attention.

3.3 Methodology

This paper will take the binary morphology part of the RED algorithm and compare a 
software  and  hardware  implementation  of  the  dilation  and  erosion  functions  in  order  to 
demonstrate the effectiveness of a hardware equivalent function. Hardware based segmentation 
could be faster, slower or more difficult depending on the function being implemented. These 
functions are directly comparable to other standard software based image processing functions. 
Also, there are many opportunities for alternate implementation in the algorithm: implementation 
of  the binary morphology dilation  and erosion functions  are  just  a couple of many possible 
functions that can be implemented. In order to properly implement the hardware equivalent, we 
investigate the software implementation of dilation and erosion in order to understand how the 
logical function should behave in hardware.

To properly evaluate the conversion from software to hardware, a test system needs to be 
developed  to  execute  the  entire  algorithm  in  software  on  the  target  device.  The  FPGA  is 
programmed with a test system that can execute C code and the details of this implementation 
are beyond the scope of this paper. The FPGA system is different than a general purpose system 
because the processor on the FPGA runs only the algorithm code and no other processes but at a 
slower clock. Additionally,  the speed of the FPGA system is generally slower than a general 
purpose system. This FPGA system is fed an image of an eye where the segmentation, template 
generation  and template  matching  processes  begin  just  as  they  would  on  a  general  purpose 
system. Note that the programming of an FPGA is different from the programming of software 
into a computer. This programming defines the interconnection of basic logic elements inside the 
FPGA so  that  the  desired  logic  (processor,  memory  controller  and  test  hardware  device)  is 
realized. However, unlike the general purpose system, the FPGA system has the ability to call on 
a specially designed peripheral hardware component inside the FPGA to process data and can 
read the result back almost seamlessly.

Upon converting the function from software to hardware, the software based function call 
is  followed  by  a  new  function  that  calls  on  the  hardware  device  for  data  processing.  The 
functions under test are isolated in the algorithm by placing reference points before and after the 
function call that records start and end times. The output of the software function can be used to 
assert the valid output of the hardware based function and the execution times can be compared.
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3.4 Software implementation

The software version of the algorithm preprocesses the image by scanning the image for 
objects  that  have an area that  is  at  least  the minimum area for the pupil.  These objects  are 
individually passed into the dilate  and erosion functions for processing in an effort  to avoid 
processing the entire image in a brute force function. The software function calls appear in the 
algorithm as shown in Tables 3.1 and 3.2.

      

Table 3.1: Binary morphology function calls 
from FindPupil function.

Table 3.2: BWDilateInPlace function 
definition. Note that the return of the image 

is inverted

The software implementation uses three FOR loops to step through the objects in the 
image and perform dilate/erode processing. Each function call steps through all relevant pixels 
and assigns the appropriate bit  based on adjacent black and white values.  Additionally,  each 
function must be called 15 times for a total of 15 dilates and 15 erodes to fully process each 
object in the image. With a large image that has many objects covering enough area to possibly 
be the pupil, the functions can take a lot of time to process. Next, we will investigate a hardware 
alternative to these functions.

The business portion of the software implementation is the looping within each binary 
morphology functions. These loops use basic logical ‘or’ of the neighboring pixel above, below, 
left and right to determine each bit assignment. These loops are also the most time consuming 

...

label=ThresholdUINT16Image(im,
(UINT16)threshval);

areas=label->BWLabel(MIN_PUPIL_AREA);

bwobjs=ConvertLabelImageToObjects(label,
areas);

for (i=0;i<bwobjs->Nobj;i++) {
BWDilateInPlace(bwobjs->obj[i]->

data,se1); // Dilate
BWErodeInPlace(bwobjs->obj[i]->

data,se2); // Erode

...

}

...

void BWDilateInPlace(Image *in, Image *se)
{

...

   for (i=1; i<in->ActualRows-1; i++)
      for (j=1;j<in->ActualCols-1;j++)

 if (in->matrix[i][j])
           {
             in1->

      matrix[i+offset][j+offset]=1;
             if((in->matrix[i-1][j]==0)||

      (in->matrix[i+1][j]==0)||
      (in->matrix[i][j-1]==0)||
      (in->matrix[i][j+1]==0))

                {
                  ioffset=i+offset;
                  joffset=j+offset;
                  for(ii=0;ii<numones;ii++)
{
                  in1->matrix[ioffset+

   rowindex[ii]]
   [joffset+colindex[ii]]=1;

               };
            };

...
}
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since they are the highest  order nest in the function calls.  A hardware implementation could 
reduce these loops to a  growth function.

The software  implementation  takes  into  account  edge  effects  by padding the  outside 
edges of the image with zeros. The borders of the image complicate the dilation and erosion 
functions since pixels on the far outside of image will reference pixels not defined within the 
rows and columns of the image. Instead, these areas are filled with null values so that they do not 
contribute to the dilation or erosion of objects very close to the borders.

Another advantage with hardware is that a hardware implementation takes advantage of 
replication to speed up processing power. The preprocessing of the image to find objects before 
dilation and erosion is not necessary to increase speed. Instead, the initial object detection of the 
algorithm will  be moved  after  dilating  and eroding all  objects  in  the  image  simultaneously. 
Theoretically, this reordering of operations should not affect the output.

3.5 Hardware Implementation (VHDL)

Hardware  design  is  inferred  similar  to  the  way  software  is  coded  using  special 
programming  languages  such  as  Verilog  Hardware  Description  Language  (Verilog  HDL)  or 
Very  high  speed  integrated  circuit  Hardware  Description  Language  (VHDL).  Designs  are 
compiled using a synthesizer and fitter that build a netlist describing how the fundamental logic 
elements within the FPGA are wired together.

The primary function to be implemented is the logical ‘or’ function that we identified 
from the software function loops. These ‘or’ functions are pixel oriented and directly translate to 
an elementary unit  in hardware that  we’ll  call  a BM_Element  (BM for Binary Morphology) 
which represents the pixel being operated on. The value stored within this BM_Element is driven 
by  similar  hardware  elements  holding  values  for  pixels  adjacent  to  the  pixel  stored  in  this 
BM_Element. Thus, these BM_Elements are easiest to imagine as though they were arranged in 
the ‘shape’ of an m x n image. The logic for these BM_Elements also takes into account both the 
dilation and erosion since they are complimentary binary logic functions.

The  coding  procedure  for  this  hardware  is  to  instantiate  a  full  dilation  and  erosion 
hardware entity called BM_Dilate_Erode that will receive the pixel data from the processor one 
pixel at a time (with a width of only a single bit for ‘1’ or ‘0’) and transmit the resulting pixel 
data back to the processor one pixel at a time. BM_Dilate_Erode will act as a three-state state 
machine that receives the pixel data, processes the data and then sends the data back. Within the 
overarching  BM_Dilate_Erode  instantiation  are  the  individual  BM_Element  blocks  and  an 
interconnect fabric that allows for pixel data to be loaded into each BM_Element and for each 
BM_Element exchange relevant pixel data among each other. Data enters the BM_Dilate_Erode 
device as a shift register as shown in Figure 3.2.
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Figure 3.2: Binary morphology data input train. The input shifts the data into the elements 

starting at the first and ending at the last BM_Element represented by the labeled “E” 
blocks. The processor shifts the last pixel of the thresholded image in first and when 

processing is complete the data is shifted out last pixel first.

The interconnect fabric within the BM_Dilate_Erode machine is the most challenging 
part  of  the  device.  Unlike  the  software  implementation,  this  fabric  cannot  account  for  edge 
effects using the technique of padding (which places null values around the edges). Instead, it 
circularly connects the top and bottom, left and right elements together so that these connections 
are not undefined. The effects of these circular connections are negligible since a segmentable 
pupil will be located somewhere within the image borders and ideally not partially cut off at the 
edge of the image. The interconnect fabric is actually a long string of “nodes” numbered from 
zero to the total number of BM_Elements within the device. These nodes represent the connect 
points between different BM_Elements and each BM_Element references adjacent elements by 
their numbered connection in this fabric. This is illustrated in Figure 3.3.

Figure 3.3: The binary morphology local interconnect fabric is a series of nodes labeled 
from zero to the total number of BM_Elements in the BM_Dilate_Erode device. Each 
BM_Element inputs the adjacent pixel values held by neighboring BM_Elements by 

referencing neighboring nodes in the fabric and outputs the pixel value held within the 
BM_Element to its associated interconnect fabric node.
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Each BM_Element computes the dilation and erosion using only a few lines of code as 
shown in Table 3.3 and produces the logic blocks seen in Figure 3.4. Like a function call in 
software,  the  BM_Element  encapsulates  recurring  code  into  a  single  logic  block  with  finite 
inputs and outputs.  These inputs reference the neighboring four nodes and necessary control 
signals.  It  outputs  its  value  back  into  the  local  interconnect  fabric  node  allotted  for  that 
BM_Element. This is accomplished using the code shown in Table 3.4. The hardware operation 
is demonstrated in Figure 3.5.

Table 3.3: BM_Element functional logic

process(aload, adatain, clk)
begin
...

if (aload = '1') then
adataout <= pixel;
pixel_step <= adatain;

else 
if (rising_edge(clk)) then

if(clk_enable = '1') then
if(operation = '0') then -- Dilate

pixel_step <=topmid or midleft or midright or 
bottommid;

else
pixel_step <= not(topmid or midleft or midright or 
bottommid);

end if;
...

process(clk)
begin

if(rising_edge(clk)) then
if(operation = '0') then

output <= pixel;
else

output <= not(pixel);
end if;

end if;
end process;
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Figure 3.4: Internal logic of one BM_Element block inferred from the code seen in Table 
3.3. The device takes in 4 inputs from the local interconnect and ‘or’s the logic together. 

This value is then inverted depending on the operation (dilate or erode) and latched at the 
pixel_step flip-flop. There is also control logic to shift the value in this BM_Element on to 
the next BM_Element and input the value from the previous BM_Element in the chain as 

demonstrated in Figure 3.2.

Table 3.4: BM_Element instantiation and interconnect logic
signal local_interconnect : std_logic_vector(ROWS*COLS downto 0);

...

BM_rows: for j in 0 to ROWS - 1 generate
begin

BM_cols: for i in 0 to COLS - 1 generate
begin

U1: BM_Element
port map(

clk => avs_s1_clk,
clk_enable => clk_e,
operation => operation,
aload => shift_load,
adatain => local_data(j*COLS + i),

adataout => local_data(j*COLS + i + 1),
topmid => local_interconnect(((j + ROWS - 1) mod ROWS)*COLS + ((i + 
COLS) mod COLS) ),
midleft => local_interconnect((j*COLS)+((i+(COLS-1)) mod COLS)),
midright => local_interconnect((j*COLS)+((i+(COLS+1)) mod COLS)),
bottommid => local_interconnect(((j + ROWS + 1) mod ROWS)*COLS + ((i 
+ COLS) mod COLS) ),
output => local_interconnect( j*COLS + i) 

);
end generate;

end generate;
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Figure 3.5: Dilation and erosion in hardware. For dilation, the hardware performs logic 
‘OR’ on all pixel’s neighboring pixels in parallel and if any of them are black the particular 
pixel in question becomes black. For erosion, the inputs and outputs are inverted and thus 

performs the same logical ‘OR’ but on white pixels.

Once the entire design is put together, it  must be incorporated into the overall  FPGA 
system so that the performance of the hardware design can be evaluated relative to the original 
software  design.  In  this  system,  the  design  is  included  as  a  peripheral  component  to  the 
microprocessor in the system and the compiler provides the microprocessor with a pointer to the 
input  of the BM_Dilate_Erode  device.  The algorithm software code is  rewritten to  send the 
entire  image  for  dilation  and  erosion  and the  result  is  read  back  for  object  detection.  This 
peripheral  totally  eliminates  the  dilation  and  erosion  binary  morphology  functions  from the 
algorithm in exchange for simple copy functions that move data from DDR2 SDRAM into the 
peripheral device and back out.
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Chapter 4

FIR Filtering

Figure 4.1: Capturing the image of an eye and storing the result as pixel data

Iris  recognition biometrics  measure  the human eye  as though it  were a  digital  signal 
conveying a message of identity. The signal is transmitted from the iris, the eye’s colored region 
around the black pupil, visually via infrared radiation and captured using a camera, storing the 
signal as digital ones and zeroes (picture elements or pixel data) as seen in Figure 4.1.  Since 
pixel data is nearly meaningless to a computer, digital signal processing must be performed to 
extract meaningful information from ones and zeroes.  Biometric algorithms depend on digital 
filtering, a kind of digital signal processing, to transform simple pixel data into meaningful bits 
used to match a person’s eye with a stored digital counterpart. In current recognition systems, a 
general purpose processor follows instructions, also known as software, to perform the digital 
filtering a single step at a time. At high clock frequencies, software driven filtering is not as 
much a troubling issue; however, when migrating this or any digital filtering to hardware such as 
a field programmable gate array (FPGA), slower clock frequencies manifest  a challenge that 
otherwise  may not  be  a  problem.  FPGAs can  mitigate  having  a  slow clock  by  maximizing 
efficiency  in  highly  application  specific  hardware  design.  For  an  iris  recognition  system, 
specially tailored parallel digital filters can help.

4.1 Filtering in Hardware

Parallel filtering can take on many different forms and an engineer may choose the form 
of parallelization that best  fits  the needs of the application.  In any parallel  digital  operation, 
memory is a key factor in design since it is often either a bottleneck or an FPGA device resource 
hog.  Heavy  parallelization  in  hardware  will  invariably  require  more  memory  to  support 
simultaneous reading and writing. Iris recognition algorithms typically use nine by nine (9x9) 
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filters which can rapidly consume an FPGA’s available RAM resources needed to keep track of 
many parallel intermediate steps. Therefore, the form of parallelization used in this design seeks 
to  maximize  the  amount  of  parallel  computations  while  keeping  the  memory  needed  for 
intermediate computations optimized and at an absolute minimum.
 

Figure 4.2: Circular convolution in one dimension

Before filtering,  the inner and outer boundaries of the iris were identified.  The Ridge 
Energy Direction (RED) Algorithm divides the iris into at least 16 concentric circles and 128 
radial lines. The iris is then “unwrapped” by picking off values from the original image at each 
intersection of radial  line and concentric circle and recording them value in a 2-D matrix of 
exclusively iris pixels. This process is likened to converting the iris from polar coordinates to 
Cartesian coordinates.

The  RED  Algorithm  uses  finite  impulse  response  (FIR)  filtering  to  evaluate  the 
information content of an iris. FIR filtering is the type of filtering done by a digital system in the 
time domain within a finite set of coefficients. The algorithm uses two 9 by 9 (9x9) filters to 
accentuate the vertical and horizontal features separately. A 9x9 filter will be able to emphasize 
the existence of ridges as wide as the filter dimension. This assumes that most ridges are features 
small  enough to be detected by the 9x9 filter.  Features that  are too large will  essentially be 
ignored by the filters and may result in a mask bit modulating out that part of the template if 
neither filter can determine vertical or horizontal ridges. Furthermore, these filters are unaffected 
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by the original resolution of the image since the density of pixels (number of pixels per feature) 
are determined directly by the choice number of concentric annuli and radial lines. Higher or 
lower resolution segmented irises will always result in the same density of pixels per feature 
since the number of points chosen to transform from polar coordinates in the original image to 
Cartesian is constant. The output of each filter is compared and for each pixel, a ‘1’ is assigned 
for strong vertical content or a ‘0’ for strong horizontal content. These bits are concatenated to 
typically  form a  2048  bit  vector  unique  to  the  “iris  signal”  that  conveyed  the  identifiable 
information.

The RED iris recognition algorithm uses a straightforward circular convolution digital 
filter similar to Figure 4.2 to generate the matchable iris template, a set of bits that meaningfully 
represents a person’s iris. The energy data passed from the iris segmentation process, the process 
that seeks and extracts the iris from an image of a person’s eye, is organized into a rectangular 
array that is made periodic in both the vertical and horizontal dimensions to account for edge 
effects. The filter passes over this periodic array taking in 81 values at a time and computing the 
result for the filter, storing the result in a memory location that corresponds to the centroid of the 
filter.  The digital  filter  continues to take in values in this  manner,  stepping right column by 
column and down row by row until the filtering is complete as shown in Figure 4.3. Finally, the 
template is generated by comparing the results of two different digital  filters (horizontal  and 
vertical) and writing a single bit that represents the filter with the highest output at the equivalent 
location.

 

Figure 4.3: 9x9 digital filter computing the circular convolution of the top left portion of 
hypothetical energy data. In this instance, each coefficient of the filter is multiplied by the 
corresponding energy data within the scope of the filter (filter kernel) where some of the 

data is repeated from the opposing sides. These filter coefficient and energy data products 
make up a partial result, the sums of which generate a local result corresponding to the 

centroid of the filter.
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4.2   Problem Addressed

 
Figure 4.4: Illustration of different possible digital filtering methods. 

There are three outstanding methods to compute a digital filter as shown in Figure 4.4. 
The first method uses a general  purpose processor to compute the digital  filter  via software, 
executing a single instruction at a time. This approach is acceptable if the digital filter is small; 
however, as the digital  filter dimension increases, the computational load rises exponentially. 
The second approach is to develop hardware specifically designed to compute the digital filter 
but by first loading all the data into an array of computing elements. By loading the data first 
(buffering the data into the hardware), this approach is essentially identical  to the sequential 
general purpose processor method due to overhead. Only partial convolutions can be computed 
until the entire kernel is filled. The third and final approach is to redefine the convolution as a 
parallel  process,  allowing  the  hardware  to  take  in  a  single  byte  of  data  and  compute  the 
maximum influence that data would have on the final results.  The method is a truly parallel 
process and minimizes the need for overhead and buffering that other sequential processes use. 
Throughout this paper, the parallel method of approach will be investigated and compared to 
sequential methods. 

Parallelizing the RED algorithm filtering can be done simply by doing the obvious – 
calculating the result of both filters at the same time and computing the single bit representation 
in the template simultaneously. Unfortunately, while this straightforward approach appears to cut 
out  a  large  amount  of  intermediate  memory  it  in  fact  suffers  from a  very  serious  memory 
bottleneck. The energy data to compute a single convolution result must first be fully loaded into 
a hardware representation of each filter. Assuming the filters could compute the final template 
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bit in a single clock cycle, each filter must read 81 different 8-bit values of energy data before 
any filtering can be done. Therefore, a straightforward approach to convolution based digital 
filtering  in  hardware  will  suffer  due to  the  overhead associated  with waiting  for  data  to  be 
localized near the computing elements. In this case, since the computing elements are idle until 
the 81 data values are loaded,  the process is fundamentally sequential  much like the general 
purpose processor. Consequently,  a straightforward convolution in hardware is inherently not 
parallel with a single bank of memory holding all the energy data. 

 

Figure 4.5: Possible considerations for sequential hardware method

To parallelize the digital  filter  convolution, the memory itself  must be parallelized.  A 
possible but impractical option to parallelize the straightforward digital filter convolution would 
be to create an 81 ported block of memory or 81 parallel blocks of memory that could supply all 
energy data to both filters in a single step as seen in Figure 4.5. Either case would exceed the 
memory resources of even the most massive FPGAs while also potentially creating interconnect 
issues. Furthermore, even if the memory issue was inconsequential to the straightforward circular 
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convolution, there is no way around the overhead associated with needing at least 81 energy data 
values and at least 9 more properly arranged to step in either the horizontal or vertical directions.

4.3   Solution

There is an alternative way to accomplish the circular convolution that also offers greater 
opportunity for parallelization while also slightly more memory friendly in reversing the digital 
filter. Convolution is a commutative mathematical operation of the form in equations 4.1 and 4.2

    

( ) ( ) ( )f x g x h x= ∗    or  ( ) ( ) ( )f x h x g x= ∗ (4.1)

where

 

( ) ( ) ( ) ( ) ( )
m

y n h n x n h n x n m= ∗ = ⋅ −∑ (4.2)

where the resulting function “f” is either function “g” convolved with “h” or “h” convolved with 
“g.” In terms of digital filtering, this is the same as either convolving the filter with the input or 
convolving the input with the filter.  This concept is critical  in modifying the digital  filtering 
algorithm  so  that  it  can  more  easily  be  implemented  in  hardware.  Typically,  the  filter  is 
convolved  “overtop”  the  input  data  but  for  parallelizing  purposes  the  input  data  will  be 
convolved over the centroid of the filter. The commutative property is important in developing 
the necessary decomposed algorithm for parallel computations. The decomposed algorithm is a 
function of the accumulated convolution and the partial contribution of a single sample on the 
final output as seen in equation 4.3. In the decomposed algorithm equation, h(n) represents the 
FIR  filter  coefficients,  y  is  the  running  accumulation  and  Y is  the  next  accumulation  after 
summation.  Notice  that  for  any  m  value,  the  input  x(n)  sample  is  shared  among  all  filter 
coefficients.
 

( ) ( )Y y h n m x n= + − ⋅ (4.3)

This approach is analogous to dropping the energy data onto the centroid of the filter and 
computing  the  partial  product  of  all  results  within  scope  as  seen  in  Figures  4.6  and  4.7. 
Commuting the convolution eliminates the overhead associated with buffering all the energy data 
into the filter to calculate a single result and greatly simplifies the hardware implementation.
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Figure 4.6: Parallel filtering concept
 

Figure 4.7: Commutated circular convolution example.
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The parallelized digital filters maximize the computations for any single 8-bits of energy 

data so that input buffering is kept at an absolute minimum while also offering quite a bit of 
freedom with regard to  the form of  the resulting data.  Since the RED algorithm calls  for a 
circular convolution, the parallelized digital filter computes the partial products and writes the 
results to memory into the appropriately wrapped memory locations; therefore, more complex 
convolutions can be handled simply by directing the partial products to the appropriate memory 
locations. While outside the scope of this paper, it is likely possible to compute the partial results 
directly into the finalized template, totally eliminating the need for intermediate memory but that 
is  left  to  the  discretion  of  the  engineer  to  handle  the  filters  in  whatever  way  best  fits  the 
application.

4.4   TECHNICAL DISCUSSION

The  RED algorithm digital  filtering  is  designed  and  implemented  into  hardware  (an 
FPGA) using Very High Speed Integrated Circuit Hardware Description Language (VHDL) and 
Altera Quartus II web edition design software. An FPGA can be programmed with a hardware 
design and logically behave like real hardware. VHDL allows the engineer to describe the design 
of the system and implement it onto the FPGA as a substrate for real-world testing. The Altera 
device targeted in the design process is the Stratix III FPGA where the digital filters consume 
about  6% of the average  Stratix  III  device  resources  and approximately 4% of the  device’s 
available on-chip RAM blocks (also known as M9K blocks). 

Figure 4.8: System block diagram

The parallel hardware filter consists of 81 accumulator cores arranged in a nine by nine 
array to represent the original filter. The accumulators are grouped within the array by row since 
the energy data from the segmentation process (or most other common process) emerges left to 
right, top to bottom, easing the memory access as the filter array steps through the incoming 
data.  Each row is  accommodated  with a block of simple dual  ported ram to support  all  the 
simultaneous reading and writing needs of the accumulator core row. Also among each row is a 
multiplexer to narrow the control of memory to a single accumulator core and a row controller to 
grant any accumulator within the row memory control and issue the proper control signals to the 
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row’s  accumulator  cores.  Finally,  the  array  is  fitted  with  a  first-in-first-out  (FIFO)  memory 
buffer to ease incoming data and a comparator module that judges which filter had the highest 
output and issues the appropriate bit to the finalized template for matching. The full FIR filtering 
system is shown in Figure 4.8.

The accumulator  cores  are  the  meat  of  the  parallelized  filter  and are  responsible  for 
applying the filter coefficients to the incoming data and tracking the accumulated partial results. 
Each accumulator core is a finite state machine (a basic type of logic device) that is driven by 
both outside control signals and internal control signals. As 8-bit energy data becomes available 
from the FIFO buffer, an external “go” signal instructs the accumulator core to apply one of two 
coefficients to the data and add it to the contents of a 16-bit wide accumulation register. The 
accumulator cores also track where the partial results are stored in the local bank of memory and 
as the energy data and filter steps right 1 byte at a time, one accumulator core (the left-most in 
the  filter  scope)  will  go  out  of  scope  and  need  to  exchange  its  accumulation  register  with 
memory to come back into scope. The address pointers for reading and writing to memory are 
updated at the end of the last accumulation cycle that was in scope and new data is read in and 
accumulated at the start of the next accumulation cycle. Since data memory must stabilize before 
being read, the accumulator cores cycle between an accumulation state and an idle state and thus 
requiring only two cycles to perform all partial results of the filter. However, a special case exists 
when the accumulator core array must step down and return as the segmented energy data moves 
onto the next row (much like the carriage return of a typewriter). During a step down operation, 
all accumulators in all rows must exchange data with local row memory which requires 3 cycles 
per accumulator (21 cycles total) which halts filter processing briefly. A brief block diagram of 
the accumulator state machine is shown in Figure 4.9.
.

 
Figure 4.9: Accumulator core state machine

The accumulator cores are managed by a simple driver driven by logic lookup tables 
(LUTs) and arranged into rows to maximize efficiency and minimize the amount of memory 
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used by the filters. In each step right operation, only the left most accumulator in the scope (not 
always the physical left most) will save the value in its accumulation register and address a read 
on the data value located in memory of the next column to come into scope. The row controller 
selects the appropriate data and address busses so that the accumulator reading and writing data 
has control of the memory. The row controller also handles the go signals for the accumulator 
cores (informing the accumulator core that energy data is stable coming from the FIFO buffer) 
and the coefficient select signals in order to make modifying and customizing the filter operation 
simpler and centralized.

Once the filtering is complete, the comparator module evaluates the result of each filter 
and compiles the final template ready for matching. The module subtracts the horizontal filter 
results from the vertical filter at each corresponding memory location in all row bank memories 
simultaneously  and  detects  overflow.  Depending  on  which  filter’s  output  was  highest,  the 
comparator module assigns the appropriate bit to the template.
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Chapter 5

Results

5.1 Binary Morphology Hardware Implementation Performance

The functions for computing the binary dilation and erosion are isolated and the start and 
end times are recorded to compute the time in milliseconds the functions took to execute. The 
data is tabulated in Table 5.1. The images tested are standard 640 by 480 VGA images from the 
BATH database.

 Table 5.1: Timing comparisons of software and hardware implementations. 1000 iterations 
of the functions comprise these timing characteristics.

5.2 FIR Filtering Hardware Implementation Performance
The  FIR  filtering  hardware  successfully  eliminated  the  filter  kernel  size  impact  on 

execution time of the template generation process in the algorithm. As stated before, the filter 
kernel’s computations are loaded, accumulated and saved in parallel. Thus, the FIR filtering is 
dropped from a fourth order growth function of four nested loops to only second order. With the 
hardware FIR filtering, only the image size affects total  processing time and each pixel only 

Software Functions Hardware Functions

Mean 1.341s Mean 6.144ms
Dilation 611.7ms
Erosion 729.3ms Standard Deviation

313µs
Standard Deviation

72.476ms Range
          5.943ms to 6.846ms

Range
1.090s to 1.470s
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requires between two and three cycles  to process.  The resulting timing analysis  is shown in 
Figure 5.1.

Figure 5.1: FPGA vs GPP on VGA input and differing kernel sizes

Figure  5.1  illustrates  that  the  sequential  C  code  filtering  is  in  fact  two  orders  of 
magnitude greater growth function than the parallel FPGA hardware implementation. Also, since 
the execution  time on the FPGA is in  the microseconds and the graph is  time vs.  the filter 
dimension (a 2nd order variable), the FPGA timing appears as a flat line across the bottom of the 
graph. This evaluation is independent of the actual process performed by the RED algorithm 
which uses at least 16 rows by 128 columns to generate the 2048 bit template. 
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Chapter 6

Conclusion

Application specific hardware design can be a complex process that may or may not be 
worth the cost of design for just small enhancements over software. Theoretically, an algorithm’s 
execution could be nearly totally implemented with hardware functions and the processor would 
merely need to move data from one peripheral hardware device to another, assuming sufficient 
space on the programmable logic device or integrated circuit. This design is certainly not the 
only  part  of  the  RED  iris  recognition  algorithm  that  can  be  implemented  using  hardware 
functions. However, some things are simply easier to do in software even though they may be 
slower.

6.1 Binary Morphology

The hardware function outperforms the software in  speed of execution.  The software 
timing  shows  that  the  binary  morphology  dilation  and  erosion  functions  together  take 
approximately 218 times longer to execute. In large processing applications that must process 
many images at a time this can be a significant increase. Furthermore, the increase makes the 
segmentation of the pupil from the image nearly negligible and increases total segmentation time 
by about 37%.

There  are  tradeoffs,  however,  and  the  hardware  takes  up additional  space  within  the 
FPGA which also includes the microprocessor, memory controller and other peripherals. With 
today’s synthesizing software that effectively optimizes the design for fit and power, the logic 
consumption  takes  up  less  than  1%  of  the  logic  elements  and  registers  in  the  Stratix  III 
EP3SL150F1152C3ES which has approximately 150,000 logic elements and 1 Mbit of on-chip 
memory.  Subsequently,  the  power  consumption  in  the  overall  system  is  reduced  since  the 
hardware implementation uses substantially less logic than the software loops used.

6.2 FIR Filtering

The  parallelized  digital  filtering  has  many  advantages  over  the  sequential  and 
straightforward  approach  to  the  circular  convolution  filter.  The  parallel  filter  can  be  easily 
inserted into a pipelined dataflow where maximum processing for a single byte of data is desired. 
By  modifying  the  convolution  process  slightly,  the  hardware  is  freed  of  most  overhead 
associated  with the sequential  circular  convolution.  Also,  the  memory usage is  only slightly 
greater  in  the  parallelized  convolution  approach  than  the  basic  software  or  basic  hardware 
convolution while significantly less than the parallelized memory needed to handle the hefty 
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reading  requirements  of  front  loaded  digital  filtering  of  the  basic  hardware  convolution. 
Furthermore, the partial approach to circular convolution presents many more opportunities for 
optimization and customization since the data flow can be channeled to meet the needs of the 
application.

Depending on the size of the energy data to be loaded, the time needed to complete the 
filtering can be easily calculated. The basic formula for how many cycles a complete convolution 
requires is shown below in equation 7.1:

 
( ) yxyyxt 272, += (7.1)

Where x is the number of columns and y is the number of rows in the energy data. The equation 
is asymmetric because the parallelism is oriented with respect to the rows (x direction) and thus 
there is added latency when the filter array shifts up or down in the y direction. Also note that the 
size of the filter kernel has no effect on the execution time and thus a filter as large as infinity by 
infinity could be calculated in the same time as a filter with only a single coefficient (1x1). For 
the RED algorithm, the number of clock cycles  needed to complete  the template  filtering is 
shown in equation 7.2 which is 90.56 microseconds at a 50 MHz clock frequency. An iris size of 
128 radial lines and 16 concentric circles is chosen because this is the minimum resolution of the 
iris to compute the 2048 bit template.

( ) 452816,128 =t cycles (7.2)

In  comparison,  simulated  tests  of  filtering  were  performed  on  a  general  purpose  processor 
running  at  4  GHz and multiple  cores.  This  machine  took an  average  of  32 milliseconds  to 
compute a 9x9 kernel convolution on a large VGA (640x480) input. The same convolution was 
tested on the parallel filtering array and took only 1.3milliseconds. This is illustrated in Figure 
5.1.

6.3 Wrapping Up

The final system could never fully be tested because of the design issues identified the 
DE3 board. Therefore, the most interesting comparison of how the overall  embedded system 
performed next to the original general purpose machine could not be evaluated in the available 
time. Yet, the embedded system may one day prove to be preferable over the general purpose 
system  for  many  reasons.  An  embedded  system  is  independent  of  operating  systems  and 
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environments  designed for unrelated  computing.  Thus,  this  research developed an embedded 
system unique to iris recognition which is a feat in itself. The implementation in this research is a 
proof-of-concept  to  show  that  an  algorithm,  iris  recognition  or  other  that  has  value  being 
portable,  can be redesigned as a  stand-alone  device.  Lower power operation  and even more 
efficient and faster operation than anything ever before are likely possible given enough design 
resources, money and time.



46

Bibliography

[1] Zhang, D. D., [Automated Biometrics: Technologies and Systems], Kluwer Academic 
Publishers, 1-18 (2000).

[2] Sims, D., "Biometrics Recognition: Our Hands, Eyes and Faces Give Us Away," IEEE 
Computer graphics and Applications, 0272-17-16/94 (1994).

[3] Williams, G. O., “Iris Recognition Technology,” IEEE, 0-7803-3537-6-9/96 (1996).

[4] Boles, W. W., “A Security System Based on Human Iris Identification Using Wavelet 
Transform,” First International Conference on Knowledge-Based Intelligent Electronic Systems, 
Adelaide, 21-23 (1997).

[5] Kennell, L. R., Ives, R. W., Gaunt, R. M., “Binary morphology and local statistics applied to 
iris segmentation for recognition,” Image Processing, Proc. of the 13th Annual International 
Conference on, (2006).

[6] Daugman, J., "Statistical richness of visual phase information." International Journal of 
Computer Vision 45(1), 25-38 (2001).

[7] Ives, R. W., Broussard, R. P., Kennell, L. R., Rakvic, R. N., Etter, D. M., “Recognition using 
the Ridge Energy Direction Algorithm” Signals, Systems and Computers, presented at the 42nd 
Asilomar Conference on, Pacific Grove, California, (2008).

[8] Daugman, J., "Probing the uniqueness and randomness of IrisCodes: Results from 200 billion 
iris pair comparisons." IEEE, Proc. of the, 94(11), 1927-1935 (2006).

[9] Daugman, J., “High Confidence Visual Recognition of a Persons By a Test of Statistical 
Independence,” PAMI, IEEE Trans. on, 15, (1993).

[10] Altera Inc., “Stratix III Datasheet.” [Online datasheet], Available at 
http://altera.com/literature/hb/stx3/stx3_siii52001.pdf, (2008).

[11] Altera Inc., “Stratix III FPGAs.” [Online datasheet], Available at http://www.eetchina.com/
ARTICLES/2006NOV/PDF/br-stratixIII.pdf, (2008).

[12] Kung, H. T., “Why Systolic Architectures?” Computer, 15(1), 37-46 (1982).



47

Appendix A: Embedded System Top Level VHDL Code

library ieee;
use ieee.std_logic_1164.all;
library altera;
use altera.altera_syn_attributes.all;

entity RED_System is
port
(

-- Buttons
Button : in std_logic_vector(3 downto 0);

-- Clock Out
CLK_OUT : out std_logic;

-- DDR2
mem_addr : out std_logic_vector(15 downto 0);
mem_ba : out std_logic_vector(2 downto 0);
mem_cas_n : out std_logic;
mem_cke : out std_logic_vector(1 downto 0);
mem_clk_n : inout std_logic_vector(1 downto 0);
mem_clk : inout std_logic_vector(1 downto 0);
mem_cs_n : out std_logic_vector(1 downto 0);
mem_dm : out std_logic_vector(7 downto 0);
mem_dq : inout std_logic_vector(63 downto 0);
mem_dqs : inout std_logic_vector(7 downto 0);
mem_dqsn : inout std_logic_vector(7 downto 0);
mem_odt : out std_logic_vector(1 downto 0);
mem_ras_n : out std_logic;
mem_we_n : out std_logic;

-- DIP Switches
DIP_SW : in std_logic_vector(7 downto 0);

-- Clocks
EXT_CLK : in std_logic;
OSC1_50 : in std_logic;
OSC2_50 : in std_logic;
OSC_BA : in std_logic;
OSC_BB : in std_logic;
OSC_BC : in std_logic;
OSC_BD : in std_logic;

-- Seven Segment
HEX0 : out std_logic_vector(6 downto 0);
HEX0_DP : out std_logic;
HEX1 : out std_logic_vector(6 downto 0);
HEX1_DP : out std_logic;

-- JTAG
JVC_CLK : out std_logic;
JVC_CS : out std_logic;
JVC_DATAIN : in std_logic;
JVC_DATAOUT : out std_logic;

-- LEDs
LEDB : out std_logic_vector(7 downto 0);
LEDG : out std_logic_vector(7 downto 0);
LEDR : out std_logic_vector(7 downto 0);

-- USB
OTG_A : out std_logic_vector(17 downto 1);
OTG_CS_n : out std_logic;
OTG_D : inout std_logic_vector(31 downto 0);
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OTG_DC_DACK : out std_logic;
OTG_DC_DREQ : in std_logic;
OTG_DC_IRQ : in std_logic;
OTG_HC_DACK : out std_logic;
OTG_HC_DREQ : in std_logic;
OTG_HC_IRQ : in std_logic;
OTG_OE_n : out std_logic;
OTG_RESET_n : out std_logic;
OTG_WE_n : out std_logic;

-- SD Card
SD_CLK : out std_logic;
SD_CMD : inout std_logic;
SD_DAT : inout std_logic;
SD_WPn : in std_logic;

-- Slide Switches
SW : in std_logic_vector(3 downto 0);

-- Temp Sensor
TEMP_CLK : out std_logic;
TEMP_DATA : inout std_logic;
TEMP_INTn : in std_logic

);

end RED_System;

architecture ppl_type of RED_System is

signal usb_addr : std_logic_vector(16 downto 0);

--=============================================
--  IO Group Voltage Configuration (Do not modify it)
--=============================================
component IOV_A3V3_B1V8_C3V3_D3V3 is

port (

signal iCLK : IN STD_LOGIC;
signal iRST_n : IN STD_LOGIC;
signal iENABLE : IN STD_LOGIC;
signal oREADY : OUT STD_LOGIC;
signal oERR : OUT STD_LOGIC;
signal oERRCODE : OUT STD_LOGIC;
signal oJVC_CLK : OUT STD_LOGIC;
signal oJVC_CS : OUT STD_LOGIC;
signal oJVC_DATAOUT : OUT STD_LOGIC;
signal iJVC_DATAIN : IN STD_LOGIC

);
end component;

component RED_SOPC is 
        port (
              -- 1) global signals:
                 signal altmemddr_aux_full_rate_clk_out : OUT STD_LOGIC;
                 signal altmemddr_aux_half_rate_clk_out : OUT STD_LOGIC;
                 signal altmemddr_phy_clk_out : OUT STD_LOGIC;
                 signal clk : IN STD_LOGIC;
                 signal reset_n : IN STD_LOGIC;

              -- the_ISP1761
                 signal A_from_the_ISP1761 : OUT STD_LOGIC_VECTOR (17 DOWNTO 1);
                 signal CS_N_from_the_ISP1761 : OUT STD_LOGIC;
                 signal DC_DACK_from_the_ISP1761 : OUT STD_LOGIC;
                 signal DC_DREQ_to_the_ISP1761 : IN STD_LOGIC;
                 signal DC_IRQ_to_the_ISP1761 : IN STD_LOGIC;
                 signal D_to_and_from_the_ISP1761 : INOUT STD_LOGIC_VECTOR (31 DOWNTO 0);



49
                 signal HC_DACK_from_the_ISP1761 : OUT STD_LOGIC;
                 signal HC_DREQ_to_the_ISP1761 : IN STD_LOGIC;
                 signal HC_IRQ_to_the_ISP1761 : IN STD_LOGIC;
                 signal RD_N_from_the_ISP1761 : OUT STD_LOGIC;
                 signal WR_N_from_the_ISP1761 : OUT STD_LOGIC;
                 
              -- the_SEG7
                 signal avs_s1_export_seg7_from_the_SEG7 : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
                 
              -- the_altmemddr
                 signal global_reset_n_to_the_altmemddr : IN STD_LOGIC;
                 signal local_init_done_from_the_altmemddr : OUT STD_LOGIC;
                 signal local_refresh_ack_from_the_altmemddr : OUT STD_LOGIC;
                 signal local_wdata_req_from_the_altmemddr : OUT STD_LOGIC;
                 signal mem_addr_from_the_altmemddr : OUT STD_LOGIC_VECTOR (12 DOWNTO 0);
                 signal mem_ba_from_the_altmemddr : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
                 signal mem_cas_n_from_the_altmemddr : OUT STD_LOGIC;
                 signal mem_cke_from_the_altmemddr : OUT STD_LOGIC;
                 signal mem_clk_n_to_and_from_the_altmemddr : INOUT STD_LOGIC_VECTOR (1 DOWNTO 
0);
                 signal mem_clk_to_and_from_the_altmemddr : INOUT STD_LOGIC_VECTOR (1 DOWNTO 0);
                 signal mem_cs_n_from_the_altmemddr : OUT STD_LOGIC;
                 signal mem_dm_from_the_altmemddr : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
                 signal mem_dq_to_and_from_the_altmemddr : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
                 signal mem_dqs_to_and_from_the_altmemddr : INOUT STD_LOGIC_VECTOR (7 DOWNTO 0);
                 signal mem_dqsn_to_and_from_the_altmemddr : INOUT STD_LOGIC_VECTOR (7 DOWNTO 0);
                 signal mem_odt_from_the_altmemddr : OUT STD_LOGIC;
                 signal mem_ras_n_from_the_altmemddr : OUT STD_LOGIC;
                 signal mem_we_n_from_the_altmemddr : OUT STD_LOGIC;
                 signal oct_ctl_rs_value_to_the_altmemddr : IN STD_LOGIC_VECTOR (13 DOWNTO 0);
                 signal oct_ctl_rt_value_to_the_altmemddr : IN STD_LOGIC_VECTOR (13 DOWNTO 0);
                 signal reset_phy_clk_n_from_the_altmemddr : OUT STD_LOGIC;

              -- the_pio_button
                 signal in_port_to_the_pio_button : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

              -- the_pio_led
                 signal out_port_from_the_pio_led : OUT STD_LOGIC_VECTOR (23 DOWNTO 0);

              -- the_usb_reset_n
                 signal out_port_from_the_usb_reset_n : OUT STD_LOGIC
              );

end component;

begin

IOV_Inst: IOV_A3V3_B1V8_C3V3_D3V3
port map (

iCLK => OSC2_50,
iRST_n => '1',
iENABLE => '1',
--READY => ,
--ERR => ,
--ERRCODE => ,
oJVC_CLK => JVC_CLK,
oJVC_CS => JVC_CS,
oJVC_DATAOUT => JVC_DATAOUT,
iJVC_DATAIN => JVC_DATAIN

);

RED_inst: RED_SOPC
port map 
(

  -- 1) global signals:
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 -- altmemddr_aux_full_rate_clk_out => <signal>, -- Unused 
 -- altmemddr_aux_half_rate_clk_out => <signal>, -- Unused 
 -- altmemddr_phy_clk_out => <signal>, -- Unused 
 clk => OSC1_50,
 reset_n => '1',

   -- the USB
  A_from_the_ISP1761(17 downto 1) => OTG_A(17 downto 1),

          CS_N_from_the_ISP1761 => OTG_CS_n,
          DC_DACK_from_the_ISP1761 => OTG_DC_DACK,
          DC_DREQ_to_the_ISP1761 => OTG_DC_DREQ,
          DC_IRQ_to_the_ISP1761 => OTG_DC_IRQ,
          D_to_and_from_the_ISP1761 => OTG_D,
          HC_DACK_from_the_ISP1761 => OTG_HC_DACK,
          HC_DREQ_to_the_ISP1761 => OTG_HC_DREQ,
          HC_IRQ_to_the_ISP1761 => OTG_HC_IRQ,
          RD_N_from_the_ISP1761 => OTG_OE_n,
          WR_N_from_the_ISP1761 => OTG_WE_n,
          out_port_from_the_usb_reset_n => OTG_RESET_n,
         
          -- SEG7

 avs_s1_export_seg7_from_the_SEG7(15) => HEX1_DP,
 avs_s1_export_seg7_from_the_SEG7(14 downto 8) => HEX1,
 avs_s1_export_seg7_from_the_SEG7(7) => HEX0_DP,
 avs_s1_export_seg7_from_the_SEG7(6 downto 0) => HEX0,
 
 

  -- Buttons  
 in_port_to_the_pio_button => Button,

  -- LEDs
 out_port_from_the_pio_led(23 downto 16) => LEDR,
 out_port_from_the_pio_led(15 downto 8) => LEDG,
 out_port_from_the_pio_led(7 downto 0) => LEDB,

  -- the_altmemddr
 global_reset_n_to_the_altmemddr => '1', 
 mem_addr_from_the_altmemddr => mem_addr(12 downto 0),
mem_ba_from_the_altmemddr => mem_ba(1 downto 0),  
mem_cas_n_from_the_altmemddr => mem_cas_n,

 mem_cke_from_the_altmemddr => mem_cke(0),
 mem_clk_n_to_and_from_the_altmemddr => mem_clk_n,
 mem_clk_to_and_from_the_altmemddr => mem_clk,
 mem_cs_n_from_the_altmemddr => mem_cs_n(0),  
 mem_dm_from_the_altmemddr => mem_dm,
 mem_dq_to_and_from_the_altmemddr => mem_dq,
 mem_dqs_to_and_from_the_altmemddr => mem_dqs,
 mem_dqsn_to_and_from_the_altmemddr => mem_dqsn,
 mem_odt_from_the_altmemddr => mem_odt(0),
 mem_ras_n_from_the_altmemddr => mem_ras_n,
 mem_we_n_from_the_altmemddr => mem_we_n,
 
 oct_ctl_rs_value_to_the_altmemddr => "00000000000000",  
 oct_ctl_rt_value_to_the_altmemddr => "00000000000000"   
 

);

end;
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Appendix B: Binary Morphology VHDL Code

library ieee;
use ieee.std_logic_1164.all;

entity BM_Dilate_Erode is

generic 
(

ROWS : natural := 4;
COLS : natural := 4

);

port 
(

avs_s1_clk : in std_logic;
--avs_s1_reset_n : in std_logic := '1';
avs_s1_read : in std_logic;
avs_s1_write : in std_logic;
avs_s1_chipselect : in std_logic;
avs_s1_address : in std_logic;
avs_s1_readdata : out std_logic_vector(7 downto 0);
avs_s1_writedata : in std_logic_vector(7 downto 0)

);

end BM_Dilate_Erode;

architecture rtl of BM_Dilate_Erode is

signal loop_mux, loop_data : std_logic := '0';
signal local_data : std_logic_vector(ROWS*COLS downto 0);
signal local_interconnect : std_logic_vector(ROWS*COLS downto 0);
signal clk_e : std_logic := '0';
signal shift_load : std_logic := '0';
signal done : std_logic := '0';
signal operation : std_logic := '0';

component BM_Element is

port(
-- synchronous
clk  : in std_logic;
clk_enable : in std_logic;

-- asynchronous
--reset  : in std_logic;
aload : in std_logic;
adatain : in std_logic;
adataout : out std_logic;

-- input
--topleft : in std_logic;
topmid : in std_logic;
--topright : in std_logic;
midleft : in std_logic;
midright : in std_logic;
--bottomleft : in std_logic;
bottommid : in std_logic;
--bottomright : in std_logic;
operation : in std_logic;

-- output
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output  : out std_logic

);

end component;

begin

controller: process(avs_s1_clk, avs_s1_chipselect, avs_s1_write)
variable dilate_erode : natural := 0; -- 30 Dilate/Erode
variable count : natural := 0; -- Track number of pixels 

loaded and unloaded
begin

--if(avs_s1_reset_n = '0') then -- Asynchronous reset
--dilate_erode := 0;
--count := 0;

--elsif(rising_edge(avs_s1_clk)) then
if(rising_edge(avs_s1_clk)) then

if(avs_s1_chipselect = '1' and avs_s1_write = '1') then -- We 
are being written to

if(count < ROWS*COLS) then
-- Only allow rows*cols number of pixels in

local_data(0) <= avs_s1_writedata(0);
-- Place write data into first shift BM_Element

shift_load <= '1';
-- Shift loading = TRUE
count := count + 1;
-- Increment pixels count

else
-- Written to?
count := ROWS*COLS;
-- Error: Hold at same number of pixels in image
shift_load <= '0';
-- Do not shift

end if;
elsif(avs_s1_chipselect = '1' and avs_s1_read = '1') then -- We are 

being read from
if(avs_s1_address = '0') then

-- Reading..
if(count > 0 and dilate_erode = 30) then

-- Still data?
avs_s1_readdata(0) <= local_data(ROWS*COLS);

-- Place data out
shift_load <= '1';
-- Shift data out
count := count - 1;
-- Decremenet pixels count

else 
avs_s1_readdata(0) <= '0';
-- Don't output
shift_load <= '0';
-- Don't shift
count := 0;

-- Keep count zero
end if;

elsif(avs_s1_address = '1') then
-- Polling...

if(dilate_erode = 30) then
-- Done?

avs_s1_readdata(0) <= '1';
-- Yes

else
avs_s1_readdata(0) <= '0';
-- No

end if;
end if;

end if;
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if(dilate_erode > 14) then
operation <= '1';

else
operation <= '0';

end if;

if(count = ROWS*COLS and dilate_erode < 30) then -- 
Processing

clk_e <= '1';
dilate_erode := dilate_erode + 1;

elsif(count = ROWS*COLS and dilate_erode = 30) then
clk_e <= '0';
dilate_erode := 30;

end if;
end if;

end process;

BM_rows: for j in 0 to ROWS - 1 generate

begin

BM_cols: for i in 0 to COLS - 1 generate

begin
--loop_mux <= local_data(j*COLS + i) when i+j > 0 else loop_data;

U1: BM_Element

port map(
clk => avs_s1_clk,
clk_enable => clk_e,
operation => operation,

-- asynchronous
--reset => avs_s1_reset_n,
aload => shift_load,
adatain => local_data(j*COLS + i), 
adataout => local_data(j*COLS + i + 1),

-- top
--topleft => local_interconnect( ((j + ROWS - 1) mod ROWS)*COLS + 

((i + COLS - 1) mod COLS) ),
topmid => local_interconnect( ((j + ROWS - 1) mod ROWS)*COLS + ((i 

+ COLS) mod COLS) ),
--topright => local_interconnect( ((j + ROWS - 1) mod ROWS)*COLS + 

((i + COLS + 1) mod COLS) ),

-- mid
midleft => local_interconnect( (j*COLS) + ((i+(COLS-1)) mod 

COLS) ),
midright => local_interconnect( (j*COLS) + ((i+(COLS+1)) mod 

COLS) ),

-- bottom
--bottomleft => local_interconnect( ((j + ROWS + 1) mod ROWS)*COLS 

+ ((i + COLS - 1) mod COLS) ),
bottommid => local_interconnect( ((j + ROWS + 1) mod ROWS)*COLS + 

((i + COLS) mod COLS) ),
--bottomright => local_interconnect( ((j + ROWS + 1) mod ROWS)*COLS 

+ ((i + COLS + 1) mod COLS) ),

-- output
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output => local_interconnect( j*COLS + i) -- point to current 

element
);

end generate;

end generate;

--out_memory <= local_interconnect;

end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity BM_Element is

port(
-- synchronous
clk  : in std_logic;
clk_enable : in std_logic;

-- asynchronous
--reset  : in std_logic;
aload : in std_logic;
adatain : in std_logic;
adataout : out std_logic;

-- input
--topleft : in std_logic;
topmid : in std_logic;
--topright : in std_logic;
midleft : in std_logic;
midright : in std_logic;
--bottomleft : in std_logic;
bottommid : in std_logic;
--bottomright : in std_logic;
operation : in std_logic;

-- output
output  : out std_logic

);

end entity;

architecture rtl of BM_Element is

signal pixel, pixel_step : std_logic;
-- signal pixel_step : std_logic;

begin

process(clk, pixel, pixel_step)
begin

pixel <= pixel_step;
end process;

-- In Altera devices, register signals have a set priority.
-- The HDL design should reflect this priority.
process(aload, adatain, clk)
begin

-- The asynchronous reset signal has the highest priority
--if (reset = '0') then

--pixel_step <= '0';
-- Asynchronous load has next-highest priority
if (aload = '1') then

adataout <= pixel;
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pixel_step <= adatain;

else 
-- At a clock edge, if asynchronous signals have not taken priority,
-- respond to the appropriate synchronous signal.
-- Check for synchronous reset, then synchronous load.
-- If none of these takes precedence, update the register output
-- to be the register input.
if (rising_edge(clk)) then

if(clk_enable = '1') then
if(operation = '0') then -- Dilate

--pixel_step <= topleft or topmid or topright or midleft or 
midright or bottomleft or bottommid or bottomright;

pixel_step <=topmid or midleft or midright or bottommid;
else

pixel_step <= not(topmid or midleft or midright or 
bottommid);

end if;
end if;

end if;
end if;

end process;

process(clk)
begin

if(rising_edge(clk)) then
if(operation = '0') then

output <= pixel;
else

output <= not(pixel);
end if;

end if;
end process;

end rtl;
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Appendix C: FIR Filtering VHDL Code

library ieee;
use ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.ALL;
use ieee.numeric_std.all;

entity TemplateTest is
generic
(

ADDRESS_WIDTH : natural  :=   8;
DATA_WIDTH : natural  := 8

);

port
(

-- Input ports
clock : in std_logic;
go_input : in std_logic := '0';
reset_in : in std_logic;
data_input : in std_logic_vector((DATA_WIDTH-1) downto 0);

-- Output ports
wide_data_out : out std_logic_vector((9*2*DATA_WIDTH-1) downto 0);

wide_wr_out : out std_logic_vector(8 downto 0)

);
end TemplateTest;

architecture rtl of TemplateTest is

-- 16 bit memory
signal a_data : std_logic_vector((DATA_WIDTH-1) downto 0);
signal b_data : std_logic_vector((DATA_WIDTH-1) downto 0);
signal data_write_bus : std_logic_vector((9*2*DATA_WIDTH-1) downto 0);
signal data_read_bus : std_logic_vector((9*2*DATA_WIDTH-1) downto 0);

signal wr : std_logic_vector(8 downto 0) := "000000000";
signal sel_col : natural := 0;

signal addr_write_bus : std_logic_vector((9*ADDRESS_WIDTH-1) downto 0);
signal addr_read_bus : std_logic_vector((9*ADDRESS_WIDTH-1) downto 0);
signal square_data : std_logic_vector((2*DATA_WIDTH-1) downto 0);

component TemplateElement

generic
(

DATA_WIDTH : natural := 8;
ADDRESS_WIDTH : natural := 8;
INITIAL_COL : natural;
INITIAL_ROW : natural;
ARRAY_COL : natural;
ARRAY_ROW : natural

);

port 
(
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go : in std_logic := '0';
coeff : in std_logic := '0';
new_row_in : in std_logic := '0';
reset : in std_logic := '0';
clk : in std_logic;

-- 16 bit memory
a : in std_logic_vector ((DATA_WIDTH-1) downto 0);
b    : in std_logic_vector ((DATA_WIDTH-1) downto 0);
data_in : in std_logic_vector ((2*DATA_WIDTH-1) downto 0);
data_out : out std_logic_vector ((2*DATA_WIDTH-1) downto 0);

read_write : out std_logic_vector(0 downto 0);
addr_in : out std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_out : out std_logic_vector((ADDRESS_WIDTH-1) downto 0)

);

end component;

component RowBankMemory is

generic 
(

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8

);

port 
(

clk : in std_logic;
raddr : in natural range 0 to 2**ADDR_WIDTH - 1;
waddr : in natural range 0 to 2**ADDR_WIDTH - 1;
-- 16 bit memory
data : in std_logic_vector((2*DATA_WIDTH-1) downto 0);
q : out std_logic_vector((2*DATA_WIDTH -1) downto 0);

we : in std_logic_vector(0 downto 0) := "0"
);

end component;

component RowMUX is
generic
(

DATA_WIDTH : natural  := 8;
ADDRESS_WIDTH : natural  := 8

);

port
(

-- Input ports
data_write_bus0 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus1 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus2 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus3 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus4 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus5 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus6 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus7 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus8 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);

addr_write_bus0 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus1 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus2 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus3 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus4 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
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addr_write_bus5 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus6 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus7 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus8 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);

addr_read_bus0 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus1 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus2 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus3 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus4 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus5 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus6 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus7 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus8 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);

wr0 : in std_logic_vector(0 downto 0);
wr1 : in std_logic_vector(0 downto 0);
wr2 : in std_logic_vector(0 downto 0);
wr3 : in std_logic_vector(0 downto 0);
wr4 : in std_logic_vector(0 downto 0);
wr5 : in std_logic_vector(0 downto 0);
wr6 : in std_logic_vector(0 downto 0);
wr7 : in std_logic_vector(0 downto 0);
wr8 : in std_logic_vector(0 downto 0);

col_sel : natural;

-- Output ports
data_write_bus_out : out std_logic_vector((2*DATA_WIDTH-1) downto 0);
addr_write_bus_out : out std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus_out : out std_logic_vector((ADDRESS_WIDTH-1) downto 0);
wr_out : out std_logic_vector(0 downto 0)

);
end component;

component FilterRowController is

generic
(

ROW_INIT : natural := 0
);

port
(

-- Input ports
go : in std_logic;
-- reset : in std_logic;
clk : in std_logic;

-- Output ports
go_cmd : out std_logic;
oper : out std_logic_vector(8 downto 0);
-- new_col_out : out std_logic_vector(8 downto 0);
new_row_out : out std_logic_vector(8 downto 0);
col_sel : out std_logic_vector(3 downto 0)
-- col_count_out : out std_logic_vector(7 downto 0)

);

end component;

begin
process(data_input, square_data, go_input)
begin

-- square_data <= data_input*data_input;

-- 16 bit memory
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-- Coefficient of 1
a_data <= data_input((DATA_WIDTH-1) downto 0); 

-- Coefficient of -0.5
b_data(DATA_WIDTH-1) <= '0'; -- not(square_data(2*DATA_WIDTH-1));
b_data((DATA_WIDTH-2) downto 0) <= data_input((DATA_WIDTH-1) downto 1); -- 

not(square_data((2*DATA_WIDTH-1) downto DATA_WIDTH+1))+1;

end process;

filter_rows: for j in 0 to 0 generate -- 12 28

-- Local Row Signals
signal local_wr : std_logic_vector(8 downto 0);
signal local_wr_data : std_logic_vector((9*2*DATA_WIDTH-1) downto 0);
signal local_wr_addr : std_logic_vector((9*ADDRESS_WIDTH-1) downto 0);
signal local_rd_addr : std_logic_vector((9*ADDRESS_WIDTH-1) downto 0);
signal col_control : std_logic_vector(8 downto 0);
signal row_control : std_logic_vector(8 downto 0);
signal oper_control : std_logic_vector(8 downto 0);
signal go_control : std_logic;
signal col_selects : std_logic_vector(3 downto 0);

begin

filter_cols: for i in 0 to 8 generate -- 125 252

begin
U1: TemplateElement2
generic map(

INITIAL_COL => ((i + 124) mod 128),
INITIAL_ROW => ((j + 12) mod 16),
ARRAY_COL => i,
ARRAY_ROW => j

)

port map(
go => go_control,
coeff => oper_control(i),
-- new_col => col_control(i),
new_row_in => row_control(i),
clk => clock,
a => a_data,
b => b_data,
reset => reset_in,
data_in => data_read_bus((j*16 + (2*DATA_WIDTH-1)) downto j*16),

read_write => local_wr(i downto i),
data_out => local_wr_data(((i+1)*2*DATA_WIDTH-1) downto 

(i*2*DATA_WIDTH)),
addr_out => local_wr_addr(((i+1)*ADDRESS_WIDTH-1) downto 

(i*ADDRESS_WIDTH)),
addr_in => local_rd_addr(((i+1)*ADDRESS_WIDTH-1) downto 

(i*ADDRESS_WIDTH))
);

-- wr(j downto j) <= local_wr when sel_col = i else "Z";
-- data_write_bus((j*2*DATA_WIDTH + (2*DATA_WIDTH-1)) downto j*2*DATA_WIDTH) 
<= local_wr_data when sel_col = i else "ZZZZZZZZZZZZZZZZ";
-- addr_write_bus((j*ADDRESS_WIDTH + (ADDRESS_WIDTH-1)) downto 
(j*ADDRESS_WIDTH)) <= local_wr_addr when sel_col = i else "ZZZZZZZZ";
-- addr_read_bus((j*ADDRESS_WIDTH + (ADDRESS_WIDTH-1)) downto 
(j*ADDRESS_WIDTH)) <= local_rd_addr when sel_col = i else "ZZZZZZZZ";

end generate;
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U4: VertFilterRowController
generic map(

ROW_INIT => j
)

port map(
go => go_input,
-- reset => reset_in,
clk => clock,

-- Output ports
go_cmd => go_control,
oper => oper_control,
-- new_col_out => col_control,
new_row_out => row_control,
col_sel => col_selects

);

U3: RowMUX
port map(

data_write_bus0 => local_wr_data((1*2*DATA_WIDTH-1) downto 
(0*2*DATA_WIDTH)),

data_write_bus1 => local_wr_data((2*2*DATA_WIDTH-1) downto 
(1*2*DATA_WIDTH)),

data_write_bus2 => local_wr_data((3*2*DATA_WIDTH-1) downto 
(2*2*DATA_WIDTH)),

data_write_bus3 => local_wr_data((4*2*DATA_WIDTH-1) downto 
(3*2*DATA_WIDTH)),

data_write_bus4 => local_wr_data((5*2*DATA_WIDTH-1) downto 
(4*2*DATA_WIDTH)),

data_write_bus5 => local_wr_data((6*2*DATA_WIDTH-1) downto 
(5*2*DATA_WIDTH)),

data_write_bus6 => local_wr_data((7*2*DATA_WIDTH-1) downto 
(6*2*DATA_WIDTH)),

data_write_bus7 => local_wr_data((8*2*DATA_WIDTH-1) downto 
(7*2*DATA_WIDTH)),

data_write_bus8 => local_wr_data((9*2*DATA_WIDTH-1) downto 
(8*2*DATA_WIDTH)),

addr_write_bus0 => local_wr_addr((1*ADDRESS_WIDTH-1) downto 
(0*ADDRESS_WIDTH)),

addr_write_bus1 => local_wr_addr((2*ADDRESS_WIDTH-1) downto 
(1*ADDRESS_WIDTH)),

addr_write_bus2 => local_wr_addr((3*ADDRESS_WIDTH-1) downto 
(2*ADDRESS_WIDTH)),

addr_write_bus3 => local_wr_addr((4*ADDRESS_WIDTH-1) downto 
(3*ADDRESS_WIDTH)),

addr_write_bus4 => local_wr_addr((5*ADDRESS_WIDTH-1) downto 
(4*ADDRESS_WIDTH)),

addr_write_bus5 => local_wr_addr((6*ADDRESS_WIDTH-1) downto 
(5*ADDRESS_WIDTH)),

addr_write_bus6 => local_wr_addr((7*ADDRESS_WIDTH-1) downto 
(6*ADDRESS_WIDTH)),

addr_write_bus7 => local_wr_addr((8*ADDRESS_WIDTH-1) downto 
(7*ADDRESS_WIDTH)),

addr_write_bus8 => local_wr_addr((9*ADDRESS_WIDTH-1) downto 
(8*ADDRESS_WIDTH)),

addr_read_bus0 => local_rd_addr((1*ADDRESS_WIDTH-1) downto 
(0*ADDRESS_WIDTH)),

addr_read_bus1 => local_rd_addr((2*ADDRESS_WIDTH-1) downto 
(1*ADDRESS_WIDTH)),

addr_read_bus2 => local_rd_addr((3*ADDRESS_WIDTH-1) downto 
(2*ADDRESS_WIDTH)),

addr_read_bus3 => local_rd_addr((4*ADDRESS_WIDTH-1) downto 
(3*ADDRESS_WIDTH)),

addr_read_bus4 => local_rd_addr((5*ADDRESS_WIDTH-1) downto 
(4*ADDRESS_WIDTH)),
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addr_read_bus5 => local_rd_addr((6*ADDRESS_WIDTH-1) downto 

(5*ADDRESS_WIDTH)),
addr_read_bus6 => local_rd_addr((7*ADDRESS_WIDTH-1) downto 

(6*ADDRESS_WIDTH)),
addr_read_bus7 => local_rd_addr((8*ADDRESS_WIDTH-1) downto 

(7*ADDRESS_WIDTH)),
addr_read_bus8 => local_rd_addr((9*ADDRESS_WIDTH-1) downto 

(8*ADDRESS_WIDTH)),

wr0 => local_wr(0 downto 0),
wr1 => local_wr(1 downto 1),
wr2 => local_wr(2 downto 2),
wr3 => local_wr(3 downto 3),
wr4 => local_wr(4 downto 4),
wr5 => local_wr(5 downto 5),
wr6 => local_wr(6 downto 6),
wr7 => local_wr(7 downto 7),
wr8 => local_wr(8 downto 8),

col_sel => conv_integer(col_selects),

-- Output ports
data_write_bus_out => data_write_bus((j*2*DATA_WIDTH + (2*DATA_WIDTH-

1)) downto j*2*DATA_WIDTH),
addr_write_bus_out => addr_write_bus((j*ADDRESS_WIDTH + (ADDRESS_WIDTH-

1)) downto (j*ADDRESS_WIDTH)),
addr_read_bus_out => addr_read_bus((j*ADDRESS_WIDTH + (ADDRESS_WIDTH-

1)) downto (j*ADDRESS_WIDTH)),
wr_out => wr(j downto j)

);

U2: RowBankMemory
port map(

clk => clock,
raddr => conv_integer(addr_read_bus((j*ADDRESS_WIDTH + (ADDRESS_WIDTH-1)) 

downto (j*ADDRESS_WIDTH))),
waddr => conv_integer(addr_write_bus((j*ADDRESS_WIDTH + (ADDRESS_WIDTH-1)) 

downto (j*ADDRESS_WIDTH))),
data => data_write_bus((j*2*DATA_WIDTH + (2*DATA_WIDTH-1)) downto 

j*2*DATA_WIDTH),
we => wr(j downto j),
q => data_read_bus((j*2*DATA_WIDTH + (2*DATA_WIDTH-1)) downto 

j*2*DATA_WIDTH)
);

wide_addr_write_out <= local_wr_addr;
wide_addr_read_out <= local_rd_addr;
wide_data_out <= local_wr_data;
wide_wr_out <= local_wr;

go_control_out <= go_control;
col_selects_out <= col_selects;

end generate;

end rtl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity RowBankMemory is
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generic 
(

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8

);

port 
(

clk : in std_logic;
raddr : in natural range 0 to 2**ADDR_WIDTH - 1;
waddr : in natural range 0 to 2**ADDR_WIDTH - 1;
-- 16 bit memory
data : in std_logic_vector((2*DATA_WIDTH-1) downto 0);
q : out std_logic_vector((2*DATA_WIDTH-1) downto 0);

we : in std_logic := '1'

);

end RowBankMemory;

architecture rtl of RowBankMemory is

-- Build a 2-D array type for the RAM
-- 16 bit memory
subtype word_t is std_logic_vector((2*DATA_WIDTH-1) downto 0);

type memory_t is array(raddr'high downto 0) of word_t;

-- Declare the RAM signal.
signal ram : memory_t;

begin

process(clk)
begin
if(rising_edge(clk)) then 

if(we = '1') then
ram(waddr) <= data;

end if;
 

-- On a read during a write to the same address, the read will
-- return the OLD data at the address
q <= ram(raddr);

end if;
end process;

end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity RowMUX is
generic
(

DATA_WIDTH : natural  := 8;
ADDRESS_WIDTH : natural  := 8

);

port
(

-- Input ports
data_write_bus0 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
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data_write_bus1 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus2 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus3 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus4 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus5 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus6 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus7 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);
data_write_bus8 : in  std_logic_vector((2*DATA_WIDTH-1) downto 0);

addr_write_bus0 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus1 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus2 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus3 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus4 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus5 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus6 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus7 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_write_bus8 : in  std_logic_vector((ADDRESS_WIDTH-1) downto 0);

addr_read_bus0 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus1 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus2 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus3 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus4 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus5 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus6 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus7 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus8 : in std_logic_vector((ADDRESS_WIDTH-1) downto 0);

wr0 : in std_logic_vector(0 downto 0);
wr1 : in std_logic_vector(0 downto 0);
wr2 : in std_logic_vector(0 downto 0);
wr3 : in std_logic_vector(0 downto 0);
wr4 : in std_logic_vector(0 downto 0);
wr5 : in std_logic_vector(0 downto 0);
wr6 : in std_logic_vector(0 downto 0);
wr7 : in std_logic_vector(0 downto 0);
wr8 : in std_logic_vector(0 downto 0);

col_sel : natural;

-- Output ports
data_write_bus_out : out std_logic_vector((2*DATA_WIDTH-1) downto 0);
addr_write_bus_out : out std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_read_bus_out : out std_logic_vector((ADDRESS_WIDTH-1) downto 0);
wr_out : out std_logic_vector(0 downto 0)

);
end RowMUX;

architecture rtl of RowMUX is

begin

SEL_PROCESS: process (col_sel, data_write_bus0, data_write_bus1, data_write_bus2, 
data_write_bus3, data_write_bus4,

data_write_bus5, data_write_bus6, data_write_bus7, 
data_write_bus8, addr_write_bus0, addr_write_bus1,

addr_write_bus2, addr_write_bus3, addr_write_bus4, 
addr_write_bus5, addr_write_bus6, addr_write_bus7,

addr_write_bus8, addr_read_bus0, addr_read_bus1, 
addr_read_bus2, addr_read_bus3, addr_read_bus4,

addr_read_bus5, addr_read_bus6, addr_read_bus7, 
addr_read_bus8, wr0, wr1, wr2, wr3, wr4, wr5, wr6, wr7, wr8) 

begin 
case col_sel is  

when 0  => 
data_write_bus_out <= data_write_bus0; 
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addr_write_bus_out <= addr_write_bus0; 
addr_read_bus_out <= addr_read_bus0;
wr_out <= wr0;

when 1  => 
data_write_bus_out <= data_write_bus1; 
addr_write_bus_out <= addr_write_bus1; 
addr_read_bus_out <= addr_read_bus1; 
wr_out <= wr1;

when 2  => 
data_write_bus_out <= data_write_bus2; 
addr_write_bus_out <= addr_write_bus2; 
addr_read_bus_out <= addr_read_bus2;
wr_out <= wr2;

when 3  => 
data_write_bus_out <= data_write_bus3; 
addr_write_bus_out <= addr_write_bus3; 
addr_read_bus_out <= addr_read_bus3;
wr_out <= wr3;

when 4  => 
data_write_bus_out <= data_write_bus4; 
addr_write_bus_out <= addr_write_bus4; 
addr_read_bus_out <= addr_read_bus4;
wr_out <= wr4;

when 5  => 
data_write_bus_out <= data_write_bus5; 
addr_write_bus_out <= addr_write_bus5; 
addr_read_bus_out <= addr_read_bus5;
wr_out <= wr5;

when 6  => 
data_write_bus_out <= data_write_bus6; 
addr_write_bus_out <= addr_write_bus6; 
addr_read_bus_out <= addr_read_bus6;
wr_out <= wr6;

when 7  => 
data_write_bus_out <= data_write_bus7; 
addr_write_bus_out <= addr_write_bus7; 
addr_read_bus_out <= addr_read_bus7;
wr_out <= wr7;

when 8  => 
data_write_bus_out <= data_write_bus8; 
addr_write_bus_out <= addr_write_bus8; 
addr_read_bus_out <= addr_read_bus8;
wr_out <= wr8;

when others  => 
data_write_bus_out <= data_write_bus0; 
addr_write_bus_out <= addr_write_bus0; 
addr_read_bus_out <= addr_read_bus0;
wr_out <= wr0;

end case;  
end process SEL_PROCESS; 

end rtl;

library ieee;
use ieee.std_logic_1164.all;
-- use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;
use ieee.numeric_std.all;

entity TemplateElement is

generic
(

DATA_WIDTH : natural := 8;
ADDRESS_WIDTH : natural := 8;
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INITIAL_COL : natural;
INITIAL_ROW : natural;
ARRAY_COL : natural;
ARRAY_ROW : natural

);

port 
(

go : in std_logic := '0';
coeff : in std_logic := '0';
new_row_in : in std_logic := '0';
reset : in std_logic := '0';
clk : in std_logic;

-- 16 bit memory
a : in std_logic_vector ((DATA_WIDTH-1) downto 0);
b    : in std_logic_vector ((DATA_WIDTH-1) downto 0);
data_in : in std_logic_vector ((2*DATA_WIDTH-1) downto 0);
data_out : out std_logic_vector ((2*DATA_WIDTH-1) downto 0);

addr_in : out std_logic_vector((ADDRESS_WIDTH-1) downto 0);
addr_out : out std_logic_vector((ADDRESS_WIDTH-1) downto 0)

);

end entity;

architecture rtl of TemplateElement is
-- Build the state machine
type state_types is (IDLE, ACC, STEP_DOWN, STEP_DOWN_IDLE, STEP_DOWN_LOAD);

-- Registers to hold the current state and the next state
signal present_state, next_state : state_types := IDLE;
signal col_counter, prev_col, step_col, step_prev_col : std_logic_vector(6 downto 

0) := std_logic_vector(to_unsigned(INITIAL_COL, 7));
signal row_counter, prev_row, step_row, step_prev_row : std_logic_vector(0 downto 

0) := std_logic_vector(to_unsigned(INITIAL_ROW / 9, 1)); -- conv_std_logic_vector(INITIAL_ROW / 
9, 1);

-- 16 bit memory
signal accumulation, step_accum, step_data_out : 

std_logic_vector((2*DATA_WIDTH-1) downto 0);

signal go_bit, go_done, step_go_done, load_data, step_load_data : std_logic;
signal shift_bit, shift_done, step_shift_done : std_logic;
signal step_read_write : std_logic_vector(0 downto 0);

signal unsigned_a : std_logic_vector((DATA_WIDTH) downto 0);

signal col_shift_counter, step_col_shift_counter : std_logic_vector(3 downto 0) := 
"0000";

-- signal row_shift_counter, next_row_shift_counter : std_logic_vector(4 downto 0) := 
"0000";

signal new_col, step_new_col : std_logic := '0';
signal down_bit, new_row, step_new_row : std_logic := '0';

begin

-- Force positive input to avoid signed operations
unsigned_a(DATA_WIDTH) <= '0';
unsigned_a(DATA_WIDTH-1 downto 0) <= a;

-- Determine what the next state will be, and set the output bits
process (present_state, new_col, new_row, reset, go_bit, down_bit)
begin

case present_state is
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when IDLE =>

if (go_bit = '1') then
next_state <= ACC;

elsif(down_bit = '1') then
next_state <= STEP_DOWN;

else
next_state <= IDLE;

end if;

when ACC =>
next_state <= IDLE;

when STEP_DOWN =>
next_state <= STEP_DOWN_IDLE;

when STEP_DOWN_IDLE =>
next_state <= STEP_DOWN_LOAD;

when STEP_DOWN_LOAD =>
next_state <= IDLE;

end case;

end process;

-- Move to the next state
process(clk, reset)
begin

if(reset = '1') then
present_state <= IDLE;
col_counter <= std_logic_vector(to_unsigned(INITIAL_COL, 7));
row_counter <= std_logic_vector(to_unsigned(INITIAL_ROW / 9, 1));
accumulation <= "0000000000000000";
prev_col <= std_logic_vector(to_unsigned(INITIAL_COL, 7));
prev_row <= std_logic_vector(to_unsigned(INITIAL_ROW / 9, 1));
go_done <= '0';
read_write <= "0";
load_data <= '0';
data_out <= "0000000000000000"; 
col_shift_counter <= "0000";
new_row <= '0';
new_col <= '0';

elsif(clk'event and clk = '1') then
present_state <= next_state;
col_counter <= step_col;
row_counter <= step_row;
prev_col <= step_prev_col;
prev_row <= step_prev_row;
go_done <= step_go_done;
read_write <= step_read_write;
load_data <= step_load_data;
data_out <= step_accum; --step_data_out;
accumulation <= step_accum;
col_shift_counter <= step_col_shift_counter;
new_row <= step_new_row;
new_col <= step_new_col;

end if;
end process;
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process(present_state, data_in, col_counter, row_counter, coeff, accumulation, b, 

unsigned_a, load_data, step_accum, prev_col, prev_row, go_done, col_shift_counter, new_row_in, 
new_col, down_bit)

variable stepping_row : natural range 0 to 8 := 1;
begin

case present_state is

when IDLE =>
step_accum <= accumulation; -- no accumulation or data to load
step_col <= col_counter; -- keep column counter constant
step_row <= row_counter; -- keep row counter constant
step_prev_col <= prev_col;
step_prev_row <= prev_row;

-- 16 bit memory
step_load_data <= load_data;
step_read_write <= "0";

if(col_shift_counter = std_logic_vector(to_unsigned(ARRAY_COL, 4))) 
then

step_new_col <= '1';
else

step_new_col <= '0';
end if;

step_col_shift_counter <= col_shift_counter;

when ACC =>

if(down_bit = '1') then
if(load_data = '1') then

step_accum <= data_in;
step_load_data <= '0';

else
step_accum <= accumulation;

end if;
else

if(load_data = '1') then
if(coeff = '1') then

step_accum <= data_in - b;
else

step_accum <= data_in + unsigned_a;
end if;
step_load_data <= '0';

else
if(coeff = '1') then

step_accum <= accumulation - b;
else

step_accum <= accumulation + unsigned_a;
end if;

end if;
end if;
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if(new_col = '1') then

step_col <= col_counter + 9;

step_row <= row_counter; -- keep row counter constant
step_prev_col <= col_counter;
step_prev_row <= row_counter;
step_read_write <= "1";
step_load_data <= '1';
if(col_shift_counter = "1000") then

step_col_shift_counter <= "0000";
else

step_col_shift_counter <= col_shift_counter + 1;
end if;

else
step_col <= col_counter;
step_row <= row_counter; -- keep row counter constant
step_prev_col <= prev_col;
step_prev_row <= prev_row;
step_read_write <= "0";
step_load_data <= '0';
if(col_shift_counter = "1000") then

step_col_shift_counter <= "0000";
else

step_col_shift_counter <= col_shift_counter + 1;
end if;

end if;

step_new_col <= '0';

when STEP_DOWN =>
step_accum <= accumulation;
step_col <= std_logic_vector(to_unsigned(INITIAL_COL, 

step_col'length)); -- return column counter to initial position
if(ARRAY_ROW = stepping_row) then

step_row <= row_counter + 1; -- increment row counter
else

step_row <= row_counter;
end if;
if(stepping_row = 8) then

stepping_row := 0;
else

stepping_row := stepping_row + 1;
end if;
step_prev_col <= col_counter;
step_prev_row <= row_counter;
step_read_write <= "1";
step_load_data <= '1';
step_col_shift_counter <= "0000"; -- col_shift_counter;
step_new_col <= '0';

when STEP_DOWN_IDLE =>

step_accum <= accumulation;
step_load_data <= '0';
step_col_shift_counter <= col_shift_counter;
step_col <= col_counter; -- keep column counter constant
step_row <= row_counter; -- keep row counter constant
step_prev_col <= prev_col;
step_prev_row <= prev_row;
step_read_write <= "0";
step_load_data <= '0';
step_new_col <= '0';
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when STEP_DOWN_LOAD =>

step_accum <= data_in;
step_load_data <= '0';
step_col_shift_counter <= col_shift_counter;
step_col <= col_counter; -- keep column counter constant
step_row <= row_counter; -- keep row counter constant
step_prev_col <= prev_col;
step_prev_row <= prev_row;
step_read_write <= "0";
step_load_data <= '0';
step_new_col <= '0';

end case;
end process;

-------------------------------------------------------------
-- Internal Control Process
-- 
-- This process modifies the go command from the processor so that
-- only a single increment can occur per toggle of the go signal
-- with the goal of eliminating timing issues or gliches where
-- no accumulation or multiple accumulations of the same data
-- occurs.
--   
--
-- This process drives the following signals:
--   step_go_done: this sets the go_done signal to the value of
--    the go input so that the internal go_bit signal
--    is set when an accumulation has not yet occured
--     and cleared when the accumulation state is reached
--    once.
--   
-------------------------------------------------------------
process(present_state, go, go_done, new_row, new_row_in)
begin

if(present_state = ACC) then -- Accumulation state?
step_go_done <= go; -- Set go_done to the go bit on next clock cycle
step_new_row <= new_row;

elsif(present_state = STEP_DOWN) then
step_new_row <= new_row_in;
step_go_done <= go_done;

else
step_new_row <= new_row;
step_go_done <= go_done; -- Any other state keeps go_done constant

end if;
end process;

down_bit <= new_row xor new_row_in;
go_bit <= go_done xor go;
addr_in(7 downto 7) <= row_counter;
addr_in(6 downto 0) <= col_counter;
addr_out(7 downto 7) <= prev_row;
addr_out(6 downto 0) <= prev_col;

end rtl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity FilterRowController is

generic
(
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ROW_INIT : natural := 0

);

port
(

-- Input ports
go : in  std_logic;
clk : in  std_logic;

-- Output ports
go_cmd : out std_logic;
oper : out std_logic_vector(8 downto 0) := "111000111";
new_col_out : out std_logic_vector(8 downto 0);
new_row_out : out std_logic_vector(8 downto 0);
col_sel : out std_logic_vector(3 downto 0)

);
end FilterRowController;

architecture rtl of FilterRowController is

subtype Array_Control is std_logic_vector(8 downto 0);
subtype Col_Sel_Control is std_logic_vector(3 downto 0);

type Software_Array_Type is array(9 downto 1) of Array_Control;
type Col_Sel_Software_Type is array(8 downto 0) of Col_Sel_Control;

signal Oper_Control_LUT : Software_Array_Type;
signal Col_Control_LUT : Software_Array_Type;
signal Row_Control_LUT : Software_Array_Type;
-- signal Col_Sel_Control_LUT : Col_Sel_Software_Type;

begin

--Oper_Control_LUT(0) <= "000000000";
Oper_Control_LUT(1) <= "111000111";
Oper_Control_LUT(2) <= "110001111";
Oper_Control_LUT(3) <= "100011111";
Oper_Control_LUT(4) <= "000111111";
Oper_Control_LUT(5) <= "001111110";
Oper_Control_LUT(6) <= "011111100";
Oper_Control_LUT(7) <= "111111000";
Oper_Control_LUT(8) <= "111110001";
Oper_Control_LUT(9) <= "111100011";

--Row_Control_LUT(0) <= "000000000";
Row_Control_LUT(1) <= "000000001";
Row_Control_LUT(2) <= "000000011";
Row_Control_LUT(3) <= "000000111";
Row_Control_LUT(4) <= "000001111";
Row_Control_LUT(5) <= "000011111";
Row_Control_LUT(6) <= "000111111";
Row_Control_LUT(7) <= "001111111";
Row_Control_LUT(8) <= "011111111";
Row_Control_LUT(9) <= "111111111";

--Col_Control_LUT(0) <= "000000000";
Col_Control_LUT(1) <= "000000001";
Col_Control_LUT(2) <= "000000010";
Col_Control_LUT(3) <= "000000100";
Col_Control_LUT(4) <= "000001000";
Col_Control_LUT(5) <= "000010000";
Col_Control_LUT(6) <= "000100000";
Col_Control_LUT(7) <= "001000000";
Col_Control_LUT(8) <= "010000000";
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Col_Control_LUT(9) <= "100000000";

process(clk, go)

variable step_counter : integer range 1 to 9 := 1;
variable step_down_counter : integer range 0 to 127 := 0;
variable row_step_counter: integer range 0 to 9 := 0;
variable col_sel_counter : integer range 0 to 8 := 0;
variable three_clk : integer range 0 to 2 := 0;
variable two_clk : integer range 0 to 1 := 1;
variable go_toggle : std_logic := '0';

begin

if(clk'event and clk = '1') then

if(step_down_counter = 127) then
oper <= Oper_Control_LUT(1);
new_col_out <= Col_Control_LUT(1);
new_row_out <= Row_Control_LUT(row_step_counter);
col_sel <= conv_std_logic_vector(row_step_counter, 4);
if(three_clk = 2) then

if(row_step_counter = 9) then
step_down_counter := 0;
row_step_counter := 9;
step_counter := 1;
col_sel_counter := 0;

else
row_step_counter := row_step_counter + 1;
three_clk := 0;

end if;
else

three_clk := three_clk + 1;

end if;

else
oper <= Oper_Control_LUT(step_counter);
new_col_out <= Col_Control_LUT(1);
col_sel <= conv_std_logic_vector(col_sel_counter, 4);
new_row_out <= Row_Control_LUT(row_step_counter);

if(go = '1') then
go_toggle := not(go_toggle);
go_cmd <= go_toggle;

step_down_counter := step_down_counter + 1;

if(step_counter = 9) then
step_counter := 1;

else
step_counter := step_counter + 1;

end if;

if(col_sel_counter = 9) then
col_sel_counter := 1;

else
col_sel_counter := col_sel_counter + 1;

end if;
two_clk := 0;

else
go_cmd <= go_toggle;

end if;
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end if;

end if;

end process;

end rtl;
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