
2026
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

INVITED PAPER Special Section on Multiple-Valued Logic and VLSI Computing

A Quaternary Decision Diagram Machine: Optimization of Its
Code∗

Tsutomu SASAO†a), Hiroki NAKAHARA†, Munehiro MATSUURA†, Yoshifumi KAWAMURA††,
and Jon T. BUTLER†††, Members

SUMMARY This paper first reviews the trends of VLSI design, focus-
ing on the power dissipation and programmability. Then, we show the
advantage of Quarternary Decision Diagrams (QDDs) in representing and
evaluating logic functions. That is, we show how QDDs are used to imple-
ment QDD machines, which yield high-speed implementations. We com-
pare QDD machines with binary decision diagram (BDD) machines, and
show a speed improvement of 1.28-2.02 times when QDDs are chosen. We
consider 1-and 2-address BDD machines, and 3- and 4-address QDD ma-
chines, and we show a method to minimize the number of instructions.
key words: quarternary decision diagram, branching program machine

1. Trends of VLSI Design

1.1 Explosion of Complexity

With the growth of multimedia and other applications, the
demand for high-performance processors has increased. In
the past, Moore’s Law solved this problem. Moore’s Law
states that the number of transistors on a chip doubles every
18 months.

In the process of miniaturization, the scaling down of
transistor size and chip area has reduced power dissipation.
That is, by scaling down the transistor size in LSIs, chip
area, delay, and power dissipation can be reduced at the
same time. However, in the future, the number of transis-
tors on a chip is expected to fall short of that predicted by
Moore’s Law.

1.2 Power Dissipation

As transistor size decreases, supply voltage must also scale
down to keep the electric field in the integrated circuit con-
stant [32]. However, as the supply voltage decreases, sub-
threshold leakage current increases. Nowadays, power dis-
sipation due to leakage current accounts for about 40% of
the total power dissipation in a microprocessor [5]. There-
fore, as supply voltage is reduced, power density is a limit-

Manuscript received November 9, 2009.
†The authors are with Kyushu Institute of Technology, Iizuka-

shi, 820–8502 Japan.
††The author is with Renesas Electronics Corp., Tokyo, 100–

0004 Japan.
†††The author is with the Naval Postgraduate School, Monterey,

CA 93943–5121, USA.
∗A preliminary version of this paper was presented at ISMVL-

2010 [30].
a) E-mail: sasao@cse.kyutech.ac.jp

DOI: 10.1587/transinf.E93.D.2026

ing factor. With an increase of the power density, the tem-
perature of chip may become too high. To make matters
worse, leakage current increases exponentially with temper-
ature [3]. When a transistor produces more heat than the
heatsink can dissipate, thermal runaway occurs. Therefore,
cooling is very important. In the past, reduction of chip area
was the main design issue. However, nowadays, the reduc-
tion of power dissipation is the primary design issue. In mo-
bile applications, battery size is limited, so the use of low
power devices is crucial.

1.3 Multi-Core and Parallel Processing

Power dissipation of a CMOS gate is approximately

P = α × V2
dd × f ,

where α is a constant, Vdd is the supply voltage, and f is the
clock frequency.

Reduction of the supply voltage without changing tran-
sistor dimensions requires a reduction in clock frequency
f [4]. Assume that the power supply voltage is reduced by
30%, and that the clock frequency is reduced by 50%. In
this case, we have

α × (0.7Vdd)2 × 0.5 f = 0.25αV2
dd f .

Consider a dual core version of this, as shown in Fig. 1.
In this case, a reduction by half of the frequency is compen-
sated by an increase by two times of the number of proces-
sors, yielding nearly equal throughput. That is, this change
has resulted in a reduction by half of the power with no
change in the system throughput.

In personal computers, many threads are running at the
same time. Thus, many computers can benefit from multi-
cores. In this sense, chip area is increased to reduce power

Fig. 1 Using a dual core processor to reduce the power by half.
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dissipation. Increasing the number of cores increases the
chip cost, but the reduction of power dissipation is more im-
portant.

By reducing power, cooling fans can be often elim-
inated [2]. Also, reliability will be enhanced because of
lower temperatures. Excessively high temperature can burn
out the chip. Even if the temperature is low enough so that
this does not occur, high temperature can cause cumulative
damage.

In multi-core systems, unused cores can be turned off to
further reduce power dissipation. Unfortunately, developing
efficient software for multi-core is not so easy. Most existing
software is single-threaded. In a single core processor, var-
ious methods are used to increase the performance without
increasing the clock frequency, including pipelining, super
scalar, super pipeline architecture, and very long instruction
word processors (VLIWs). Unfortunately, even if the chip
area of a single-core processor is doubled to increase the
performance, the resulting performance is increased only by
1.4 times, as predicted by Pollack’s rule [4].

1.4 Programmable Device

With the miniaturization of chips, the cost of masks for
VLSI has increased drastically. Since the number of tran-
sistors has increased, VLSI design is now very complicated.
As transistors become smaller, variability of the threshold
voltage of transistors increases. Therefore, achieving con-
sistent switching becomes difficult. As a result, design and
test cost has also increased [9]. Due to this, custom chips are
feasible only for mass-production products, such as games
and cellular phones. In addition, the life of today’s prod-
ucts is short: every few months, new products are devel-
oped. Thus, the number of newly developed VLSIs has
been reduced. Instead, microprocessors, application specific
standard products (ASSPs), and field programmable gate ar-
rays (FPGAs) are used to implement electronic appliances.
These can be customized by writing programs.

2. Introduction of Branching Program Machines

In the rest of this paper, we focus on branching program
machines, which are suitable for control applications. They
are programmable, since major parts consist of memories.
Because memory is involved, reliability can be improved by
using traditional techniques, such as error correcting codes
(ECC).

Branching program machines for BDDs have been
used in control applications [6], [10]–[12]. Fast response is
especially important in control applications in which there
are usually hundreds of inputs. For such applications, a gen-
eral purpose microprocessor (MPU) cannot meet the speed
requirements. A branching program machine can be several
times faster than an MPU: An ordinary MPU requires two
or three machine instructions to read and test one input vari-
able, while the branching program machine requires just one
instruction [7].

Fig. 2 An example of BDD.

Fig. 3 MUX circuit.

Parallelization can be implemented by multi-way
branching programs. Thus, performance can be improved
without increasing the clock frequency.

2.1 Conversion from a Circuit to a Branching Program
Machine

Consider the implementation of a given logic function.
This can be represented by a binary decision diagram
(BDD). Figure 2 shows the BDD of an example function,
f (x1, x2, x3, x4) = x1x2 ∨ (x3 ⊕ x4). In this diagram, dotted
lines (left lines) correspond to xi = 0 and solid lines (right
lines) correspond to xi = 1. By replacing each non-terminal
node of a BDD with a multiplexer (MUX), we have a cir-
cuit, at the top of Fig. 3, that realizes the given logic function
whose BDD is shown in Fig. 2.

However, such implementation requires dedicated in-
terconnections and expensive masks. A branching program
machine is a sequential circuit that emulates the MUX cir-
cuit. In this case, the interconnections are programmed in
a memory. Thus, by using a branching program machine, a
logic function is implemented by logic and memory. Since it
has no instruction fetch, it is faster and dissipates less power
than a general purpose microprocessor.

Unfortunately, a branching program machine is slower
than the original logic circuit, since it emulates the cir-
cuit sequentially. A straightforward method to increase the
speed is to increase the clock frequency. However, this is
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difficult in most cases. To increase processing speed without
increasing the clock frequency, we use a Multi-valued Deci-
sion Diagram (MDD). For example, when two variables are
evaluated at the same time, the decision diagram has four-
way branches; this is called a Quarternary Decision Diagram
(QDD). In this way, performance is increased without in-
creasing the clock frequency. Such an idea is used in VLIW
processors [21], where branch instructions are multiway.

2.2 Optimization of Branching Program Machine

A Quarternary Decision Diagram (QDD) machine is up to
two times faster than a BDD machine. However, instruction
words for the QDD machine require four address fields, i.e.,
instructions with many bits are necessary. This increases
the power dissipation, which is proportional to the number
of bits in the instruction words.

Optimization of code for a QDD machine can be
treated as an optimization of a 4-valued logic circuit. A
multi-core system of 128 QDD machines was implemented
on an FPGA [24]. This is up to 96 times faster than the mi-
croprocessor (Core2Duo, 1.2 GHz, U7600), even though the
QDD machine runs at 100 MHz, while the microprocessors
run at 1.2 GHz. Further, the power dissipation of 128 QDD
machine is only a quarter of the microprocessor.

The rest of this paper is organized as follows: Sec-
tion 3 introduces a method to represent multi-output logic
functions by multi-valued decision diagrams. Section 4 in-
troduces branching program machines: It introduces both
a 4-address QDD machine and a 3-address QDD machine.
The 3-address QDD machine requires less memory than the
4-address QDD machine. Section 5 shows an optimization
problem of codes for 3-address QDD machines. Section 6
shows the experimental results. And finally, Sect. 7 con-
cludes the paper.

3. Representation of Multiple-Output Functions

3.1 Multi-Valued Decision Diagrams

An arbitrary n variable logic function can be represented
by a binary decision diagram (BDD). Evaluation of a BDD
requires n table look-ups. Figure 4 shows an example of
an MTBDD (multi-terminal binary decision diagram). In
this case, many outputs can be evaluated at the same time.
To further speed up the evaluation, a multiple-valued deci-
sion diagram (MDD) is used. In the MDD(k), k variables
are grouped to form a 2k-valued super variable. To evalu-
ate the MDD(k), we need at most � n

k � table look-ups [20],
[25]. When the function is represented by an MDD(k), the
evaluation of a logic function can be k times faster than the
corresponding BDD†. Thus, a larger k yields a faster eval-
uation of the MDD(k). Unfortunately, the size of memory
to represent a node for an MDD(k) is proportional to 2k, as
shown in Fig. 5. For many benchmark functions, the total
size of the memory for an MDD(k) achieves its minimum
when k = 2 [25]. Therefore, in logic evaluation, MDD(2)s

Fig. 4 Example of an MTBDD.

Fig. 5 Nodes for MDD(k).

Fig. 6 Conversion of BDD to MDD(2).

are more suitable than BDDs. Since nodes in an MDD(2)
have 4 branches, it is termed a Quarternary Decision Dia-
gram (QDD).

3.2 Optimization of MDDs

In an MDD(k), the evaluation of an n-variable logic func-
tion can be done by at most � n

k � table look-ups. So, the ma-
jor problem is the minimization of the number of nodes. In
general, it is not so easy to obtain an MDD(k) with the min-
imum number of nodes. The following heuristic method is
used to obtain near minimal MDDs:

1. Minimize nodes of the BDD by a heuristic method [27].
†This is true only when the MDD(k) and the BDD are quasi

reduced.
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2. Partition the input variables to generate an MDD(k) [28].

Figure 6 shows an example of a conversion from a BDD into
an MDD(2). In the above MDDs, we assume each group of
variables has the same size. Such MDDs are homogeneous
MDDs. When the groups have different sizes, the MDD
is a heterogeneous MDD. For simplicity, in this paper, we
consider only homogeneous MDDs.

4. Branching Program Machine

Special machines to evaluate MDDs have been devel-
oped [13]–[15]. Unfortunately, they are unsuitable for prac-
tical applications. Here, we consider a machine whose ar-
chitecture is well-suited for evaluating MDDs, but is easily
programmed.

4.1 2-Address BDD Machine

A branching program for BDDs uses only two kinds of in-
structions:

B_Branch (ADDR0, ADDR1), INDEX

Output DATA, and GOTO ADDR.

The first one is the binary branch instruction that is
similar to the computed GOTO statement of the FORTRAN
language: If the value of INDEX is equal to 0, then go to
ADDR0, otherwise goto ADDR1. The second one performs
the output operation followed by an unconditional GOTO
operation.

Example 4.1: Consider the MTBDD shown in Fig. 4. The
following code evaluates the MTBDD:

N0:B_Branch(N2,N1), X1

N1:B_Branch(N2,T4), X2

N2:B_Branch(N3,N4), X3

N3:B_Branch(T0,T1), X4

N4:B_Branch(T2,T3), X4

T0:Output 0, and GOTO N0

T1:Output 9, and GOTO N0

T2:Output 10, and GOTO N0

T3:Output 11, and GOTO N0

T4:Output 15, and GOTO N0

In this example, DATA in Output DATA is the decimal
equivalent of the function output values expressed in binary
as f3, f2, f1, f0. (End of Example)

Figure 7 shows the architecture of the 2-address BDD ma-
chine, where only the circuit for the branching operation is
shown. The first field, COM, of the branching instruction
specifies the branch command. The second field, INDEX,
specifies the index i of the input variables xi. It determines
which variables to select. The input selector in Fig. 7 pro-
duces the value of the variable xi selecting the next branch
address. When xi = 0, ADDR0 is selected. Otherwise,
ADDR1 is selected. The selected address is then loaded
into the program counter (PC). In this way, the next address

Fig. 7 2-address BDD machine.

Fig. 8 1-address BDD machine.

is specified. To reduce the width of the instruction words,
1-address BDD machines shown in Fig. 8 have been devel-
oped [6], [11], [18], [33]. In this case, when the value IN-
DEX is 1, the machine works similarly to the case of the
2-address BDD machine. Otherwise, the content of the pro-
gram counter (PC) is incremented by one, to access the next
address. In this case, the size of the instruction word is re-
duced, but unconditional GOTO instructions are necessary,
as shown later.

4.2 4-Address QDD Machine

By simultaneously evaluating two binary variables and by
increasing the number of branch addresses to four, we have
a branch instruction for a 4-address QDD machine. Since
it evaluates two binary variables at a time, it can reduce the
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Fig. 9 4-address QDD machine.

Fig. 10 Branch instruction for 4-address QDD machine.

Fig. 11 Output instruction for a QDD machine.

evaluation time to half that of the 2-address BDD machine.
A branching program for 4-address QDD machines

consists of two kind of instructions:

Q_Branch(ADDR0,ADDR1,ADDR2,ADDR3),INDEX

Output DATA, and GOTO ADDR

Figure 10 shows the format for the branch instruction. Fig-
ure 9 shows the architecture of the 4-address QDD ma-
chine, where only the circuit for the branching operation is
shown. The first field of the branching instruction specifies
the branch command. The second field, INDEX, specifies
the index i of the input variable Xi. It determines which
variables to select. In the case of a QDD, two consecutive
binary variables are selected at a time. The input selector
shown in Fig. 9 produces Xi. The upper multiplexer selects
the variable. When Xi = (0, 0), ADDR0 is selected; when
Xi = (0, 1), ADDR1 is selected; when Xi = (1, 0), ADDR2 is
selected; and when Xi = (1, 1), ADDR3 is selected. The se-
lected address is then loaded into the program counter (PC).
In this way, the next address is specified as a function of IN-
DEX i and the input variable Xi. Note that this instruction
requires a rather long word, which would be expensive for
embedded applications.

Figure 11 shows the format for the output instruction.
The left field specifies the instruction type: Output. The
middle field contains the address to which this program
should jump. The right field is the output value, as shown at
the bottom of the QDD.

Fig. 12 Branch instruction for a 3-address QDD machine.

Fig. 13 3-address QDD machine.

4.3 3-Address QDD Machine

Since the 4-address QDD instruction requires a long word,
we developed a 3-address QDD machine. The branch in-
struction for the 3-address QDD machine contains only
three address fields. For example, consider the instruction
shown in Fig. 12. This instruction is symbolically denoted
by

Q_Branch(+1,ADDR1,ADDR2,ADDR3),INDEX.

In this instruction, ADDR1, ADDR2, and ADDR3 are spec-
ified, but ADDR0 is missing. ADDR0 is replaced by “+1”,
which corresponds to the next address of the current instruc-
tion. This instruction performs the following operations:

• Let i be the value of INDEX. If (i = 0) then goto
the next address of the current instruction, else goto
ADDRi.

Lemma 4.1: An arbitrary QDD can be evaluated by a pro-
gram consisting of the following instructions:

Q_Branch(+1,ADDR1,ADDR2,ADDR3),INDEX

GOTO ADDR

Output DATA, and GOTO ADDR

For example, the instruction for the 4-address QDD machine

Q_Branch(ADDR0,ADDR1,ADDR2,ADDR3),INDEX

can be simulated by the pair of instructions:

Q_Branch(+1,ADDR1,ADDR2,ADDR3),INDEX

GOTO ADDR0

Note that the last instruction is an unconditional GOTO
statement. As shown in the next section, the number of un-
conditional GOTO statements can be minimized by an opti-
mization algorithm. Figure 13 shows the architecture of the
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Fig. 14 Four types of branch instructions for 3-address QDD machine.

3-address QDD machine, where only the circuit for branch-
ing operations is shown. Consider the instruction in Fig. 12.
When the value of INDEX and the input variables are non-
zero, the machine is like 4-address QDD machine. When
the value of INDEX and the input variables are equal to 0,
the program counter (PC) is incremented by one, to access
the next address.

In our hardware implementation, we use the four types
of branch instructions shown in Fig. 14. To distinguish four
branch instructions, we use two additional bits in the instruc-
tion field. However, as shown in the experimental results, by
using four branch instructions, we can reduce the number of
instructions and the total bit size. So, the cost of these extra
bits is fully compensated.

5. Optimization of Codes for QDD Machines

In this section, we consider a method to reduce the num-
ber of instructions for QDD machines. Interestingly, this is
solved by minimizing the number of unconditional GOTO
statements.

Definition 5.1: Given the QDD and an order of the input
variables (e.g. x1, x2, . . . , andxn), the code size CSIZE is the
number of instructions needed to compute the Decision dia-
gram on a given machine. Let 4aQDDM denote a 4-address
QDD machine, and let 3aQDDM denote a 3-address QDD
machine.

Lemma 5.2: Let NN be the number of non-terminal nodes,
and let NT be the number of terminal nodes in a QDD. We
have the following relation:

CS IZE(4aQDDM) = NN + NT . (1)

(Proof) In a 4-address QDD machine, a non-terminal node
is represented by a branch instruction, and a terminal node
is represented by an output instruction. (Q.E.D.)

Lemma 5.3: Let NN be the number of non-terminal nodes
and let NT be the number of terminal nodes in a QDD. Let
NU be the number of unconditional GOTO statements that
are not part of output statements. Then, we have the follow-
ing relations:

CS IZE(3aQDDM) = NU + NN + NT (2)

0 ≤ NU ≤ NN (3)

(Proof) In a 3-address QDD machine, a non-terminal node
is represented by either a branch instruction or a pair con-
sisting of a branch instruction and an unconditional GOTO

Fig. 15 QDD for example function.

statement. Also, a terminal node is represented by an out-
put instruction. Thus, the number of unconditional GOTO
statements is at most the number of non-terminal nodes.

(Q.E.D.)
In the case of a 4-address QDD machine, there is no

code optimization problem, i.e., the instructions can be gen-
erated in any order. However, in the case of a 3-address
QDD machine, the length of the program depends on the
order of instructions.

Example 5.2: Consider the QDD shown in Fig. 15. It has
five non-terminal nodes, and four terminal nodes. When the
code is generated in breadth-first order, i.e., in the order of
X1, X2 and X3, we have the following:

/** Code with Unconditional GOTO **/

N0:Q_Branch(+1,N1,N1,N1),X1

Q_Branch(+1,N3,N3,N3),X2

GOTO N2

N1:Q_Branch(+1,T3,T3,T3),X2

GOTO N3

N2:Q_Branch(+1,T1,T1,T1),X3

GOTO T0

N3:Q_Branch(+1,T2,T2,T2),X3

GOTO T1

T0:Output 0, and GOTO N0

T1:Output 1, and GOTO N0

T2:Output 2, and GOTO N0

T3:Output 3, and GOTO N0

Note that, the above program has four unconditional GOTO
statements that are not part of output statements. However,
when the code is generated in depth-first order, it has no
unconditional GOTO statements that are not part of output
statements.:

/** Code without Unconditional GOTO **/

N0:Q_Branch(+1,N1,N1,N1),X1

Q_Branch(+1,N3,N3,N3),X2

Q_Branch(+1,T1,T1,T1),X3

T0:Output 0, and GOTO N0

N1:Q_Branch(+1,T3,T3,T3),X2

N3:Q_Branch(+1,T2,T2,T2),X3

T1:Output 1, and GOTO N0

T2:Output 2, and GOTO N0
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T3:Output 3, and GOTO N0

Note that the first four instructions correspond to the left-
most path from the root node to the terminal node T0. The
next three instructions correspond to the path from node N1,
node N3, and terminal node T1. (End of Example)

The code optimization problem for a 3-address QDD ma-
chine can be reduced to a graph covering problem as fol-
lows:

Definition 5.2: A path cover of a QDD is a set of paths
such that every node in the QDD belongs to exactly one
path. A minimal path cover is a path cover with the fewest
paths. A path in a QDD can consist of just one node.

Theorem 5.1: An optimal code for a 3-address QDD ma-
chine corresponds to a minimal disjoint path cover of the
QDD.

(Proof) A path in a QDD corresponds to a sequence of
Q Branch instructions followed by an output instruction. A
sequence of Q Branch instructions without an output in-
struction requires an unconditional GOTO statement. By
Lemma 5.3, minimization of the number of unconditional
GOTO statements minimizes the code size. (Q.E.D.)

6. Experiment and Observation

6.1 Benchmark Results

To see the effectiveness of QDDs over BDDs, and the effec-
tiveness of the code optimization, we realized certain bench-
mark functions by BDDs and QDDs. First, we compare

Table 1 Number of nodes and code sizes for BDD machine and QDD machine.

BDD QDD
Func. # # BDD Opt. Term. Aver. QDD X=00 Opt. X=00 Opt. Aver. Ratio
Name Inp. Out. Nodes Codes Nodes Inst. Nodes Codes Codes GOTO GOTO Inst.
C432 36 7 1779 1779 128 19.10 1027 1408 1027 381 0 12.73 1.50
amd 14 24 206 206 84 5.63 164 171 164 7 0 3.47 1.62
apex2 39 3 335 363 8 6.66 231 332 265 101 34 4.99 1.33
apex4 9 19 749 750 319 8.24 600 639 601 39 1 4.61 1.79
chkn 29 7 220 241 28 7.01 157 215 172 58 15 5.16 1.36
duke2 22 29 636 637 255 6.36 546 594 547 48 1 4.09 1.55
gary 15 11 228 232 70 5.51 173 191 174 18 1 3.42 1.61
in0 15 11 195 200 52 5.02 145 170 148 25 3 2.92 1.72
in1 16 17 284 299 55 6.85 217 288 229 71 12 4.70 1.46
in2 19 10 291 296 73 3.98 219 262 225 43 6 2.60 1.53
in3 35 29 259 259 72 6.63 214 234 214 20 0 4.77 1.39
in4 32 20 607 611 178 4.69 491 569 495 78 4 3.44 1.36
in5 24 14 461 466 134 8.54 369 452 371 83 2 6.57 1.30
in6 33 23 4325 4338 1638 7.51 3546 3815 3555 269 9 5.88 1.28
in7 26 10 300 301 112 7.58 256 275 256 19 0 5.84 1.30
m181 15 9 222 222 84 6.80 196 217 196 21 0 4.71 1.44
misex2 25 18 113 113 35 4.97 91 96 91 5 0 3.60 1.38
misex3 14 14 2910 2975 1041 7.55 1773 2159 1773 386 0 4.05 1.86
misj 35 14 4656 4656 1408 14.12 3275 3828 3275 553 0 9.57 1.47
mlp6 12 12 5270 6062 1238 12.10 2582 2966 2694 384 112 5.98 2.02
risc 8 31 56 56 28 4.42 44 44 44 0 0 2.55 1.74
signet 39 8 7347 8652 128 18.23 5671 8374 6907 2703 1236 13.31 1.37
tial 14 8 697 790 49 12.05 388 552 466 164 78 6.37 1.89
vg2 25 8 131 135 24 7.65 89 110 91 21 2 5.62 1.36
x1dn 27 6 200 218 18 9.55 126 171 141 45 15 5.74 1.66
x6dn 39 5 214 231 28 4.14 159 215 177 56 18 2.74 1.52
x9dn 27 7 204 222 22 9.30 140 188 157 48 17 5.80 1.60

QDDs and BDDs with respect to the numbers of nodes.
Then, we convert these into code for BDD and QDD ma-
chines, and the number of instructions.

Table 1 shows the experimental results. Func. name de-
notes the name of the benchmark functions; # Inp. denotes
the number of input variables; # Out. denotes the number
of outputs; BDD Nodes denotes the number of nodes of the
MTBDD including both terminal and non-terminal nodes;
Opt. Codes under BDD denotes the number of instructions
of the optimized code for the 1-address BDD machine (near
optimal solution); Term. Nodes denotes the number of termi-
nal nodes; Aver. Inst. under BDD denotes the average num-
ber of instructions to evaluate an input vector by a 1-address
BDD machine; QDD Nodes denotes the number of nodes
of the MTQDD including both terminal and non-terminal
nodes, that is the same as the number of instructions for a 4-
address QDD machine; X = 00 Codes under QDD denotes
the number of instructions in the code for 3-address QDD
machine, when only the first type of instruction in Fig. 14 is
used; Opt. Codes under QDD denotes the number of instruc-
tions of the optimized code for the 3-address QDD machine,
when all four types of instructions in Fig. 14 are used to min-
imize the number of GOTO statements; X = 00 GOTO de-
notes the number of GOTO statements, when only one type
of branching instruction is used; Opt. GOTO = (Opt. Codes
-QDD. Nodes) under QDD denotes the number of GOTO
statements, when four types branching instructions are used;
Aver. Inst. in QDD denotes the average number of instruc-
tions to evaluate an input vector by a 3-address QDD ma-
chine; and Ratio denotes the value: (Aver. Inst. in 1-address
BDD machine)/(Aver. Inst. in 3-address QDD machine).
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6.2 Detail of the Experiment

Optimization of Decision Diagrams: First, the ordering
that minimizes the size of the MTBDD is obtained. Then,
the input variables are partitioned into groups of two vari-
ables in the natural order to obtain the MTQDDs.
Optimization of Code: Theorem 5.1 shows how to mini-
mize the number of instructions by minimizing the number
of GOTO statements. The algorithm given by [16] is only
applicable to the program with nodes whose in-degrees and
out-degrees are both two. So, we developed our own algo-
rithm to obtain near optimal solutions for our more general
case.

6.3 Observations

From the table, we can observe the following:

• The number of nodes in QDDs is smaller than that of
BDDs.
• The number of instructions for the 3-address QDD ma-

chine can be considerably reduced by an optimization
algorithm.
• For C432, in3, misex2, misj, and risc, the number of

GOTO statements in the optimized QDD codes is zero.
This means that optimal code is generated for these
functions. Also, for these functions, optimal code for
BDD machines are generated.
• signet requires many GOTO statements in both BDD

and QDD machines. The number of GOTO state-
ments for a BDD machine is given by (Opt. Codes) −
(BDD Nodes) = 8671 − 7347 = 1324.
• Opt. Codes, the number of instructions for a 3-address

QDD machines is often larger than QDD Nodes, the
number of instructions for a 4-address QDD machine.
The column headed by Opt. GOTO (=OPT. Codes -
QDD. Nodes) shows the extra GOTOs. Except for a
few functions, the extra GOTOs are rather small.
• Consider the value: (Sum of X = 00 Codes) − (Sum

of Optimal Codes) = 28535 − 24528 = 4007. This
shows the total number of instructions reduced by us-
ing four types of branch instructions, instead of us-
ing only one type of branching instructions. How-
ever, to specify four types of instructions, we need
two additional bits in the instruction field. Let w be
the number of bits in a word in the 3-address QDD
machine, where only one type of branching instruc-
tion is used. Then, the merit of using four types of
instructions is accurately expressed as: (Sum of X =
00 Codes) × w − (Sum of Opt. Codes) × (w + 2) =
28535w − 24528(w + 2) = 4007w − 49056. Note that,
in most cases, w > 20, so we can conclude that the use
of four types of Q Branch instructions reduces the total
number of bits.
• The last column of the table shows that the 3-address

QDD machine is 1.28 − 2.02 times faster than the 1-
address BDD machine. Note that, for MLP6, the ratio

is greater than 2. This is due to GOTO statements. If
we compared the average numbers of instructions in
a 2-address BDD machine and a 4-address QDD ma-
chine, the ratio is at most 2.

6.4 Hardware Implementation

To show the usefulness of multi-core QDD machines,
we have developed a parallel branching program machine
(PBM128) consisting of 128 QDD machines and a pro-
grammable interconnection on Altera’s Stratix II FPGA.
We realized many benchmark functions on the PBM128,
and compared its memory size and computation time with
Intel’s Core2Duo microprocessor. PBM128 requires ap-
proximately one quarter of the memory required by the
Core2Duo, and is 21.4-96.1 times faster than the Core2Duo.
Details are shown in [24].

7. Conclusions

In this paper, first, we review the trends of VLSI design, fo-
cusing on the power dissipation and programmability. Then,
we considered a branching program machine to evaluate
multiple-output logic functions. To increase the speed of
evaluation, we used QDDs instead of BDDs. To reduce
the memory size, we used 3-address QDD machines in-
stead of 4-address QDD machines. We proposed the use
of four types of branch instructions. Also, we considered
a method to optimize codes for 3-address QDDs. This is
different from existing methods to optimize the decision di-
agrams. We show that the minimization of the number of
instructions corresponds to minimizing the number of un-
conditional GOTO statements. For various benchmark func-
tions, we optimized the codes, and showed the effectiveness
of the approach.
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