
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
16-06-2011 

2. REPORT TYPE
Conference Paper

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 

Three-Dimensional Characterization of Polydisperse Particulate Composites from 5b. GRANT NUMBER 

Microtomography 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Steven Atkinson 

5d. PROJECT NUMBER 
 

  

 5f. WORK UNIT NUMBER

OSDB10TG 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION 
REPORT  NUMBER 

IllinoisRocstar LLC 
EnterpriseWorks Bldg. 
60 Hazelwood Drive 
P.O. Box 3001 
Champaign, IL 61826-3001 

  
AFRL-RZ-ED-TP-2011-243 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S 
ACRONYM(S) 

 
Air Force Research Laboratory (AFMC) 
AFRL/RZS 11. SPONSOR/MONITOR’S 

5 Pollux Drive       NUMBER(S) 
Edwards AFB CA 93524-7048 AFRL-RZ-ED-TP-2011-243 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for public release; distribution unlimited (PA #11265). 
 
 

13. SUPPLEMENTARY NOTES 
Undergraduate Thesis (Dept of Aerospace & Mechanical Engineering, University of Notre Dame. 

14. ABSTRACT     
This work contributes to a larger effort to analyze the mechanical and transport properties of polydisperse particulate composites.  
In order to improve the understanding of the morphology of such systems, specimens are analyzed from tomographic images.  The 
material is first characterized by idealized shapes, and the representative pack is analyzed using high-order statistics in order to 
gain knowledge about the microstructure of the pack.  Using this information, the effort proceeds by either constructing a 
representative unit cell (RUC) on which numerical analysis can be effectively performed, or performing computations using 
variational methods based on the statistical data to determine properties of interest.  In this work, surrogate packs of rice, mustard, 
salt, and mixtures of rice and mustard are analyzed.  Specimens are scanned using X-ray microtomography.  A three-dimensional 
voxel pack is then reconstructed from the tomographic images.  The voxel pack is analyzed in the image analysis software, Amira, 
to identify individual particles and their centroids, volumes, surface areas, and inertia tensors.  Next, an algorithm is developed 
which reduces the particles of the voxel pack to ellipsoids or cuboids.  Next, an algorithm is developed which reduces the particles 
of the voxel pack to ellipsoids or cuboids.  An objective function is used to choose characteristic lengths of the idealized shapes to 
match the surface area and volume of the corresponding voxel particles.    

15. SUBJECT TERMS  

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE 
PERSON 
Mr. William Harrigan 

a. REPORT 
 
Unclassified 

b. ABSTRACT 
 
Unclassified 

c. THIS PAGE
 
Unclassified 

SAR 
 

82 
19b. TELEPHONE NUMBER 
(include area code) 
N/A 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18 

 



Three-Dimensional Characterization of Polydisperse Particulate Composites from 

Micro tomography 

An Undergraduate Thesis 

Submitted to the Department of Aerospace and Mechanical Engineering 

of the University of Notre Dame 

by 

Steven Atkinson, 

Karel Matous, Director 

Department of Aerospace and Mechnical Engineering 

Notre Dame, Indiana 

June 2011 

Distribution A:. Approved for public release; distribution unlirnit8d. 



Three-Dimensional Characterization of Polydisperse Particulate Composites from 

Microtomography . 

Abstract 

by 

Steven Atkinson 

Heterogeneous materials are a useful class of materials that are used due to their prop­

erties in a diverse array of applications. However, detailed knowledge about these materials 

is still limited at present, and much can be learned if methods of analysis are improved. 

This work contributes to a larger effort to analyze the mechanical and transport prop­

erties of polydisperse particulate composites. In order to improve the understanding of the 

morphology of such systems, specimens are analyzed from tomographic images. The mate­

rial is first characterized by idealized shapes, and the representative pack is analyzed using 

high-order statistics in order to gain knmvledge about the microstructure of the pack. Using 

this information, the effort proceeds by either constructing a representative unit cell (RUC) 

on which numerical analysis can be effectively performed, or performing computations using 

variational methods based on the statistical data to determine properties of interest. 

In this work, surrogate packs of rice, mustard, salt, and mixtures of rice and mustard 

are analyzed. Specimens are scanned using X-ray microtomography. A three-dimensional 

voxel pack is then reconstructed from the tomographic images. The voxel pack is analyzed 

in the image analysis software, Amira, to identify individual particles and their centroids, 

volumes, surface areas, and inertia tensors. Next, an algorithm is developed which reduces 

the particles of the voxel pack to ellipsoids or cuboids. An objective function is used to 

choose characteristic lengths of the idealized shapes to match the surface area and volume of 
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the corresponding voxel particles. For ellipsoidal particles, the orientations of the represen­

tative shapes are found by minimizing certain norms between the geometric inertia tensor 

of the particles from the voxel pack (micro-CT data) and the geometric inertia tensor of 

the corresponding representative ellipsoid. For cuboids, the orientation of the particle feret 

length and width are matched, and the best of the two resulting possible orientations is 

chosen through a comparison of the particles' inertia tensors. 

The representative particles' size and shape are characterized using geometric metrics. An 

optimization algorithm is developed which creates two discrete, two-dimensional probability 

density functions (pdf's) of the particles based on the metrics: one with a high number of 

subdivisions (raw micro-CT data), and a second with an optimized number of subdivisions 

(representative pack data) . The number and spatial position of the bins of the latter (coarse) 

discretization are optimized to mimic the fine experimental data. 

Lastly, one-, two-, and three-point probability functions are computed on the pack in or­

der to gather statistical data about its morphology, using the modes assigned to the particles 

from the optimized coarse binning. Future efforts may utilize this statistical information in 

order to compute upper and lower bounds for mechanical and transport properties using the 

Hashin-Shtrikman variational methods. 
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CHAPTER 1 

Introduction 

It has long been known that the microstructures of heterogeneous materials are intimately 

linked to their overall macroscopic behavior [1 , 2]. Moreover, it has been a problem of great 

interest to use microstructural data in order to inform models which attempt to describe 

these overall properties. One subset of materials which presents unique challenges is that of 

heterogeneous materials. 

A subset of heterogeneous materials particulate composites- may be characterized by the 

packing of its particle inclusions. This packing may be random and difficult to charaetcri;.:;c. 

In fact , these packing problems are very pervasive and are applicable to a range of disciplines. 

On the molecular level, the analysis of packing leads to information about molecular structure 

in a number of classes of matter, including granular metals, glasses, and liquids [3, 4]. In 

addition, the packing behavior of nanoparticles is of crucial importance to their performance 

in a variety of applications [5]. On a higher length scale, packing analysis can be applied to 

cases such as sand and sedimentary rocks , pills in a bottle of medicine, packages of food , or 

coins in a jar [6 9]. 

In many of these aforementioned examples, properties of interest such as clastic modulus, 

ultimate strength, thermal conductivity, permeability, or process behavior are dependent on 

the properties of individual inclusions as well as the packing behavior of the aggregate system 

[2, 10]. Characteristics such as the ordering (or lack thereof) of inclusions, presence of voids 

or impurities, and the relative concentrations of the constituent phases in a material all have 

drastic implications for the response of the overall composite. Moreover, it is known that 
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heterogeneou.c:; mixtures of materials can lead to the development of mechanical and transport 

properties which are often nonlinear and also very often more desirable than those of a single 

component. Examples of this are abundant, including metallic alloys, fiber-reinforced plastics 

such as fiberglass, and steel-reinforced concrete found in roads and buildings, to name a few. 

The general structure of random packs of particulate systerns is a very complex topic. 

Definitions have been put forth to differentiate between loose-packed, close-packed, and 

ordered (crystalline) packing behaviors, and rigorous mathematical quantification of such 

systems is currently of interest [11]. Therefore, efforts have been made to develop computa­

tional processes to generate systems of randomly packed particles of various shapes [12- 16). 

At the same time, the development of x-ray tomography has allowed for non-destructive in 

situ observation of real heterogeneous media [17]. Moreover, the data-rid1 quantification of 

pack morphologit>.,s afforded by x-ray tomography can serve to experimentally validate the 

behavior of the computational efforts of packing codes. 

In the Computational Physics Group at the University of Notre Dame, methods have 

been established for processing tomographic data in order to identify and quantify geomet-

rical properties of individual spherical particles in a pack, and computational routines have 

been demonstrated which fit idealized shapes to voxel particles through the minimization of 

objective functions based on the particles' geometrical properties [18, 19]. The distribution 

of types of particles has been quantified on the basis of particle diameter. Statistical descrip­

tors have been used which quantify the geometrical properties of particulate packs through 

the use of one-, two-, and three-point correlation functions. 

Building on this past work, the contributions of this thesis are: 

• Experimental data about particulate specimens was acquired using micro-computed 
tomography. Test cases of rice, black mustard, and salt inclusions are used to demon­
strate the methods. Distinct modes of polydisperse mixtures of rice and black mustard 
have been identified and distinguished on the basis of particles' average grayscale in­
tensity in a reconstructed voxel image set. 

• Algorithms were developed which convert discrete voxel data about a particle into 
a representat ive ellipsoid or cuboid. An adaptive method may also be used which 
compares these two shapes and determines which representation possesses the lowest 
error. 
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• A binning algorithm was developed which characterizes the distribution of particles in 
a pack in terms of size and shape, using metrics which define particles' representative 
"pseudo-diameter" and eccentricity, respectively. 

• A legacy code, Stat3D was advanced in order to numerically evaluate one-, two-, and 
three-point probability functions on packs of ellipsoidal particles. 

• A routine was written for Stat3D which incorporates an assumption of semi-isotropy 
to compute three-point probability functions at a substantially lower computational 
cost. 

The computational resources developed are used in the current work to quantitatively de­

scribe the changes in morphological characteristics for a collection of polydispersc particulate 

systems. The changes in morphology, shown through first-, second-, and third order statis-

t ical data, showcase the complex interactions which give rise to the noteworthy properties 

of heterogeneous mixtures. 

Future work on the subject includes the use of the statistical information about the pack 

in tandem with stochastic methods in order to derive mechanical and transport proper-

ties using higher-order statistics [20]. In addition, other particle shapes may be considered 

to develop a more extensive library of shapes, allowing for the proper characterization of 

packs which feature a greater diversity of inclusions. The use of idealized shapes may be 

validated through the computation of the statistical descriptors on tomographically-derived 

voxcl packs, and the computation of mechanical and transport properties through statistical 

methods may be validated through physical experimentation. 
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CHAPTER 2 

Micro-Computed Tomography 

In order to obtain data to be analyzed, specimens were prepared which were scanned in 

a micro-CT, including packs of rice, mustard, and salt to serve as surrogate systems which 

readily exhibit packjng behavior associated with ellipsoids, spheres, and cuboids, respec-

tively. The use of real particulate systems assures that the packing behavior of the system 

is realistic and incorporates all associated real-world phenomena. P ast work has been done 

which uses packing algorithms which generates packs of particles, though such codes fail to 

capture all of the packing behavior which occurs in a real specimen [14]. However, more 

recent developments in experimental techniques using microtomography have allowed for 

non-invasive analysis of particulate packs in order to determine basic information about the 

constituent particles of a pack [21]. The current chapter explains the methods involved in 

acquiring and processing the tomographic data from a particulate pack. 

In order to illustrate the concepts described throughout the following methodology, two 

particulate packs will be used. The first is a pack of long-grain white rice (shown in Figure 

2.1) which shows how the methods apply to packs of ellipsoidal particles, and the second is 

a pack of salt (shown in Figure 2.2) which shows the applications to cuboidal particles. 

2.1 Specimen Preparation 

An example specimen of rice is shown in Figure 2.1. In order to prepare the specimen, 

the following procedure was followed: 

• A cylindrical canister was used with a diameter of 6.2 em and height of 6.5 em to fit 
in the scanning chamber of the micro-CT. 
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Figure 2.1. A sample of long-grain white rice. Grains were loaded into the cylindrical 
canister, and the canister was tapped on the table until the rice appeared to have settled. 

• Rice was poured into the container until it was filled nearly to the brim of the container. 

• The container was tapped on a table until the rice particles had settled (indicated 
when the level of the rice in the container stopped descending). This criterion is 
assessed qualitatively during preparation and confirmed later quantitatively through 
investigation of the specimen's packing fraction. 

• The container was mounted to the testing stage of the Micro-CT using Sticky Tack 
and tightened into place in the Micro-CT. 

For spherical particles such as black mustard, an extra step was employed in which 

particles were rolled down an inclined plane. Particles which are more spherical tend to roll 

more quickly, while irregular particles tend to have trouble rolling, and do not make it to 

the bottom of the plane, allowing for the particles to be filtered with respect to sphericity. 

This was important in preparing the polycUsperse packs that arc discussed in chapter 5. 

Packs of salt were also prepared and scanned. Due to the smaller particle size, the salt 

was prepared in a 7 mm plastic drinking straw. The straw was cut to length (about 3 em) 

and one end of the straw was closed off by gluing a small piece of paper to its end. The 

rest of the preparation was carried out in a matter similar to the procedure described above. 

The prepared sample is shown in Figure 2.2. 
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Figure 2.2. A prepared sample of salt. 

2.2 Micro-CT System 

The tomographic scanner used in this work is a Skyscan 1172 high-resolution Micro-CT, 

shown in Figure 2.3. The basic principle of its operation is illustrated in Figure 2.4. The 

micro-CT functions by emitting x-rays from a source towards a specimen with a camera 

on the other side. Because the specimen's constituent phases vary in density, they absorb 

different amounts of x-ray radiation; a particle with a higher density possesses more material 

which the x-ray must, pass through in a given volume, in which a greater quantity of x-ray 

radiation is absorbed. X-ray scattering effects also occur which affect the characteristics of 

the x-ray radiation after interacting with the surfaces of inclusions. These effects combine to 

give unique signatures which are linked to distinct phases in the pack A correlation between 

grayscale intensity and material density may be constructed based on the application of 

Beer's law, though it is sufficient for the goals of the current work to note that different 

phases may readily be identified by differences in x-ray interactions (22]. 

The resulting pattern of x-ray intensity that is detected by the camera is what constitutes 

the monochromatic t,omographic images, such as the example shown in Figure 2.5(a). After 
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a tomographic projection is taken, the specimen is rotated incrementally by a given value 6.0 

while the camera and source remain stationary, resulting in a new projection of the sample. 

The process of image acquisition and specimen rotation is repeated until the resulting image 

set contains tomographic cross-sections of the specimen through a full 360° of rotation. 

By decreasing 6.0, the clarity of the reconstructed image set (discussed in Section 2.3) is 

increased. In the current work, an incremental rotation of 6.0 = 0.15° was used. 

Figure 2.3. The Skyscan 1172 high-resolution Micro-CT scanner which was used to obtain 
microtomographic data on particulate packs. 

2.3 Post-Processing of Tomographic Image Sets 

After the tomographic image set has been acquired from the micro-CT, a number of 

post-processing steps are taken to convert the x-ray images to a binary three-dimensional 

voxel pack on which analysis \vi.ll take place. 

A commercial program, NRecon, is used to construct a three-dimensional voxel image 

of the specimen using the tomographic cross-sections [23] . The voxcl image is stored as a 

collection of horizontal cross-sectional slices. The basic concept of this conversion is shown in 

Figure 2.6. It is important to notice that the tomographic cross-sections differ by a rotational 
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Figure 2.4. The basic layout of the rnicro-CT's main components. A source emits x-rays 
towards a specimen, and the radiation is detected by a camera on the other side, which takes 
tomographic images. 

increment, while the reconstructed cross-sections differ by a translational increment, meaning 

that the tomographic images contain different views of the same part of the specimen, while 

the reconstructed cross-sections each contain information that does not overlap. In addition, 

the reconstruction algorithm may be carried out in parallel since the image set may be 

divided and evaluated with minimal overlap of data (see Figure 2.5 for an example of a 

single tomographic cross-section and horizontal constructed slice). 

After the grayscale voxel pack has been constructed, the image set must be filtered and 

post-processed in order to retrieve the meaningful information about the pack. In order to 

do this, Amira, a commercial software package, is used to apply a series of filters on the 

three-dimensional image set and visualize the voxel pack [24] . 

The first filter that is applied is an edge-preserving smoothing filter. The filter works 

by diffusing differences in intensity (grayscale value) through the image set. In order to 

preserve edges where the intensity changes rapidly (indicating the boundary of a particle 

or other surface), diffusion is prevented from crossing large gradients. The results of edge-

preserving smoothing are shown for a single cross-section in Figure 2.7. 

The second filter to be applied is a thresholding filter. This filter converts the image set 
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(a) A tomographic cross-section of close-packed long-grain white rice. 

(b) A reconstructed horizontal cross-section of the 
pack. 

Figure 2.5. A collection of tomographic images such as the one shown in (a) are reconstructed 
to create a three-dimensional voxel pack, composed of horizontal cross-sectional images such 
as the one in (b). 

from a grayscale image to a binary image, evaluating the binary value of every voxel, Pi to 

_ { 1 if Pmin ~ Pi ~ Pmax 
Pi= 

0 otherwise, 
(2.1) 

where Pi is the 8-bit grayscale intensity of a given voxel, and Pmin and Pmax arc user-specified 

thresholding limits. The result of thresholding is shown in Figure 2.8. 

Next, a hole-filling algorithm is empioyed. Since the thresholding algorithm operates 

on a point-by-point basis and the density of the particles varies throughout, thresholding 

introduces voids inside particles where Pi < Pmin· The filter proceeds iteratively, progressively 
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Figure 2.6. The reconstruction process. NRecon converts the tomographic cross-sections 
(left) into a three-dimensional voxel pack, composed of horizontal cross-sections. Paral­
lclization is carried out by dividing the tomographic image set into sections (such as the one 
shown in red) that rnay be processed independently. 

filling in holes, using one of three user-specified connectivity criteria that requires the voxel in 

question to be surrounded on either 6, 18, or 26 positions, as shown in Figure 2.9. Depending 

on the criterion chosen, the filter will either fill in more (6-point criterion) or less void space 

(26-point criterion) according to what is defined as sufficiently "inside" the inclusion. Since 

it was assumed that all particles are completely solid and have no hollow cavities, the 6-point 

connectivity criterion was used because of its more liberal results. Due to the quality of this 

particular scan, not many voids exist in the voxel pack, and the effects of the filter are subtle. 

After the holes have been filled, a separating algorithm is applied in which the con­

tact points between particles are identified and voxels are removed in order to segment the 

particles into disconnected entities. While Amira's algorithm for separation works well for 

concave shapes such as spheres and ellipsoids (see Figure 2.10), it does not perform as well for 

cuboids. Therefore, an erosion filter was used to separate cuboids, and a dilation algorithm 

was subsequently implemented in order to recover the lost material while making sure that 

gaps were not re-joined. The drawback to this method is that particles which are smaller 

than a minimum size (determined by the amount of erosion used) are completely lost, and 

12 



Figure 2.7. A cross-section of the voxel pack after smoothing. Notice that the particles have 
a constant density throughout in contrast to the variation seen in Figure 2.5(b). 

Figure 2.8. The cross-section of the voxel pack after thresholding. 

the shapes of the remaining particles were slightly distorted due to the assumptions that 

must be made in dilation. For example, a particle that has been eroded down to a single 

voxel might assume the form of a cube or a sphere depending on the type of dilation that is 

employed. Moreover, the orientation of such a particle is completely lost, since a single-voxel 

particle has no intrinsic orientation. This leads to a degree of uncertainty in the analysis of 

cuboid packs, and the distortion due to this separation algorithm can be seen in Figure 2.11. 

Since voxels are removed from the image set in order to separate particles, a corresponding 

error is introduced in the pack's volume fraction. However, when the voxel size is small 
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(a) 6-point connectivity (b) 18-point connectivity (c) 26-point connectivity 

Figure 2.9. The different options for evaluating the connectivity of a given voxel. The 6-
point definition (figure (a)) is the most relaxed choice and causes the most liberal hole-filling, 
while the 26-point definition (figure (c)) requires the most complete surroundings and yields 
more conservative results. 

compared to the sizes of the inclusions, this error is also small. The changes in volume 

fraction due to separation are quantified in tables 2.1 and 2.2 for the rice and salt packs, 

respectively. 

Figure 2.10. The cross-section of the voxel pack after Amira's separation filter. 

After individual particles have been separated, the last filter to be applied is a border kill, 

in which particles that are touching the outside faces of the pack are deleted. This is done 

since such particles are only partially included in the voxel pack, and therefore, their shape 

does not reflect their true geometrical form. The results of the border kill for the rice pack 

are shown along with the rest of the filtering process for comparison in Figure 2.12. More 
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Figure 2.11. The voxel pack of a packed salt specimen. Notice that the edges of the particles 
have been smoothed and some particle definition has been lost due to the separation process 
required to identify individual particles. 
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technical details on the aforementioned filtering algorithms can be found in the program's 

instructional manuals [24, 25]. 

Since some partial particle information has been purposefully omitted through the border 

kill operation, the bounds of the pack domain must be adjusted accordingly so that the void 

space that has been introduced is not considered during analysis. This problem will be 

addressed in section 3.1. The scan data after filtering for the rice and salt packs are shown 

in tables 2.1 and 2.2, respectively. 

Though there are multiple sources of error which are encountered through the post­

processing procedure, the two sources of error which may be readily quantified and treated 

are the increment al rotation during image acquisition, ~(); and pixel resolution. First, 

~() was decreased until its contribution to the error in the image set was small compared 

to the other sources of error. Using this value of ~8, the effects of pixel resolution were 

~tudied . A tradeoff exists between pack detail through fine resolution and dataset size. This 

tradeoff becomes problematic when the dataset becomes too large for Amira to process (no 

similar problems were encountered due to t he size of the tomographic projection images while 

decreasing ~() and using NRecon to reconstruct three-dimensional image sets). Therefore, 

an investigation was conducted in which a pack of rice was scanned at multiple resolutions, 

using ~() = 0.15°. The resulting voxel packs were post-processed, and the volume fTaction 

of the particles was determined. The results are shown in Figure 2.13. Ba..sed on the results 

of the investigation, all subsequent analyses of rice and mustard packs were carried out ·with 

a resolut ion of 64.9 ~-tm. 

After the post-processing of the voxel pack has been completed, analysis can be carried 

out in order to characterize particles in the pack. In order to do this, an analysis tool is used 

in Amira which quantifies several properties of interest for each particle: 

• volume, VeT 

• surface area, Scr 

• centroid location , (x, fi, z) 

• second moments of area, Mxx, Myy, and Mzz 
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• product moments of area, Mxy , !Vfxz, and Myz 

• maximum and minimum feret diameters; l and w, respectively (cuboids only) 

• azimuthal and zenithal orientation of maximum and minimum feret diameters: e "' l, <pl, 

ew, and ¢w (cuboids only). 

Note that the second moments and product moments of area may be manipulated to 

generate a purely geometrical analog of the particle's inertia tensor. The definitions for the 

moments that A mira computes are 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where .T.i , Yi, and Zi are the x- , y-, and z-coordinates of a voxel inside the inclusion domain, 

w. These quantities may be used to form the particle's geometric inertia tensor: 

- lvfxz 

leT= Vcr -Myz (2.8) 

- Myz 

This geometrical inertia tensor differs from a conventional inertia tensor in that the density 

of the inclusion is assumed constant and equal to 1. The result is a metric which may be 

used to describe the shape and orientation of the particle. 
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Table 2.1 

Scan data and image processing data for the rice pack. 

Pixel Size 69.40 J.Lm I pixel 
619 X 656 X 714 pixel3 

Volume of interest, 
2.90 X 101S voxels 

4.30 X 4.55 X 4.96 cm3 

96.91 cm;5 

Bounding box 
3.84 X 4.09 X 4.48 cm3 

70.18 cm3 

Volume fraction before separation 0.6735 
Volume fraction after separation 0.6552 

Percent of volume remaining 97.28 % 
Decrease in overall volume fraction 0.0183 

Number of particlE>.s before boundary layer removal 5968 
Number of particles after boundary layer removal 4040 

Table 2.2 

Scan data and image processing data for the salt pack. 

Pixel Size 3.986 J.LID I pixel 
944 X 944 X 962 pixel3 

Volume of interest 
9.57 X 1015 voxeb 

3.76 X 3.76 X 3.83 mm;5 
54.15 mm~ 

Bounding box 
3.38 X 3.38 X 3.45 mm3 

39.41 rnm3 

Volume fraction before separation 0.6322 
Volume fraction after separation 0.4656 

Percent of volume remaining 73.65 % 
Decrease in overall volume fraction 0.1666 

Number of particles before boundary layer removal 1660 
Number of particles afler boundary layer removal 1283 
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(a) A raw cross-section of the voxel (b) A cross-section of the voxel (c) The cross-section after thresh-
pack pack after smoothing. olding. 

(d) The cross-section after hole- (e) The cross-section aft.er separa- (f) The cross-section with border 
filling. tion. particles removed. 

Figure 2.12. The effects of the various filters to the voxcl pack, shown for a single cross­
section. The raw grayscale images such as the one shown in (a) are smoothed (shown in 
(b)), then thresholded (shown in (c)) in order to create a binary image. Next, the hole-filling 
filter (shown in (d)) corrects any voids that are inside particles. Due to the quality of this 
particular scan, not many voids exist in the voxel pack, and the effects of the filter are 
subtle. Next, the separation filter (shown in (e)) conditions the images in order to isolate 
the individual solid particles. Finally, particles which touch the border of the image (and 
therefore might be incomplete) are removed in the border kill algorithm. The final voxel pack 
which will be analyzed is shown in (f). Note also that, since particles have been removed 
from the border, the volume of interest is shrunk in order to maintain the proper volume 
fractions. This new border is shown as a white line. The determination of this new border 
is discussed in section 3.1. 
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Figure 2.13. The volume fraction of the the rice pack for different scan resolutions after 
post-processing. It can be seen that the volume fraction of the pack is stable for all of the 
pixel sizes shown, so a 64.9 Jl.m pixel size will be used in order to keep the data requirements 
to a minimum. 
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CHAPTER 3 

Topology of Microstructure 

Afler information has been gathered about the particles found in the voxel pack repre-

sentation of the system, methods were developed to create a representative "pack, in which 

ideal geometrical shapes are chosen to approximate the characteristics of individual particles. 

Idealized representative particles present a number of advantages over the voxel parLicles: 

• They represent a drastic savings in data size over the voxel pack. 

• Their characteristics (such as size and shape) may be quantified in a more streamlined 
way than the voxel particles. 

The current work focuses on the use of ellipsoidal and cuboidal particles to represent different 

particle shapes. In order to illustrate the procedures used, the rice and salt packs introduced 

in the previous section (tables 2.1 and 2.2) will be used, respectively. 

3.1 Characterizat ion of Individual Particles 

The first step is to find a representation for an individual particle in terms of idealized 

shapes. Previous work has used spheres to represent voxel-based particles [18]. Spheres arc 

effective and they provide a simple particle approximation if the orientation of the particle is 

unimportant or negligible. However, ellipsoidal particles present several distinct advantages: 

• A wider variety of particle shapes may be accounted for through adjusting the aspect 
ratio of the ellipsoid. 

• Ellipsoids have a quantifiable orientation, given by the orientation of their three semi­
axes. 
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The first representative shape which will be discussed is an ellipsoid. Ellipsoids possess 

six degrees of freedom (three semiaxes and a unique 3-dimensional orientation) which must 

be minimi1.erl in order to best fit a given voxel particle. In order to pick values for the various 

properties of the ellipsoid, two objective functions are minimized independently. 

In order to formulate a first guess at t he lengths of the scmiaxes of the equivalent ellipsoid 

for a given particle, the geometric inertia tensor of the voxel particle, l eT is diagonalized, 

and the resulting principal geometric moments of inertia, 11,cT, heT, and I3,eT are used to 

compute an initial guess for the semiaxes: 

(3.1) 

b* -
c 
t/ (h_eT - heT + J3,eT), 
v ct 

(3.2) 

c* = c 
u (- II,eT + 12,eT + I3,eT), 
v ct 

(3.3) 

where a*, b*, and c* are the initial gu~sscs for the semiaxes (ellipsoid) or edge half-lengths 

(cuboid) of the particle, and C is a geometric coefficient. For ellipsoids, C = 5/2. However, 

the same method may be used to find the half-lengths of a representative cuboid. In this 

case, C = 3/2. These constants are derived from the definitions of the principal geometric 

moments of inertia for the respective particles. Since the principal geometric moments of 

inertia are ordered such that I 1,eT ~ I2,eT ~ fs.eT, it follows that a* ~ b* ~ c* . 

After the initial guess has been computed, information about the voxel particle's volume, 

VeT, and surface area, SeT are used to determine the size of the ellipsoid through the 

objective function 

(3.4) 

where 77 is an empirically-chosen weighting value (between 0 and 1) which balances the 

emphasis on fitting either volume (7J = 1) or surface area (7J = 0), k is a scaling coefficient 

to be optimized, and V
7
; and s; are the volume and surface area of the representative 

particle based on the initial guesses a*, b\ and c*. Note that the degree of k reflects the 
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dimensionality of the property which it is scaling (k3 for volume in the first term, and k2 for 

area in the second term). Recall that Vcr and Scr were computed through analysis of the 

voxel pack in Amira. For the present work, a value of 77 = 0.8 was chosen. This results in 

a more rigorous matching of particle volume and a more relaxed emphasis on surface area. 

This choice to match the volume of the particles was made because the voxel image of a 

particle is inherently more accurate at capturing its volume than its surface area due to the 

interpolation and approximations which are necessary to capture the surface characteristics 

of a digital image [26]. The minimization of this objective function yields an optimal value 

of k which is used to compute the final dimensions of the particle: 

a a• 

b = k b* (3.5) 

c c* 

Using the final dimensions, Vp and Sp, are computed: 

4 
Vp - 31rabc, (3.6) 

(
(ab)Pe + (ac)P• + (bc)Pc)l/Pe 

47r 3 (3.7) 

where Pe = 1.6075. The formula used to compute the surface area is an approximation 

known as Knud Thomson's formula [27]. 

Because the representative particle is chosen to best match an irregular shape, there are 

errors associated with the dimensions of the shape chosen. The error in volume and surface 

area are defined, respectively, as 

8V - I Vc~c~ Vv I x 100 [%], 

8S = ISc~c~ Spl x 100[%]. 

(3.8) 

(3.9) 

The distribution of errors for the reduction of the rice pack are shown in Figure 3.1. The 

choice of TJ = 0.8 manifests itself in t hese error quantifications by causing c5V to be signifi­

cantly smaller than 8S. 
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After the dimensions of the shape have been determined, the orientation of the represen-

tative particle is determined. For ellipsoidal particles, this is found through a comparison of 

the geometric inertia tensors of the voxel particle, Icr, and the representative ellipsoid, Ip· 

A second objective function is defined as 

(3.10) 

where the subscript :F denotes the Frobenius norm, defined on an arbitrary m x n matrix S 

m n 

JISJIF= LL I~ii1 2 , (3 .11) 
i=l j=l 

and A (a), B(,B), and C('Y) are matrices which denote rotations of angles a, /3, and 1 about 

the x-, y-, and z-axcs, respectively: 

1 0 0 

A ( a) - 0 cos a -sin a (3.12) 

0 sin a cos a 

cos/3 0 sin(J 

B (/3) = 0 1 0 (3.13) 

- sin/3 0 cos(J 

COSr -sin r 0 

C('y) - sin1 cos , 0 (3.14) 

0 0 1 

Therefore, it can be seen that the proper selection of a, {3, and 1 leads to an orientation of 

the representative particle's inertia tensor which mimics that of the voxel particle's inertia 

tensor. The distribution of values for !12 for the rice pack are shown in Figure 3.1(c). Note 

that, while the distribution has a low average, there are some exceptions with substantially 

higher values. These cases correspond to instances where the separation algorithm described 

in section 2.3 failed to separate several inclusions. An example of a group of particles which 

was not fully separated is shown in Figure 3.2. 
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ov (%) os (%) 
(a) The distribution of oV for the rice pack. (b) The distribution of oS for the rice pack. 

4 6 8 10 
112 (%) 

(c) The distribution of TI2 for the rice pack . 

Figure 3.1. Distributions of error for the particles in the rice pack for a weighting value 
17 = 0.8. values of 17 closer to 0 drive oS to zero, while values approaching 1 drive oV to 
zero likewise. The low error suggests that rice particles are well-approximated by ellipsoids. 
While the mean value of 112 is low, the maximum value is substantially higher. This is 
because the separation algorithm used sometimes fails to properly separate particles, as is 
shown in Figure 3.2. 
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Figure 3.2. A group of particles which was not separated properly during the post-processing 
in A mira. Instances like this yield high values of 112 since an ellipsoid is not able to match the 
geometric inertia tensor of a complex shape such as this, causing a high difference between 
Icr and Ip. 

However , for cuboidal particles, the use of the geometric inertia tensor is problematic 

because the geometric inertia tensor of a cube does not vary with orientation, and cuboids 

which are nearly cubic share this problem due to inaccuracies in the algorithms used to 

process the voxel data, most notably the crude separation methods which are responsible 

for the rounded edges seen in Figure 2.11. Therefore, an alternative method was chosen 

in which information about the voxel particle's feret length and width are computed and 

used to determine the orientation of the cuboid. It can be seen from Figure 3.3(a) that 

the maximum feret diameter, i, of the cuboid spans the opposing corners of the particle, 

and the minimum feret diameter, w, is parallel to the shortest edge of the particle. The 

orient ation of these two diameters of the representative particle, lp and Wp are rotated to 

match those of t he voxel particle, lcr and Wcr· Finally, since these two vectors can denote 

two different orientations (shown in Figure 3.3(b)), the inertia tensors of the voxel particle 

and representative cuboid are compared using 112 for the two possible final orientations of 
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the cuboid. The orientation associated with the lower value of fh of the two is selected as 

the final orientation of the cuboid. 
,, , ' , 
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(a) The feret length i and width w of a cuboid. (b) The two possible orientations of a cuboid. 

Figure 3.3. The pair of vectors used to quantify the orientation of the cuboid. The ideal 
cuboid (shown in (a)) is rotated until l and w are parallel to those of the voxel particle. 
The final choice between the two possible orientations (shown in (b)) is made based on a 
comparison of Vi2 values associated with the two orientations. 

The reduction process is carried out on every particle in the voxel pack, and the repre­

sentative packs for the rice and salt packs are shown in figures 3.4 and 3.5. It can be seen 

in both these cases that the size, shape, and orientation of the voxcl particles are accurately 

captured and represented in the respective idealized packs. 

Recall that an important step in the voxel pack filtering described in section 2.3 was the 

removal of particles which were touching the boundary of the scanned volume of interest. 

Since the particles which were removed were replaced with open space, the volume of in-

terest which will be considered must be resized. Since the voxel particles have now been 

characterized with representative idealized shapes, information can be used from the repre-

sentative pack to inform the resizing of the volume of interest. In order to do this, twice 

the largest semiaxis (for ellipsoids), or t he largest edge length (for cuboids) is found, and 
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lOmm -(a) The voxel pack for the rice sample. (b) The equivalent ellipsoidal pack. 

Figure 3.4. The voxel pack and equivalent ellipsoidal pack for the rice pack. Notice the 
one-to-one mapping of particles between the ellipsoidal pack and the voxel pack from which 
it is derived. 

the volume of interest is decreased by an amount slightly larger than this quantity. This 

process is shown graphically in Figure 3.6. It is important to note that, while the volume 

of interest has been adjusted, no additional particles are explicitly eliminated beyond those 

affected by the border kill operation. The goal of this adjustment is to correctly capture the 

packing fraction of the pack. The particles that are cut by the new bounding window can 

be accurately characterized since their shape information is fully known. 

3.2 Binning Algorithm 

After a representative pack has been created, analysis may be performed on the collective 

distributions of particle types. Since the representative particles may have different sizes and 

shapes, geometric metrics were devised to quantify these two properties of the particles. The 

first property of a particle is its size, which is quantified by its pseudo-dimension, d. This is 
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(a) The voxel pack for the salt sample. (b) The equivalent cuboidal pack. 

Figure 3.5. The voxel pack and equivalent cuboidal pack for the salt pack. Notice the one­
to-one mapping of particles between the cuboidal pack and the voxel pack from which ii is 
derived. 
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Figure 3.6. The process by which the volume of interest is resized, shown for a two­
dimensional cross-section of the pack. After boundary particles (identified with a dashed 
boundary) have been removed by the border kill operation in the voxel pack, the volume 
of interest must be adjusted to obtain the actual volume fraction. First, the largest parti­
cle length is found (solid red arrow), then the volume of interest is shrunk on all sides by 
slightly more than this amount (dashed red arrows). The resulting volume of interest (light 
red area) contains no void space introduced by the border kill operation, and the overall 
volume fraction of the pack is preserved. 
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defined to be 

d = { ( 
9
;') 

113 
, for ellipsoids . 

(V)1
/

3
, for cuboids 

(3.15) 

This parameter corresponds to the diameter of a sphere (for ellipsoids) or the side length of 

a cube (for cuboids) whose volume is equal to that of the representative particle in question. 

The second property of a particle is its shape. This is quantified using a metric t, defined as 

f.= 1 -- -+ -+ - . 1 (b c c) 
3 a b a 

(3.16) 

Recall that, since a~ b ~ c, it follows that f. is bounded between 0 (when a= b =c) and 1 

(when a» b » c) . With these metrics, a probability distribution function may be created 

for the pack in order to quantify the frequency of different sizes and shapes of its particles. 

3.2.1 Uniform Binning 

60 

50 
•. 

<W 

30 

20 

• . 5 

c 0.11 1.3 d (rnm) 

Figure 3.7. The fine binning of the rice pack. Details about the distribution of particle 
shapes and sizes are readily identifiable due to the fine mesh resolution. 

First , a fine binning is created in which particles are binned into a quadrilateral mesh 

based on values of c and d from the voxel pack. Figure 3. 7 shows a binning on a 40 x 40 

quadrilateral mesh for the rice voxel pack. While this distribution shows a great amount 

of detail about the different types of particles found in the pack, it is desired to be able to 

classify the different particles in a relatively small number of bins while still capturing the 
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characteristics of the particle distribution. Therefore, a coarse binning is created in which 

fewer bins are used, and the difference between the coarse and fine binnings is quantified 

using a !oral error metric, defined as 

1lj 

'1/Jic = L oic,iJ lpdf~T - pdJ;c l ' (3.17) 
iJ=l 

where n1 is the number of bins in the fine discretization, Oic.iJ is the overlap between coarse 

bin ic and fine bin i 1 in the two-dimensional plane of the pdf, pdfdr if the probability 

density function associated with fine bin i 1 , weighted by the volumes of the particles from 

the voxel pack; and pdJ;c is the probability density function associated with coarse bin 

ic, weighted by the volumes of the particles from the ellipsoidal pack. By weighting the 

probability distribution by the volumes of the particles, the characteristics associated with 

the larger particles are accentuated, causing the contours of the probability distribution to be 

more pronounced. The effect is that the algorithm is forced to give greater weight to errors 

associated with large particles. This is desirable because there are often fewer large particles, 

yet their spatial characteristics define a large part of the geometrical confi.guration of the 

packing and therefore must be considered. The volume-weighted probability distribution for 

the fine binning is shown in Figure 3.8. 
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€ 0.11 1.3 d (mm) 

Figure 3.8. The volume-weighted probability density function for the fine binning. By 
weighting the probability density with the volume, more emphasis can be given to large 
particles which tend to occur less frequently in number than small particles. 
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3.2.2 Resizing 

1 
Figure 3.9. The spring analogy used to resize bins. Notice that springs have higher spring 
constants where the errors of the coarse bins are higher. This causes the bins with higher 
errors to shrink and gain resolution. Also notice the use of an "anchor" spring which is 
fixed to the original position of the node. This serves to relax the optimization method and 
prevent overcompensation. 

A conditioning algorithm was formulated which employs several sequential algorithms 

to improve the coarse binning's characterization of the probability distribution. The first 

of these algorithms to be used is an iterative resizing algorithm. In every iteration, the 

algorithm first quantifies the local error in the coarse binning with respect to the fine binning, 

then resize..c:; the bins in order to decrease the error until a minimum global error is achieved. 

With information about the error associated with every bin, the vertices of the mesh 

are adjusted using a spring network analogy, shown in Figure 3.9. The edges of the bins 

are modeled a..s linear springs governed by Hooke's Law. They are joined at the nodes of 

the mesh, and outer nodes are constrained to remain on the border of the domain. The 

spring constants are determined by the errors _associated with the bins which share the edge 

in question; the springs arc stiffer when the bins sharing that edge have greater errors. In 

addition, an "anchor" spring is included at every node that is fixed to the original location 

of the node in order to prevent the nodes from moving too far in a single iteration. The 

algorithm iterates until the total error of the binning ceases to decrease. The result of the 

resizing algorithm on the rice pack is shown in Figure 3.10. 
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(a) The uniform binning of the rice pack. (b) The resized binning of the rice pack. 

Figure 3.10. The binning before (a) and after (b) resizing. Notice that , by changing the 
shape of the discretization, the binning captures the characteristics of the distribution much 
better. 

3.2.3 Truncation 

After the resizing algorithm has converged to a minimum error, the second conditioning 

algorithm is a truncation routine in which the sizes of bins on the outer rim of the probability 

distribution are identified and shrunk. Figure 3.11 shows a binning before and after the 

truncation algorithm. The particles, represented by dots, are used to define a border similar 

to a convex hull to which the bins may be shrunk, since the algorithm does not allow any 

points to fall outside of this binning domain. 

3.2.4 Division 

After truncation has been carried out, the next conditioning algorithm to be carried out 

is a division algorithm. The first part of this algorithm divides bins based on size; if a bin 

is too large, it may include particles which are drastically different in characteristics. For 

example, a bin which spans too great a range of values for E may contain both spherical 

particles and very eccentric particles. Therefore, limits on the span of any given bin are 

imposed for both properties, and any bin which violates the limits is divided accordingly. In 
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(a) The binning before truncation. (b) The binning after truncation. 

Figure 3.11. The effects of the truncation algorithm. The algorithm identifies bins which 
include the outside border of the binning domain, and shrinks them to fit the data more 
tightly. 

the present work, the criteria which were empirically chosen are 

(3.18) 

(3.19) 

where Jimax and d~in are the maximum and minimum values of d for coarse bin i, dmax is 

the global maximum pseudo-diameter; and Eimax and E~in are the maximum and minimum 

eccentricities for coarse bini. The resulLs of the range-based division algorithm are shown 

in Figure 3.12. 

Next, bins are identified which still possess a large local error '1/Jic (See equation 3.17). 

Bins which possess the greatest local error are divided in order to reduce the local error 

in poorly-resolved areas. Division continues until either a maximum local error criterion is 

satisfied t hroughout the entire binning domain, or a predetermined maximum number of 

bins have been created. The results of error-based splitting are shown in Figure 3.13. 
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Figure 3.12. The binning after range-based splitting. Notice that the largest bins have been 
divided in order to decrease the variance of particle types which are included in a single bin. 
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Figure 3.13. The effects of the error-based splitting algorithm. The algorithm identifies bins 
which possess the greatest local error, and splits them accordingly such that their error is 
reduced until either a criterion for maximum error or a maximum number of bins is satisfied. 
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3.2.5 Fusion 

After division has been completed, a large number of bins may exist, and divisions may 

have been performed which do not improve the characteristics of the binning. In the first 

part of the process, pairs of neighboring bins are identified whose probabilities differ by less 

than within 10 % of the greatest probability and do not collectively span a larger range 

than the ma-ximum criterion used in division. The investigation of the range and similar 

probability density ensures that any fusions carried out do not produce adverse effects to the 

error associated with the binning; by avoiding pairs of bins with large gradients in probability 

density, the global error of the binning is maintained while reducing the complexity of the 

binning. 

The second part of the fusion routine searches for bins whose population does not meet a 

minimum requirement, defined for the current work as 10 particles. Bins which do not meet 

this requirement are fused with a neighboring bin. Selection is ·based upon the collective 

range of the pair; the smallest final pair is chosen to be fused. The results of the fusion 

routine are shown in Figure 3.14. The original fine binning is also included as a reference 

for comparison. 

Using the binning scheme that has been developed, types of particles can be readily 

identified that correspond to distinct sizes and shapes. Figure 3.16 shows several different 

bins of representative particles along with the voxel pack particles from which they were 

derived. It can be seen that the separate bins provide a means to distinguish between 

particles of varying sizes and shapes, as was claimed. 
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(a) The distribution of individual particles within 
the binning scheme. 
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(b) The final coarse binning. 
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(c) The original fine binning. 
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Figure 3.14. The results of the fusion routine. Bins that were similar or whose population did 
not meet a minimum value were fused together with neighboring bins in order to reduce the 
number of bins while minimizing the amount of error reintroduced into the binning scheme. 
The fine binning is shown again in (c) for reference. 

38 



0.6419 

0.5096 

"-> 0.3773 

2 

13 

0. 1127.L-~--...r,...:'=,----~=---.,...+,-=·----:-i 
1.3533 2.9721 3.7815 4.5909 

d (mm) 

Figure 3.15. Indices associated with the coarse binning. Particles arc assigned into different 
groups based on this discretization. 
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(a) Bin 1, voxel pack (b) Bin 1, equivalent ellipsoidal pack 

(c) Bin 15, voxel pack (d) Bin 15, equivalent ellipsoidal pack 

Figure 3.16. Particles associated with several bins. Particles from the voxcl pack are dis­
played beside their equivalent ellipsoids for the sake of comparison. Notice the one-to-one 
relation between the voxel particles and their ellipsoidal representations. Also notice that 
the particles from mode 1 (figures (a) and (b)) are small and more regular, while the particles 
from mode 15 arc larger and more eccentric (figures (c) and (d)) . Also note that bin 15 has 
the highest pdf associated with it (Figure 3.14(b)). This bin represents the "typical, grain 
of rice, which is reflected in the shape of the particles seen. 
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CHAPTER 4 

Statistical Characterization 

In order to characterize the morphology of the particulate microstructure, the statistical 

descriptors known as one-, two-, and three-point probability functions are used [2, 18]. In 

this chapter, the definitions of the n-point probability functions is reviewed for the sake of 

completeness, the numerical implementation of the functions is discussed, and the contribu­

tions of this work are identified and explained. In order to illustrate the statistics, selected 

probability functions are computed and shown for the rice pack from table 2.1. 

4.1 Concept of Probability Functions 

First, an indicator function, Xr (x,w) is defined to be 

{ 

1 X E Dr (w) 
Xr (x,w) = 

0 otherwise, 
( 4.1) 

where x is a random point in the pack, w is a particular ensemble member ( eg. a scan 

of a specimen), and Dr represents the domain occupied by the r-th phase in w. Using 

this function, then-point probability function Sr1,r 2 , ... ,rn may be computed, which states the 

probability of finding phases ·r 1, r 2 , . .. , r n simultaneously at points x 1, x 2 , ... , Xn according 

to 

(4.2) 

where the overbar indicates the average over all ensemble members 

Xr( x ) = fsxr(x ,w)p(w)dw, (4.3) 
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and p (w) is the probability density of w in the ensemble space S. The ensemble space is 

defined as a collection of specimens which differ in morphological details, but share the same 

macroscopic characteristics (e.g., multiple scans of a rice pack) . Then, p (w) would be the 

probability density of a specimen in the ensemble S. 

The probability functions wl:lich will be evaluated in the current work include one-, two-, 

and three-point probability functions, which are shown as 

Sr (x) = Xr(X}, 

Sr,s(x,x') - Xr(x)xs(x'), 

Sr,s,q (x , x ', x") - Xr (x ) Xs (x') Xq (x"). 

(4.4) 

(4.5) 

(4.6) 

In special cases, the microstructure of the material in question may be simplified if it may 

be assumed that it is ergodic, homogeneous, and statistically isotropic [1]. These three 

assumptions correspond to ensemble member, translational, and directional independence 

of the n-point probability functions, respectively. If the first two assumptions are satisfied, 

equations 4.4, 4.5, and 4.6 reduce to 

Sr (x) -t c,. , 

Sr,s (x, x') -t Sr,s (r1), 

(4.7) 

(4.8) 

(4.9) 

where r 1 = x'- x and r 2 = x" - x . Furthermore, if the assumption of isotropy is satisfied 

as well, equations 4.8 and 4.9 reduce further to 

Sr,s (rl) -t Sr,s (llrl ll), 

Sr,s,q (r1 ,r 2) -t Sr,s,q (llr lll, ll r 2!1), 

(4.10) 

(4.11) 

where Cr is the volume fraction of phase r in the composite, llr1 11 is the distance between 

points x' and x, and llr2 11 is the distance between points x" and x. 

In addition to these simplifying ru>surnptions, there exist other special cases which are 

independent of pack morphology in which higher-order probability functions collapse to 
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lower-order cases when the points in question are either coincident or separated by a distance 

greater than the characteristic length of the pack, defined as the distance at which the values 

of then-point probability functions converge to a constant value. They are 

S'r,s (ri) I = CrOr,.~, (4.12) 
ll rdl-+0 

Srs (r1 )' - CrCs, (4.13) 
' llr JII -+oo 

Sr,s,q { T1, r2) I - CrOr,sOr,q, (4.14) 
llr111-0, llr2II-+O 

Sr,s,q ( rl) r2) I 
llr211-0 

Sr,s (r1) t5s,q, (4.15) 

Sr,s,q (rl, r2)' r~=r2 - Sr,s {ll r l ll) Os,q, {4.16) 

Sr,s,q ( T 1, r 2) I 
llrt ll-oo, ll r2ll - oo 

CrC5 Cq, ( 4.17) 

where oi,j is the Kronecker delta [2] . From these degenerate cases, it can be seen that the 

three-point probability functions contain various two- and one-point probability functions as 

subsets of their spaces. 

Recall that the volume of interest was shrunk on the packs in Section 3.1. Through an 

investigation of the two-point probability functions, the characteristic length of the pack, 

lc, may be determined as twice the distance at which the probability functions converge to 

the limit case in equation 4.13. Using this information, it is possible to conclude whether or 

not the size of the pack exceeds the minimum characteristic length needed for well-resolved 

statistics. 

In the present work, n~point probability functions are used to determine correlation 

statistics between different bins {labeled for reference in figure 3.15) of particles in a pack. 

This allows for a more complete statistical charactcri""ation than if statistics are defined 

in terms of material phases only. However, this more complete characterization comes at 

an informational cost: whereas the simplest mode-based characterization requires 33 = 27 

different three-point probability functions for a complete third-order characterization of a 

three-phase medium, using a finer distinction between types of particles increases the statis-

tical space drastically; for the rice pack, which consists of 17 bins and a matrix phase, there 
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are (17 + 1 )3 = 5832 possible three-point probability functions that must be computed in 

order to achieve a complete third-order stat istical characterization of the pack. Thus, the 

goal to minimize the number of bins presented in chapter 3 becomes apparent. 

Fortunately, several symmetric cases exist for two- and three-point probability functions 

which limit the number of independent functions that must be computed. Two simple 

examples which can be readily demonstrated are 

(4.18) 

(4.19) 

The general form of a single three-point probability function Sr,$,1[ ( r 1 , r 2) spans a six­

dimensional space, so a complete characterization of any single combination of r, s, and q is 

computationally expensive. Therefore, a simplifying assumption is made where the absolute 

direction of r 1 and r 2 are not considered. Instead, the angle between the two vectors, Brsq is 

used to quantify their directions relative to each other. This is the semi-isot ropic assumption: 

( 4.20) 

This formulation of the three-point probability function is illustrated in figure 4.1. The semi­

isotropic assumption collapses the statistical space of the three-point probability function 

from six dimensions to three, yielding significant savings in computational resources. In 

addition, all of the degenerate cases predicted for complete three-point probability functions 

are still observed. Another consequence of the semi-isotropic assumption is that there exists 

a special case for angles of Br,s,q > 180° which limits the number of angles that must be 

investigated. Namely, it is demonstrated that 

(4.21) 

This is due to the fact that , since the orientation of the plane described by points T, :>, and 

q is assumed to be random, it is impossible to distinguish between these pairs of angles. 
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s 

r 

Figure 4.1. A general triple-throw used in computing a three-point probability function with 
the assumption of semi-isotropy. The indicator function is evaluated at r, s, and q, and the 
results are recorded as a funct ion of r 1 , r 2, and Brsq· 

4.2 Numerical Implementation 

While it is possible to evaluate then-point probability functions in closed form for a vari­

ety of idealized particulate packs, it quickly becomes unrealistic to determine such solutions 

for complex microstructures such as those considered in the current work. Therefore, a nu-

merical computation of the one-, two-, and three-point probability functions was developed. 

A legacy program, Stat3D, which performs a numerical calculation of first-, second-, and 

third-order statistics of spherical particulate packs, was developed by the Computational 

Physics Group at the University of Notre Dame [19]. The general form of the program's 

execution is shown in figure 4.2. Its key features include: 

• computation of one- and two-point probability functions, including isotropic two-point 
probability functions. 

• a Monte Carlo-like sampling method using a sampling template shown in figure 4.3. 

• a parallel implementation with linear speedup, 

In the current work, several contributions were made to advance Stat3D: 

• the program can compute a semi-isotropic three-point probability function with in­
creased efficiency. 

• the program can now compute all of the previously-stated probability functions on 
packs of ellipsoidal particles, such as those found in the rice pack. 

By incorporating the semi-isotropic assumption into the numerical implementation of 

the three-point probability function a priori, a simplified sampling template, shown in figure 
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Input Pack and 
Statistics to Compute 

I 1-
no 

Reset templates . 

l 
Compute throws 

l 
Collect results and 
compute statistics 

yes I 
- Wnte Results 

I 
end 

Figure 4.2. The layout of Stat3D. The program distributes information about the pack, 
statistics to be computed, and sampling template to all computing nodes which indepen­
dently compute an equal portion of throws. The results of the individual nodes' statistical 
sampling is compiled on the master node, and the results are output for post-processing. 

Figure 4.3. The template used in Stat3D to compute two-point probability functions. The 
template is composed of an array of sampling points spaced equally amongst nr radial in­
crements, n 0 azimuthal increments, and ~ + 1 zenithal increments; in this example, nr = 5 
and no = 20. Xr (x) is evaluated at the center point, and Xs (x') is evaluated at all of the 
surrounding points. The combination of both indicator functions yields equally-distributed 
statistical data for all directions which may be averaged to compute Sr,s (llr1 11) or used 
directly in computing Sr,s (r1). 
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4.4, may be used. This allows the memory and speed characteristics for the evaluation of a 

Figure 4.4. The template used to sample the pack for the new semi-isotropic third-order 
statistics routine. T he template is given a random center point, then the direction of r 1 is 
selected randomly. r 2 then progresses around the circular planar template, which is rotated 
about r1 randomly, then Xs (x') and Xq (x") are evaluated for all combinations of llr111 , llr2 ll, 
and ersq· 

Since the numerical implementation is based off of a finite number of samples, care must 

be taken to ensure t hat the number of template throws is great enough to ensure statistical 

convergence. Figure 4.5 shows the particle volume fraction as a function of the number of 

template throws for a contrived pack whose true volume fraction was computed in closed 

form. It can be seen that convergence has been achieved within an error of 0.74 % for 

Nthrows = 1, 000,000 template throws. This was then used as the minimum number of 

throws when computing all statistical information for the packs presented hereafter. 

4.3 Numerical Examples 

The results of statistical sampling of the rice pack are now presented in order to illustrate 

the various properties of the statistical descriptors used. 
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Figure 4.5. A convergence study 
volume fraction as an indicator. 
Nthrows = 1, 000, 000. 

conducted on a contrived pack using the particulate 
The value has converged to an error of 0.74 % at 

4.3.1 One-Point Probability Functions 

It has already been shown that, when the assumption of ergodicity is satisfied, the one­

point probability function Sr (x ) reduces to Cr, the volume fraction of bin r of the particles. 

Figure 4.6 shows the volurne fractions of the individual bins of particles as derived from 

the voxel pack, as well as the volume fractions of the representative pack, as determined by 

statistical investigat ion. 

4.3.2 Two-Point Probability Functions 

The correlation of two points in two-point probability functions allows for spacial in­

formation to be quantified concerning the distribution of particles within the pack. When 

isotropy is assumed, the probability functions depend solely on the distance between the 

two points which are sampled (sec figure 4.7). However, in a complete characterization, 

the probability is a function of direction as well (see figures 4.8 and 4.9) . In the complete 

two-point probability distributions in figures 4.8(b), 4.8(c) , a characteristic anisotropy can 

be seen when llr dl is small. A closer investigation of the dist ribution of orientations of the 

particles reveals that the pack exhibits parallelity in which part icles tend to lie flat and in 
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(a) Volume fractions derived from statistical sam- (b) Volume fractions derived from voxel-based par-
piing. ticles from Amira. 

Figure 4.6. One-point probability functions of the rice pack (shown in (a)). Notice that the 
values converge to the volume fractions of the subsets of representative ellipsoidal particles, 
which are similar to the volume fractions of the voxel particles which were derived from 
post-processing in Amira (shown in figure (b)). This is due to a low overall dis<.:rcpancy in 
particle volumes, quantified by 6V (see figure 3.1(a)), and convergence of the probability 
functions through a sufficiently high number of samples. 

the same direction. This observation is validated through a quantification of particle orien­

tations, shown in figure 4.10. In addition , as llr 1 11 -+ 0, these two-point probability functions 

converge to their respective degenerate cases that are predicted in equation 4.12. However, 

other two-point probability functions are highly anisotropic, as is shown in figures 4.9(a), 

4.9(b), and 4.9(c). These selections demonstrate the very highly complex microstructure that 

arises from the random packing. Moreover, the specificity afforded by the binning allows the 

statistical descriptors to uncover these complex correlations that remain hidden when using 

more generic distinctions between types of inclusions (e.g. , material phases only). 

4.3.3 Three-Point Probability Functions 

Lastly, three-point probability functions were computed for selected combinations of bins. 

Selected cases arc shown in figure 4.11. The degenerate cases predicted in equations 4.15 and 

4.16 arc also shown as red dashed lines. In addition, the symmetry described in equation 

4.19 and the angle identity described in equation 4.21 are shown in figures 4.12 and 4.13. 
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(a) Selected isotropic Lwo-point probability 
tions performed on the rice pack. 

func- (b) Selected isotropic two-point probability func­
tions performed on the rice pack (continued) . 
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(c) The standard deviations of the isotropic two-point proba­
bility functions. 

Figure 4.7. Selected two-point probability functions for the rice pack. Note t.hat the functions 
converge to their respective one-point probability functions, Sr8r,s at r = 0 and CrCs as r 1 

becomes large, according t.o equations 4.12 and 4.13, respectively. For this pack, statistical 
saturation occurs at approximately lc = 2(6) = 12 mm, which is significantly smaller than 
the bounding box reported in Table 2.1, suggesting that the smaller bounding box is still 
large enough to provide a representative sample. Also notice that the two-point probability 
functions Sm,ll and S11,m exhibit identical behavior, as is also expected. 
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Figure 4.8. Selected complete two-point probability functions for the rice pack Note that 
anisotropic behavior can be seen in the center of the probability functions, especially in (b) 
and (c). This reflects the parallelity observed in the pack which is quantified in figure 4.10 
and most prominent in eccentric particles such as those belonging to bin 16. The decreased 
prominence of this anisotropic signature in (d) is due to the fact that the particles from bin 
1 arc significantly less eccentric than those from bin 16. 
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Figure 4.9. Additional selected complete two-point probability functions for the rice pack. 
The highly anisotropic nature of these two-point probability functions is due to the more com­
plex relations between the modes selected, demonstrating the need for a complete, anisotropic 
statistical analysis when greater detail in particle characterization is employed. Furthermore, 
(a) and (b) illustrate the symmetry described in equation 4.18. 
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Figure 4.10. The orientation distributions of ellipsoidal rice particles. Notice that the incli­
nation angles, </>a, of the ellipsoids tend towards oo, which is concurrent with the observation 
that the particles tend to orient horizontally (sec figure 3.16(c)), and the concentration of 
particles about Ba = 15° is concurrent with the observation that the particles tend to exhibit 
parallelity in order to increase packing density (see figure 3.4( a)). 
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Figure 4.11. Selected semi-isotropic three-point probability functions. Note that the sub­
space of the third-order probability function So,o,o shown in (a) exhibits the degeneracies 
predicted by equations 4.14, 4.15, 4.17 (as long as lllr i ii - llr2lll is sufficiently large), and 
4.16. Moreover, (b) describes the probability of finding a small particle in between two 
large particles. The complex nature of this subspace of the S1, 16,16 probability function 
demonstrates that, as was the case with many complete two-point probability functions, the 
correlations between particle bins can be very complex. 
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Figure 4.12. A demonstration of the transpose symmetry described in equation 4.19. 
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CHAPTER 5 

Polydisperse Particulate Media 

After the algorithms for shape reduction, binning, and statistical analysis were developed, 

several mixtures of long-grain white rice and black mustard seeds were analyzed. Figure 5.1 

shows the total volume fraction of four different mixtures of rice and mustard (described 

in tables 2.1, 5.1, 7.1, and 7.2) , and Figure 5.2 shows volume fractions as they apply to 

the rice and mustard modes separately. Notice that the mixture of 25 % wt mustard has 

a significantly lower volume fraction. By looking at Figure 5.3, one may readily see that 

significant void space occurs where rice and mustard particles meet, possibly due to a size 

ratio between the two which is not conducive to efficient packing. The mixture of 25 % wt 

mustard and 75 % wt rice is characterized in depth in what follows in order to illustrate 

the complexities of the bimodal system and its treatment from the methods that have been 

explained. 
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Figure 5.1. Volume fractions associated with various close-packed mixtures of rice and mus­
tard. The data sets used are described in tables 2.1, 5.1, 7.1, and 7.2. Notice that the 
volume fraction decreases when ellipsoidal and spherical particles are mixed. This is con­
current with the qualitative observation that the different particle modes chosen do not mix 
well and introduce jamming. 
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Figure 5.2. n·ends in component particle volume fractions of rice and mustard (c,.. and c;,, 
respectively) and number of particles per cubic centimeter, Nu,r, for individual modes in the 
various mixtures. The component behavior of the matrix (air) is ommitted, though it may 
be noted that Cu + Cr + Ca = 1, where Ca is the volume fraction of air. As is expected, (a) 
demonstrates how the mass fractions of each particluate component arc closely related to 
their component volume fractions. However, because the mustard seeds have a smaller per­
particle volume than rice, the number of mustard particles in the mixture increases relatively 
quickly as the mass fraction of mustard increases. 
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Figure 5.3. A sample grayscale cross-section of the voxel pack of the 25 % wt mustard 
mixture. Notice how extra void space is present near the areas where rice and mustard 
particles interact. 
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5.1 Example Pack 

A specimen was prepared by mixing 90.004 g rice and 30.000 g black mustard. The two 

components were weighed separately then combined into a single container and shaken until 

they were evenly mixed. The mixture was then poured into the cannister shown in Figure 

2.1 and preparation continued as outlined in section 2.1. The mixture was then scanned at 

100 kV and 10 W, and a three-dimensional voxel image was constructed and post-processed 

according to the procedure outlined in section 2.3. The resulting voxel pack is shown in 

Figure 5.4. Properties of interest for the voxel pack are tabulated in table 5.1. 

5mm -(a) The voxel pack. (b) A sample filtered cross-section of the voxel pack. 

Figure 5.4. The voxel pack for the example polydisperse pack. The pack contains 6011 
particles (1857 rice, 4154 mustard). Modes are identified by color; the yellow particles are 
mustard, and the blue particles are rice. 

It can be seen from Figure 5.3 that the mustard and rice particles may be qualitatively 

distinguished from each other on the basis of shape (the mustard appears much more regular, 

and the rice appears to be more eccentric) and by average grayscale value (mustard appears 

darker than rice). Note also that there is a distribution of grayscale values over which rice 
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Table 5.1 

Scan data and image processing data for the example polydisperse pack 

Pixel Size 69.40 p.m /pixel 
589 X 589 X 596 pixel;s 

Volume of interest 
2.07 X 10!S voxels 

4.09 X 4.09 X 4.14 cm;s 
69.3 cm;s 

Volume fraction before separation 0.6220 
Volume fraction after separation 0.6190 

Percent of volume remaining 99.5 % 
Decrease in overall volume fraction 0.0029 

Number of particles before boundary layer removal 8420 
Number of particles after boundary layer removal 6011 

Number of rice particles 1857 
Number of mustard particles 4154 

Volume fraction of rice 0.4175 
Volume fraction of mustard seed 0.2015 

and mustard particles lie. This distribution of values is a limiting factor in the number of 

distinct phases which my be detected using this technique, though if a greater difference 

were desired between the phases, the use of a contrast agent could help to accentuate the 

difference. In order to objectively differentiate the two modes, the average grayscale value 

of each particle Pi (defined for a given particle i) was determined, and a thresholding value 

was determined above which particles are assumed to be rice, and below which particles are 

assumed to be mustard. By considering figures 5.5(a) and 5.5(b), this value was determined 

to be Pi = 144.5. 

After analysis was carried out in Amira, the pack was converted into a representative 

ellipsoidal pack, shown in Figure 5.6. The errors associated with the ellipsoidal representation 

are shown in Figure 5. 7 and tabulated in table 5.2. Note thai, while the mean value of I12 

is small, the maximum value is substantially higher. Again, this is because of problems 

with the separation algorithm, yielding groups of particles similar to that which is shown in 
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(a) Density plotted as a function of particle size. (b) The distribution of part icles' mean grayscale 
value. 

Figure 5.5. The density characteristics of part icles in the pack. Notice that (b) shows two 
distinct peaks in terms of density, suggesting that rice and mustard may be differentiated 
from one another with respect to a density thresholding value. (a) shows that the density 
divide corresponds to a difference in size. A thresholding value of Pi = 144.5 (shown by t he 
red dashed line) separates the particles into two different groupings. It can then be inferred 
that the larger, denser particles are rice, and the smaller, less dense particles are mustard. 

Figure 3.2. 

Table 5.2 

Errors in eUipsoidal reduction 

minimum mean maximum < 5 % 
b.V 0.27 % 0.74 % 3.88 % 100% 
b.S 1.57 % 4.76 % 40.49% 74.11 % 
Il2 1.03 X 10-;s% 0.95 % 39.18% 98.05% 

The binning routine was carried out to characterize the distribution of particles, and 

the resulting distributions are shown in Figure 5.8. The scatter of the particles is shown in 

Figure 5.9. Using the ellipsoidal representa tion and binning scheme, one-, two-, and three-

point probability functions were computed numerically for the pack using Stat3D. Figure 

5.10 shows the volume fractions of the pack as computed directly in the voxcl pack and 
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Figure 5.6. The representative ellipsoidal pack for the 75 % wt rice, 25 % wt black mustard 
pack. Particles are identified as either rice (purple) or mustard (yellow) based off of their 
average grayscale values. Notice that that individual particles may be traced back to their 
voxel pack equivalents in Figure 5.4(a). 
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Figure 5.7. The per-particle error in shape reduction in terms of volume (shown in (a)) , 
surface area (shown in (b)), and orientation (shown in (c)) . A weighting value of 7J = 0.8 
was chosen in order io ensure an accurate match in terms of particle volwne, allowing for 
limited input from the surface area of the particle to be matched. 
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Figure 5.8. The binning for the 75 % wt rice, 25 % wt black mustard pack. Notice that two 
different peaks are present in the particle distribution, corresponding to the black mustard 
(bottom-left) and rice (top-right) . The coarse binning captures the distribution using 28 
bins. 
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Figure 5.9. The distributions of particles for the example polydisperse pack. Mustard 
particles are shown as yellow points, and rice particles are shown as blue points. 
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through use of the one-point probability function. Figure 5.11 shows the numbering of the 

bins for reference. In addition, selected two- and three-point probability functions are shown 

in figures 5.12, 5.13, 5.14, and 5.15. 
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(a) Volume fractions of the voxel pack. (b) Volume fractions of the elJipsoidal pack. 

Figure 5.10. The volume fractions associated with the bins of the example polydisperse 
pack. (a) is computed directly from the voxel pack, and (b) was computed using the one­
point probability functions associated with the various bins. 
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Figure 5.11. Indices associated with the coarse binning for the example polydispcrse pack. 
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CHAPTER 6 

Conclusions and Future Work 

The goal of this work was to develop methods to characterize the packing behavior of poly­

disperse particulate packs. First, microtomography was used in order to obtain experimental 

data on heterogeneous specimens, and three-dimensional voxel packs were constructed using 

commercial software. Geometrical information was computed on a per-particle basis for the 

inclusions in the voxel pack and used to construct a representative pack using ellipsoids or 

cuboids. 

A method was developed which inputs the geometrical information from the voxel pack 

and generates a representative pack using ellipsoids or cuboids. From these representative 

particles, information about the distribution of particle shapes and sizes was quantified using 

geometric metrics. A routine was developed which creates a two-dimensional coarse binning 

that captures the probability distribution of the particles based on these metrics. Several 

steps were devised and implemented to capture the characteristics of the distribution using 

significantly fewer bins than are needed with a uniform, fine binning. Particles were then 

classified based on which bin they belong to. 

A statistical investigation of the representative pack was carried out using the binning to 

enhance the specificity of the modes referenced by then-point probability functions. 8tat3D 

was advanced to analy:oe ellipsoidal particles, and the routine for computing three-point 

probability functions was rewritten using the semi-isotropic assumption a priori in order to 

increase the efficiency of the third-order analysis. The statistical analysis was performed in 

a parallel computing environment. 
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After the functionality of the above developments was demonstrated on a monodisperse 

packing of rice, various polydisperse mixtures of rice and mustard were analyzed. The 

results of these analyses indicate that the methods developed are effective tools for analyzing 

polydisperse particulate systems. 

In the future, statistical analysis may be carried out directly on the voxel data. This 

would serve to validate the findings of statistical analyses on packs of representative, ideal­

ized shapes. Moreover , the statistical data about t he morphology of the particulate packs 

may be used to either inform the creation of a statistically-identical representative unit cell 

on which properties may be directly solved , or they may be used in tandem with the prop­

erties of individual inclusions as part of a variational method such as the Hashin-Shtrikman 

variational principles to compute mechanical and transport properties of particulate systems 

[20, 28, 29]. In addition, work can be done to develop a more extensive library of three­

dimensional shapes which may be used to represent crystal-like inclusions in a pack, enabling 

the representative pack to better approximate a greater variety of particulate composites. 
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CHAPTER 7 

Appendix 

The scan data for the other packs which were referenced in chapter 5 arc included here. 

Table 7.1 

Scan data and image processing data for the 60.001 g (50% wt) mustard, 60.002 g (50% 

wt) rice pack. 

Pixel Size 69.40 Jtm / pixel 
595 X 595 X 566 pixel a 

Volume of interest 
2.03 X IOt! voxels 

3.86 X 3.86 X 3.93 cmJ 
66.98 cma 

Volume fraction before separation 0.6573 
Volume fraction after separation 0.6429 

Percent of volume remaining 97.80 % 
Decrease in overall volume fraction 0.0144 

Number of particles before boundary layer removal 11067 
Number of particles after boundary layer removal 7766 

Number of rice particles 1599 
Number of mustard particles 6167 

Volume fraction of rice 0.3353 
Volume fraction of mustard seed 0.3076 
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Table 7.2 

Scan data and image processing data for the 100% wt mustard, 0 % wt rice pack. 

Pixel Size 69.40 JUn /pixel 
589 X 589 X 566 pixel;s 

Volume of interest 
1.96 X 10~ voxels 

4.09 X 4.09 X 3.93 cm;s 

65.63 cm;s 
Volume fraction before separation 0.6964 
Volume fraction after separation 0.6606 

Percent of volume remaining 94.86 % 
Decrease in overall volume fraction 0.0358 

Number of particles before boundary layer removal 14313 
Number of particles after boundary layer removal 11117 

Number of rice particles 0 
Number of mustard particles 11117 

Volume fraction of rice 0 
Volume fraction of mustard seed 0.6606 
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