| AD |) | | | | |----|---|--|--|--| | | | | | | Award Number: W81XWH-10-1-0225 TITLE: Enhancing Therapeutic Cellular Prostate Cancer Vaccines PRINCIPAL INVESTIGATOR: Christian Gomez CONTRACTING ORGANIZATION: Mayo Clinic Rochester, MN 55905 REPORT DATE: June 2011 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. | data needed, and completing this burden to Department of I 4302. Respondents should be | and reviewing this collection of in
Defense, Washington Headquart
e aware that notwithstanding any | nformation. Send comments regarders Services, Directorate for Info | arding this burden estimate or an
rmation Operations and Reports
n shall be subject to any penalty | y other aspect of this col
(0704-0188), 1215 Jeffer | ning existing data sources, gathering and maintaining the lection of information, including suggestions for reducing ron Davis Highway, Suite 1204, Arlington, VA 22202-a collection of information if it does not display a currently | |--|--|--|--|--|--| | 1. REPORT DATE (DL
01-06-2011 | D-MM-YYYY) | 2. REPORT TYPE
Annual | 1233. | 3. D. | ATES COVERED (From - To) MAY 2010 - 14 MAY 2011 | | 4. TITLE AND SUBTIT | | | | | CONTRACT NUMBER | | Enhancing Therape | eutic Cellular Prosta | ate Cancer Vaccines | 5 | | | | | | | | | GRANT NUMBER | | | | | | | 1XWH-10-1-0225 | | | | | | 5c. I | PROGRAM ELEMENT NUMBER | | 6. AUTHOR(S) | | | | 5d. I | PROJECT NUMBER | | Christian Gomez | | | | | | | | | | | 5e. 7 | TASK NUMBER | | E-Mail: gomez.chr | riction@mayo.edu | | | 5f. V | VORK UNIT NUMBER | | L-Maii. gomez.cm | isilan@mayo.euu | | | | | | 7. PERFORMING ORG | GANIZATION NAME(S) | AND ADDRESS(ES) | | _ | ERFORMING ORGANIZATION REPORT UMBER | | Mayo Clinic | | | | l N | ONIBER | | Rochester, MN 55 | 905 | | | | | | | | | | | | | | | IAME(S) AND ADDRES | S(ES) | 10. 9 | SPONSOR/MONITOR'S ACRONYM(S) | | - | I Research and Ma | teriei Command | | | | | Fort Detrick, Mary | ianu 21/02-5012 | | | 11 9 | SPONSOR/MONITOR'S REPORT | | | | | | | NUMBER(S) | | Approved for Publ | AVAILABILITY STATEN
ic Release; Distribu | | | - | | | 13. SUPPLEMENTAR | Y NOTES | | | | | | 14. ABSTRACT | | | | | | | Abstract on next p | age. | 15. SUBJECT TERMS | | | | | | | No subject terms p | provided. | | | | | | 16. SECURITY CLASS | | | 17. LIMITATION
OF ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF RESPONSIBLE PERSON USAMRMC | | a. REPORT
U | b. ABSTRACT
U | c. THIS PAGE
U | UU | 40 | 19b. TELEPHONE NUMBER (include area code) | | | <u> </u> | 1 | 1 | i | <u>i</u> | REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 #### Scope: Prostate cancer (CaP) is characterized by unique prostate-associated antigens; hence, it has been considered a prime candidate for immunotherapy. Despite numerous laboratory advances, clinical outcomes have been partial and transient. Purpose: The overall goal of the proposed studies is to optimize the effectiveness of therapeutic whole-cell CaP vaccines by taking into 14. ABSTRACT consideration tumor—associated hypoxia as a relevant determinant of tumor antigenicity. Major findings: Transcriptome studies revealed that gene expression in hypoxically cultured cells is more akin to that in tumor cells in situ than are cells grown normoxically. Transcripts of hypoxia-associated genes DLG7, CCNB1 and HMMR were associated with Gleason score and with disease prognosis suggesting their potential as CaP biomarkers with prognostic value. By 2D-gel electrophoresis, we screened patient sera and detected novel hypoxic-cell reactive autoantibodies (under validation). Significance: Our data suggest that hypoxically cultured CaP cells are more akin to tumor cells in situ than are cells grown normoxically. We have identified hypoxia-reactive proteins, pathways and autoantigens with potential value as biomarkers or therapeutic targets. Introduction of pO_2 as a variable can constitute a tool for the development of more effective immunotherapy for CaP. # **Table of Contents** | | Page | |------------------------------|------| | Introduction | 4 | | Body | 4 | | Key Research Accomplishments | 14 | | Reportable Outcomes | 14 | | Conclusion | 15 | | References | 17 | | Annendices | 20 | #### Introduction Prostate cancer (CaP) remains among the most common causes of cancer-related deaths in men. Because CaP is ch aracterized by unique prostate-associated antigens, it has been considered among prime candidates for i mmunotherapy. Despite numerous laboratory advances, clinical outcomes have been partial and transient. One plausible reason for the incomplete response is that vaccine cells, prepared unde r standard tissue culture conditions, can drastically differ in expression of macromolecules in situ, and thus may immunize against less complete antigen spectrum. The purpose of the proposed studies is to optimize the effectiv eness of therapeutic whole-cell CaP vaccines by taking into consideration tumor-associated hypoxia as a relevant determinant factor of tumor antigenicity. We hypothesize that hypoxically cultured CaP cells are more similar in their antigen landscape to CaP cells in situ than are no rmoxically cultured CaP cells. The following Tasks were defined in the approved statement of work; Task 1. Identify oxygen-tension responsive genes and proteins in the cells comprising a clinical-grade prostate cancer (CaP) cellular v accine; Task 2. Validate di fferentially expressed molecules in CaP in association with tissue hypoxia. Introduction of oxygen tension (pO_2) as a variable can constitute a tool for the development of more effective allogeneic vaccines for CaP. If the proposed studies demonstrate that CaP cells grown under low pO_2 are more antigenically similar to cells in situ, this will justify the evaluation of their therapeutical value in a preclinical model. ### **Body** Task 1. Identify oxygen—tension responsive genes and proteins in the cells comprising a clinical—grade CaP cellular vaccine. Approach: Identification of specific candidate genes with pO_2 -dependent expression in CaP cells has not been established yet in the context of their antigenic relevance. In Task 1, CaP cell s grown at different pO_2 were tested by state-of-the-art high throughput genom ics and proteomics techniques. This approach was designed to identify pO_2 -regulated tumor-associated pathways and macromolecules. To determ ine the antigenic potential of pO_2 -regulated tumor-associated macromolecules, we tested their reactivity with the spontaneous antibodies from CaP patients and the sera of age-matched non-cancerous controls, other cancers and an autoimmune disease. Task 1a. To propagate LnCaP and VCaP cells under pO_2 —controlled conditions. Prompted by the evid ence that pO_2 modulates the biological properties of CaP tumor cells, we initiated studies aimed at using pO_2 as a tool to manipulate the antigenic signature of cells used as cellular vaccines. As a model, we used LnCaP cells, originated from a lymph node metastasis [1]. These cells have been used as a component of an allogeneic whole cell vaccine tested in a phase 2 clinical trial of androgen-independent CaP [2]. VCaP cells were generated from a vertebral metastatic lesion and harbor the TM PRSS2-ERG fusion (present in 40–60 percent of CaP patients) [3, 4]. These two cell lines were selected because their comparison could represent a broad spectrum of CaP patients, and may thus result in a better vaccine. For contrast we included DU-145 cells, derived from a brain metastatic tumor [5] into initial experiments. The cells were routinely maintained in culture medium (RPMI-1640 for LnCaP and DU-145 and Dulbecco's modified MEM for DU-145 cells) supplemented with 10 percent fetal bovine serum. LnCaP cells were propagated at different pO_2 levels in a BioSpherix chamber (Lacona, NY) with adjustable oxygen partial pressure. Humidified atmosphere was maintained at 37 °C and equilibrated with a mixture of 2% O $_2$ and 5% CO $_2$ using controlled N $_2$ and CO $_2$ gas in take. Controls were placed in a standard cell culture incubator at 37 °C in a humidified atmosphere containing 21% O₂ and 5% CO₂. Hypoxic LnCaP and VCaP cells (pO_2 =2 kPa) proliferated faster than at standard cell culture conditions, however hypoxia reduced the proliferation of DU-145 cells (**Figure 1A**). Independent of the cell proliferation rate (as observed earlier by others [6]), hypoxic cells secreted more VEGF (**Figure 1B**). LnCaP cells (5,000 cells/cm²), VCaP (10,000 cells/cm²), and DU-145 (5,000 cells/cm²), were cultured at pO_2 =2 kPa or 20 kPa in T-25 flasks; Figure 1A. Live cells were counted in triplicate flasks using trypan blue exclusion to differentiate dead cells; Figure 1B. Rate of VEGF secretion in hypoxia–grown cells was higher than in normoxia–grown cells.*
p<0.05 relative to pO_2 =20 kPa; # p<0.05 relative to 2 days at the same pO_2 value. Task 1b. cDNA gene microarrays and data analysis. In response to changes in oxygen availability, cells differentially regulate a vast array of genes etabolism or a ngiogenesis [7, 8]. In involved in diverse pathways such as apoptosis, m preliminary experiments, we observed hypoxia-a ssociated increase in VEGF expr ession by CaP and ovarian cancer cells (Knutson, G.J., V uk-Pavlovic, S.; unpublished observations). In addition, we found numerous differences betwee n 2-D electropherograms of lysed LnCap cells propagated at pO_2 = 2 kPa and to 20 kPa. A ltogether, this evidence suggests that hypoxia profoundly affects gene expression relative to nor moxia. Only a handful of studies, however, have analyzed the effect of hypoxia on gene expr ession in CaP, especially in the context of pO_2 impact on malignant progression [9-11]. We cultured LnCaP, VCaP, and DU-145 at pO₂= 2 kPa or 20 kPa and lysed them when dat a showed pO₂-related differences in VEGF secretion (4, 7 and 4 days for LnCaP, VCaP and DU-145; respectively). We isolated total RNA, verified its quality using an Agilent 2100 Bioanalyzer, and assessed the transcriptome by Affymetrix Human U133 Plus 2.0 array. G enes expressed differently between experimental groups were identified as probe sets with at least a twofold hypoxi a-related expression change. We selected approximately 1450, 3700 and 1400 probe sets in DU-145, LnCaP, and VCaP cells, respectively. To relate functions, pathways, networks, and unique features to genes differently expressed between two pO₂s, we used Ingenuity Pathway Analysis (IPA; Ingenuity Systems). Benjamini-Hochberg correction was used f or multiple comparisons. Transcriptome studies revealed different gene expression in cells grown in hypoxia relative to those in normoxia. Correlation analysis between expression profiles, for all pr obes or hypoxia-sensitive probes revealed that LnCaP and VCaP cells were sim ilar in gene ex pression changes and different to DU-145 cells (data not shown). This last finding and the similar effect of hypoxia on cell growth in LnCaP and VCaP cells could be related to the presence of androgen receptor in these cell lines and its absence in DU-145 cells [12]. In terestingly, regardless of cell-specific changes in gene expression profiles, hypoxia-modified genes in molecular pathways associated with cancer and urologic diseases (**Table 1**) were overexpressed in comparison to normoxic cells (p<0.001) in all cell lines. These data suggest an association of low pO_2 and aggressive features of CaP. | Table 1 . Transcri | pts for diseases and | disorders | |-------------------------------------|---|-------------| | DU-145 preferentia | ally affected by hypo | xia | | Pathway | p-value | # molecules | | Genetic Disorder | 1.11x10 ⁻⁹ – 5.16x10 ⁻³ | 558 | | Cancer | 2.98x10 ⁻⁹ - 5.50x10 ⁻³ | 354 | | Reproductive System Disease | $2.79 \times 10^{-7} - 4.40 \times 10^{-3}$ | 232 | | Developmental Disorder | $3.04x10^{-7} - 3.97x10^{-3}$ | 103 | | Immunological Disease | 1.00x10 ⁻⁶ – 5.16x10 ⁻³ | 253 | | LnCaP | | | | Pathway | p-value | # molecules | | Cancer | 2.11x10 ⁻⁷ – 9.17x10 ⁻³ | 800 | | Reproductive System Disease | 5.03x10 ⁻⁶ – 8.63x10 ⁻³ | 440 | | Genetic Disorder | 6.90x10 ⁻⁶ – 7.92x10 ⁻³ | 1393 | | Inflammatory Disease | 2.31x10 ⁻⁵ - 9.32x10 ⁻³ | 665 | | Connective Tissue Disorders | 6.42x10 ⁻⁵ – 9.32x10 ⁻³ | 433 | | VCaP | | | | Pathway | p-value | # molecules | | Organismal Injury and Abnormalities | 7.42x10 ⁻⁵ – 3.23x10 ⁻² | 28 | | Cancer | 1.13x10 ⁻⁴ - 3.20x10 ⁻² | 184 | | Hematological Disease | 3.50x10 ⁻⁴ - 2.93x10 ⁻² | 62 | | Genetic Disorder | 4.42x10 ⁻⁴ - 3.06x10 ⁻² | 346 | | Respiratory Disease | 4.42x10 ⁻⁴ - 2.53x10 ⁻² | 71 | In collaboration with Drs. George Vasmatzis and Farhad Kosari (Mayo Clinic Cancer Center) we compared the analyzed transcriptomes with those of CaP resected tissues previously used to identify prognostic biom arkers [13]. Sa mples of fresh frozen tissue [(CaP, n=32), benign prostatic tissue adjacent to CaP (BPC, n=40), and benign prostate tissue from CaP-free men (BP, n=28]; and epithelial cells collected from an independent patient set by laser-capture microdissection (LCM) [CaP, n=68; BPC, n=31; BP, n=11; BPH, n=5]. We compared the data to those from CaP cells cultured at $pO_2=20$ kPa or $pO_2=2$ kPa. Notably, hypoxia increased transcript levels for pyruvate dehydrogenase ki nase isozyme 1, nuclear prelam in A recognition factor, glucose phosphate isomerase, and glyceraldehyde-3-phosphate dehydrogenase in all three cell lines (p<0.05) to levels comparable to those found in prim ary bulk tissue and LCM isolated cells (p < 0.005) (Figure 2). This finding suggests that gene expression in hypoxically cultured cells is more akin to that in tumor cells in situ than are cells grown norm oxically. Our results challenge the long standing idea suggesting that tumors develop independence of oxygen ["the Warburg effect"; [14]] that le d to the assum ption of tum or insensitivity to oxygen. Also our findings add to recent data suggesting that in CaP, tumor-associated hypoxia associates to malignant progression, metastasis, resistance to therapy, and poor clinical outcome [15-18]. Expression in LCM and bulk tissue: | symbol | p-Bulk | p-LCM | |--------|--------|-------| | PDK1 | 0 | 0 | | NARF | 0 | 0.001 | | GPI | 0.4903 | 0 | | GAPDH | 0.0045 | 0.004 | Transcription profiles revealed different gene expression in cells grown in hypoxia relative to those in normoxia. Interestingly, transcripts for pyruvate dehydrogenase kinase isozyme 1 (PDK1), nuclear prelamin A recognition factor (NARF), glucose phosphate isomerase (GPI), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were overexpressed in hypoxia in all three cell lines (p<0.05), in bulk tissue and LCM isolated cells (p<0.005). By complementary data mining [19] we id entified 88 known HIF-1 targets and 500 hypoxia associated target genes [20]; 23 genes of the conserved core hypoxia signature [21]; twelve HIF-1 targets tested in CaP [22]; and 708 genes in Ingenuity hypoxia signaling pathway [23]. This approach identified 24 hypoxia-associated genes significantly overexpressed in CaP ($p \le 0.02$), both in bulk tissue and LCM cells (**Table 2**). Table 2. Hypoxia-associated genes significantly overexpressed in CaP bulk tissue and samples isolated by Laser-capture microdissection | | | Bulk t | issue | LC | M | |----------|--|------------|----------|------------|----------| | Symbol | Name | Ca/N ratio | p value | Ca/N ratio | p value | | ACACA | acetyl-Coenzyme A carboxylase alpha | 1.5 | 0 | 1.2 | 0.002123 | | CDCA3 | Cell division cycle-associated protein 3 | 1.7 | 0 | 1.5 | 0 | | CEP55 | centrosomal protein 55kDa | 1.8 | 0 | 1.4 | 0 | | CCNB1 | cyclin B1 | 1.8 | 0 | 1.3 | 0 | | CKS2 | Cyclin-dependent kinases regulatory subunit 2 | 1.1 | 0.000043 | 1.2 | 0.000001 | | DLG7 | discs, large (Drosophila) homolog-associated protein 5 | 1.8 | 0 | 1.5 | 0 | | SLC7A1 | High affinity cationic amino acid transporter 1 | 1.6 | 0 | 1.2 | 0.000023 | | HMMR | Hyaluronan-mediated motility receptor | 2.1 | 0 | 1.7 | 0 | | HIG2 | hypoxia-inducible protein 2 | 1.5 | 0 | 1.2 | 0.000001 | | LOX | lysyl oxidase | 1.1 | 0.000044 | 1.5 | 0 | | MMP10 | matrix metalloproteinase-10 | 1.2 | 0.021521 | 1.4 | 0.000066 | | MCOLN2 | mucolipin 2 (cation channel protein) | 1.1 | 0.000332 | 1.4 | 0 | | NLN | neurolysin (metallopeptidase M3 family) | 1.2 | 0 | 1.2 | 0.000012 | | PDLIM5 | PDZ and LIM domain 5 (Scaffold protein) | 1.1 | 0 | 1.2 | 0.000121 | | PSD3 | pleckstrin and Sec7 domain containing 3 | 1.1 | 0.000001 | 1.2 | 0 | | C20orf74 | Ral GTPase-activating protein subunit alpha-2 | 1.3 | 0 | 1.2 | 0.000092 | | FAM80A | ribosomal modification protein rimK-like family member A | 1.7 | 0 | 1.2 | 0.000013 | | SDK1 | sidekick homolog 1, cell adhesion molecule | 1.5 | 0 | 1.5 | 0 | | STC2 | Stanniocalcin-2 (secreted) | 1.2 | 0.009053 | 1.3 | 0.000059 | | SOX4 | Transcription factor SOX-4 | 1.2 | 0 | 1.2 | 0.000001 | | TMEM200A | transmembrane protein 200A | 1.3 | 0 | 1.3 | 0.000886 | | TFF3 | trefoil factor 3 (intestinal, stable secretory protein) | 1.2 | 0.001889 | 1.2 | 0.001276 | | UBE2C | Ubiquitin-conjugating enzyme E2 C | 1.4 | 0 | 1.2 | 0 | | UBE2E3 | Ubiquitin-conjugating enzyme E2 E3 | 1.8 | 0 | 1.3 | 0.000079 | Abbreviations: Ca, prostate cancer; N, Normal Among hypoxia-associated genes, the disc larg e (Drosophila) hom olog-associated protein 5 [DLG7], cyclin B1 [CCNB1], and hyaluronan-mediated motility receptor [HMMR] (**Figure 3A**) were associated with Gleas on score and disease prognosis (**Figure 3B**). Since the products of CCNB1 [24] and HMMR [19] genes have been recently identified as molecular markers of CaP progression, our results suggest the potential utility of hypoxia–associated genes as a criterion to identify CaP biomarkers with prognostic value. In additional studies we found a high correlation between DLG7 and DNA to poisomerase 2α (TOP2A) trans cript levels (Pearson Coefficient=0.816) (Figure 3C). As TOP2A is the strongest predictor of outcome for high-risk CaP [25], a predictive value of DLG7 for outcome in men at high-risk CaP can be anticipated. Figure 3A. Abbreviations: BP: benign prostate tissue from men who were free of CaP, BPC: benign prostate tissue in prostates that contained cancer, BPH: Benign prostatic hyperplasia, CaP: prostate cancer, CCNB1: Cyclin B1, DLG7: Disc large (Drosophila) homolog-associated protein 5, HMMR: hyaluronan-mediated motility receptor, LCM: laser-capture microdissection, met: metastasis, PIN: prostatic intraepithelial neoplasia. Figure 3B: Of the 24 hypoxia-controlled genes significantly overexpressed in CaP tissue, three of them: cyclin B1 [CCNB1]; disc large (drosophila)
homolog-associated protein 5 [DLG7], and hyaluronan-mediated motility receptor [HMMR] were associated with Gleason score and with disease prognosis. Figure 3C: correlation between the RNA levels of DLG7 and TOP2A in CaP patients (Pearson Coefficient = 0.816) Recognizing the potential of *in vitro* culture for studies of hypoxia—modulated malignant and survival properties of CaP cells (see above and [6]) we analyzed the transcript levels of DLG7, CCNB1 and HMMR genes in C aP cells grown in normoxia and hypoxia. H ypoxic cells expressed 30 to 60 percent m ore CCNB1 and DLG7 transcripts. DLG7 is a cell-cycle-regulated [26], microtubule-associated protein and a Ran GTPase effe ctor involved in mitotic kinetochore fiber stability [27]. Biological function of DLG7 is compatible with its role in cancer; however, pertinent information on its role in CaP is lim ited [26]. In one study, DLG7 was detected in nearly 90 p ercent of transitional c ell carcinoma (TCC) of the bladder, but not in benign urological diseases; a higher le vel of DLG7 was found in recu rrent TCC [28]. Overall, our results indicate that the DLG7 expression is higher in CaP and hypoxic CaP cells and correlated with disease outcome. These studies show the fe asibility of identifying biomarkers linking CaP hypoxia and prognosis and establishing the contribution of hypoxia-associated genes to CaP progression. Identification of hypoxia-related bi omarkers might help identify the patients who hypoxia-modulating therapies [18]. These findings constituted the could benefit from preliminary data for the application entitle d "Hypoxia-regulated DLG7 in CaP carcinogenesis and prognosis". This proposal was recently awarded a Treatment Sciences Creativity Award from the Prostate Cancer Foundation and is aim ed at validating the role of DLG7 r ole in tumor progression. Task 1c. 2-D gel analysis, in gel enzyme digestion and mass spectrometry. In our preliminary experiments, we observed hypoxia-associated increase in VEGF production in CaP cells and ovarian cancer cells. In addition, we observed differences in spots in CaP cell propagated at pO_2 = 2 kPa relative to 20 kPa, as detected by 2-D electrophoresis. This suggests that hypoxia affects protein expression relative to nor moxia. To date, identification of specific candidate genes with pO_2 -dependent expression in CaP cells in the context of their antigen ic relevance has not yet been established. To characterize the effe cts of hypoxia on the prot eome of CaP cells further, LnCaP and VCaP cells were cultured at pO₂=2 kPa or 20 kPa. Following four or seven days of incubation for LnCaP cells or seven of eleven days for VCaP cells, their lysates were loaded onto nonlinear pH 3-10 strips and subjected to isoelectrofocusing a ccording to manufacturer's instructions (Bio-Rad, Hercules, CA) and published protocols [29, 30]. We ran multiple strips in the firs t dimension and simultaneous second dimension assuring the highest possible reproducibility. Gels were silver stained, scanned and analyz ed by PDQUEST software (Bio-Rad Laboratories). The proteome revealed multiple spots that differed in intensity and/or position between VCaP cells grown at $pO_2=2$ kPa and at 20 kPa (Figure 4). Surprisingly, the difference in pO_2 affected the proteome mostly quantitatively (i.e., by change in spot intens ity). Using a threshold of fivefold change we found that in VCaP cells culltured for seven days, levels of only 13 proteins decreased and of 4 proteins incr eased during hypoxia. The results were sim ilar for all cells and culture duration (data not shown). Our results are in line with the reports showing that hypoxia affects expression only of a sm all fraction of total cellular protein and that the content of total protein is not altered s ignificantly [31, 32]. In addition, our findings rule out translational modification as an important response to hypoxia in cancer cells. Task 1d. Association between gene-specific changes in mRNA and hypoxic proteome. In Tasks 1a and 1b we established that hypoxia affects expression of particular genes in CaP and that the effects on proteome are mostly qualitative. However, establishing an association between changes in transcriptome and proteome demands additional effort. Along with similar studies [11, 31, 32], we set to identify the most affect—ed protein spots on 2D-gels and find how they compare with the most affected gene transcripts. We sequenced spots from the 2D gels in Task 1e; the spots were selected as potential tumor—associated antigens (TAAs). In a preliminary analysis of six transcripts and proteins, we found no correlation between changes in levels of transcripts and protein (data not shown). The data suggest the possibility that change in protein levels was not transcription dependent, in lin e with the findings suggesting that the changes affecting the proteom e during hypoxia m ay be governed by posttranscr iptional mechanisms rather than by changes in transcription or translation [11, 31, 32]. Task 1e. Identification of CaP antigens by 2D–Western blots. The finding that patients harbor autoantibodies—against tumor antigens—has been used as to identify new autoantibody—binding peptides derive d from CaP and other tum ors [33, 34]. First we studied the reactivity of autoantibodies in CaP patient plasma. Following published protocols [29], we prepared total cell lysates of VCaP and LnCaP cells cultured at pO_2 =2 kPa or 20 kPa, resolved them by 2D electrophore sis, transferred onto nitrocellulose membranes, and incubated with pooled plasm a (1:300) from 25 patients and 25 controls. P lasma of 17 patients with autoimmune diseases (rheumatoid arthritis), 10 with colorectal cancer and 10 with lung cancer was used to validate specificity of potential candidates. Following incubation with goat antihuman Ig–HRP conjugate (1: 3000), bound antibodies w ere detected by chem iluminescence, followed by detection in autoradiographic film—s. Sera f rom patients with CaP reac ted with numerous spots, som e of which were observe—d in the control groups—and thus considered nonspecific (Figure 5). Figure 5. Spontaneous autoantibodies in plasma from newly diagnosed CaP patients against VCaP cells Thirty µg protein were loaded on pH 3-10 NL IPG strips for isoelectric focusing (pH range 4–10 is shown). Second dimension: 10.5-14 % SDS-PAGE gel, transferred to nitrocellulose membranes, incubated with pooled plasma (1:300) from newly diagnosed CaP patients (n=5; total of 4 pools) or age matched non-cancerous controls (n=5; total of 4 pools). Following incubation with chicken anti-human IgG-HRP, spots were identified by chemiluminescence. Sera from CaP patients specifically bound to seven spots (**Figure 6**); four were hypoxia-specific. All selected spots were excised from the gel, trypsin-digested, and analyzed by MALDI-TOF mass spectrometry. We identified them as heat shock 70 kDa protein 4; 60 kDa heat shock protein; protein disulfide isom erase A3; hete rogeneous nuclear ribonucleoprotein L; U1 s mall nuclear ribonucleoprotein 70kDa and leucine-ri ch repeat-containing protein 47. With the exception of the latter molecule, identified proteins have been identified or validated as TAAs before [see references in (**Table 3**)]. However, to the best of our knowledge none of the proteins has been validated as a TAA in CaP. Interestingly, the sequence of spots 2, 3 and 4 in Figure 6 corresponded to the 60 kDa heat shock protein, identified by us as a hypoxi a–insensitive TAA. As there are three Hsp60 isoforms [35], it is likely that we iden tified the three isoforms as potential TAAs. Additional research will clarify the relevance of Hsp60 isoform s as relevant TAAs in CaP. Lysates from LnCaP cells grown at pO_2 =2 kPa interacted with specific antibodies in plasma from CaP patients (data not shown); however, overall reactivity was lower than in VCaP cells. Interestingly, a series of spots consistent with spots 2-4 in VCaP cells was al so recognized by plasm a from patients blotted against lysates from LnCaP cells. It is evident from those experiments that hypoxic LnCaP cells exhibit similar reactivity to hypoxic VCaP cells. We are currently sequencing identified proteins from LnCaP cells with the expectation that they will validate the spots in VCaP cells and identify additional novel hypoxia-sensitive TAAs. Among the most conspicuous spots recognized by plasm a from CaP patients in V CaP lysates was spot 6; this hypoxia-sensitive spot was strongly reactive with the pooled sera of CaP patients (Figure 6). This spot contains the U1 s mall nuclear ribonucleoprotein 70kD a and the heterogeneous nuclear ribonucleoprotein L. Both the see proteins have been identified as TAAs [36-38]; their validation in CaP is our next immediate priority. For validation we will narrow the pH range of isoelectric focusing from 7 to 10 and use specific antibodies to confirm the identity of the molecules. Protein spot 6 exhibited little or no reactivity with sera of healthy controls, lung cancer or rheumatoid arthritis, but we detected some reactivity (in a hypoxia-dependent manner) with plasma from colorectal cancer (CRC) patients. The relevance of hypoxia has been recognized in CRC [3 9] and nu merous CRC-associated-TAAs have been identified [40]; however, establishing the relevance of hypoxia-seen sitive U1 s mall nuclear ribonucleoprotein 70kDa and heterogeneous nuclear ribonucleoprotein L is a new and interesting aspect in CRC as it could expand the use of hypoxia to the identification of TAAs in other tumors. | | Table 3. Poten | tial TA | As ide | ntifie | d in VC | aP cells | |----------------|---|------------------|------------------|-------------|---------------------|--| | Spot
number | Protein name | Hypoxia specific | Accession number | MW
(kDa) | Peptides
matched | TAA [Refs] | | 1 |
Heat shock 70 kDa protein 4 | yes | P34932 | 94.3 | 28-39 | Esophageal [41],
hepatocellular carcinoma
[42, 43] | | 2 | 60 kDa heat shock protein | no | P10809 | 61.3 | 43-63 | Breast [29], hepatocellular | | 3 | 60 kDa heat shock protein | no | P10809 | 61.3 | 59-80 | carcinoma [43], colorectal [44], oral [45], gastric | | 4 | 60 kDa heat shock protein | no | P10809 | 61.3 | 50-105 | lymphoma [46] | | 5 | Protein disulfide isomerase
A3 | yes | P30101 | 56.8 | 16-26 | Breast [29, 47],
hepatocellular carcinoma
[43] | | 6 | Heterogeneous nuclear ribonucleoprotein L | yes | P14866 | 64.1 | 18-52 | Acute leukemia [36],
healthy [37] | | 6 | U1 small nuclear ribonucleoprotein 70kDa | yes | P08621 | 51.4 | 11-52 | Lymphoma [38] | | 7 | Leucine-rich repeat-
containing protein 47 | yes | Q8N1G4 | 63.5 | 16-16 | | Task 2. Validate differentially expressed molecules in CaP in association with tissue hypoxia Approach: The presence of a hypoxic cancer m icroenvironment correlates with increased tumor invasiveness, metastases, resistance to radio- and chem otherapy, and pour clinical outcome [15, 41]. It is well established that CaP cells are found under hypoxic conditions *in vivo* [42] and that numerous proteins are modified in their expression by hypoxia [11]. Although many endogenous markers have been associated with the hypoxia response in cancer they are not all unregulated in primary CaP tissue [22]. This m ay be because the evaluation of potential markers has net been made taking into consideration the hypoxic environment in first place. Task 2 (planed for the second period of the award) is aimed at assessing the expression of select candidate genes identified in Task 1 in CaP tissue. Real time PCR and RNA *in situ* hybridization added to immunodetection will allow detection of specific candidate genes in CaP tissue. ### The proposed sub Tasks are: - 2a. RNA extraction and real time quantitative PCR in CaP tissue (months 13-16) - 2b. mRNA in situ hybridization (months 16-22) - 2c. Immunohistochemistry Staining in CaP tissue (months 16-24) Ongoing experiments are addressing the methodological concerns in experimental approaches to this Task. As part of the recently awarded project "Hypoxia-regulated expression of DLG7 gene in prostate cancer prognosis and progression" (funded by The Prostate Cancer Foundation), assessment the relationship of DLG7 expression and cancer-specific outcomes is a most relevant Task. For this project, we are studying gene expression in conjunction with a histopathology evaluation CaP tissue. Next will f ollow and analysis of the association of transcript levels and protein levels with clinical parameters. We will apply a similar strategy to accomplish Task 2. It is expected that the completion of Task 2 will occur as proposed. ### **Key research accomplishments** - Hypoxic LnCaP and VCaP cells proliferate m ore effectively than at standard cell culture conditions. - Hypoxic cells secrete more VEGF. - Hypoxia induced overexpression of m olecules involved in intracellular signaling networks in cancer and urologic diseases in comparison to normoxic cells. - Hypoxia increased transcript levels for som e genes in cell lines to levels comparable to those in CaP tissue. - Hypoxia-associated DLG7, HMMR and CCNB1 genes were significantly overexpressed in CaP and associated with Gleason score and disease prognosis. - Hypoxic cells expressed 30 to 60 percent more CCNB1 and DLG7 transcripts. - The change in pO_2 , affected the proteome mostly quantitatively (*i.e.*, by change in spot intensity). - There was no correlation between changes in protein levels and mRNA induction among a group of select genes tested. - Protein lysates from cells exposed to hypoxia revealed novel potential TAAs (currently under validation) in sera from Ca P patients (heat shock 70 kDa protein 4; protein disulfide isomerase A3; heterogeneous nucle ar ribonucleoprotein L; U1 s mall nuclear ribonucleoprotein 70kDa and leucine-rich repeat-containing protein 47). ### Reportable outcomes #### **Abstracts** - 1. **Gomez, C.R.,** Kosari, F., Schreiber, C.A., Knutson G.J., Vasm atzis, G., Vuk-Pavlović S. 2010. Hypoxic exposure as a novel strategy to identify tum or-associated antigens in prostate cancer. Presented at "Tumor Immunology: Basic and Clinical Advances." Miami Beach, FL. - 2. **Gomez, C.R.,** Knutson G.J., Schreiber, C.A., Kosari, F., Vasm atzis, G., Vuk-Pavlović S. 2011. Hypoxia affects gene expression and proteom e of prostate cancer cells. Presented at the 102th AACR Annual Meeting, Orlando, FL. - 3. **Gomez, C.R.,** Kosari, F., Schreiber, C.A., Knuts on G.J., Vasmatzis, G., Vuk-Pavlović S. 2011. Hypoxic cell culture for m ore effective cancer vaccines. To be presented at the 7 th ISABS Conference on Forensic, Anthropologic and Medical Ge netics, Bol, Island of Brač, Croatia. #### **Funding applied** 1. Tittle: Hypoxia-regulated DLG7 in prostate cancer carcinogenesis and prognosis (P.I.). Date: Dec 2010. Subm itted to: Prostate Ca ncer Foundation. Treatment Sciences Creativity Awards.. Status: Funded. Project goals: We found the transcripts of the disc s large homolog-associated protein 5 (DLG7), a hypoxia-regulated gene, overexpressed in human primary prostate cancer and hum an prostate cancer cell lines. The overall goal of the proposed studies is to validate the role of DLG7 role in tumor progression. Specific aims: 1) To measure the levels of DLG7 transcripts in resected CaP tissues and study the association with survival. 2) To overexpress DLG7 in prostate cells (normal epithelium and tumorigenic cells) and compare tumorigenesis in - the context of hypoxia. Key pers onnel receiving salary support from this project: 50% effort CR Gomez. 100% effort postdoctoral fellow - 2. Tittle: A Method for Prognosis of Prostate Cancer Based on Cellular Markers of Hypoxia (P.I.). Date: Jan 2011. Submitted to: Center for Translational Science Activities (CTSA) Novel Methodology Development Award (NMDA). Level of Funding: Status: Not funded. ### **Research opportunities** Active collaboration has been established with John Cheville, M.D., Professor of Pathology; Jeffrey Karnes, M.D., Director, Mayo Prostate Cancer SPORE Clinical Core and Chair, of Mayo Clinic Dept. of Urology Radica 1 Prostatectomy Registry; Farh ad Kosari, Ph.D., College of Medicine; and George Vas matzis, Ph.D., Department of Pathology and Laboratory Medicine, Center of Individualized Medici ne and Department of Molecula r Medicine, Mayo Clinic. This effort has identified hypoxia-sensitive genes as a new parameter for detecting aggressive prostate cancer with prognostic relevance. Access to tissue samples and data from a 150-pair case-control study will allow stud ies of the relationsh ip between hypoxia-sensitive gene expression and cancer-specific outcomes. In addition to providing archived tissue samples, collaborators as sist with histopathology evaluation and analysis and in terpretation of the data with respect to the association of transcript and protein levels with clinical parameters. ### **Employment applied** Based on this work, in June 2011 the P.I. has been offered a tenure—track associate professor position at the Department of Pathology, University of Mississippi Cancer Center, Jackson, MS. #### **Conclusion** We are studying the ways to optim ize the effectiveness of therapeutic whole–cell CaP vaccines by tumor–associated hypoxia as a relevant determ inant of tumor antigenicity. Our results show that in cultured hum an CaP cells hypoxia modifies expression of genes associated with cancer and urologic disease to levels comparable to those in resected human CaP tissue. These results suggest that gene expression in hypoxically cultured cells is more akin to that in tumor cells *in situ* than are cells grown norm oxically. We studied the transcriptome in human primary CaP tissue. Transcripts of hypoxia–associated genes DLG7, CCNB1 and HMMR were overexpressed and associated with Gleason score and with dis ease prognosis; this sugge sts their potential as CaP biomarkers with prognostic value. 2D-gel electrophoresis experiments confirmed previous findings indicating that hypoxia affects the proteome mostly quantitatively (*i.e.*, by change in spot intensity). Nonetheless, protein lysates from CaP cells exposed to hypoxia revealed novel potential TAAs thus suggesting the relevance of antigenic landscape of hypoxic proteome. Overall, our results suggest that hypoxia modifies the cellular properties of CaP cells towards a phenotype that is more similar to tumor cells *in situ*. Introduction of pO_2 as a variab le can constitute a tool for the development of more effective immunotherapy for CaP. So what: The role of pO_2 in tumor biology has been unappreciated. Recently, tum or-associated hypoxia has been associated with malignant prog ression, metastasis, resistance to therapy, and poor clinical outcome. Our results validate the relevance of tum or-associated hypoxia in CaP and, more importantly, define the potential of hypoxia as a tool in the development of cellular vaccines for CaP. We identified hypoxia-controlled genes with potential as prognostic factors in CaP. Validation of these genes anticipates applications in the clinic and resear ch laboratory. Potential applications include refinement of the current prognostic tools for CaP and better tools to predict therapeutic outcome. In addition, a test for assessing hypoxia in tum ors *in situ* could alleviate the problems of measuring pO_2 in tumor tissues. Because we found that molecular signature of tumor tissue under hypoxic conditions is retained after resection, the correlation of pO_2 and expression of hypoxia-controlled genes *in situ* could provide a surrogate m ethod to assess pO_2 in CaP tissue. Finally, our evidence of substantial sensitivity of CaP cells to hypoxia m ight lead to enhanced efficacy of therapy not only for CaP, but also serve as a paradigm for
other forms of cancer. #### References - Horoszewicz, J. S., Leong, S. S., Kaw inski, E., Karr, J. P., Rosenthal, H., Chu, T. M., Mirand, E. A. and Murphy, G. P., LNCaP model of hum an prostatic carcinoma. *Cancer Res* 1983. 43: 1809-1818. - Michael, A., Ball, G., Quatan, N., Wushis hi, F., Russell, N., Whelan, J., Chakraborty, P., Leader, D., Whelan, M. and Pandha, H., Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with imm unologic variables. *Clin Cancer Res* 2005. 11: 4469-4478. - 3 **Kumar-Sinha, C., Tomlins, S. A. and Chinnaiyan, A. M.,** Recurrent gene fusions in prostate cancer. *Nat Rev Cancer* 2008. **8**: 497-511. - 4 Clark, J. P. and Cooper, C. S., ETS gene fusions in prostate cancer. *Nat Rev Urol* 2009. **6**: 429-439. - 5 Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. and Paulson, D. F., Isolation of a human prostate carcinoma cell line (DU 145). *Int J Cancer* 1978. **21**: 274-281. - 6 Ghafar, M. A., Anastasiadis, A. G., Chen, M. W., Burchardt, M., Olsson, L. E., Xie, H., Benson, M. C. and Buttyan, R., Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells. *Prostate* 2003. 54: 58-67. - **Bardos, J. I. and Ashcroft, M.,** Negative and positive regulation of HIF-1: a complex network. *Biochim Biophys Acta* 2005. **1755**: 107-120. - Bosco, M. C., Puppo, M., Santangelo, C., Anfo sso, L., Pfeffer, U., Fardin, P., Battaglia, F. and Varesio, L., Hypoxia modifies the transcriptome of pri mary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. *J Immunol* 2006. 177: 1941-1955. - 9 Butterworth, K. T., McCarthy, H. O., Devlin, A., Ming, L., Robson, T., McKeown, S. R. and Worthington, J., Hypoxia selects for androgen in dependent LNCaP cells with a more malignant geno- and phenotype. *Int J Cancer* 2008. **123**: 760-768. - 10 Ackerstaff, E., Artem ov, D., Gillies, R. J. and Bhuj walla, Z. M., Hypoxia and the presence of hum an vascular endothelial cel ls affect pros tate cancer cell in vasion and metabolism. *Neoplasia* 2007. 9: 1138-1151. - 11 Koritzinsky, M., Seigneuric, R., Magagnin, M. G., van den Beucken, T., Lambin, P and Wouters, B. G., The hypoxic proteom e is influenced by gene-specific changes in mRNA translation. *Radiother Oncol* 2005. 76: 177-186. - 12 **Sobel, R. E. and Sadar, M. D.,** Cell lines used in prostate cancer research: a compendium of old and new lines--part 1. *J Urol* 2005. **173**: 342-359. - 13 Kosari, F., Munz, J. M., Savci-Heijink, C. D., Spiro, C., Klee, E. W., Kube, D. M., Tillmans, L., Slezak, J., Karnes, R. J., Cheville, J. C. and Vasmat zis, G., Identification of prognostic biomarkers for prostate cancer. *Clin Cancer Res* 2008. 14: 1734-1743. - 14 **Stubbs, M. and Griffiths, J. R.,** The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. *Adv Enzyme Regul* 2010. **50**: 44-55. - 15 Vaupel, P., Kelleher, D. K. and Hockel, M., Oxygen status of m alignant tumors: pathogenesis of hypoxia and significance for tumor therapy. *Semin Oncol* 2001. **28**: 29-35. - 16 **Chan, D. A. and Giaccia, A. J.,** Hypoxia, gene expression, and metastasis. *Cancer Metastasis Rev* 2007. **26**: 333-339. - 17 Movsas, B., Chapman, J. D., Greenberg, R. E., Hanlon, A. L., Horwitz, E. M., Pinover, W. H., Stobbe, C. and Hanks, G. E., Increasing levels of hypoxia in prostate carcinom a correlate significantly with in creasing clinical stage and pa tient age: an Eppendorf pO(2) study. *Cancer* 2000. **89**: 2018-2024. - 18 Stewart, G. D., Ross, J. A., McLaren, D. B., Parker, C. C., Habib, F. K. and Riddick, A. C., The relevance of a hypoxic tum our microenvironment in prostate cancer. *BJU Int* 2010. **105**: 8-13. - 19 Gust, K. M., Hofer, M. D., Perner, S. R., Kim, R., Chinnaiyan, A. M., Varambally, S., Moller, P., Rinnab, L., Rubin, M. A., G reiner, J., Schmitt, M., Kuefer, R. and Ringhoffer, M., RHAMM (CD168) is overexpressed at the protein level and may constitute an immunogenic antigen in advanced prostate cancer disease. *Neoplasia* 2009. 11: 956-963. - 20 Benita, Y., Kikuchi, H., Smith, A. D., Zhang, M. Q., Chung, D. C. and Xavier, R. J., An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. *Nucleic Acids Res* 2009. 37: 4587-4602. - 21 **Lendahl, U., Lee, K. L., Yang, H. and Poellinger, L.,** Generating specificity and diversity in the transcriptional response to hypoxia. *Nat Rev Genet* 2009. **10**: 821-832. - 22 Stewart, G. D., Gray, K., Pennington, C. J., Ed wards, D. R., Riddick, A. C., Ross, J. A. and Habib, F. K., Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. *Oncol Rep* 2008. 20: 1561-1567. - 23 Ingenuity®Systems, www.ingenuity.com. - 24 Gomez, L. A., de La s Pozas, A., Reiner, T., Burnstein, K. and Perez -Stable, C., Increased expression of cyclin B1 sensitizes prostate can cer cells to apoptosis induced by chemotherapy. *Mol Cancer Ther* 2007. 6: 1534-1543. - 25 Cheville, J. C., Karnes, R. J., Therneau, T. M., Kosari, F., Munz, J. M., Tillmans, L., Basal, E., Rangel, L. J., Bergstralh, E., Kovtun, I. V., Savci-Heijink, C. D., Klee, E. W. and Vasmatzis, G., Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomy. *J Clin Oncol* 2008. **26**: 3930-3936. - Tsou, A. P., Yang, C. W., Huang, C. Y., Yu, R. C., Lee, Y. C., Chang, C. W., Chen, B. R., Chung, Y. F., Fann, M. J., Chi, C. W., Chiu, J. H. and Chou, C. K., Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. *Oncogene* 2003. 22: 298-307. - Koffa, M. D., Casanova, C. M., Santarella, R., Kocher, T., Wilm, M. and Mattaj, I. W., HURP is part of a Ran-dependent complex involved in spindle formation. *Curr Biol* 2006. **16**: 743-754. - 28 Chiu, A. W., Huang, Y. L., Huan, S. K., Wan g, Y. C., Ju, J. P., Chen, M. F. and Chou, C. K., Potential molecular marker for detecting transitional cell carcinoma. *Urology* 2002. 60: 181-185. - 29 Desmetz, C., Bibeau, F., Boissiere, F., Belle t, V., Rouanet, P., Maudelonde, T., Mange, A. and Solassol, J., Proteomics-based identification of HSP60 as a tum or-associated antigen in early stage breast cancer and ductal carcinoma in situ. *J Proteome Res* 2008. 7: 3830-3837. - 30 Sardana, G., Jung, K., Stephan, C. and Diamandis, E. P., Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. *J Proteome Res* 2008. 7: 3329-3338. - 31 Koumenis, C., Nac zki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A. and Wouters, B. G., Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. *Mol Cell Biol* 2002. 22: 7405-7416. - 32 Chen, Y., Shi, G., Xia, W., Ko ng, C., Zhao, S., Gaw, A. F., Chen, E. Y., Yang, G. P., Giaccia, A. J., Le, Q. T. and Koong, A. C., Identification of hypoxia-regulated proteins in - head and neck cancer by proteo mic and tissue array profiling. *Cancer Res* 2004. **64**: 7302-7310. - Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., Meh ra, R., Montie, J. E., Pienta, K. J., Sanda, M. G., Kantoff, P. W., Rubin, M. A., Wei, J. T., Ghosh, D. and Chinnaiyan, A. M., Autoantibody signatures in prostate cancer. N Engl J Med 2005. 353: 1224-1235. - 34 **Le naour, F.,** Identification of tumor antig ens by using proteom ics. In **Sioud, M.** (Ed.) *Methods in Molecular Biology, Target Discovery and validation reviews and Protocols Volume 1, Emerging Strategies for targets and Biomarker Discovery.* Humana Press Inc. 2006, pp 327-335. - Raulston, J. E., Paul, T. R., Knight, S. T. and Wyrick, P. B., Localization of Chlamydia trachomatis heat shock proteins 60 and 70 during infection of a hum an endometrial epithelial cell line in vitro. *Infect Immun* 1998. **66**: 2323-2329. - 36 Cui, J. W., Li, W. H., Wang, J., Li, A. L., Li, H. Y., Wang, H. X., He, K., Li, W., Kang, L. H., Yu, M., Shen, B. F., Wang, G. J. and Z hang, X. M., Proteomics-based identification of human acute leukemia antigens that induce humoral immune response. *Mol Cell Proteomics* 2005. 4: 1718-1724. - 37 Li, W. H., Zhao, J., Li, H. Y., Liu, H., Li, A. L., Wang, H. X., Wang, J., He, K., Liang, B., Yu, M., Shen, B. F. and Z. hang, X. M., Proteomics-based identification of autoantibodies in the sera of heal thy Chinese individuals from Beijing. *Proteomics* 2006. 6: 4781-4789. - 38 Cha, S. C., Kwak, L. W., Ruffini, P. A., Qin, H., Neelapu, S. and Biragyn, A., Cloning of B cell ly mphoma-associated antigens using modified phage-displayed expression cDNA library and immunized patient sera. *J Immunol Methods* 2006. **312**: 79-93. - 39 Waldner, M. J. and Neurath, M. F., The molecular therapy of colorectal cancer. *Mol Aspects Med* 2010. **31**: 171-178. - 40 **Reuschenbach, M., von Knebel Doeberitz, M. and Wentzensen, N.,** A systematic review of humoral immune responses against tum or antigens. *Cancer Immunol Immunother* 2009. **58**: 1535-1544. - 41 **Overgaard, J.,** Hypoxic radiosensitization: adored and ignored. *J Clin Oncol* 2007. **25**: 4066-4074. - 42 Movsas, B., Chapman, J. D., Hanlon, A. L., Horwitz, E. M., Pinover, W. H., Greenberg, R. E., Stobbe, C. and Hanks, G. E., Hypoxia in human prostate carcinoma: an Eppendorf PO2 study. *Am J Clin Oncol* 2001. **24**: 458-461. xenografts (volume 100mm³). Weekly systemic administration of MRG partially yet significantly inhibited tumor growth, as compared to injection of carrier only. MRG1 did not stimulate Antibody Dependent Cellular Cytotoxicity mediated
elimination of melanoma cells in SCID-NOD mice. Single intravenous injection of melanoma specific human T cells yielded partial inhibition of tumor growth. Importantly, the treatment with a single adoptive cell transfer clearly synergized with weekly MRG1 therapy (>75% inhibition). In conclusion, we show that CEACAM1 directly enhances various aggressive features of melanoma and provisionally position MRG1 as a potential novel anti-melanoma drug. Importantly, 75% of clinical melanoma specimens express CEACAM1 and are thus suitable for CEACAM1-targeted therapy. This represents a novel modular line of therapy that can stand alone and also potentially synergize with other therapeutic modalities. A3 Hypoxic exposure as a novel strategy to identify tumor-associated antigens in prostate cancer. Christian R. Gomez, Farhad Kosari, Claire A. Schreiber, Gaylord J. Knutson, George Vasmatzis, Stanimir Vuk-Pavlovic. Mayo Clinic, Rochester, MN. Hypoxia is a hallmark of the environment of many tumors. We hypothesize that it can modulate expression of tumor-associated antigens (TAAs) and thus affect immunitybased therapeutic strategies. To test the effects of hypoxia on prostate cancer (CaP), we studied global gene expression in 100 CaP tissues and 71 samples of adjacent benign tissues. RNA was extracted from cancer cells isolated by laser-capture microdissection (LCM) or without isolation ("bulk tissue"). We identified 24 hypoxiaassociated genes significantly overexpressed in CaP (p≤0.02), both bulk tissue and LCM. Among these genes, cyclin B1 [CCNB1], disc large (drosophila) homolog-associated protein 5 [DLG7], and hyaluronan-mediated motility receptor [HMMR] were associated with Gleason score and with disease prognosis. Since the products of CCNB1 and HMMR genes have been recently identified as TAAs. our results suggest the potential of DLG7 and other candidate genes as possible TAAs. In addition, we propagated CaP cell lines LnCaP, VCaP and DU145 in hypoxia (pO2=2 kPa) and compared them with normoxically grown cells (pO2=20 kPa). Hypoxic cells proliferated faster and secreted more vascular endothelial growth factor (VEGF; p<0.05). As expected, transcription profiles revealed differential gene expression in cells grown in hypoxia relative to those in normoxia. Interestingly, transcripts for pyruvate dehydrogenase kinase isozyme 1 (PDK1), nuclear prelamin A recognition factor (NARF), glucose phosphate isomerase (GPI), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] were overexpressed in hypoxia in all three cell lines (p<0.05) both in bulk tissue and LCM isolated cells (p<0.005). Also, we observed a 30-60 percent hypoxia-associated increase in CCNB1 and DLG7 expression in VCaP cell line, the only one harboring the TMPRSS2-ERG fusion (present in 40-60 percent of CaP patients) among the three cell lines studied. To determine if hypoxia affects immunogenicity of CaP cells, we screened the sera from CaP patients (n=20) and healthy controls (n=13) for spontaneous antibodies cross-reactive with spots resolved on 2D electropherograms of lysates of LnCaP cells grown in hypoxia and normoxia. CaP patient sera bound to numerous spots in both electropherograms, but the binding patterns differed significantly. Overall, our data indicate that hypoxia affects gene expression and antigenic signature in CaP. Our ongoing experiments will resolve the question whether CaP cells grown in hypoxia are more akin to of tumor cells in situ than are cells grown in normoxia and will further identify and validate selected candidate TAAs in CaP patients. Support: DOD PC094680 (CRG), Minnesota Partnership for Biotechnology and Medical Genomics, Mayo Clinic Prostate SPORE 5P50CA091956 (FK, SV-P), Adelyn Luther, Singer Island, Florida (SV-P); and Mayo Clinic Cancer Center (SV-P). Print this Page #### Presentation Abstract Abstract LB-308 Number Presentation Hypoxia affects gene expression and proteome of prostate cancer cells Title: Location: Exhibit Hall A4-C, Poster Section 38 Author Christian R. Gomez. Gaylord J. Knutson, Claire A. Schreiber, Farhad Kosari, George Vasmatzis, Stanimir Vuk-Pavlovic. Mayo. Block: Clinic College of Medicine, Rochester, MN Abstract Body: Tumor-associated hypoxia facilitates malignant progression, metastasis and poor prognosis in prostate cancer (CaP), however, effects of oxygen tension (pO2) in CaP are just beginning to be investigated. To establish mechanisms whereby hypoxia enhances malignant properties and survival of CaP and to identify pO2-regulated tumor-associated macromolecules, we propagated CaP cell lines LnCaP, VCaP and DU145 in hypoxia (pO2=2 kPa) and compared them with normoxically grown cells (pO2=20 kPa), hypoxic cells proliferated faster and secreted more vascular endothelial growth factor (p<0.05). Transcriptome studies rewealed different gene expression in cells grown in hypoxia relative to those in normoxia. Interestingly, in hypoxic cells transcripts associated with cancer and urologic disease were overexpressed in comparison to normoxic cells (p<0.001) suggesting an association of low pO $_2$ and aggressive features of CaP. Further, we analyzed the transcriptome in primary CaP cells isolated by laser-capture microdissection (LCM) and whole CaP tissue. We compared the data to those from CaP cells cultured at pO2=20 kPa or pO2=2 kPa. Notably, hypoxia increased transcript levels for pyruvate dehydrogenase kinase isozyme 1, nuclear prelamin A recognition factor, glucose phosphate isomerase, and glyceraldehyde-3-phosphate dehydrogenase in all three cell lines (p<0.05) to levels comparable to those found in primary bulk tissue and LCM isolated cells (p<0.005). This finding suggests that gene expression in hypoxically cultured cells is more akin to that in tumor cells in situ than are cells grown normoxically. By 2D-gel electrophoresis, we found that change in pO_2 affected the proteome mostly quantitatively (i.e., by change in spot intensity). Our results suggest that hypoxia affects transcriptome and proteome in CaP cells. In addition, we screened 20 patient sera and 20 healthy control sera for spontaneous antibodies cross-reactive with VCaP cells and found that the sera reacted with numerous proteins, some previously reported to elicit an immune response in CaP patients (e.g., nucleoporin 62 and transitional endoplasmic reticulum ATPase). By this method we detected numerous novel autoantigens (under validation). Currently we are clarifying the pO2 effects on the relationship of transcriptome, proteome and tumor-associated antigens in CaP cells. Support: DOD PC094680 (CRG), Minnesota Partnership for Biotechnology and Medical Genomics, Mayo Clinic Prostate SPORE 5P50CA091956 (FK); Mrs. Adelyn L. Luther, Singer Island, Florida and Mayo Clinic Cancer Center (SV-P). > American Association for Cancer Research 615 Chestnut St. 17th Floor Philadelphia, PA 19106 #### HYPOXIC CELL CULTURE FOR MORE EFFECTIVE CANCER VACCINES Christian R. Gomez, Farhad Kosari, Claire A. Schreiber, Gaylord J. Knutson, George Vasmatzis, Stanimir Vuk-Pavlović. Mayo Clinic, Rochester, MN, USA For some malignancies, vaccines containing allogeneic cancer cells enhanced the overall survival in early clinical trials. Because the cells were cultured at $pO_2=20$ kPa, it is unclear whether they provide an adequate antigen match to tumor cells in situ where pO_2 is generally much lower. Thus, we postulate that hypoxically grown vaccine cells will be a better antigen match to tumors in situ. We are testing this hypothesis by studying the effects of hypoxia on prostate cancer (CaP) cells. We analyzed the transcriptome of 100 CaP tissues and 71 adjacent benign tissues and found 24 genes (known as oxygen-regulated) significantly overexpressed in CaP relative to control tissue (p<0.02). Overexpression of cyclin B1, hyaluronan-mediated motility receptor and disc large (Drosophila) homologassociated protein 5 was associated with high Gleason score and poor prognosis. As the former two genes encode tumor-associated antigens (TAAs), it is possible that the product of the latter is a TAA too. When CaP cell lines LnCaP, VCaP and DU145 were grown at $pO_2=2$ kPa, they proliferated faster and secreted more vascular endothelial growth factor than the cells gr own at $pO_2=20$ kPa (p<0.05). Interestingly, in hypoxia all three cell lines transcribed more pyruvate dehydrogenase kinase isozyme 1, nuclear prelamin A recognition factor, glucose phosphate isomerase, and glyceraldehyde-3-phosphate dehydrogenase genes than in normoxia (p<0.05); we found a similar relationship between transcript levels for those genes in CaP cells in situ and nonmalignant control cells (p<0.005). We continue to characterize the relationship of hypoxically cultured CaP cells and CaP cells in situ to identify and validate TAAs for a more effective therapeutic vaccination. Su pport: DOD PC094680 (CR G), Minnesota Partnership for Biotechnology and Medical Genomics, Mayo Clinic Prostate SPORE 5P50CA091956 (FK); Mrs. Adelyn L. Luther, Singer Island, Florida and Mayo Clinic Cancer Center (SV-P). #### **CURRICULUM VITAE** Name: Christian René Gomez Basaure Ph.D. **Present Position:** Assistant Professor of Biochem istry/Molecular Biology, Mayo Clinic College of Medicine Assistant Professor, Division of Preventive, Occupational and Aerospace Medicine (Pending) Research Associate, Stem Cell Laboratory, Department of Oncology, Mayo Clinic Cancer Center 200 First Street SW, Rochester, MN 55905 Office: 507-284-4008, Laboratory: 507-284-1744, FAX: 507-284-8566 **Education** 1988 - 1995 B.S. and M.S. in Biochemistry, School of Chemical and Pharmaceutical Sciences, University of Chile 1997-2003 Ph.D. Biomedical Sciences, University of Chile, Faculty of Medicine Date of Ph.D. completion January 2004 ### **Research Training** 1992 - 1994 Undergraduate thesis: Involvement of the Sodium/ATPase pump in chronic renal failure, Advisor: Dr. Miriam Alvo, Department of Physiology, University of Chile
School of Medicine, Santiago, Chile 1995 - 1997 Research assistant: Glucocorticoid receptors in the development of Rheumatoid Arthritis: Development of a rat m odel, Advisor: Dr. Annelise Goecke, Departm ent of Physiology, University of Chile School of Medicine, Santiago, Chile 1998 - 2000 Research assistant: CAAT/enhancer-binding protein signaling during the acute phase response of aged Fisher 344 rats, Advisor: Dr. Robin Walter, Department of Cellular and Molecular Biology, University of Chile School of Medicine, Santiago, Chile 2000 - 2004 Doctoral dissertation: Macrophage inflamma tory protein 1-alpha as a modulating factor of the acute phase response: extension to the inflammatory response in aged individuals, Advisor: Dr. Felipe Sierra, Dep artment of Cellular and Molecular Biology, University of Chile School of Medicine, Santiago, Chile 2004 - 2008 Postdoctoral Fellow: Aging and inflammatory responses. Supervisor: Dr. Elizabeth J. Kovacs, Loyola University Chicago, Stritch School of Medicine, Department of Cell Biology, Neurobiology and Anatomy and Department of Surgery, Maywood, IL #### **International courses** - Natural Antibodies in the Maintenance of Toleran ce to Self: Lessons from Physiology and Therapy, Program of Immunology, Faculty of Medicine, Un iversity of Chile, Santiago, Chile, 15-16 December 1998 - International Symposium and Training Course: "Cel lular Signaling From Plasma membrane to the Nucleus", Program of Cellular and Molecular Biology, Faculty of Medicine, University of Chile, Santiago, Chile, 12-23 July 1999 - International Symposium and Training Course: "International Course on Techniques for the Study of Functional Genomics", Program of Cellular and Molecular Biology, Faculty of Medicine, University of Chile, Santiago, Chile, 19 June 1 July 2000 - Training Course: "Molecular Biol ogy of Aging", Marine Biologica 1 Laboratory, W oods Hole, MA, USA, 31 July 19 August 2006 ### **Faculty Appointments** - 2004 2007 Research Associate, Loyola University Chicago, Stritch School of Medicine, Department of Cell Biology, Neurobiology and Anatomy, Maywood, IL 2007 2008 Research Associate, Loyola University Chicago, Stritch School of Medicine, - Department of Surgery, Maywood, IL - 2008 Date Research Associate, Stem Cell Laboratory, Department of Oncology, Mayo Clinic Cancer Center, Rochester, MN - 2009 Date Assistant Professor of Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN - 2010 Date Assistant Professor, Division of Pr eventive, Occupational, And Aerospace Medicine, Mayo Clinic, Rochester, MN (Pending) #### Professional awards | Professional | awards | |--------------|--| | 1998-2002 | Chilean National Council for Scie nce and Technology (CONICYT) doctoral | | | scholarship | | 2000 | International Travel Award: "Identification of genes that are differentially | | | expressed during the acute phase res ponse of senescent anim als", Lab. Dr. | | | Christian Cell, Lankenau Institute for Medical Research, Thomas Jefferson | | | University, Wynnewood, PA, USA | | 2002 | International Travel Award: "Characterization of different ial hepatic expression of the | | | chemokines MIP-1a, in aged rats, injected with bacterial endotoxin (LPS)", Lab. Dr. | | | Christian Sell and L ab. Dr. Vincent Cris tofalo, Lankenau Institute for Medical | | | Research, Thomas Jefferson University, Wynnewood, PA, USA | | 2002 | International Travel Award: "Standard ization of the m easurement of tissue and | | | circulating levels of cytokines during the acute phase response of aged rats", Lab. Dr. | | | Elizabeth J. Kovacs, Stritch School of Medicine, Loyola University, Maywood, IL, | USA 2001 Distinguish Award for the "Best dissertation project on Gerontological Studies" Interdisciplinary Program for Gerontological Studies, Univ ersity of Chile, Santiago, Chile | 2004 | Travel award to attend the Annual M eeting of the Society for Leukocyte Biology, Toronto, Canada | |------|---| | 2004 | Doctoral Medal, University of Chile, Santiago, Chile | | 2005 | Travel award to attend the Annual M eeting of the Society for Leukocyte Biology, Oxford, England | | 2006 | Young Investigator Travel Award to atte nd the Twenty-Ninth Annual Conference on Shock, Broomfield, CO, USA | | 2006 | Travel award to attend the Annual Meet ing of the Society for Leukocyte Biology, San Antonio, TX, USA | | 2010 | AACR Minority Scholar in Cancer Res earch Award to attend the AACR Special Conference, Tumor Immunology: Basic and Clinical Advances. Miami, FL | | 2011 | Prostate Cancer Foundation. Treatment Sciences Creativity Awards 2011 | ## **Professional Society Membership and Activities** | 2004 - 2008 Society for Leukocyte Biology, Me | ember | |---|-------| |---|-------| 2004 - 2008 Shock Society, Member 2009 - Date American Association for Cancer Research (AACR), Associate Member 2009 - Date Mayo Clinic Alumni Association, Member 2009 - Date AACR, Minority Scholar in Cancer Research, Member ### Media related quotes and interviews 2005 "Healthy Aging", Interview, University of Santiago Radio. Santiago, Chile ### **Journal Review Activity** 2010 - Date Ad Hoc Reviewer: Journal of Leukoc yte Biology, Am erican Journal of Physiology-Advances in Medical Education. # **Teaching experience** | Teaching exp | Derience | |--------------|---| | 1999, 2001 | Teaching Assistant, Course of Cellular Biology for Kinesics therapy and Occupational | | | therapy and Medical Technology (First year students), Faculty of Medicine, | | | University of Chile, Santiago, Chile | | 2002-2003 | Teaching Assistant, Seminars on Biotechnology for Medical technology students | | | (second year students), Men tion clinical bio-analysis, Hematology and Blood bank, | | | Faculty of Medicine, University of Chile, Santiago, Chile | | 2002-2003 | Teaching Assistant, Cellular Bio logy course for Biochem istry students (fourth y ear | | | students), Faculty of Chem ical and Pharm aceutical Sciences, University of Chile, | | | Santiago, Chile | | 2003-2004 | Teaching Assistant, Workshop for Integration of Basic Sciences for Medical students | | | (first year students), Faculty of Health Sciences, University Diego Portales, Santiago, | | | Chile | | 2003-2006 | Teaching Assistant, Course Structure and Function I for Medical stu dents (first year | | | students), Faculty of Health Sciences, University Diego Portales, Santiago, Chile | | 2003 | Teaching Assistant, Course of Cell Biology for Ph.D. students, Faculty of Medicine, | | | University of Chile, Santiago, Chile | | 2003 | Teaching Assistant, Course of Advanced Genetics for Ph.D. students, Facu lty of | | | Medicine, University of Chile, Santiago, Chile | | | | Teaching Assistant, course of Cell Biology for Nursery and Medical Technology students (first year students), Faculty of Health Sciences, University Diego Portales, Santiago, Chile Teaching Assistant, Seminars in Molecular Biology for Medical Technology (fourth year students), Mention clinical Bio-analysis, Hem atology and Blood bank, Faculty of Medicine, University of Chile, Santiago, Chile Teaching Assistant, Medical Histology, The Stritch S chool of Medicine, Loyola University Medical Center, Maywood, IL ### **Research Supervision** 2005 Co-mentor: Stephanie Hirano, M.D. Student 2005 Mentor: Ying Peng, Ph.D. Candidate Christine Regnell, M.S. Candidate Shirin Birjandi, Ph.D. Candidate All the students were at Elizabeth J. Kovacs' Laborato ry at The Bur n and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL 2006-8 Mentor: Freddy Bustos, Constanza Fernández, Ana María Duhalde, M.D. Students, Methodology in research rotation, Universidad Diego Portales, Santiago, Chile 2009 Co-Mentor: Freddy Bustos, M.D. Student, research rotation, Stem Cells Lab, Mayo Clinic Cancer Center, Rochester, MN 2010-Date Claire A. Schreiber, Luther College, Decorah, IA Research Assistant, Stem Cells Lab, Mayo Clinic Cancer Center, Rochester, MN 2011 Lauren Ulbrich, St. Mary's University, Winona, MN Summer student, Stem Cells Lab, Mayo Clinic Cancer Center, Rochester, MN ### **Research Grant Support:** Ongoing: Tittle: Enhancing therapeutic cellular prostate cancer vaccines (PC094680) (P.I.). Time commitment: 100% Supporting agency: Department of Defense. New Investigator Award Performance period: 04/15/10 - 03/31/12 Project goals: The overall goal of the proposed studies is designed to optim ize the effectiveness of therapeutic whole–cell CaP vaccin es. We hypothesize that hypoxically cultured CaP cells are more similar in their antigen landscape to CaP cells *in situ* than are normoxically cultured CaP cells Specific aims: 1) To identify oxygen-tension responsive genes and proteins in the cells comprising a clinical-grade CaP cellular vaccine. 2) To validate differentially expressed molecules in CaP tissue in association with tissue hypoxia Key personnel receiving salary support from this project: 100% effort CR Gomez. 50% effort allied staff Tittle: Hypoxia-regulated DLG7 in prostate cancer carcinogenesis and prognosis. (P.I.) (W aiting for award notice) Time commitment: proposed 50% Supporting agency: Prostate Cancer Foundati on. Treatment Sciences Creativity Awards 2011 Performance period: 05/01/11 - 05/01/13 Project goals: We found the transc ripts of the discs large hom olog-associated protein 5 (DL G7), a hypoxia-regulated gene, overexpressed in human primary prostate cancer and human prostate cancer cell lines. The overall goal of the proposed studies is to validate the role of DLG7 role in tumor progression Specific aims: 1) To
measure the levels of DLG7 transcripts in resected CaP tissues and study the association with survival. 2) To overexpress DLG7 in prostate cells (normal epithelium and tumorigenic cells) and compare tumorigenesis in the context of hypoxia. Key personnel receiving salary support from this project: 50% ef fort CR Gom ez. 100% effort postdoctoral fellow ### Completed: Tittle: Hyperbaric oxygen as m obilizer of stem cells and progenitors in senescent mice (Stanimir Vuk-Pavlovic, P.I.). Co P.I. Time commitment: 30% Supporting agency: Mayo Clinic, Divi sion of Preventive, Occupational and Aerospace Medicine Small **Grant Awards** Performance period: 04/01/09 – 12/30/09 Project goals: The effects of hyperb aric oxygen (HBO) on mobilization of hematopoietic and stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) from bone marrow into circulation of old mice were explored. Specific Aims: 1) To m easure the effects of HBO in young and ol d mice by flow cytometry after labeling white blood cells with pertinent fluores cent immunoreagents for HSPCs and MSCs. 2) To measure the levels of selected circulating cytokines involved in HSPCs and MSCs mobilization. Key personnel receiving salary support from this project: 3% effort CR Gomez Tittle: Hyperbaric oxygen as mobilizer of stem cells and progenitors in senescent mice. Extension of funds for 2010 (Stanimir Vuk-Pavlovic, P.I.). Co P.I. Time commitment: 30% Supporting agency: Mayo Clinic, Divi sion of Preventive, Occupational and Aerospace Medicine Small Grant Awards Performance period: 04/01/10 - 12/31/10 Project goals: The m echanisms of a ge-related impairment of mobilization of both hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) from bone marrow by hyperbaric oxygen (HBO) into circulation of old mice were studied. Specific Aims: 1) To analyze the effects of aging and HBO on the expression of SDF-1/CXCR4 sy stem, the critical regulator of SPCs function and homing. 2) To analyze the effects of aging and HBO on the regulation of nitric oxide (•NO)—mediated mechanism of MSCs mobilization by HBO synthesis. Key personnel receiving salary support from this project: 3% effort CR Gomez # Planned: "Hypoxia and tumor microenvironment to improve cell immunotherapy for prostate cancer". NIH, R01. (direct costs). Period: 07/01/12 - 06/30/16. P.I. ### **Research Interests** - 1. Immunosenescence: The effects of advanced age on inflamm ation, immunoregulation, and injury. Age-dependent defects in cytokine networks. In terleukin-6: age-related effects on cellu lar and systemic immune responses. Hormone replacement and cell mediated immunity in the aged. - 2. Immunotherapy for prostate cancer: Sm all molecules as modulators of the tumor microenvironment. Strategies aimed at improving delivery of whole-cell cancer vaccines by improving their antigenicity. - 3. Restoring immunity in the ag ed: Hyperbaric oxygen therapy as mobilizer of stem cells and progenitors in senescent individuals. #### **BIBLIOGRAPHY** - 1. Aravena, M., Perez, C., Perez, V., Acuna-Castillo, C., **Gomez, C.R.,** Leiva-Salcedo, E., Nishimura, S., Sabaj, V., W alter, R. and Sierra, F. 20 05. T-kininogen can either induce or inhibit proliferation in Balb/c 3T3 fibroblasts, depend ing on the route of adm inistration. Mech Ageing Dev. 126:399-406. - 2. **Gomez, C.R.,** Boehmer, E.D. and Kovacs, E.J. 2005. The aging innate immunes ystem. Current Opin Immunol 17:457-462. - 3. Pérez, V., Velarde, V., Acuña-Castillo, C., **Gomez, C.R.,** Nishimura, S., Sabaj, V., Walter, R., and Sierra, F. 2005. Increased Kinin Levels and Decr eased Responsiveness to Kinins During Aging. Gerontol A Biol Sci Med Sci 60:984-990. - 4. Acuña-Castillo, C., Aravena, C., Leiva-Salcedo, E., Pérez, V., **Gomez, C.R.,** Sabaj, V., Nishimura, S., Pérez, C., Colombo, A., Walter, R. and Sierra, F. 2005. T-kininogen, a cystatin-like molecule, inhibits ERK-dependent lymphocyte proliferation. Mech Ageing Dev 126:1284-91. - 5. **Gomez, C.R.,** Acuña-Castillo, C., Nishim ura, S., Pérez, V., Escobar, A., Sabaj, V., Torres, C., Walter, R. and Sierra, F. 2006. Serum from aged F344 rats conditions the activation of young macrophages. Mech Ageing Dev 127:257-63. - 6. Pérez, V., Leiva-Salcedo, E., Acuña-Castillo, C., Aravena, M., **Gomez, C.R.,** Sabaj, V., Colombo, A., Nishimura, S., Pérez, C., Walter, R. and Sierra, F. 2006. T-kininogen induces endothelial cell proliferation. Mech Ageing Dev 127:282-89. - 7. **Gomez, C.R.,** Goral, J., Ramirez, L., Kopf, M. and Kov acs, E.J. Aberrant Acute Phase Response in Aged IL-6 KO mice. 2006. Shock 25:581-85. - 8. Acuña-Castillo, C., Leiva-Salcedo, E., **Gomez, C.R.,** Pérez, V., Li, M., To rres, C., Walter, R., Murasko, D.M. and Sierra, F. T-kininogen: A biomarker of aging in Fisher 344 rats with possible implications on the immune response. 2006. J Gerontol Biol Sci. 61A:641-49. - 9. Espinoza, I., **Gomez, C.R.,** Galindo, M. and Galanti, N. Developmental expression pattern of histone H4 gene associated to DNA synthesis in the endoparasit ic platyhelminth Mesocestoides corti. 2007. Gene, 386 (1-2): 35-41. - 10. **Gomez, C.R.,** Birjandi, S., Hirano, S., Cutro, B.T., Ba ila, H., Nome llini, V. and Kovacs, E.J., Advanced age exacerbates the p ulmonary inflammatory response after lipo polysaccharide exposure. 2007. Crit Care Med, 35:246-51. - 11. Boehmer, E.D., Meehan, M.J., Cutro, B.T., **Gomez, C.R.** and Kovacs, E.J. Aberrant TLR-mediated signal transduction in m acrophages from aged mice. (ed., JD Schwarzm eier). 2006. The 6th International Cytokine Conferences. Bologna, Italy, Monduzzi Editore, pp 31-34. - 12. **Gomez, C.R.,** Nomellini, V., Boe hmer, E.D. and Kovacs, E.J. Signal transduction of the a ging innate immune system. 2007. Current Immunol Revs, 3: 23-30. - 13. **Gomez, C.R.,** Plackett, T.P., and Kovacs, E.J., Aging and Estrogen: Modulation of Infla mmatory Responses after Injury. 2007. Exp Gerontol, 42:451-56. - 14. Nomellini, V., **Gomez, C.R.,** and Kovacs E.J. Aging and im pairment of innate immunity. 2008. Contrib Microbiol, 15:188-205. - 15. Karavitis, J., Murdoch, E.L., **Gomez, C.R.,** Ramirez, L., and Kovacs, E.J. Acute ethanol exposure attenuates multiple macrophage functions. 2008. J. Interf. Cytok. Res, 28:413-22. - 16. Bustos, F., Fernández, C., Duhalde, A., and **Gomez, C.R.,** Motivational profile of the students that enter and remain in the Universidad Diego Po rtales medical School. A retrospective study. 2008. RECS, 5: 33-40. - 17. Nomellini, V., Faunce, D.E., **Gomez, C.R.,** and Kovacs, E.J. An age-as sociated increase in pulmonary inflammation after burn injury is abrogated by CXCR2 inhibition. 2008. J. Leuk. Biol. 83:1493-501. - 18. **Gomez, C.R.,** Nomellini, V., Faunce, D.E., and Kovacs, E.J. Age and Innate immunity. 2008. Exp Gerontol. 43:718-728. **Note:** This article was one of the top 10 m ost cited papers in Experimental Gerontology during the period 2008 2010. Source www.scopus.com September 2010. - 19. Donoso, V., **Gomez, C.R.**, Orriantia, M.A., Coddou, C., Pérez, V., Torres, C., Nelson, P., Mónica Imarai, M., Huidobro-Toro, J.P., Felipe Sierra, F., Fernandez, R., Morales, B., Acuña-Castillo, C. The release of sympathetic neurotransmitters is impaired in aged Fisher 344 rats. A possible role in the changes in cytokine production. 2008. Mech Ageing Dev. 129: 728-734. - 20. Nomellini, V., **Gomez, C.R.,** Gamelli, R.L., and Kovacs, E.J. Aging, and animal models of systemic insult: Trauma, burn, and sepsis. 2009. Shock. 31:11-20. - 21. **Gomez, C.R.,** Acuña-Castillo, C., Pérez, C., Leiva-Salce do, E., Ordenes, E., Oshim a, K., Aravena, M., Pérez, V., Nishimura, S., Sabaj, V., Walter, R. and Sierra, F. Defective acute phase response during aging is associated with acute hepatic injury. 2009. J. Gerontol. 63:1299-306. - 22. **Gomez, C.R.,** Nomellini, V., Baila, H., Oshi ma K., and Kovacs, E.J. Com parison of the effects of aging and IL-6 on the hepatic inflammatory res ponse in two models of systemic injury: scald injury versus i.p. LPS administration. 2009. Shock. 31:178-84. - 23. **Gomez, C.R.,** Nomellini, V., and Kovacs, E.J. Part III-10: Immunosenescence and sex hormones, book chapter in: "Handbook on imm unosenescence. Basic understanding and clinica l applications". 2009. Edited by Tamas Fulop, Katsuiku Hirokawa, Graham Pawelec, and Claudio Franceschi. Springer Netherlands. ISBN: 978-1-4020-9062-2. Pages: 799-831. - 24. **Gomez, C.R.,** Karavitis, J., Palmer, J.L., Faunce, D.E., Ramirez, L., Nomellini, V., and Kovacs, E.J. Interleukin-6 contributes to age-related alteration of cytokine production by macrophages. 2010. Mediators of Inflammation. Mediators Inflamm. 2010:475139. - 25. Salinas, D.G., Acevedo, C. and **Gomez, C.R.** Modeling a neural networ k for the learning of the structure-function relationship. 2010. Adv Physiol Educ. 34:158-61. - 26. Nomellini, V., Mahbub, S., **Gomez, C.R.,** and Kovacs, E.J. Age-related defects in neutrophil chemotaxis and adhesion are markers of prolonged pulmonary inflammation in a murine model of injury. Submitted. ### **Manuscripts in preparation** - 1. **Gomez, C.R.,** Acuña-Castillo, C., Pérez, V., Nishim ura, S., Sell, C., Kovacs, E.J., Sierra, F. and Walter, R. cDNA microarrays reveal a defect in the expression of che mokines during the acute phase response of aged F344 rats. - 2. Nishimura, S., **Gomez, C.R.,** Acuña-Castillo, C., Pérez, V., Leiva-Salcedo, E., Pérez, C., Walter, R. and Sierra, F. Di minished MAPK activation in aged rat th ioglycollate-elicited peritoneal macrophages in response to LPS. - 3. Nishimura, S., Acuña-Castillo, C., **Gomez, C.R.,** Pérez, V., Leiva-Salcedo, E., Pérez, C., Manterola M., Sabaj, V., W alter, R. and Sierra, F. Exoge nous T-kininogen mimics the effect of age on MAP kinase activation and TNF-α production by peritoneal macrophages. - 4. **Gomez, C.R.,** Kovacs, E.J., Effects of aging and IL-6 on the
oxidative stress hom eostasis in aged mice. - 5. **Gomez, C.R.,** Kovacs, E.J., Sierra, F., Aging, inflam mation and acute stre ss: At a dangerous crossroad. - 6. **Gomez, C.R.,** Knutson, G., Schreiber C.A., Vuk-Pavlovic S., Low oxygen tension as a tool f or the development of better prostate cancer cell vaccines. - 7. **Gomez, C.R.,** Knutson, G., Bulur, P., Schreiber, C., Vuk-Pavlovic S. Age-dependent mobilization of stem cells and progenitors by hyperbaric oxygen. #### RESEARCH REPORTS AND ABSTRACTS - 1. **Gomez, C.R.,** Walter, R. and Sierra F. 2001. Regulation of gene expression of cytokines during aging. Symposium, "Oxidative stress, cellular responses and modulator factors", XXIV annual meeting of the Chilean Society of Biochemistry and Molecular Biology. Chillán, Chile, p.23. - 2. **Gomez, C.R.,** Walter, R. and Sierra, F. 2002. Expression of MIP-1α during the acute phase response of aged rats. XVI annual meeting of the Chil ean Society of Cellular Biology. Puerto Varas, Chile, p. 22. - 3. **Gomez, C.R.,** Nishimura, N., Acuña-Castillo, C., Leiva-Salcedo, E., Rivas, M., Pérez, V., Sierra, F. and Walter, R. 2002. T-Kininogen (T-KG) affects the activation of macrophages in response to bacterial endotoxin. XLV annual meeting of the Chilean Society of Cellular Biology. Puyehue, Chile, R-121. - 4. Acuña-Castillo, C., Aravena, M., Leiva-Salcedo, E., Pérez, V., **Gomez, C.R.,** Nishimura, S., Walter R. and Sierra, F. 2002. T-kininoge n inhibits ConA-stimulated MAPKs activity in lym phocytes and macrophages. VI Latinoamerican Immunology Conference (ALAI). La Habana, Cuba. - 5. Acuña-Castillo, C., Nishimura, S., **Gomez, C.R.,** Pérez, V., Sabaj, V., A ravena, M., Walter, R. and Sierra F. 2003. Relationship between different ial MAPKs activation and cytokine induction in old rats. XVII Annual Meeting of the Society of Cellular Biology of Chile. Pucón, Chile. R-42. - 6. Pérez, V., Velarde, V., Acuña-Castillo, C., **Gomez, C.R.,** Sabaj, V., Walter, R. and Sierra, F. 2003. The response to kinins is diminished in the aorta of old rats. XVII Annual Meeting of the Society of Cellular Biology of Chile. Chile. R-162. - 7. Salinas, D.G., **Gomez, C.R.** and Montiel, J.F. 2004. Progresses of a theory-practical course f or the integration on basic sciences. V workshop of Education in Health Sciences. Faculty of Medicine, University of Chile. Santiago, Chile. - 8. **Gomez, C.R.,** Acuña-Castillo, C., Pérez, V., Nishimura, S., Sell, C., Kovacs, E.J., Quinn, D., Sierra, F. and Walter, R. 2004. Delay in the expression of MIP-1α is related to a temporal defect in the acute phase response of aged F344 rats. Annual Meeting of the Society for Leukocyte Biology. Toronto, Canada. - 9. **Gomez, C.R.,** Boehmer, E.D., Acuna-Castillo, C.A. and Kovacs, E.J. 2005. Serum from aged m ice augments the production of TNF α by macrophages from young mice. Experimental Biology and XXXV International Congress of Physiological Sciences. San Diego, CA, USA. - 10. **Gomez, C.R.,** Cutro, B.T., Fitzgerald, D.J., Goral, J., Ramirez, L. and Kovacs E.J. 2005. Aberrant Acute Phase Response in Aged IL-6 KO m ice. 38th Annual Meeting of the Society for Leukocyte Biology. Oxford, England. - 11. Kovacs, E.J., Cutro, B.T., Ra mirez, L., Goral, J. and **Gomez, C.R.** 2005. Reduced pulm onary inflammation after injury in aged IL-6 deficient mice. 38th Annual Meeting of the Society for Leukocyte Biology. Oxford, England. - 12. Nomellini, V., Ramirez, L., Cutro, B.T., **Gomez, C.R.** and Kovacs, E.J. 2005. Aberrant pulm onary pathology in aged m ice may explain age-dependent differences in mortality after injury, St. Albert's day research presentations. Graduate School, L. oyola University Medical Center. Maywood, IL, USA. - 13. Hirano, S., Cutro, B.T., Ra mirez, L., **Gomez, C.R.,** and Kovacs, E.J. 2005. Agi ng exacerbates pulmonary inflammation after lipop olysaccharide exposure. St Luke's Medical Research Day. Maywood, IL, USA. - 14. **Gomez, C.R.,** Goral, J., Ra mirez, L. and Kovacs, E.J. 2005. Acute Phase Response in Aged IL-6 knock out mice. 34th Annual Autumn Immunology Conference. Chicago, IL, USA. - 15. Karavitis, J., **Gomez, C.R.,** Ramirez, L., Cutro, B.T., Faunce, D.E., Kovacs, E.J. 2005. Ovariectomy ablates the gender differences seen after ethano l plus burn injury in m ice. 34th Annual Autumn Immunology Conference. Chicago, IL, USA. - 16. Nomellini. V., Ramirez, L., Cutro, B.T., **Gomez, C.R.** and Kovacs, E.J. 2005. Aberrant pulm onary pathology in aged m ice may explain age-dependent differences in mortality after injury. 34th Annual Autumn Immunology Conference. Chicago, IL, USA. - 17. Karavitis, J., **Gomez, C.R.,** Ramirez, L., Cutro, B.T., Faunce, D.E. and Kovacs, E.J. 2005. Does estrogen mediate the gender differences in immunity after ethanol exposure and burn injury? Alcohol and Immunology Research Interest Group (AIRIG) Meeting. Loyola University Medical Center. Maywood, IL. - 18. Kovacs, E.J., Plackett, T.P., Ra mirez, L. and **Gomez, C.R.** 2005. Aging, traum atic injury, and immunity: improvement following estrogen treatment. Annual Meeting of Austrian Society for Allergiology and Immunology, Gratz, Austria. - 19. Kovacs, E.J., Plackett, T.P., Ra mirez, L. and **Gomez. C.R.** 2006. Aging and the inflamm atory response after traumatic injury. 29th Annual Conference on Shock. Broomfield, CO, USA. - 20. Nomellini, V., Ramirez, L., Cutro, B.T., Faunce, D.E., **Gomez, C.R.** and Kovacs E.J. 2006. Aging affects acute lung injury after burn. 29th Annual Conference on Shock. Broomfield, CO, USA. - 21. Karavitis, J., **Gomez, C.R.,** Faunce, D.E. and Kovacs E.J. 2006. Gonadal horm ones mediate gender differences in imm une function after ethanol plus burn injury. 29th Annual Conference on Shock. Broomfield, CO, USA. - 22. Murdoch, E.L., Greiffenstein, P., Gomez, C.R., Nomellini, V., Ramirez, L., M organ, M.O. and Kovacs, E.J. 2006. Short-term pulmonary consequences after ethanol exposure and burn injury. 29th Annual Conference on Shock. Broomfield, CO, USA. - 23. Kovacs, E.J., **Gomez, C.R.,** Meehan, M.J., and Boehm er, E.D. 2006. Aging c auses defects in macrophage signaling that are lim ited to TLR -mediated pathways. Joint Meeting of the International Cytokine Society and the International Society for Interferon and Cytokine Research, Vienna, Austria. - 24. Kovacs, E.J. Plackett, T.P., Boehmer, E.D., Nomellini, V., and **Gomez, C.R.** 2006. Aging, estrogen, and TLR-mediated macrophage activation after injury, Symposium on Ageing Research in Immunology: the Impact of Genomics. Paris, France. - 25. **Gomez, C.R.,** Baila, H., Morgan, M.O., Oshim a, K., Nomellini, V., and Kovacs E.J. 2006. Elevated hepatic inflammatory response in aged m ice given LPS. Joint Society f or Leukocyte Biology International Endotoxin and Innate Immunity Society. San Antonio, TX, USA. - 26. Nomellini, V., Faunce, D.E., **Gomez, C.R.,** and Kovacs E.J. 20 06. Increased pulm onary inflammation in aged m ice subjected to burn injury. Joint Society for Leukocyte Biology International Endotoxin and Innate Immunity Society. San Antonio, TX, USA. - 27. Kovacs, E.J., Plackett, T.P., Nomellini, V., Boehmer, E.D., and **Gomez, C.R.** 2006. Advanced age alters innate immune response after injury. Jo int Society for Leukocyte Biology International Endotoxin and Innate Immunity Society. San Antonio, TX, USA. - 28. Nomellini, V., Faunce, D.E., **Gomez, C.R.,** and Kovacs E.J. 2006. Pulm onary chemokine levels after burn injury in aged m ice. 35th Annual Autumn Immunology Conference. Chicago, IL, USA. - 29. **Gomez, C.R.,** Nomellini, V., Baila, H., Oshima, K., Kara vitis, J., Ramirez. L., Morgan, M.O., and Kovacs E.J. 2007. Reduced hepatic inflammatory response in aged interleukin-6 knock out mice given lipopolysaccharide. 30th Annual Conference on Shock. Baltimore, MA, USA. - 30. Nomellini, V., **Gomez, C.R.,** and Kovacs E.J. 2007. Pulm onary neutrophil accumulation after burn injury is exacerbated with age. 30th Annual Conference on Shock. Baltimore, MA, USA. - 31. Bustos, F., Fernández, C., Duhalde, A., **Gomez, C.R.** and Salinas, D.G. 2007. Motivational profile of the students that enter a nd remain in a Medical School, University Diego Portales: A retrospective study. Internati onal IV Convention of Me dical Education. Medical School, Catholic University. Santiago, Chile. - 32. **Gomez, C.R.,** Karavitis, J., Ra mirez, L., Nom ellini, V., and Kova cs E.J. 2007. Interleuk in-6 contributes to age-related al teration of cytokine production in m acrophages. 40th Annual Meeting of the Society for Leukocyte Biology. Cambridge, MA, USA. - 33. Nomellini, V., **Gomez, C.R.,** and Kovacs E.J. 2007. Decreased tight junction form ation in lungs of aged mice following injury. 40th Annual Mee ting of the Society for Leukocyte Biology. Cambridge, MA, USA. - 34. Karavitis, J., **Gomez, C.R.,** and Kovacs E.J. 2007. Fcγ -receptor mediated phagocytosis is attenuated after acute *in vivo* or *in vitro* ethanol exposure. 40th Annual Meeting of the Society for Leukocyte Biology. Cambridge, MA, USA. - 35. Nomellini, V., **Gomez, C.R.,** and Kovacs, E.J. 2008. Increased pulm onary inflammation in aged mice after burn correlates with increased ne utrophil chemokines. Annual meeting of the American Burn Association, Chicago, IL. - 36. Kovacs, E.J., Faunce, D.E., **Gomez, C.R.,** and Nomellini, V. 2008. Advanced age is associated with increased pulmonary inflammation after burn injury and can be abrogated by treatment with anti-CXCR2 inhibition. Fifth International Conference on Innate Imm unity, Aegean Conferences, Chania, Crete, Greece. - 37. Kovacs, E.J., **Gomez C.R.**, and Nom ellini, V. 2008. Aging and in jury: aberrant inflammatory responses and therapeu tic interventions. US-Japan Coope rative Medical Sciences Program. Immunosenescence Workshop, San Francisco, CA. - 38. Nomellini, V., **Gomez, C.R.,** and Kovacs, E.J. 2008. Aberrant neutrophil sequestration in the lungs of aged
mice after burn injury is paralleled by a decrease in the neutrophil chemokine receptor, CXCR2. 41th Annual Meeting of the Society for Leukocyte Biology. Denver, CO. - 39. **Gomez, C.R.,** Knutson, G., G.J., Vuk-Pavlovi ć, S. 2008. Oxygen-tension Dependent Proteom e Modulation in Hum an Cancer C ells. Symposium: Hypoxia, Ischemia, and Inflamm ation: Essential Connections. Boston, MA. - 40. **Gomez, C.R.,** Kosari, F., Schreiber, C.A., Knut son G.J., Vas matzis, G., Vuk-Pavlović S. 2010. Hypoxic exposure as a novel strategy to identify tu mor-associated antigens in prostate cancer. Tumor Immunology: Basic and Clinical Advances. Miami Beach, FL. - 41. **Gomez, C.R.,** Knutson G.J., Schreiber, C.A., Ko sari, F., Vas matzis, G., Vuk-Pavlović S. 2011. Hypoxia affects gene expression and proteome of prostate cancer cells. 102 th AACR Annual Meeting. Orlando, FL. - 42. **Gomez, C.R.,** Knutson G.J., Schreiber, C.A., Vuk-Pavlović S. 2011. Age-dependent mobilization of mesenchymal stromal cells by hyperbaric oxygen. 17th International Society for Cellular Therapy Meeting. Rotterdam, The Netherlands. - 43. **Gomez, C.R.,** Kosari, F., Schreiber, C.A., Knut son G.J., Vas matzis, G., Vuk-Pa vlović S. 2011. Hypoxic cell culture for more effective cancer vaccines. International Society for Applied Biological Sciences Conference on Forensic Genetics (ISABS). Bluesun hotel ELAPHUSA, Bol, Island Brač, Croatia. #### INVITED LECTURES, SEMINARS, AND PRESENTATIONS - "cDNA Microarrays Analysis Shows Differential Expression of a Subset of Genes, During the Hepatic Acute Phase Response in Aged Fish er 344 Rats". XLIII Annual Meeting of the Biology Society of Chile. Pucón, Chile, November 2000. - "Hepatic Response to Inflammation during Aging". International Symposium Molecular and cellular basis of Aging. ICBM, Faculty of Medicine, University of Chile. Santiago, Chile, June 2001. - "Technologies of information and communication in a course for integrated teaching of biology". V workshop of Education in Health Sciences. F aculty of Medicine, University of Chile. Santiago, Chile, May 2004. - "Inflammatory responses during Aging: The Good, the Bad and the Ugly", Burn and Shock Traum a Institute, Loyola University Medical Center. Maywood, IL, October 2005. - "Inflammatory responses during Aging: From the bench to the bedside", Vete ran Affairs Center of Physical Rehabilitation. La Florida, Chile, November 2005. - "Inflammatory responses during Aging", Veteran Affairs Medical Center, Las Condes, Chile. November 2005. - "Advanced age exacerbates the pulmonary inflamma tory response after lipopo lysaccharide exposure", Twenty-Ninth Annual Conference on Shock. Broomfield, CO, USA, June 2006. - "Inflammatory responses and Aging", Faculty of H ealth Sciences, Diego Portales Santiago, Chile. November 2007. - "Inflammatory responses and Agin g", Faculty of H ealth Sciences, Burn and Shock Traum a Institute, Loyola University Medical Center. Maywood, IL, March 2008. - "Translational studies of hyperbaric oxygen effects at Mayo", Division of Pr eventive, Occupational, And Aerospace Medicine Monthly Research Seminars, Mayo Clinic, Rochester, MN. March 2010. - "Effect of aging on hyperbaric oxygen-mediated mobilization of mesenchymal stem cell and progenitors (MSCs)", Division of Preventive, Occupational, And Aerospace Medicine Monthly R esearch Seminars, Mayo Clinic, Rochester, MN. January 2011. #### **REFERENCES** ### Felipe Sierra Ph.D. Director, Biology of Aging Program National Institute of Aging Gateway Building Room 2C231 Bethesda, MD 20982 Office: 1-301-496 6402 Email: <u>sierraf@nia.nih.gov</u> #### Norbel Galanti Ph.D. Director, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70061, Correo 7, Santiago, Chile Office: 56-2-678 6475 Email: ngalanti@med.uchile.cl ### Pamela L. Witte, Ph.D. Director, Immunology and Aging Program Professor, Department of Cell Biology, Neurobiology and Anatomy Joint Professor, Department of Microbiology and Immunology Loyola University Chicago Stritch School of Medicine Building 102, Room 5680 2160 South First Avenue Maywood, IL 60153 Office: 708-326-6358 Fax: 708-326-3913 Email: pwitte@lumc.edu #### Elizabeth J. Kovacs, Ph.D. Associate Director, Burn & Shock Trauma Institute Vice Chair for Research, Department of Surgery Professor, Departments of Surgery and Cell Biology, Neurobiology & Anatomy Member, Immunology & Aging Program Director, Alcohol Research Program Loyola University Chicago Stritch School of Medicine Building 110, Room 4237 2160 South First Avenue Maywood, IL 60153 Office: 708-327-2477 Fax: 708-327-2813 Lab: 708-327-2438 Email: ekovacs@lumc.edu # Luisa A. DiPietro D.D.S., Ph.D. Professor of Periodontics Director, Center for Wound Healing and Tissue Regeneration College of Dentistry University of Illinois at Chicago 801 S. Paulina Chicago, IL 60612-7211 Office: 312-355-0432 fax: 312-996-0943 E-mail: <u>Ldipiet@uic.edu</u> # Stanimir Vuk-Pavlovic, Ph.D. Professor of Biochemistry and Molecular Biology College of Medicine, Mayo Clinic Director, Stem Cell Laboratory Mayo Clinic Cancer Center Mayo Clinic Rochester, MN 55905 Office: 507-284-2814 E-mail: vuk_pavlovic@mayo.edu