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Abstract

In this paper, we consider a generalization of binomial coefficients, called C–
nomial coefficients, dependent upon a sequence {un}n, with indices in arithmetic
progressions. We obtain a general recurrence relation and a generating matrix, and
point out some new relationships between these coefficients and the generalized Pascal
matrices. Further, we obtain generating functions, combinatorial representations, and
many new interesting identities and properties of these coefficients.

1 Introduction

Given that binomial coefficients are very important tools in combinatorics, much effort
has been devoted to generalize these objects. We mention here the work of Bachmann [1],
Carmichael [3], Fontené [6], Ward [25], as well as the more recent [7, 9, 13, 19, 20, 22, 23].

We define the generalized C–nomial coefficients formed with the terms of a sequence
C = {Cn}n: for n ≥ m ≥ 1[

n

m

]
C

=
C1C2 . . . Cn

(C1C2 . . . Cn−m) (C1C2 . . . Cm)

with
[
n
0

]
C

=
[
n
n

]
C

= 1. One can define the nth C-factorial by Cn! = C1C2 . . . Cn. When

Cn = Fn is the Fibonacci sequence, the numbers
[
m
k

]
F

= Fn!
Fm!Fn−m! are called Fibonomials,

and if Cn = (qn−1)/(q−1), the numbers
[
m
k

]
q

= (qm−1)···(qm−k+1−1)
(q−1)···(qk−1) are called q-binomial,

or Gaussian coefficients.
Bachmann [1, p. 81], Carmichael [3, p. 40], and Jarden and Motzkin [13], all showed

that if u = {un}n is a Lucas sequence; that is, if u0 = 0, u1 = 1 and satisfies the recurrence
un+2 = Aun+1 +Bun for all nonnegative integers n with some nonzero integers A and B
such that the quadratic equation x2 −Ax−B = 0 has two distinct roots α and β whose
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ratio is not a root of unity, then all the C–nomial coefficients are integers (by abuse
of notation, we will call all such coefficients C–nomials, if the sequence is not special,
but understood from context). The Fibonomial coefficients are particular cases of this
instance with A = B = 1. When A = q + 1 and B = −q, where q > 1 is some fixed
integer, the C–nomial coefficients become the q-binomial coefficients.

The Fibonomial coefficients satisfy the relation[
n

m

]
F

= Fm+1

[
n− 1

m

]
F

+ Fn−m−1

[
n− 1

m− 1

]
F

.

We now take the case of a Lucas sequences with A ∈ Z, B = 1, say un and its
companion vn

un = Aun−1 + un−2

vn = Avn−1 + vn−2
(1)

where u0 = 0, u1 = 1 and v0 = 2, v1 = A, respectively, for all n ≥ 2.
There are some relationships between the Fibonomial coefficients (for more details see

[2, 4, 10, 21, 17]), and the generalized Pascal matrix Pn, which is the n×n right-justified
matrix whose (i, j) entry is given by

(Pn)ij =

(
j − 1

j + i− n− 1

)
Ai+j−n−1.

In [9], Hoggatt considers the C–nomial coefficients with indices in an arithmetic pro-
gression. For A fixed, he defined the numbers (for m ≥ n){

n

m

}
u,k

=
uku2k . . . ukn(

uku2k . . . uk(n−m)

)
(uku2k . . . ukm)

,

which we call k : C–nomial coefficients (or generalized C–nomial coefficients, if k is not
specified). It is straightforward to show that they satisfy the following recurrences:{

n

m

}
u,k

= ukm+1

{
n− 1

m

}
u,k

+ uk(n−m)−1

{
n− 1

m− 1

}
u,k

and {
n

m

}
u,k

= ukm−1

{
n− 1

m

}
u,k

+ uk(n−m)+1

{
n− 1

m− 1

}
u,k

.

When the sequence {un}n is understood from the context, we will write
{
n
m

}
k

instead of{
n
m

}
u,k

. When k = 1, the coefficient
{
n
m

}
u,1

is reduced to
[
n
m

]
u
.

Let α, β be the roots of the associated equation x2 −Ax− 1 = 0. As a special case of
[17], we have that for r ≥ 1 and n > 1,

urn = vrur(n−1) + (−1)r+1 ur(n−2) (2)

vrn = vrvr(n−1) + (−1)r+1 vr(n−2).
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Using the sequence {vr}, the authors of [17] define the n×n generalized Pascal matrix
Pn (vr) as follows:

Pn (vr) =

(
vi+j−n−1r (−1)(r+1)(n−j)

(
i− 1

n− j

))
1≤i,j≤n

and then show that for all m > 0, the trace

tr (Pmn (vr)) =
urnm
ur

.

Observe that Pn (v1) = Pn. As an example,

P6(vr) =



0 0 0 0 0 1

0 0 0 0 (−1)r+1 vr
0 0 0 1 2 (−1)r+1 vr v2r
0 0 (−1)r+1 3vr 3 (−1)r+1 v2r v3r
0 1 4 (−1)r+1 vr 6v2r 4 (−1)r+1 v3r v4r
(−1)r+1 5vr 10 (−1)r+1 v2r 10v3r 5 (−1)r+1 v4r v5r


.

Moreover, they derived that the eigenvalues and the characteristic polynomial of Pn+1 (vr)
are

αrn, αr(n−1)βr, . . . , αrβr(n−1), βrn. (3)

and

Pr,n(x) =
n−1∏
j=0

(
x− αjrβ(n−j−1)r

)
=

n∑
i=0

(−1)i (−1)ri(i−1)/2
{n
i

}
r
xn−i (4)

where the coefficient
{
n
i

}
r

is our generalized r : C–nomial coefficients.
In [18], we defined the recursive analogue of the entries of the Lehmer matrix and then

formulated its determinant via the Fibonomial factorials (or F–factorials).
In this paper, our purpose is to find generating matrices for generalized r : C–onomial

coefficients
{
n
m

}
r

and derive a linear recurrence relation for the generalized r : C–nomial
coefficients. We obtain new general identities, generating functions, combinatorial repre-
sentations for them and their sums by matrix methods.

2 Generalized C–nomial coefficients

In this section, we fix a Lucas sequence un as in (1) and derive a recurrence relation and
generating matrix for the generalized C–nomial coefficients. The case k = 2 and r = 1,
was investigated in [14, 15].

First, we define the sign function

s (i, r) =

{
(−1)(i−1)(i−2)/2 if r is odd,

(−1)i+1 if r is even,
(5)
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and extend the generalized C–nomial coefficients by{
n

m

}
r

=


0 if m > n and n ≥ 0,

s (m, r) if m > n and n < 0,
uru2r...unr

(uru2r...umr)(uru2r...u(n−m)r)
m ≤ n.

For the sake of compactness, we shall use the following notations, for fixed k with 1 ≤
i ≤ k + 1 :

an,i = s (i, r)

{
n+ k

k − i+ 1

}
r

{
n+ i− 2

i− 1

}
r

. (6)

As we will be using it later, recall the following identity from [24, p. 176]

Fn+m = Fm−1Fn + FmFn+1,

which generalizes (for the sequence {un}), for any integers k,m, n and positive integer
r > 0

urkur(n+m) = urmur(n+k) + (−1)rm urnur(k−m). (7)

Now we give the following result.

Lemma 1. For n > 0, 1 ≤ i ≤ k and for odd r,

a1,ian,1 + (−1)i−1 an,i+1 = an+1,i,

and for even r,
a1,ian,1 − an,i+1 = an+1,i,

where an,i be as before.

Proof. The proof for r odd can be found in [14]. Assume r is even. We simplify the
equality a1,ian,1 − an,i+1 = an+1,i, reducing it to

ur(k+1)ur(n+i) + urnur(k−i+1) = uriur(n+k+1).

By taking k → k + 1 in (7), we obtain the second claim of our lemma.

For k, r ≥ 1, we define the (k + 1) × (k + 1) companion matrix Gr,k and the matrix
Hn,r,k as follows:

Gr,k =


a1,1 a1,2 . . . a1,k+1

1
. . .

...
0 1 0

 and

Hn,r,k =


an,1 an,2 . . . an,k+1

an−1,1 an−1,2 . . . an−1,k+1
...

...
. . .

...
an−k,1 an−k,2 . . . an−k,k+1

 .
(8)

We say that the matrix Gr,k is the generalized C–nomial matrix (with indices in the
arithmetic progression ≡ 0 (mod k)).

Now we give our main result of this section.
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Theorem 2. For all n, r > 0,
Gnr,k = Hn,r,k.

Proof. We use induction on n. The case of n = 1 follows from the definitions of the
matrix Hn,r,k and k : C–nomial coefficients. Suppose that the equation holds for n ≥ 1.
Now we show that the equation holds for n+ 1. First, we write

Gn+1
r,k = Gr,kG

n
r,k = Gr,kHn,r,k.

From Lemma 1 and matrix multiplication, we get

Gn+1
r,k = Gr,kHn,r,k = Hn+1,r,k,

and the theorem is shown.

It is valuable to note that when k = 1, we obtain the following fact (see [16]):

G1,1 =

[
vr (−1)r+1

1 0

]
and Hn,1,1 =

[
ur(n+1) urn
urn ur(n−1)

]
.

When A = r = 1, we get the following well known fact:

G1,1 =

[
1 1
1 0

]
and Hn,1,1 =

[
Fn+1 Fn
Fn Fn−1

]
.

When A = 1, r = 3, k = 2, we get the matrix G3,2 and its nth power as

G3,2 =

 F9
F3

F9
F3
−1

1 0 0
0 1 0

 and Hn,3,2 =


F3(n+1)F3(n+2)

F3F6

F3nF3(n+2)

F3F3
−F3nF3(n+1)

F3F6
F3nF3(n+1)

F3F6

F3(n−1)F3(n+1)

F3F3
−F3(n−1)F3n

F3F6
F3(n−1)F3n

F3F6

F3(n−2)F3n

F3F3
−F3(n−2)F3(n−1)

F3F6


The case A = 1, r = 1 and k = 2 can be found in [15].

From the companion matrix Gr,k, we give a linear recurrence relation for the C–nomial
coefficients.

Corollary 3. For n, k > 0, the C–nomial coefficients satisfy the following order-(k + 1)
linear recursion

an+1,1 =
k+1∑
i=1

a1,ian−i+1,1

or, equivalently,{
n+k+1

k

}
r

= s (1, r)
{
k+1
k

}
r

{
n+k
k

}
r

+ s (2, r)
{
k+1
k−1
}
r

{
n+k−1

k

}
r

+ · · ·+ s (k, r)
{
k+1
1

}
r

{
n+1
k

}
r

+ s (k + 1, r)
{
n
k

}
r
.

Proof. Since an,1 =
{
n+k
k

}
r

and using matrix multiplication, by equating the (1, 1) entries
in the equation H1,r,kHn,r,k = Hn+1,r,k, the claim follows.
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All identities in the next corollary can be obtained from a property of the ma-
trix multiplication in Hn+1,r,k = Hn,r,kH1,r,k, Hn+m,r,k = Hn,r,kHm,r,k and Hn+t,r,k =
Hn+m,r,kHt−m,r,k for n,m > 0 and t > q.

Corollary 4. For n, r > 0, the following identities hold:

an−1,1 = an,k+1,

am+n+1−i,j =
∑k+1

t=1 an+1−i,tam+1−t,j for all m > 0,

an+t+1−i,j =
∑k+1

m=1 an+q+1−i,mat−q+1−i,j for t > 0 and t > q,
an+1,1 = a1,1an,1 + an,2,
an+1,k+1 = an,1a1,k+1,
an+1,i = a1,ian,1 + an,i+1 for 2 ≤ i ≤ k.

3 The eigenvalues of the matrix Gr,k

In this section we determine the eigenvalues of the matrix Gr,k. Since Gr,k is a companion
matrix, its characteristic polynomial, fr,k (x), can be easily derived.

Thus we have the following result, whose proof is immediate.

Proposition 5. For n, k, r > 0,

fr,k (x) =

k+1∑
t=0

(−s (t, r))

{
k + 1

t

}
r

xk+1−t

where the sign function s (t, r) is as in (5).

Here clearly

−s (t, r) =

{
(−1)i(i+1)/2 if r is odd,

(−1)i if r is even,

and for odd r > 0 and n, k > 0,

fr,k (x) =
k+1∑
t=0

(−1)i(i+1)/2

{
k + 1

t

}
r

xk+1−t

and even r > 0,

fr,k (x) =

k+1∑
t=0

(−1)i
{
k + 1

t

}
r

xk+1−t.

According to [5, 8, 9, 12], the nth powers of Fibonacci numbers satisfy the following
auxiliary polynomial

Cn (x) =
n∑
i=0

(−1)i(i+1)/2

{
n

i

}
F,1

xn−i.

In [2, 5], the authors show that the characteristic polynomial of the Pascal matrix
Hn (p) is also equal to the polynomial Cn (x) = f1,k (x) and so Cn (x) = h1,n (x) = f1,k (x) .

Consequently, we have the following result.
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Proposition 6. Let α, β =
(
p±

√
p2 + 4

)
/2. The characteristic roots of Cm+1 (x) =

f1,m (x) are:

{
(−1)j αm−2j , (−1)j βm−2j

}
j=0,1,...,k−1

if m = 2k − 1,{
(−1)k , (−1)j αm−2j , (−1)j βm−2j

}
j=0,1,...,k−1

if m = 2k.

As a general case of Proposition 6, in [17] we considered the generalized Pascal matrix
Pn (Vr) and then gave its characteristic polynomial hr,n (x) as in (3). It is clear that the
characteristic polynomials of the generalized k : C–nomial matrix Gr,k and the generalized
Pascal matrix Pk+1 (vr) are the same. Also we know that the all roots of the polynomial
from [17], that is, the eigenvalues (clearly, distinct) of the matrix Gr,k are

αrk, αr(k−1)βr, . . . , αrβr(k−1), βrk.

Alternatively, we may give the following proposition.

Proposition 7. Let α, β =
(
p±

√
p2 + 4

)
/2. The eigenvalues of Gr,k are:{

(−1)jr αr(k−2j), (−1)jr βr(k−2j)
}
j=0,1,...,t−1

if k = 2t− 1,{
(−1)tr , (−1)jr αr(k−2j), (−1)jr βr(k−2j)

}
j=0,1,...,t−1

if k = 2t.

As an example, when k = r = 4, we have

G4,4 =


a1 −b1 c1 −d1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 and Hn,4,4 =


an −bn cn −dn an−1
an−1 −bn−1 cn−1 −dn−1 an−2
an−2 −bn−2 cn−2 −dn−2 an−3
an−3 −bn−3 cn−3 −dn−3 an−4
an−4 −bn−4 cn−4 −dn−4 an−5


where an =

{
n+4
4

}
4
, bn =

{
n+4
3

}
4

{
n
1

}
4
, cn =

{
n+4
2

}
4

{
n+1
2

}
4
, dn =

{
n+4
1

}
4

{
n+2
3

}
4
.

The characteristic polynomial and the roots of G4,4 are given by

f4,4 (x) =

5∑
i=0

(−1)i
{

5

i

}
4

x5−i

and λ5 = α16, λ4 = β16, λ3 = α8, λ2 = β8, λ1 = 1 where α, β =
(
p±

√
p2 + 4

)
/2, and so,

the matrix H5 (v4) has the same eigenvalues as the matrix G4,4.
If we take k = 4 and r = 3, then

G3,4 =


a1 b1 −c1 −d1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 and Hn,3,4 =


an bn −cn −dn an−1
an−1 bn−1 −cn−1 −dn−1 an−2
an−2 bn−2 −cn−2 −dn−2 an−3
an−3 bn−3 −cn−3 −dn−3 an−4
an−4 bn−4 −cn−4 −dn−4 an−5


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where an =
{
n+4
4

}
3
, bn =

{
n+4
3

}
3

{
n
1

}
3
, cn =

{
n+4
2

}
3

{
n+1
2

}
3
, dn =

{
n+4
1

}
3

{
n+2
3

}
3
. The

characteristic polynomial and the roots of G3,4 are given by

f3,4 (x) =

5∑
i=0

(−1)i(i+1)/2

{
5

i

}
3

x5−i

and λ5 = α12, λ4 = β12, λ3 = −α6, λ2 = −β6, λ1 = 1.
Generalizing this discussion, we can give the following result.

Corollary 8. For n, k, r > 0,

k+1∏
i=1

(x− λi) =
k+1∑
t=0

(−s(t− 1))

{
k + 1

t

}
r

xk+1−t.

In [4], Cooper and Kennedy show that

tr (Pk (v1)) =
ukn
un

,

where Hn (p) is the generalized Pascal matrix. This was extended in one direction by us
(along with G.N. Stănică) in [17] to show

tr (Pnk (vr)) =
urkn
uk

.

Since the matrices Hn,r,k and Pnk−1 (vr) have the same eigenvalues, we also get

tr (Hn,r,k−1) =
urkn
ur

,

which easily implies the next result.

Theorem 9. For n > 0,

tr (Hn,r,k) =

bk−1/2c∑
i=0

(−1)inr v(k−2i)nr +
1

2

(
1 + (−1)k

)
.

From Proposition 7, we explicitly find the eigenvalues of the generalized k : C–nomial
matrix.

4 The diagonalization of Gr,k and the generalized Binet for-
mula

In this section we diagonalize the matrix Gr,k and then derive the Binet formula for the

r : C–nomial coefficients
{
k
m

}
r
. Let λ1, λ2, . . . , λk+1 be the eigenvalues of Gr,k. Since the

eigenvalues are all distinct, we can diagonalize Gr,k.
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We define the (k + 1) × (k + 1) Vandermonde matrix V and diagonal matrix D =
diag (λ1, λ2, . . . , λk+1) as shown:

V =


λk1 λk2 . . . λkk+1
...

...
...

λ21 λ22 . . . λ2k+1

λ1 λ2 . . . λk+1

1 1 1 1

 and D =


λ1

λ2
. . .

λk+1

 .
Since λi 6= λj for 1 ≤ i, j ≤ k + 1, detV 6= 0.

Let V
(i)
j is the (k + 1)× (k + 1) matrix obtained from the transpose V T by replacing

the jth column of V by wi where

wi =
[
λn−i+k+1
1 λn−i+k+1

2 . . . λn−i+k+1
k+1

]T
.

Now we give the Binet formula for the generalized r : C–nomial coefficients. The case
r = 1 is given in [14]. The cases r > 1 can be easily obtained similar to the case r = 1.

Theorem 10. For n, r, k > 0, and ar,s as in (6), then

an−i+1,j =
det
(
V

(i)
j

)
det (V )

.

Let V
(ei)
j be a (k + 1)× (k + 1) matrix obtained from the Vandermonde matrix V by

replacing the jth column of V by ei where V is defined as before and ei is the ith element
of the natural basis for Rn, that is,

V
(ei)
j =



λk1 . . . λkj−1 0 λkj+1 . . . λkk+1
...

...
...

...
...

λk−i+1
1 . . . λk−i+1

j−1 0 λk−i+1
j+1 . . . λk−i+1

k+1

λk−i1 . . . λk−ij−1 1 λk−ij+1 . . . λk−ik+1

λk−i−11 . . . λk−i−1j−1 0 λk−i−1j+1 . . . λk−i−1k+1
...

...
...

...
...

λ1 . . . λj−1 0 λj+1 . . . λk+1

1 . . . 1 0 1 . . . 1


↓
ei

.

Let q
(i)
j =

∣∣∣∣V (ei)
j

∣∣∣∣
|V | where the (k + 1)× (k + 1) matrices V

(ei)
j and V are defined as before.

We give the following theorem, whose proof is straightforward (the case r = 1 is given
in [14], and the remaining cases, r > 1 can be similarly obtained).

Theorem 11. Let λ1, λ2, . . . , λk+1 be the distinct roots of xk+1−a1,1xk−a1,2xk−1−· · ·−
a1,kx− a1,k+1 = 0. For any integer n and 1 ≤ i ≤ k + 1,

an,i =

k+1∑
j=1

q
(i)
j λn+kj .
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For example, when A = 1, we get α, β =
(
1±
√

5
)
/2 . For k = 2, r = 3 and A = 1, the

roots of x3 − F9
F3
x2 − F9

F3
x+ 1 = 0 are γ1 = α6, γ2 = β6, γ3 = −1. By some computations,

we get

q
(1)
1 = 1

(γ1−γ3)(γ1−γ2) , q
(1)
2 = 1

(γ2−γ3)(γ2−γ1) , q
(1)
3 = 1

(γ2−γ3)(γ1−γ3) ,

q
(2)
1 = − γ2+γ3

(γ1−γ2)(γ1−γ3) , q
(2)
2 = γ1+γ3

(γ2−γ3)(γ1−γ2) , q
(2)
3 = − γ1+γ2

(γ2−γ3)(γ1−γ3) ,

q
(3)
1 = γ2γ3

(γ1−γ3)(γ1−γ2) , q
(3)
2 = − γ1γ3

(γ1−γ2)(γ2−γ3) , q
(3)
3 = γ1γ2

(γ2−γ3)(γ1−γ3) .

Thus, by Theorem 11 and some arrangements, we get

F3(n+1)F3(n+2) = F3F6

(
γ
(n+2)
1

(γ1−γ3)(γ1−γ2) +
γ
(n+2)
2

(γ2−γ3)(γ2−γ1) + (−1)n+2

(γ2−γ3)(γ1−γ3)

)
=

F6n+12 + F6n+6 + F6 (−1)n

10
,

and

F3nF3(n+2) = F3F3

(
− (γ2+γ3)γ

n+2
1

(γ1−γ2)(γ1−γ3) +
(γ1+γ3)γ

n+2
2

(γ2−γ3)(γ1−γ2) −
(γ1+γ2)γ

n+2
3

(γ2−γ3)(γ1−γ3)

)
=

F6(n+2) − F6n − F12 (−1)n

40
.

5 Sums and a generating function for the generalized C–
nomial coefficients

In this section, we consider the sum of the generalized r : C–nomial coefficients by matrix
methods. For this sum, we define a new matrix by extending Gr,k (8). Take the (k + 2)×
(k + 2) matrices

Tr,k =


1 0 . . . 0
1
0 Gr,k
...
0

 and Wn,r,k =


1 0 . . . 0
Sn,r

... Hn,r,k

Sn−k,r


where Sn,r is given by

Sn,r =
n−1∑
i=0

ai,1 =
n−1∑
i=0

{
k+i
k

}
r
.

Then we have the following result.

Theorem 12. For n, r, k > 0,
Tnr,k = Wn,r,k.
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Proof. Since Sn+1,r = an,1 + Sn,r and by Theorem 2, we write the matrix recurrence
relation Wn,r,k = Wn−1,r,kTr,k. By the induction method, we write Wn,k = W1,kT

n−1
k .

From the definition of Wn,k, we obtain W1,r,k = T 1
r,k and so Wn,r,k = Tnr,k, and the proof

is complete.

From Proposition 7, we know that the polynomial fr,k has root 1 for even r and
k ≡ 0 (mod 4) . Expanding det (λIk+2 − Tr,k) with respect to the first row, it is easily
seen that the matrix Tr,k has also the eigenvalue 1. Thus the matrix Tr,k has a double
eigenvalue for even r and k ≡ 0 (mod 4) . For odd r and k 6≡ 0 (mod 4) , we can diagonalize
the matrix Tr,k and so we derive an explicit formula for the sum.

Define a (k + 2)× (k + 2) matrix M as shown:

M =


1 0 . . . 0
δ
... V
δ


where δ =

(
1−

∑k+1
i=1 a1,i

)−1
and the Vandermonde matrix V is defined as before.

It is easy to see that Tr,kM = MD1, where D1 = diag (1, λ1, . . . , λk+1). By the
Vandermonde matrix V, computing detM with respect to the first row shows detM =
detV.

Theorem 13. For n, k > 0, k 6≡ 0 (mod 4) and odd r > 0

Sn,r =
an,1 + an,2 + · · ·+ an,k+1 − 1∑k+1

i=1 a1,i − 1
.

Proof. Since M is invertible, M−1Tr,kM = D1, that is, Tr,k is similar to D1. Thus we
write TnkM = MDn

1 . By Theorem 12, Wn,r,kM = MDn
1 . Equating the (2, 1)th elements

of Wn,r,kM = MDn
1 and from a matrix multiplication, the proof follows.

From Theorem 13, for r = k = 3 and n ≥ 0, one may obtain

n∑
i=0

{
3+i
3

}
3

=
{n+3

3 }3+{
n+3
2 }3{

n
1}3−{

n+3
1 }3{

n+1
2 }3−{

n+2
3 }3−1

{43}3+{
4
2}3−{

4
1}3−{

4
0}3−1

.

Next, we display a generating function for the generalized C–nomial coefficients. De-
fine

g (i, x) = a0,i + a1,ix+ a2,ix
2 + a3,ix

3 + · · ·+ an,ix
n + · · ·

where an,i is defined as before. The proof of the following proposition is rather straight-
forward and it is left as an exercise to the reader.

Proposition 14. For 1 ≤ i ≤ k + 1 and 1 ≤ t ≤ k

g (i, x) =
a0,i +

(
at,i −

∑t
m=1 a1,mat−m,i

)
xt

1− a1,1x− a1,2x2 − · · · − a1,k+1xk+1
.
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For example, when i = 1 in Proposition 14, we get, for odd r,

∞∑
n=0

{
n+k
k

}
r
xn

=
1

1−
{
k+1
k

}
r
x−

{
k+1
k−1
}
r
x2 + · · ·+ (−1)k(k+1)/2 {k+1

1

}
r
xk + (−1)(k+1)(k+2)/2 xk+1

and for even r

∞∑
n=0

{
n+k
k

}
r
xn

=
1

1−
{
k+1
k

}
r
x+

{
k+1
k−1
}
r
x2 + · · ·+ (−1)k

{
k+1
1

}
r
xk + (−1)(k+1) xk+1

.

For k = r = 3 and i = 1, we get

∞∑
n=0

{
n+3
3

}
3
xn =

1

1−
{
4
3

}
3
x−

{
4
2

}
3
x2 +

{
4
1

}
3
x3 + x4

.

Similarly, one can obtain a plethora of other identities by taking other values of the
involved parameters.
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[18] E. Kilic and P. Stănică, The Lehmer matrix and its recursive analogue, accepted in
J. of Combinat. Math. and Combinat. Computing.
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