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Executive Summary 

 

The need for system identification and reduced order modeling arises from the fact that, presented 

with sensor data, the analyst is generally unaware of many details of the underlying dynamical system 

from which they originated. The straightforward approach to this dilemma is to assume linearity and 

temporal stationarity in the response, and perform experimental modal analysis. This approach has served 

the dynamics and controls community well, even in the presence of weakly nonlinear system behavior. 

Clearly, though, as systems become more complex, the likelihood exists that the underlying dynamical 

behavior will be strongly nonlinear and nonstationary (e.g., local buckling, plastic deformations, 

clearance and backlash, hysteresis, etc.). Moreover, nonlinear systems routinely possess co-existing 

qualitatively distinct dynamics, so their responses are largely dictated by initial and forcing conditions. 

These well-recognized, highly individualistic features of nonlinear systems restrict the unifying 

dynamical features that are amenable to system identification. To address these issues we have developed 

a new nonlinear system identification (NSI) methodology of broad applicability, relying solely upon 

direct time series measurement and post-processing, and leading to dual global / local identification of the 

dynamics. Key to our method are slow/fast partitions of the measured time series, in order to identify 

dominant fast frequencies (which also define dimensionality), and derive associated slow flows. We 

employ powerful post-processing computational algorithms (wavelet transforms, Hilbert transforms and 

empirical mode decompositions) in order to identify the dynamics in the frequency-energy domain and 

study global features, such as fundamental and subharmonic resonances, bifurcations, multi-frequency 

transitions, etc. Associated with this global identification is the derivation of local reduced order models 

that model specific damped nonlinear transitions. We show that our method is especially suited for 

strongly nonlinear systems with high sensitivity to initial conditions and forcing giving rise to these 

phenomena. 

 

Significant Work Accomplished 

 

 The difficulty in developing system identification methodologies that are valid for broad classes 

of dynamical systems is due to the well-recognized highly individualistic nature of nonlinear systems 

which restricts the unifying dynamical features that are amenable to system identification. Our technique 

relies solely on direct time series measurement and post processing, and leads to global as well as local 

nonlinear system identification (NSI) of a broad class of dynamical systems. Key to our method is the 

slow/fast partition of time series measurements which leads to the identification of the dominant fast 

frequencies in the measured time series (which ultimately govern the dimensionality of the dynamics), to 

identification of global features of the dynamics in the frequency – energy domain, and to reduced slow 

flow models. We employ advanced post processing computational algorithms, namely, wavelet transform 

(WT), Hilbert transform (HT) and empirical mode decomposition (EMD) unified by a solid theoretical 

framework. Our technique successfully integrates analytical concepts and computational algorithms in a 

synergistic methodology. We now proceed to discuss in detail the basic elements of our new NSI 

methodology. 

Reduced Slow Flow Dynamics and Empirical Mode Decomposition (EMD) 

 Slow-flow reduction of the dynamics is a useful tool for understanding the major features of a 

dynamical system. The reduced slow-flow model of a dynamical process is derived by introducing a 

slow/fast partition of the dynamics whereby the (non-essential) fast dynamics is averaged out to reveal the 

(essential) slow-flow modulations of appropriately defined amplitudes and phases. Perturbation methods 

have been developed to perform this task; among these the complexification-averaging (CX-A) technique  

is unique in  its capacity to provide slow-flow models even for strongly nonlinear transient dynamical 

interactions; for example of resonance capture phenomena in coupled oscillators with essentially 

nonlinearities. 



 Focusing on the CX-A method, we demonstrate the extraction of the slow-flow dynamics of a 

general n-degree-of-freedom (DOF) nonlinear dynamical system of the form 

    2, , ,   
T

T T nX f X t X x x R t R                                                 (1) 

where x  is an n response vector and f  is an n vector function (underlines denote vectors). Assume 

that the dynamics possesses N distinct components at frequencies 1 N,..., , so the response of each DOF 

of the system can be expressed as a summation of N  independent components, 

(1) ( )( ) ( ) ... ( ), 1,...,   N

k k kx t x t x t k n                                                            (2) 

where ( ) ( )m

kx t  indicates the response of the k th  coordinate of (1), associated with the basic frequency 

m
 with the ordering 

1 ... N   . We assume at this point that all the basic frequencies in the response 

are well separated. Utilizing (CX-A), for each component in (2) we assign a new complex variable 

defined by 

( ) ( ) ( ) ( ) 1/ 2

' '' '

( ) ( ) ( ) ( ) , ( 1)
     mj tm m m m
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where a slow/fast partition of the dynamics in terms of the „slow‟ (complex) amplitude ( ) ( ) m

k t  and the 

„fast‟ oscillation 
mj t

e  were assumed. Substituting (2) and (3) into (1) and performing multi-phase 

averaging for each of the „fast‟ frequencies gives the slow flow of (1) 

1
( ,..., ), N

kk n k
F                                                                  (4) 

where  (1) ( ),..., , 1,...,
T

N

k kk
k n    . The number of „fast‟ frequencies ( N ) determines the 

dimensionality of the slow flow (4). 

 As an example we consider a weakly damped linear oscillator (LO) coupled to a light attachment 

by means of essential stiffness nonlinearity of the third degree. In previous work the nonlinear oscillator 

was termed a „nonlinear energy sink' (NES) due to its capacity to passively absorb and dissipate energy 

from the LO over broad frequency ranges. 

2 3
0 1 2

3
2

( ) ( ) 0

( ) ( ) 0

y y y y v C y v

v v y C v y

  

 

      

    
                                                              (5) 

This system models the experimental fixture depicted in Figure 1. The strong cubic stiffness nonlinearity 

is realized by the configuration of Figure 1c. A thin rod (piano wire) with no pretension is clamped at 

both ends, and restricted to move transversely about its center. Assuming that the wire is composed of 

linearly elastic material, from geometry we get the force – displacement relationship 

3 3 3( / )F EA L x Cx   

This explains the strongly nonlinear terms in (5). Such strong geometric nonlinearity occurs when very 

flexible, thin structural members fixed at their ends undergo transverse (rather than axial) vibrations 

transverse to their axis. 



 For (5) we assign 0 1,21, 1, 0.05, 0.03     C  and initial conditions 

(0) 0.059, (0) 0.015, (0) (0) 0    y v y v . Then a 1:3 transient resonance capture (TRC) takes place 

during which the NES engages in transient resonance with the LO. Figure 2 depicts the responses of the 

two oscillators in time and frequency (wavelet transform spectra). There exist two dominant „fast‟ 

frequencies in the dynamics, at 1 0   (high-frequency – HF) and at 2 0 /3   (low-frequency – LF), 

respectively. 

 Given that there are only two fast frequencies in the transient responses, we express the responses 

as (1) (2) (1) (2)

1 2( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )   x t y t y t y t x t v t v t v t , and the slow/fast partitions as  
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which when substituted in (5) and averaged with respect to 1  and 2  lead to the slow flow 

1 21 1 2 2 1 2
( , ), ( , )F F                                                                         (7) 

where    (1) (2) (1) (2)

1 1 2 21 2
, , ,

T T

       .  In Figure 3 we present the slow flow approximation of the 

NES response, demonstrating that the slow flow accurately approximates the strongly nonlinear transient 

response. 
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Figure 1. Nonlinear system of coupled oscillators: (a) Experimental 

fixture, (b) Schematic, (c) Strong geometric nonlinearity. 
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Figure 2. Responses during 1:3 TRC: (a) Nonlinear oscillator (NES), (b) Linear oscillator (LO). 

 We now show that the slow flow model (4) provides an important theoretical foundation for  

 

performing nonlinear system identification (NSI). To show this we first review the basic elements of 

empirical mode decomposition (EMD), conceived as a numerical post processing technique for analyzing 

nonstationary and nonlinear time series. EMD combined with Hilbert spectral analysis has been 

extensively applied to system identification  over the past fifteen years. This decomposition method, 

based on identifying the characteristic time scales in measured time series, is adaptive, highly efficient, 

and suitable for nonlinear and nonstationary processes. In particular, EMD yields a complete and nearly 

(but not completely) orthogonal basis of intrinsic mode functions – IMFs; these are oscillatory modes 

embedded in the time series, each with its own characteristic time scale, whose linear superposition 

reconstructs the measured time series. In other words EMD is a multi-scale decomposition of a measured 

time series in terms of embedded oscillatory modes at different time scales. 

 Until now EMD was applied to time series analysis in an ad hoc fashion. The main loop of the 

EMD algorithm for extracting the IMFs from a signal ( )x t  consists of the following steps: (i) identify all 

extrema of ( )x t ; (ii) perform (spline) interpolations of the minima and maxima of ( )x t , ending up with 

two envelopes min( )e t  and max( )e t , respectively; (iii) compute the average curve 

 ( ) min( ) max( ) / 2 R t e t e t  (as a residual); (iv) extract the remainder ( ) ( ) ( ) c t x t R t ; (v) apply the 

previous algorithm on the reminder ( )c t  until the residual ( )R t  can be considered as zero-mean under 

some tolerance (i.e., a stopping criterion). Once this criterion (through the sifting process) is met, the 

 

Figure 3. Strongly nonlinear transient response of the NES; 
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remainder ( )c t  is regarded as the effective IMF. By subtracting this IMF from the original time series and 

applying the algorithm iteratively we extract additional IMFs, so that the original signal ( )x t  is 

decomposed sequentially from high- to low-frequency components as 

1

1

( ) ( ) ( )



 
K

k K

k

x t c t R t , 1( )KR t tol                                                        (8) 

 By this process the superposition of the K  leading IMFs reconstruct approximately the measured 

time series; however, due to the ad hoc nature of the sifting algorithm only a subset of these IMFs are 

physically meaningful with the rest being of spurious nature. The dominant (and physically meaningful) 

IMFs can be identified by comparing their instantaneous frequencies to the wavelet transform (WT) 

spectra of the original time series; the instantaneous frequencies of the dominant IMFs coincide with the 

dominant harmonics of the wavelet spectra. This process also identifies the dominant time scales (or 

frequencies) of the dynamics in the time series. It follows that EMD provides the following ad hoc 

numerical decomposition of the dynamics of the general system (1), 

(1) ( )( ) ( ) ... ( ), 1,...,   N

k k kx t c t c t k n                                                          (9) 

where ( ) ( )m

kc t  is the m th  dominant IMF of the response ( )kx t , associated with the fast frequency m , 

with 1 ... N   . Comparing the EMD result (9) with the slow/fast decomposition (2) we clearly 

establish the possibility of relating the two expansions thus providing a theoretical basis for EMD in 

terms of the underlying slow flow dynamics. This important result was established in and will form the 

basis of our NSI method. Some preliminary remarks, however, are appropriate. In Figure 4 we reconstruct 

the responses of system (5) using two dominant IMFs for each subsystem, namely (1)
1 ( )c t  ( HF LO  

component at 1 ) and (2)
1 ( )c t  ( LF LO  component at 2  – it turns out that this is negligible) for the LO, 

and two dominant IMFs (1)
2 ( )c t  ( HF NES  component) and (2)

2 ( )c t  ( LF NES  component) for the NES. 

By comparing with the exact numerical time series we establish the completeness of the decomposition. 

 Now, the Hilbert transform (HT) ( )h t  of a (mono-component) signal ( )y t  is computed as 

 

Figure 4. Reconstruction of time series in (5) with IMFs. 



( )h t   ( )y t
( )PV y s

ds
t s
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
                                                              (10 

where PV stands for Cauchy principal value. Moreover, a complex function whose imaginary part is the 

Hilbert transform of the real part is analytic. Motivated by this result we may complexify the m th  IMF 
( ) ( )m

kc t  of the time series ( )kx t  in (9) by defining the analytic complex function, 

( ) ( )ˆ ( ) ( )m m
k kt c t   j ( ) ( )m

kc t 
                                                                  (11) 

where 1/ 2( 1)j   . This enables the computation of the instantaneous amplitude and phase of the m th  

IMF as 

( ) ( )2ˆ ( ) ( )m m

k kA t c t  
1/ 2

2
( ) ( )m

kc t   ,  
( )ˆtan ( )m

k t  ( ) ( )m

kc t   /
( ) ( )m

kc t                    (12) 

from which the instantaneous frequency of the IMF is computed as ( ) ( )ˆˆ ( ) ( )m m
k kt t  . This leads to the 

following slow-fast representation of the complexified IMF (11): 

( ) ( )( ) ( )ˆˆ ( )( )( ) ( ) ( )

' '' '

ˆ ˆˆ ( ) ( ) ( )
m mm m

k kk k
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We note that by complexifying the identified IMFs in (12) we have a direct way to relate them to the 

governing slow flow dynamics [e.g., the complex amplitudes ( ) ( )m
k t  in (3)]. This will provide a way to 

physically interpret the dominant IMFs in terms of the slow flow dynamics. 

 Although EMD combined with the Hilbert transform (HT) forms a powerful post-processing tool 

for extracting intrinsic oscillating components from a time series and identifying the dominant time scales 

of the dynamics, it has some important deficiencies. First, application of EMD may lead to spurious 

IMFs, so that physically meaningful results from EMD can only be obtained if these are omitted from 

further consideration in the analysis; spurious IMFs are the direct result of the well established lack of 

orthogonality of the IMFs. The deletion of spurious IMFs from further consideration can be performed by 

comparing the instantaneous frequencies of the IMFs to the WT spectra of the time series and eliminating 

nonphysical IMFs from further consideration. Hence, we can identify a set of dominant IMFs from the 

measured time series. Second, there are concerns regarding the frequency resolution of the EMD results. 

Indeed, in order to obtain meaningful results when applying HT to the IMFs, it is necessary that these are 

mono-component or, at least, narrowband (otherwise mixed-mode IMFs in the form of beat phenomena 

are obtained possessing closely spaced frequencies). Finally, there are issues concerning the uniqueness 

of the EMD results. EMD does not result in a unique decomposition of a measured time series since it is 

applied in an ad hoc manner and depends on a free stopping parameter; that is, EMD is not robust in 

practice. The set of extracted IMFs can be considered as a basis for reconstructing the original measured 

time series if it satisfies (or nearly satisfies) the basic conditions of completeness and orthogonality. By 

virtue of the EMD sifting algorithm, completeness of the IMFs is guaranteed by construction. It is the 

lack of orthogonality between IMFs, however, that generates spurious features in the results and prevents 

uniqueness of the decomposition. These issues have been addressed through the use of masking and 

mirror-image signals that lead to well-decomposed, nearly orthogonal sets of IMFs. 



 We can now relate the theoretical slow flow decomposition (2) and the numerically derived 

dominant measured IMFs (9), a major outcome of this work. The response of the k th  DOF of (1) can 

be expressed as 

Slow flow: (1) ( )( ) ( ) ... ( ),N

k k kx t x t x t   ( ) ( ) ( ) ( )

' '' '
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Given, however, that the time series is decomposed in terms of dominant IMFs, it follows that ( )m
k m   

for 1,...,m N , where N  is the number of dominant harmonic components in the slow flow 

decomposition of the dynamics (i.e., the dimensionality, or the number of significant frequency-time 

scales in the dynamics). It follows that the above partitions can be related since they represent identical 

theoretical and numerical multi-scale slow-fast decompositions of the measured time series 

( ) ( )

mod mod

( ) ( ) , 1,..., , 1,...,m m

k k

Theoretical el Numerical el

x t c t k n m N                                          (14a) 

Thus, we make the association 

( )ˆ ( )( ) ( ) ( ) ( )
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mkj t tm m m m

k k k k
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t t t A t e
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  
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                                         (14b) 

These relations provide a physics-based theoretical foundation for EMD, whereby the dominant IMFs 

represent the underlying slow flow and, hence, capture all the important (multi-scale) dynamics. 

 This important result provides the foundation for the development of our new NSI method. We 

note that no assumptions have been made regarding the type or dimensionality of system and the type and 

strength of the nonlinearity. It follows that the slow-fast partitions discussed above and the physical 

interpretation of the results of EMD should hold for a broad class of dynamical systems. In fact, we have 

demonstrated that EMD can provide us with the added benefit of separating the smooth from non-smooth 

dynamics by localizing all non-smooth effects (e.g., due to clearances, backlash, etc.) in the leading order 

IMFs. Hence, our NSI methodology can be extended to non-smooth dynamical systems. 

 An example of this correspondence is now given in terms of our previous strongly nonlinear 

example (5). In Figures 5a,c we depict a comparison between the magnitudes of the slowly varying 

amplitudes of the low- and high-frequency (LF and HF) components of the LO and the NES derived by 

slow flow analysis and EMD; in Figures 5b,d we present the corresponding slow components in the 

complex plane (which incorporates also phase information). There is good correspondence between the 

analytical and numerical results for these two dominant components (cf. Fig.2) confirming the previous 

theoretical arguments. 

Nonlinear System Identification: Global and Local Issues 

 Compared with linear modal analysis, NSI of dynamical systems is far more complex. Nonlinear 

systems are energy– and initial conditions–dependent, so that even the simple task of identifying a set of 

(linearized) modal matrices modified („perturbed‟) by nonlinear corrections might be an 

oversimplification of the problem. Using as an example the 1:3 transient resonance capture of the strongly 

nonlinear system (5) we should recognize that a change in initial conditions can result in drastically 



different transient dynamics. To illustrate this point we introduce in our discussion the concept of 

frequency-energy plot (FEP) , which provides a global picture of the dynamics.  

 

Figure 5. Correspondence between theory (slow flow dynamics) and numerics (EMD results) for the 

strongly nonlinear system (5): (a,b) HF response of LO ( 1 ), (c,d) LF response of the NES ( 2 ). 

 To construct the Hamiltonian FEP for system (5) we set 1 2  0 and compute its periodic 

orbits. The resulting FEP is in the background in Figures 6a,b, where a frequency index (FI) of a periodic 

orbit is depicted against its (conserved) energy. Symmetric periodic orbits Snm  correspond to curves in 

the configuration plane ( , )y v , with ( : )m n  indicating the internal resonance realized (e.g., a 1:1 internal 

resonance is realized on 11S  , with both the LO and the NES oscillating with identical dominant 

frequencies). The (  ) signs indicate in-phase or out-of-phase motions of the LO and the NES. 

Unsymmetric periodic orbits Upq   are Lissajous curves in the configuration plane. Then, the FI of a 

periodic orbit on branches Snm  and Unm  is given by 
0 /FI n m . The (seemingly simple) system (5) 

possesses a countable infinity of periodic orbits! Near-horizontal branches are linearized or weakly 

nonlinear motions (weak frequency – energy dependence), whereas curved branches imply strongly 

nonlinear responses (the corresponding linear two – DOF system would possess a FEP with just two 

horizontal lines corresponding to its natural frequencies!). 

 A very useful feature of the Hamiltonian FEP is its relation to the transient dynamics of the 

corresponding weakly damped system. As discussed in the dynamics of the weakly damped system can be 

closely related to the underlying Hamiltonian dynamics: indeed, for weak damping the transient dynamics 

tracks specific branches of periodic orbits in the FEP. As energy decreases due to damping dissipation 

sudden transitions may occur as the damped response jumps from the neighborhood of one branch of 

periodic solutions to another. The sequence of branches of periodic orbits tracked by the damped 

dynamics in the FEP is ultimately dictated by the initial conditions and the level of damping in the 

system. Using as an example system (5), the close correspondence between the weakly damped and 

Hamiltonian dynamics can best be demonstrated by superimposing on the Hamiltonian FEP the wavelet 

spectra of the time series corresponding to the difference ( ) ( )y t v t . This is done in Figure 6a for the 1:3 

transient resonance capture depicted of Figure 2.  

(a) 

(c) 

(b) 

(d) 



 

      (a)          (b) 

Figure 6. Two damped nonlinear transitions of system (5) depicted in the FEP: (a) 1:3 Transient 

resonance capture, (b) transition with initial conditions (0) (0) (0) 0, (0) 0.579y v v y     ; yellow 

lines indicate schematically the damped transitions. 

In the same figure we depict the transient responses ( )v t  and ( )y t  together with their wavelet 

spectra. We see that during 1:3 transient resonance capture the dynamics tracks closely the 1:3 

subharmonic „tongue‟), so a relatively simple topological picture of the transition emerges. Using, 

however, a different set of initial conditions we get drastically different dynamics as evidenced by the 

high-frequency transition depicted in Figure 6b. In this case the dynamics is initiated on the higher energy 

superharmonic tongue 21U  so the damped dynamics tracks a completely different set of branches in the 

FEP. This results in a complicated multi-frequency nonlinear transition which, however, can be analyzed 

through theoretical and numerical slow-fast partitioning of the dynamics. It is evident though that 

performing NSI based only on either one of the measured time series we would miss a component of the 

dynamics. Moreover, even if both transitions are analyzed, NSI would still be incomplete as there would 

still be dynamics not captured by the transitions of Figure 6. 



The previous example highlights the important challenges that the analyst is faced with when 

performing NSI. The first challenge is to address the (generic) feature of nonlinear systems to exhibit 

qualitatively different responses with varying energy and/or initial conditions. To address this challenge 

one needs to adopt a global approach for identifying the basic (essential) dynamical features of a system 

over broad frequency and energy ranges. The second challenge is to be able to identify complex multi-

frequency transitions (such as the ones depicted in Figure 6) for fixed sets of initial conditions (or 

energy). This dictates a local approach to NSI whereby, a specific nonlinear transition is considered and 

the task is to identify the nonlinear modal interactions that govern this transition. The NSI methodology 

that we have developed promises to address both of the above challenges by introducing a combined 

global / local approach to NSI: global features of the dynamics are identified in the frequency-energy 

domain by constructing FEPs, whereas local transitions (such as the ones depicted in Figure 6) are 

identified by constructing appropriate slow-flow models. In this way we ensure that both the global and 

local requirements of NSI are addressed. The added benefit of our approach is that it is based on direct 

analysis of measured time series which contain complete information of the nonlinear dynamics to be 

identified. 

 

Archival Publications Referencing the Current Grant 

 

Below is the sequence of archival publications with results funded in part by the AFOSR grant 

FA9550-07-1-0335, outlining the development of the nonlinear system identification method. 

“Physics-Based Foundation for Empirical Mode Decomposition: Correspondence Between Intrinsic 

Mode Functions and Slow Flows,” 2009, Y. S. Lee, S. Tsakirtzis, A. F. Vakakis, D. M. McFarland, 

L. A. Bergman. AIAA Journal, Vol. 47, No. 12, pp. 2938-2963. 

This paper developed the preliminary theoretical framework for the NSI method. We studied the 

correspondence between analytical slow flows (derived from complexification-averaging) and empirical 

slow-flows (composed of the IMFs derived from EMD). We showed equivalence between the theoretical 

and computational slow flows which is at the heart of our NSI approach, and provides a physics-based 

theoretical foundation for EMD, which until then was performed in an ad hoc fashion. We provided a 

rigorous mathematical foundation for this equivalence, and provided demonstrations with certain 

nonlinear dynamical systems. 

 

“A Time-Domain Nonlinear System Identification Method Based on Slow-Fast Dynamic 

Partitions,” Y. S. Lee, S. Tsakirtzis, A. F. Vakakis, L. A. Bergman, D. M. McFarland, Meccanica, 

(in press).  DOI: 10.1007/s11012-010-9327-7. 

In this paper we develop the NSI method. Based on the theoretical foundation for empirical mode 

decomposition developed in 1, we developed the NSI method based on multiscale dynamic partitions and 

direct analysis of measured time series, with no presumptions regarding the type and strength of the 

system nonlinearity. Hence, the method is developed for a broad class of time-variant/time-invariant, 

linear/nonlinear, and smooth/non-smooth dynamical systems. We show how the method provides in a 

systematic way reduced order models of strongly nonlinear transitions in the form of coupled or 

uncoupled oscillators with time-varying or time-invariant coefficients forced by nonhomogeneous terms 

representing nonlinear modal interactions. Hence, the method not only identifies the basic (dominant) 

time scales of the dynamics, but also the time histories of the nonlinear interactions across the scales of 

the dynamics. We provided examples of the NSI method by analyzing strongly nonlinear modal 

interactions in dynamical systems with essentially nonlinear attachments. 

 

“A Global-Local Approach to System Identification: A Review,” 2010, Y. S. Lee, A. F. Vakakis, D. 

M. McFarland, L. A. Bergman, Structural Control and Health Monitoring, Vol. 17, pp. 742-760.  

DOI: 10.1002/stc.414.  Invited paper in Honor of Prof. George W. Housner. 



In this paper we discuss the global/local duality of the NSI method, dictated by the well known sensitivity 

of dynamical systems to initial and forcing conditions. This is a unique feature of our NSI method, since 

it fully accounts for global as well as local identification of the different types of dynamics that a 

nonlinear system can realize. We present a review of a time-domain (NSI) method to study the local and 

global dynamics of mechanical systems. In addition, we demonstrate that the NSI method is capable of 

partitioning smooth from non-smooth effects in the dynamics of oscillators with discontinuous 

nonlinearities, such as vibro-impacts. In particular, we show that by “removing” non-smooth (vibro-

impact) effects from measured time series we are able (i) to focus in the identification of the underlying 

smooth components of the dynamics, and (ii) to identify interesting patterns in the non-smooth 

components of the dynamics, e.g., patterns of vibro-impacts in the vibro-impacting system.  This 

demonstrates that our NSI method is applicable to systems with `hard' (discontinuous) nonlinearities 

where traditional methods are inapplicable. 

 

“Nonlinear System Identification of the Dynamics of an Elastic Rod with an Essentially Nonlinear 

Attachment,” 2010,  S. Tsakartzis, Y. S. Lee, A. F. Vakakis, L. A. Bergman, D. M. McFarland, 

Communications in Nonlinear Science and Numerical Simulation, Vol.15, pp. 2617-2633.   DOI: 

10.1016/j.cnsns.2009.10.014. 

In this paper we apply the NSI method to identify strongly nonlinear interactions in the dynamics of a 

linear elastic rod with an essentially nonlinear attachment at its end. We are able to construct a reduced 

order model that fully reconstructs a multi-frequency transition in the dynamics.  This paper represents a 

first application of the NSI method to the transient dynamics of a linear elastic continuum with a strongly 

nonlinear (nonlinearizable) attachment. 

 

“Nonlinear System Identification of the Dynamics of Aeroelastic Instability Suppression Based on 

Targeted Energy Transfers,” Y. S.  Lee, A. F. Vakakis, D. M. McFarland, L. A. Bergman,  2010, 

Aeronautical Journal of the Royal Aeronautical Society, Vol. 114, No. 1152, pp. 61-82. 

In this paper we apply the NSI method to identify the nonlinear modal interactions that occur during 

aeroelastic flutter suppression due to targeted energy transfer (TET) from an oscillating wing to an 

essentially nonlinear attachment. We construct reduced order models in the form of nonlinear interaction 

models (NIMs) that not only provide information on modal energy exchanges under nonlinear resonant 

interactions, but also can be used to study the robustness of the aeroelastic instability suppression.  

Moreover, we discuss the usefulness of NIMs in constructing frequency-energy plots that reveal global 

features of the dynamics to distinguish between different TET mechanisms and to study robustness of 

aeroelastic instability suppression. 

 

Student and Post-doctoral Researchers Supported in Part by the Current Grant 

 

Post-doc:  Young S. Lee, PhD (UIUC, 2006).  Now assistant professor of mechanical and aerospace 

engineering, New Mexico State University, Las Cruces, NM. 

 

Student:  Sean A. Hubbard, MS (UIUC, 2009).  Now doctoral student in the aerospace engineering 

department, UIUC. 

 

Student:  Mercedes Mane, MS (UIUC, 2011).  Now laboratory assistant, aerospace engineering 

department,  UIUC. 

 

Changes in research objectives, if any:   

 

None  

 



Change in AFOSR program manager, if any: 

 

Dr. Victor Giurgiutiu, followed by Dr. David Stargel  

 

Extensions granted or milestones slipped, if any: 

 

One six month no-cost extension granted. 

 

New discoveries, inventions, or patent disclosures: 

 

Physical basis for empirical mode decomposition (EMD) in dynamical systems documented. 

No inventions or patent disclosures. 




