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ABSTRACT 
 
A closed two-phase loop system was developed that 
combined with a multi-nozzle spray cooling unit for the 
cooling of high heat flux power sources. The fluid 
circulation was sustained by a magnetic gear pump 
operating with an ejector pump unit. The motive flow of 
the ejector shared the pumping liquid flow with the multi-
nozzle spray. The use of the ejector stabilized the 
circulation of the two-phase flow. A multi-nozzle plate 
with 48 miniature nozzles was designed to generate an 
array of 4×12 sprays. A closed loop spray cooling 
experimental setup with a cooling area of 19.3 cm2 was 
built. The spray nozzle to target distance was 10 mm. 
Water and FC-72 were used as the working fluids. Spray 
cooling experiments were performed in three orientations 
of the spray target surface, namely (a) horizontal facing 
upward, (b) vertical, and (c) horizontal facing downward. 
The thermal performance of the horizontal facing 
downward surface was the best. A comparison with the 
thermal performance data for a smaller cooling surface 
area of 2.0 cm2 was made. 
 
KEY WORDS 
 
Spray cooling, two-phase heat transfer, closed loop, CHF 
 
INTRODUCTION  
 
The High Power Electronics are dependent on how well 
the large amount of waste heat can be managed in the 
system and effectively removed from the system. Direct 
cooling by means of jets and sprays was considered as a 

solution to the problem of cooling high power density 
direct energy devices since both methods were capable of 
removing high heat flux. Spray cooling had several 
advantages but its closed two-phase loop system for the 
aerospace application would be more complicated. In 
view of saving pumping power per unit of power 
removed, the microjet arrays proved superior to the 
sprays (Fabbri et al., 2005). From the point of view of 
keeping a low surface superheat and low coolant flow 
rate, spray cooling with phase change was exhibited to be 
a more effective method of removing high heat fluxes 
(e.g., greater than 500 W/cm2 using water as working 
fluid) from surfaces.  
 
A major portion of the spray cooling heat transfer results 
from nucleate boiling heat transfer within the thin liquid 
film produced by impinging droplets on the cooling 
surface. The accompanying heat transfer modes are 
convection and direct evaporation from the surface of 
liquid film. It was believed that the collapse of the vapor 
bubble in the liquid film either by the impingement of 
liquid droplets or by the merging of the bubble on the top 
of the thin liquid film accounted for the heat transfer 
enhancement of the spray cooling. In the past 20 years, 
many spray cooling experiments were  performed to 
understand heat transfer characteristics and critical heat 
flux (CHF) at cooling surfaces (Sehmbey et al., 1992, 
Mudawar and Estes, 1996, Rini et al., 2002, Lin and 
Ponnappan, 2003, Horacek et al., 2004). Only a few 
results were reported in literature dealing with multi-
nozzle spray cooling to remove high heat flux from a 
larger surface area at a level of 20 cm2 (Lin et al., 2004) 
or higher. The thermal performance of the spray cooling 
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over the large hot surface was different from the case of 
small area spray cooling. The thermal performance of the 
large area spray cooling was lowered because of a 
stronger interaction between the spray cones in the region 
adjacent to the cooling surface and an increased liquid 
film thickness on the cooling surface. Therefore, on the 
heat acquisition side of a large area spray cooling system, 
emphasis was placed not only on the multi-nozzle array 
configuration but also on the effective discharge of the 
two-phase fluid from the spray chamber. The vapor 
flowing towards the pump could result from insufficient 
subcooling of the fluid from the condenser, an 
insufficient fluid fill amount and unsteady two-phase 
flow.  
 
EXPERIMENTAL SETUP & PROCEDURE 
 
The experimental setup of multi-nozzle spray cooling in a 
closed loop is shown in Figure 1. The closed loop system 
mainly consisted of a preheater, a spray chamber housing 
a 48-nozzle assembly (in a 4 by 12 array), a heater 
assembly with a cooling surface area of 2.54 cm × 7.60 
cm, a coaxial coil condenser, an ejector unit with the 
motive flow from the bypass loop, a magnetic gear pump, 
a liquid reservoir for liquid charge, and a filter. A cold 
bath was used to supply the cooling water to and from the 
condenser. The inlet port of the magnetic gear pump was 
connected with an extension of the discharge port of the 
ejector. FC-72 and water were used as the working fluid. 
The closed loop system was evacuated before filling the 
working fluid. The two-phase fluid from the spray 
chamber flowed into the condenser where the vapor 
condensed. The motive flow of the ejector drove the 
subcooled liquid from the condenser and they mixed in 
the ejector. The merging liquid flow was then pressurized 
through the magnetic gear pump. The liquid from the 
pump was divided into the flow for the spray cooling and 
the flow as the motive liquid for the ejector. The spray 
chamber (with the cooling surface) could be rotated in 
three orientations: (a) horizontal facing upward, (b) 
vertical, and (c) horizontal facing downward as shown in 
Figure 2. A cartridge heater was employed in the case of 
FC-72 while a Vortek plasma heater was used in the case 
of water. When the Vortek heater was used, the spray 
cooling surface was vertically placed. The spray distance 
was 10 mm. In the spray chamber, there was a side 
channel surrounding the spray nozzles to effectively 
remove the two-phase fluid away from the cooling 
surface. The liquid flow rates in the spray loop and the 
bypass line were measured using two turbine flow meters. 
All pressures were measured using pressure transducers. 

The spray pressure drop, ∆p= p1-p5, was controlled by the 
power input to the pump and the bypass valve. The spray 
chamber pressure, p5, corresponded to the spray 
saturation temperature, Tsat. The fluid temperatures in the 
spray cooling system were measured using type T probe 
thermocouples. The liquid temperature at the inlet of 
spray chamber was regulated by adjusting the cold bath 
temperature and input power to the preheater. The ejector 
performance was characterized with three pressure 
transducers at each port of the ejector and two flow 
meters in the spray loop and the bypass line. During the 
experiment, the pressure drop across the spray nozzles 
was varied from 1.03 bar to 2.28 bar for water and to 3.80 
bar for FC-72. The heat flux was calculated using the 
average temperature difference between the two 
thermocouple location planes and the thermocouple pair 
distance (along the heat flux direction) in the heater plate. 
The average temperature on the cooling surface, Tw, was 
estimated through the extrapolation of the thermocouple 
readings across the two planes.  
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Figure 1.  Schematic of the experimental setup. 
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Figure 2.  Spray cooling surface orientations:  
(a) Horizontal facing upward, (b) vertical and  
(c) Horizontal facing downward. 

 
The data acquisition unit and the thermocouples were 
calibrated and the system accuracy was found to be 
within 0.2°C over the range of interest. The measurement 
accuracy of the distances between two thermocouples in 
each pair and between the cooling surface and its closer 
thermocouple locations in the heater plate was 0.2 mm. 
The uncertainty of the heat flux was 12% at q″=10 W/cm2 
which was the smallest heat flux applied. The uncertainty 
of the hot surface temperature, Tw, was estimated within 
3.1°C at q″=500 W/cm2 which was the upper limit in the 
present experiment. It was noted that the effect of the 
temperature gradient across the thermocouple beads in 
the heater plate was not considered in the uncertainty 
analysis. The accuracies of the pressure transducers 
reading were 8.6×10-3 bar. The spray saturation 
temperature was calculated as function of the spray 

chamber pressure. The uncertainty of Tsat was estimated 
within 0.3°C. The turbine flow meter was calibrated. The 
uncertainty of the flow rate was 3% of reading.  
 
RESULTS AND DISCUSSION 
 
Experimental data expressing heat transfer characteristics, 
q″ vs. Tw-Tsat, for FC-72 and water are presented in the 
following figures. The nozzle pressure drop and the mass 
flow rate (kg/s) per nozzle are the operating conditions 
pertinent to the curves. Also presented in these figures are 
the saturation temperature, Tsat, in the spray chamber and 
the subcooling, Tsat - Tl, where Tl is the inlet liquid 
temperature.  
 
Figure 3 shows the heat transfer characteristics with FC-
72 at a nozzle pressure drop of 1.72 bar for the vertical 
cooling surface and the horizontal facing downward 
cooling surface for comparison. The results were related 
with three different spray saturation temperature levels. 
Each curve connected the data points for the same 
saturation temperature level (within a difference of 
1.5°C). The subcooling, Tsat-Tl, was less than 6°C for all 
the data points. It may be seen that the slopes of the 
curves varied with the surface superheat and this implied 
a change in the importance of the nucleate boiling heat 
transfer with the surface superheat. As shown, the heat 
flux increased with Tsat for a given surface superheat. For 
a given Tsat, the heat transfer coefficient, h=q″/(Tw-Tsat), 
was slightly higher for the horizontal facing downward 
surface than for the vertical surface. This was attributed 
to the fact that in the case of the horizontal facing 
downward surface, the liquid could be more effectively 
discharged from the hot surface to the side channel with 
the aid of the gravitational force and therefore reducing 
the effective liquid film thickness on the hot surface. 
Figure 4 shows the heat transfer characteristics with FC-
72 at a nozzle pressure drop of 1.72 bar for the vertical 
cooling surface and the horizontal facing upward cooling 
surface. For a given Tsat, the heat transfer coefficient was 
slightly lower (by 6%) for the horizontal facing upward 
surface than for the vertical surface because the effective 
liquid film thickness was greater for the former. Figure 5 
shows the heat transfer characteristics with water for the 
vertical cooling surface. For a certain Tsat, the heat 
transfer coefficient was lower at a higher subcooling. At 
the same nozzle pressure drop, the heat transfer 
coefficient was higher at a higher Tsat. 
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Figure 3.  Heat transfer characteristics with FC-72 for the 
vertical cooling surface and horizontal facing downward 
cooling surface.  
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Figure 4.  Heat transfer characteristics with FC-72 for the 
vertical cooling surface and horizontal facing upward 
cooling surface.  
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Figure 5.  Heat transfer characteristics with water for the 
vertical cooling surface. 
 
It was also observed during the experiment that using the 
ejector in the closed two-phase loop enhanced the 
capability of maintaining the two-phase fluid circulation. 
With the assistance of the ejector, the maximum spray 
pressure drop across the nozzle could be enhanced by 
0.56 bar at critical heat fluxes (CHF). This increased CHF 
of the spray cooling by up to 16%. 
 
Major spray cooling parameters are listed in Table 1 for 
comparison. The effectiveness of spray cooling at CHF 
was defined as the ratio of the heat that was actually 
removed at CHF to the total latent heat that could be 
removed by the spray and was written as  

lfg

c
c Qh

q
ρ

η
"

"
= .   (1) 

The heat transfer coefficient of the spray cooling was 
defined as 

satw TT
qh
−

=
"

.    (2) 

The maximum heat transfer coefficient obtained for a 
given saturation temperature was denoted by hmax. The 
results of ηc, CHF and hmax as well as other parameters for 
the two working fluids are listed in Table 1. The results 
for the small cooling area, Ah =  2.0 cm2, came from a 
previous 8-nozzle spray cooling study (Lin & Ponnappan, 
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2003). It was shown that ηc was much smaller for water 
than for FC-72 at the same ∆p. It was exhibited from the 
variations in hmax with ∆p that the spray heat transfer was 
enhanced with increasing the pressure drop in most cases. 
The heat transfer coefficient was much higher for water 
than for FC-72. The CHF values were lower for the large 
cooling area than for the small cooling area. Since the 
subcooling of the working fluids was controlled to be as 
small as possible, the effect of the subcooling on the heat 
transfer coefficient was precluded from the discussion of 
the results.  
 
Table 1.  Spray cooling parameters   

Working 
Fluid 

Tsat 
(°C) 

∆p 
(bar) 

CHF 
(W/cm2) 

ηc 
(-) 

hmax×10-3 

(W/m2K) 
 

FC-72 
(small Ah) 

 
54 

1.03 
1.72 
2.41 
3.10 

65.0 
72.5 
78.5 
83.5 

0.324 
0.300 
0.282 
0.271 

16.7 
19.4 
20.7 
22.3 

FC-72 
(large Ah) 

53 1.72 
3.10 

51.6 
60.0 

0.223 
0.256 

14.02 
15.3 

 
Water* 

(small Ah) 

 
70 

1.03 
1.72 
2.41 

>500 
>500 
>500 

>0.116 
>0.101 
>0.088 

84.2 
94.6 
97.8 

Water 
(large Ah) 

78 
 

1.72 
2.28 

430 
500 

0.081 
0.102 

118 
116 

* at 500 W/cm2 
 
CONCLUSIONS 
 
♦ For a given spray saturation temperature, the thermal 

performance for the horizontal facing downward 
surface was slightly higher by 5.0% but the one for 
the horizontal facing upward surface was lower by 
6% on the average than that for the vertical surface. 
This was attributed to the fact that the effective liquid 
film thickness on the cooling surface tended to 
decrease in sequence of (c), (b) and (a) orientations. It 
was believed that decreasing the effective liquid film 
thickness enhanced the probability for the droplets to 
touch the hot surface and, therefore, increased 
thermal performance.  

♦ The use of the ejector stabilized the circulation of the 
two-phase flow.  

♦ The spray cooling system with the large cooling 
surface area of 19.3 cm2 reached CHF of 500 W/cm2 
for water as the working fluid. Compared with the 
water data of a small cooling surface area of 2.0 cm2, 

the CHF values of the large area (19.3 cm2) spray 
cooling were lower. However, the heat transfer 
coefficients were slightly higher for the large cooling 

surface than for the small cooling surface due to the 
proper design of the side channel for the large cooling 
surface. 

 
NOMENCLATURE 
 
Ah =  cooling surface area, m2 
h = heat transfer coefficient, W/m2K 
hfg = latent heat of vaporization, J/kg 
p = pressure, N/m2 
q″ = heat flux, W/cm2 

q″c = critical heat flux, W/cm2 

Tl = inlet liquid temperature, °C 
Tsat = spray saturation temperature, °C 
Tw = cooling surface temperature, °C 
Q″ = volumetric flow rate per unit cooling 
  area, m3/m2⋅s 
∆p = nozzle pressure drop, N/m2 
ηc = effectiveness of spray cooling at CHF 
ρl = liquid density, kg/m3 
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