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Abstract

Ghost imaging is a transverse imaging technique that relies on the correlation between a
pair of light ficlds, one that has intcracted with the object to be imaged and one that has
not. Most ghost imaging cxperiments have been performed in transmission, and virtually all
ghost imaging thecory has addressed the transmissive case. Yet stand-off sensing applications
require that the object be imaged in reflection. We use Gaussian-state analysis to develop
expressions for the spatial resolution, image contrast, and signal-to-noise ratio for ghost
imaging performed by measuring a fraction of the light that reflects off a rough-surfaced
object that creates target returns with fully developed speckle. This is done for a pseu-
dothermal source with phase-insensitive classical correlation between the two fields, and for
a quantum source with non-classical phase-sensitive correlation between the fields. In the
low flux limit this quantumn source becomes the biphoton state. We compare our results to
the corresponding behavior seen in transmissive ghost imaging, and we develop performance
results for the reflective form of computational ghost imaging. We also provide a preliminary
stand-off sensing performance comparison between reflective ghost imaging and a conven-
tional dircct-detection laser radar system. We also consider the resolution degradation on
cach system when the ficlds propagate through turbulence. Finally, we investigate ways of
increasing the signal-to-noise ratio of reflective ghost imaging through use of multiple bucket
detectors. multiple-wavelength sources, and compressive sensing.
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Chapter 1

Introduction

In this thesis we explore the viability of using ghost imaging for stand-off sensing. To
this cnd we characterize the image quality of such systems, and compare the results to the
image quality of an cquivalent laser radar system. We connect our work back to previous
theory developed for transmissive ghost imaging. as well as to experiments done in reflection.
Finallv, we explore ways to improve the quality of reflective ghost imaging. The most
promising of these approaches is the application of compressive sensing, which leverages the

structure of natural images to reduce image capture time while improving image quality.

Ghost imaging exploits the correlation between two light fields to create an image that
neither field alone could provide. We denote these two fields the “signal” and “reference”:
the signal field interacts with the target, after which a single-pixel “bucket” detector makes
a power measurcment of the ficld; simultancously, the reference ficld’s transverse power dis-
tribution is measured with a high spatial-resolution detector, which is usually a scanning
pinhole or a CCD array. The signal and reference fields have some cross correlation, de-
termined by the choice of source, so measuring the reference field provides some knowledge
of the field illuminating the target. Since the power measurement on the signal arm is a
function of the target and the field illuminating it. we are able to reconstruct the target by
correlating the power measurement with the output of the high spatial-resolution detector.

This imaging technique has become known as ghost imaging because the image information
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is contained in the correlation between the two measurements: neither measurement alone

contains sufficient information to reconstruct the target.

The first ghost imaging experiment used biphoton pairs for the signal and reference
fields, which were generated by spontaneous parametric downconversion (SPDC) and post-
selection [1]. Because biphotons are entangled states—with a phase-sensitive cross correlation
between the signal and reference fields stronger than allowed by classical physics—for which
the quantum theory of photodetection is needed to calculate the measurement statistics, it
was initially thought that ghost imaging was a non-local quantum phenomenon. However,
the non-classical naturc of ghost imaging was called into question when experiments were
later performed using a classical pseudothermal light source [2, 3]. In this setup laser light
is passed through a ground-glass diffuser, after which it is divided by a 50-50 beam splitter

into identical signal and reference fields with a phase-insensitive cross correlation.

Gaussian-state analysis has enabled a unified treatment of biphoton and pseudothermal
ghost imaging that shows the image formation process is one of classical coherence propaga-
tion, with high contrast in DC-coupled biphoton ghost images being the principal ghost-image
signature of that non-classical source [4]. In particular, identical statistics for pseudothermal
ghost imaging result from the use of quantum photodetection theory, in which both the light
beams and photodetectors are treated quantum-mechanically; and semiclassical photodetec-
tion theory, in which the light beams arc treated classically but photodetectors inject shot
noisc on top of any fluctuations in the illumination. A thorough review of these considera-
tions can be found in [5]. For our purposes, it suffices to note that we can—and will—use

semiclassical photodetection theory when dealing with classical sources.

To date, Gaussian-state analysis of transmissive pseudothermal ghost imaging has pro-
vided expressions for its spatial resolution, image contrast and signal-to-noise ratio (SNR)
behaviors; i.e., a complete characterization of its performance [4, 6]. However, one of the
more interesting potential applications of ghost imaging is stand-off sensing, in which the
bucket detector observes the target in reflection, not transmission. Preliminary table-top ex-

periments have demonstrated the feasibility of this approach [7, 8], but there has been little
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exploration of the statistical characteristics of these images. Developing that theory within
the Gaussian-state framework, which is a focus of this thesis, must confront an additional
complication not seen in previous work; viz., the speckle induced by reflection from rough-
surfaced objects. In particular, we shall report expressions for the spatial resolution, image
contrast, and SNR of reflective ghost imaging of speckle targets for classical and non-classical
sources in Chapters 2 and 3, respectively. These will be compared with the corresponding
results for the transmissive case. in which there is no target-induced speckle. In Chapter 4
we will use this framework to obtain performance results for the reflective form of computa-
tional ghost imaging [9, 10], in which the reference beam is removed. Then, in Chapter 5.
we will provide a preliminary stand-off sensing performance comparison between reflective
ghost imaging and a conventional direct-detection laser radar.

The effects of turbulence on transmissive ghost imaging have been explored experimen-
tally [8] and theoretically [11]. As most practical applications of reflective ghost imaging will
require propagation through atmospheric turbulence, in Chapter 6 we extend our analysis
to include turbulence on all paths. The effects of turbulence on image resolution will be
explored for classical, non-classical, and computational reflective ghost imaging. as well as
for a laser radar system. In Chapter 7 we explore ways to improve the image quality of
reflective ghost imaging. The first of these methods is to employ multiple co-planar bucket
detectors on the signal arm; since the target-induced speckle decorrelates with transverse
separation in the detector plane, each bucket detector observes different speckle behavior,
allowing us to average out its deleterions effects on the SNR. The second method is to use
multiple sources at different wavelengths. This again sceks to average out the target-speckle
effects: if the wavelengths arc far enough apart, the returns associated with each source have
uncorrclated speckle statistics. Finally, we extend the compressive sensing methods used in
transmissive imaging [12] to reflective imaging. Compressive sensing allows for reduced im-
age capture time and higher quality reconstructions when the target is sparsely represented
in some basis [13, 14]. Chapter 8 concludes the thesis with a brief summary of results and

suggestions for further research.
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Chapter 2

Ghost Imaging with Pseudothermal
Light

2.1 Theoretical Setup

In stand-off sensing, targets will most likely be separated from the source by distances on the
order of kilometers. This indicates that high-powered classical sources might be necessary.
While we also consider low-flux quantum sources in Chapter 3, we start our analysis with
the system shown in Fig. 2-1, which utilizes pseudothermal light to perform reflective ghost
imaging. A continuous-wave (cw) laser beam is passed through a rotating ground-glass
diffuser followed by a 50 50 beam splitter to produce identical, spatially-incoherent signal and
reference beams whose temporal bandwidths are much lower than those of the single-pixel
(bucket) and high spatial-resolution (CCD array) detectors. The signal beam illuminates
a rough-surfaced planar target at distance L from the beam splitter, and some of the light
reflected from that target is collected, after L-m propagation, by the bucket detector. The
reference beam directly illuminates the CCD array which, for theoretical convenience, we

have placed L-m away from the beam splitter.! The photocurrents from the bucket detector

!This assumption implies that we will form a 1:1 ghost image. In an actual implementation of reflective
chost imaging the CCD array would be in the focal planc of a lens located near the transmitter and we
would obtain a minified ghost image.
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Figure 2-1: Setup for pseudothermal reflective ghost imaging.

and cach pixel on the CCD are sent to a corrclator, whose output for the CCD pixel located

at transverse coordinate py is

T /2
Clpy) = _i/ dt iy (i), (2.1)

Tt Jozype

where 77 is the averaging time and we have suppressed an L/e time delay in i;(¢) that is
needed to account for the delay incurred by the light returning from the target.

The configuration and notation we are using parallels the semiclassical treatment of
transmissive ghost iimaging in [9] with the principal distinction being that in the transmissive
case the bucket detector would be behind a transmission-mask target L-m from the signal
source, whereas here that target is viewed in reflection. We have also switched the labels
for the signal and reference fields; in [9] the reference field illuminates the target, while the

signal field goes to the high spatial-resolution detector.

All the fields shown in Fig. 2-1 are complex envelopes about center frequency wy of
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linearly-polarized light fields normalized to have \/photons/m?®s units as functions of their
transverse coordinate vectors and time. As a result, under the assumption of shot-noise
limited detectors with quantum efficiency 7, the photocurrents from the bucket and the

CCD can be written as
im(t) = /dT [P (T) + Aty ()] R(t = 7), for m =1,2. (2.2)

Here: P(t) = [, dp|En(p,t)]* is the photon flux on the circular active region Ay, of
detector m; ¢ is the clectron charge; A, (t) is the shot noise from detector m; and h(t)
is the detector’s baseband impulse response, normalized to satisfy [dth(t) = 1. Phys-
ically, qnP,(t) is the conditional mean of 4,,(¢). given the illumination, so that Ai,(t)
is the photocurrent fluctuation conditioned on knowledge of the illumination. Note that
given the photon-flux waveforms Py () and Pa(t), the shot-noise currents Aiq(t) and Aio(2)
are statistically independent, zero-mean, random processes whose correlation functions are

(N (1) N (82)) = ¢ Pr(t1)0(t — t2).

The fields that determine the preceding photon fluxes are found from diffraction theory,
applied on three separate paths: the reference path (R), from the source to the high spatial-
resolution detector; the signal path (S), from the source to the target; and the target-return
path (T), from the target to the bucket detector. In the ensuing work, we will denote ficlds
that have propagated L-m on path m with a prime; i.c., if we start with some field E,,(p'. t),

after L-m propagation it becomes F/ (p.t) as

kgetho(L+lp—p'|/2L)

B(p.t) = [ dof Bl 1) m=RS.T (2:3)

where ky = wy/c is the wave number, and we have suppressed time delays. The fields
are defined as follows: Fgr(p,t) is the reference field at the source. and Ey(p,t) is the
field illuminating the CCD; Eg(p.t) is the signal field at the source, and E%(p,t) is the
field illuminating the target; Ep(p,t) = E5(p, )T (p) is the target-return field, which is



the propagated signal field immediately after reflecting off a target? with field-reflection
coefficient T'(p), and El}(p,t) is the field illuminating the bucket detector. Since we are
using the semiclassical theory of light, each photodetector is taken to directly measure the
classical field impinging it, so E1(p,t) = ER(p,t). and Ex(p,t) = Es(p,t).

Whereas in transmissive ghost imaging it is ordinarily the case that the target’s field-
transmission cocfficient is assumed to be deterministic, the targets of interest for reflective
ghost imaging will have microscopic surface variations-——from a nominal, smooth surface
profile whose standard deviations can greatly exceed the illumination wavelength and whose
transverse correlation scale can be sub-wavelength. When such a surface is illuminated by
laser light it gives rise to laser speckle in the target return, and a reasonable statistical model

for that behavior is to take the target reflectivity to be
T(p) = VT (p)e*™>:), (2.4)

where the height variations Az(p) are modeled as a zero-mean, real-valued, Gaussian random
process with a transverse correlation on the order of a wavelength. Thus T'(p) is a zero-mean,
complex-valued Gaussian random process that is completely characterized by the correlation

function [15]

(T*(p))T(p2)) = N;T (p1)S(p1 — p2), (2.5)

where Ag is the center wavelength of the illumination and 7 (p) is the target’s intensity-
reflection coefficient, which is nonrandom and the quantity that we are seeking to image
with the Fig. 2-1 setup.

In order to proceed further, we need to specify the source-field characteristics. Following
the Gaussian-state analysis of Erkmen and Shapiro 4, 6, 9], we shall assume that Eg(p,t)
and Fgr(p, t)—the identical outputs from the 50-50 beam splitter in Fig. 2-1—are zero-mean,

complex-valued Gaussian random fields that are completely characterized by their common

2We have assumed a stationary target, so that its field-reflection coefficient is constant in time.
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cross-spectrally pure phase-insensitive correlation function per the Gaussian-Schell model as

(E7(p1.t1) Em(p2, ta)) = 2_P2€_(|P1|2+|P2|2)/‘13—|P1—'P2|2/2Pge—(t2‘tl)2/2Tg7 t.m € {R,S}. (2.6)
mad

with photon-flux P, e”2 intensity radius ag, coherence length py, and correlation time 7j.

The preceding setup fully specifies all that is needed to compute the spatial resolution,
image contrast, and SNR of the pseudothermal reflective ghost image. Before doing so,
however, let us introduce one final condition. We shall assume that the CCD pixel active
region, Ay, is sufficiently small that | E;(p, t)|* is essentially constant over each pixcl, allowing
us to use Pi(t) = A|Ey(p.t)|?, where A; is the area of A;. This condition cnsures that the

spatial resolution we obtain is limited by the field statistics, not by the CCD’s pixel size.

2.2 Spatial Resolution and Image Contrast

The spatial resolution and image contrast of the pseudothermal reflective ghost image are
properties of the ensemble-averaged photocurrent cross correlation, ie., Eq (2.1) averaged
over the shot noise and the fluctuations in the ficlds that illmminate the two detectors. Those
ficld fluctuations arise from the randomness imposed by the ground-glass diftuser and, for the
ficld illuminating the bucket detector, the target’s surface roughness. It is casy to sce that
the fields illuminating the detectors are zero-mean random processes that are statistically

stationary in time, and thus from Eq (2.2) the ensemble-averaged ghost image satisfies

(Clp) = (i (t)ia(t)
= ¢ray [an [anbie=mhie=n) [ o (| Exlonn) PIELELR)E). (2)
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Back propagating with Eq (2.3) to the field illuminating the target, the intensity correlation

becomes

k2 o
(IER(pr. 1) E2 (0, m2)7) = 47(20L2 /dpz /dpg etko(lp’=psl*=|p'=p2|?) /2L

X (Eg(p1: 1) Eg (p2, 72) ER(pr, 1) Eg(ps. 12)){(T*(p2) T (p3)), (2.8)

where we have exploited the statistical independence of E!, (p.¢) and T(p), i.e., the fluctua-
tions due to propagation through the ground glass and those induced by the target’s surface
roughness. Equation (2.3) shows that E! (p,t), for m = R, S, is a lincar transformation
of the zero-mean Gaussian random process E,,(p.t); hence it too is a zero-mean, Gaussian
random process. Thus, as in the Gaussian-statc analysis of transmissive ghost imaging [4],
we employ Gaussian moment-factoring to write the fourth-order field moment in terms of
second-order moments. Making use of Eq (2.5) to evaluate the surface moment, and for A,

being the area of A,, Eq (2.8) becomes

(|ER(pr. 70)[*| B2 (P, 7))

= 21;:) /dpz T(p2) [(|ER(pr. )P Es(p2. 22)P) + {EF (1. 1) Es(pa. )] (2.9)

which clearly indicates the role of photon-flux correlation in ghost image formation.

Pseudothermal ghost imaging is performed with spatially incoherent light, i.e., py < ag
holds in the source’s Gaussian-Schell model spatial correlation. Moreover, stand-off sensing
pseudothermal ghost imaging will be performed in the far field, for which kgagpo/2L < 1
prevails. Following Erkmen and Shapiro [5], we can propagate the Gaussian-Schell correlation

function in Eq (2.6) into the far field and obtain

(B (pr. ) E (pa, o)) = 2P e%(|92|2~|91|2)e*(lpl|2+lP2|2)/ai*|P1‘P2|2/2Pie“(t2~t1)2/2Td? (2.10)

2

for ¢, m € {R.S}, with ap = 2L/kopy and p; = 2L/koay being the new intensity and

coherence radii, respectively.
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To reduce Eq (2.7) to a form in which we can easily assess the reflective ghost image’s
spatial resolution and image contrast, we need to define detector’s impulse response h(t).

For now, let us take this to be a DC-coupled Gaussian of bandwidth Qg2 i.e.,

h(t) = \/‘;%e_%tz/s- (2.11)

Because we have assumed that the detector bandwidth is sufficient to follow the temporal
behavior of the light cmerging from the ground glass, we have that Q575 > 1. This lets us
simplify the cvaluation of the temporal integrals and obtain

2P

)
7TCLL

*n* AL A,
(o) - T

2
) /dpz T (po)e~2elPHoa)/ai (] o o~ler—e2lP/eg) (2.12)

When the intensity radius ar is much larger than the target’s transverse extent, so that the
cntire target is uniformly illuminated on average, we get our final form for the ensemble-

averaged photocurrent cross correlation,

(o) = LA ( = ) / dpo T(pa)[1 + e7lr=Pel/ei], (2.13)

2 2
L Tag

Equation (2.13) shows that the ensemble-average photocurrent cross correlation consists
of a featurcless background terin,

2 92 2
3 gnA A 2P .
Cy = LQl 2 (T(CL% dps T(PQ): (2.14)

plus the image-bearing term,

2 2/4 Ar) 2P 2 -
Culpy) = 7= <ﬂ) [ doTipajerrs. (2.15)

L

Resolution The image-bearing term contains the target’s intensity-reflection coefficient

T (p2) convolved with a Gaussian point-spread function (PSF) that limits the spatial resolu-

3The frequency response associated with this impulse response is H () = [dt h(t)e % = ¢ 2%/%.
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tion to the target-plane coherence length pr = A\gL/may. This is the same spatial resolution
that was previously found via Gaussian-state analysis for far-field transmissive ghost imaging
with a pseudothermal source [4]. Indeed, the only difference between Eq (2.15) and the cor-
responding result for the transmissive case is the factor A,/L? that appcars in the former.
In transmissive ghost imaging all the light that passes through the target is collected by
the bucket detector, but the quasi-Lambertian nature of the rough-surfaced target combines

with the stand-off measurement by the bucket detector to introduce the solid-angle subtense

factor As/L* < 1 in Eq (2.15).

Contrast Turning now to the image contrast implied by Eq (2.13), we will employ the

contrast definition from [4], viz.

c_ Illaxn[C(pl)]g 11’111172[00)1)]? (2.16)
0

with the assumption that the target is entirely contained within a region R centered at the
origin in transverse coordinates and having a diameter that is much smaller than ar. For
simplicity, we will also assume that py is small enough to resolve all features in the target’s

intensity-reflection coefficient. so that
/ dps T(po)e 17 e wpi T(p). (217)
and we will take maxz [T (p1)] = 1, ming[T (p1)] = 0. Thus
C ~ 7p3/Ap, (2.18)

where Ay = [dp, T(p2) is the effective area of the target. Thus C & 1/number of on-
target resolution cells. This image contrast coincides with what was previously derived for

DC-coupled transmissive ghost imaging in far-field operation in [4].
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2.3 Signal-to-Noise Ratio

The featurcless background that we encountered in the preceding section can be eliminated
by means of Ac-coupling onc or both of the photodetectors in the Fig. 2-1 setup, as has
sometimes been done in psendothermal ghost-imaging experiments [16]. SNR analysis for
transmissive ghost imaging is simplified substantially by inclusion of such Ac-coupled detec-
tors [6], so we shall take the same route here by assuming that the photodetectors” baseband
frequency response include a DC block. Specifically, the detectors’ frequency response is now

modeled by

Hp(Q) = e 2/9% _ o= 20/%: (2.19)

where the DC-notch bandwidth, €2y, is much smaller than both €z, the detectors’ high-
frequency cutoff, and 1/T;, the source bandwidth.* With this AC-coupling we have that the

average photocurrent cross correlation is background free, viz., Eq (2.13) becomes

2,2 2 L
(Clpy) = 2 A14; (2P> /dp2 T(pa)e™ o102 P10k (2.20)

L? Ta;
Thus it is appropriate to define the ghost image’s SNR at the image point p; via

Var[C'(p1)]  (C3(p1)) — (C(p1))*

i.c, it is the ratio of the squarced strength of the image component of the photocurrent cross
corrclation divided by the variance of that cross corrclation.

Equation (2.20) provides an expression for the numerator in Eq (2.21) and the second term
in its denominator. However, to simplify our results, we shall assume that py is sufficiently

small to resolve all features in T (p), reducing Eq (2.20) to

Ay Ao?® (2P
(Cpr)) = — ;;]77 <M%> T T(p1)- (2.22)

4Because we have assumed a narrowband pscudothermal source, Qx7p < 1 is a more stringent condition
than Oy <« Qp.
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This leaves us with the formidable task of evaluating

Ty/2 11/2
(C*(py)) T,)/ dt/ du (i1 (t)io(t)ir(u)ia(u)), (2.23)

Ty/2 T1/2

which requires us to determine an eighth moment of the fields and a fourth moment of the
target’s field-reflection coefficient. Fortunately, Gaussian-moment factoring can be applied
to both of these moment evaluations, but the Fresnel-propagation kernels that canceled out
in finding the average photocurrent cross corrclation do not do so here. We can simplify the
analysis by using the dimensionless difference coordinate v = prko(p’ — p”)/L, where p’ and

p"" are coordinates at the bucket detector, and defining

= [aoT0). (2.24)

A= [de (@) PO(E A0 ). (2.25)
I = 217 dv e VP20, 4a). (2.26)

where O(¢. D) is the dimensionless version of the two-circle overlap function for circles of

diameter D.

0(¢. D) = (2.27)

a = /Ay mai, and T(&) = F[T(p)|(€) is the Fourier transform of the target. T was
normalized so that it approaches one for very large receiving apertures; i.e., limg_o I’ = 1.
Next, we assume that A5 /p7 > 30, which is equivalent to saying that the ghost image

consists of at least 10 x 10 resolution cells. The full derivation under these conditions is
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shown in the Appendix, with the resulting SNR being

Iy
SNR — 7-2(01);?5
- a2 N
A A | ()il | T 12 i Ten [4, ad | TRl vE 12
\/Qﬂp% p1 To 2A» nZ A AinZL 3 4 As 16V24,n212 A

(2.28)

where Z = PTyp% /a3 is the source brightness in photons per spatiotemporal mode.

Equation (2.28) was written in its full form to allow for any size bucket detector. This
is useful when looking at small bucket detectors, such that A, — 0; even for high-brightness
illumination and a long integration time, we are limited in such situations to SNR <1
because there is no averaging of the target-induced speckle. However, for a lensed ghost
iimaging system it is reasonable to assume that the area of the collecting lens in front of the
bucket detector is at least as large as the arca of the source beam, or As /Trag > 1. In this

regime, we can simplify Eq (2.28) to

SNR TZ(Pl)%
M Il Tleo 2 dnpiT (e | Te) ToQspry/m 12
V2] Ty 245 nT A, 3AT 16V2A, 7 A2

(2.29)

The terms in the noise denominator of Eq (2.29). which originate from different combina-
tions of field variations and shot noises, have important physical interpretations. From left
to right in that denominator we have: the noise contributed by target-planc speckle from
the pscudothermal illumination; the noise contributed by the speckle on the bucket detec-
tor arising from the target’s surface roughness; the beat noise between the pscudothermal
speckle on the CCD pixel and the bucket detector’'s shot noise; the beat noise between the
CCD pixel’s shot noise and the pseudothermal speckle on the bucket detector; and the beat
noise between the shot noises on the two detectors. From here it is of interest to look at the

low-brightness (Z < 1) and high-brightness (Z > 1) SNR asymptotes. These are given by

1621, AT
ﬁ TO QBTOp%
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(2.30)
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and

- (2.31)

respectively.

The low-brightness SNR is dominated by the beat noise between the detectors’ shot
noises. It coincides with the low-brightness SNRR found for transmissive ghost imaging [6],
except for the following two differences: the reflective case has the target’s average intensity-
reflection coefficient, 7 (p1), appearing in lien of transmissive target’s |T(p;)[* and the
reflective case includes the solid-angle scaling factor, A;/L?, previously encountered in our
comparison of the these ghost imagers’ spatial resolutions.

- The reflective ghost imager’s high-brightness SNR asymptote is controlled by the two
speckle terms from Eq (2.29), i.e., the speckle arising from the pseudothermal source’s spa-
tial incoherence and the speckle arising from the target’s surface roughness. Neither speckle
noise can be said to universally dominate the high-brightness SNR asymptote, as their rel-
ative strengths are governed by both spatial and temporal factors. We need to look at two
limiting cases: when the integration time is short enough that the source’s spatial incoherence
dominates the noise, and when the integration time is long cnough that the target-induced
speckle dominates the noise. These short integration-time and long integration-time, high-

brightness SNR asymptotes are

T
SNRH, short-1;, = V2 Ipf “(p1), (2.32)
T, Ay

and

24,

SNRH lon -
; long-T7 2"
I'mag

(2.33)

Here we see the short integration-time, high-brightness SNR for reflective ghost imag-
ing equals the high-brightness SNR for transmissive ghost imaging with 72(p,) appearing
instead of |T'(p1)|*. This agreement is to be expected, as both of these SNRs are limited

by the speckle created by the pseudothermal illumination. However, as the integration time
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increases, the high-brightness SNR for the reflective case saturates at the value given by
Eq (2.33). Here the SNR is limited by the target-induced speckle. Because we have assumed
a stationary target whose field-reflection coefficient is constant, no amount of post-detector
integration will reduce its speckle noise, and SNR saturation occurs. Furthermore, this effect
can be severe: for Ay/ma? = 1 we find SNRyjongr; = 3.266, and for As/maf = 2 we have
SNR# jongr; = 5-54. So. for realistic stand-off sensing, the SNR will be limited to single-digit

values if no further measures are taken to average out the target-induced speckle.
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Chapter 3

Ghost Imaging with Non-Classical
Light

3.1 Theoretical Setup

Our analysis of reflective ghost imaging in Chapter 2 focused on a pseundothermal light source
with classical phasc-inscnsitive correlation between the signal and reference fields. This sctup
was chosen because we felt it most closely resembled a system that could be reliably con-
structed for experimentation. However, it behooves us to consider alternative light sources,
especially those with quantum entanglement between the signal and reference fields. In this
chapter we derive the resolution, contrast, and SNR for ghost imagers with phase-sensitive
correlation between the signal and reference fields. We work within a Gaussian-state frame-
work as done in [4], exploring correlations ranging from the classical limit up to the quantum
limit. But first, we need to reframe our setup in terms of quantum mechanics, as shown in

Figs. 3-1(a), 3-1(b), and 3-1(c).

We start by replacing the signal and reference fields at the source with their associated
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(a) The output from an SPDC is passed through a polarizing beam splitter,

creating signal and reference fields from the signal and idler photons which
have a non-classical cross correlation.
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Jn {m =T, x=2 T(p) |
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(b) For sub-unity quantum efficiency detectors we (c) Since some light is transmitted through the tar-
have to account for the loss. and inject vacuum to get, the reflected field has suffered loss. We there-
preserve the field commutator relationship. This re- fore inject vacuum as in Eq (3.4), which is similar
lationship is given in Eq (3.6), and is analogous to to the field and vacuum passing through a spatially
the field operator and the vacuum-state operator be- varying beam splitter of transmissivity T'(p).

ing passed through a beam splitter of transmissivity

NG]

Figure 3-1: The setup in Fig. 2-1 is reframed in terms of quantum mechanics. The source
is changed, the classical fields become field operators, and we have to inject vacuum at the
detectors and target to preserve commutator brackets.
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field operators Es(p.t) and Eg(p,t). These fields obey the commutator relations

[EE(P17t1)7Em(p27t2)] = 07 (31)
[Ee(p1:t), Bl (p2. 2)] = 8m0(p1 — p2)3(ts — to), (3-2)

where ¢,mm € {S,R,T}. The propagation of the classical fields in Eq (2.3) becomes its

operator counterpart

koeiko(L+|p—p’!2/2L)

127 L

E (p.t) = /dp/]@m(p'7 t) form =R, S, T. (3.3)
The signal and reference field operators have the same basic interpretation as their classical
counterparts, i.c., having the statistics of zero-mean Gaussian random processes, but the
target-return ficld description has changed. In order to preserve the field commutator re-
lations in Eqs (3.1) and (3.2), we have to inject vacuum to compensate for the loss at the

target, as shown in Fig. 3-1(¢) and modeled as

ET(p: t) - Eg<p: t)T(p) + E‘vac,S(p: t) V2 S |T(p)|2, (34>

where Fy..s(p,t) is a vacuum-state field operator.®

The photodetectors can now be thought of as making a measurement of a quantum field
operator. Since we are dealing with sub-unity quantum efficiency detectors, we have to inject
vacuum-state field operators to maintain the field commutator relationships at the detectors.

as shown in Fig. 3-1(b). Thus, our photocurrent is a measurement of the quantum operator

12(t) = q/dT/ dp EX(p.7)E.(p.T)h(t =) forz=1,2, (3.5)

5Strictly speaking, this expression requires |T(p)|? < 1 for all p, which conflicts with the statistics we

have assumed for the field reflection coefficient. However, the A,/L angular subtense factor that we will
encounter on the target return will make our statistics a reasonable approximation for the detected field
operator. Also note that the vacuum-state field operator will not contribute to the bucket-detector output.
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where

Ea(p.t) = EL(p.t) + /1= 0Euacm(p,t), (3.6)

and x = 1 for m = R, and x = 2 for m = T. For this treatment our source will be an
SPDC, whose output is Gaussian-state light with a phase-sensitive cross correlation between

the signal and reference (signal and idler) fields given by [5, 6]

r ~ 2P P 2 ;
(Br(pr, 1) Es(pa, ta)) = —e (el +lea/a
Tag
1
kY 2
x |elP2=p /206~ (ta=t0)? /215 2\ % e~lP2=p PP o= (t2=11)? /T | (3.7)
m PTop(Q)

The fields will be taken to have no phasc-insensitive cross correlation, no phase-sensitive

autocorrelation, and a phasc-insensitive autocorrelation given by

(Bl (p1.t1) B (pa.ts)) = j—cj;e_('pllzﬂpz'2)/“3‘|91“"2|2/2p36_(t2“)ng, m=R,S. (3.8
0

Looking at the Gaussian-state cross correlation function in Eq (3.7) we sce two separate
correlations. In the low-brightness limit the second term becomes dominant, and the state
can be approximated as a biphoton state with a correlation much stronger than the clas-
sical limit. Conversely, in the high-brightness limit the first term dominates, and the light
approaches a classical state, with the correlation being the same as for the Gaussian-Schell
model in Chapter 2. Equation (3.7) captures this full quantum-to-classical behavior, allowing
us to say that at low-brightness we have an entangled biphoton state, and at high-brightness
we have a classical state with phasc-sensitive cross correlation between signal and reference

fields.
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3.2 Resolution and Contrast

To evaluate the resolution and contrast, we follow the same procedure as for classical light;

i.e., we look at an ensemble average of the product of the photocurrents as

~ ~

(C(p1)) = (11()ia(0))
= ¢* A, /dﬁ /dTQ h(t — m)h(t — 7'2)/A dp' (El(pr.71) 1 1) By (pr. 1) Ea (! 2)).

Substituting in Eq (3.6) and recognizing the independence of the zero-mean vacuum fluctu-

ations from the field fluctuations, we have

(EAI(PLﬁ) Ag(P'aTz)El(Phﬁ)E?(P’;T?)) = ﬂQ(Eg(Pl:Tx) A;(ﬁTz)Eﬁz(PLﬁ)E{r(Plﬁz))-

From Eq (3.3) we then find that

(Eg(maTl)E?(P’-,Tz)E}c(Phﬁ)E (p'. 7)) dpo /dpz gihollp=psl*=lp'=pa)/2L

< (Ep(p1. 1) Ed (p2. 72) ER(py. ﬁ)Es(ps )T (p2)T(p3))

once again leaving us needing to evaluate the fourth order field moment after L-meters of
propagation, as well as the second order target-suwrface moment. The target moment 1s
treated in the same manner as it was for classical illumination, and is thus evaluated with
BEq (2.5). Since our fields arc normally ordered, and we have Gaussian-state light, we apply

the Gaussian-moment factoring theorem to arrive at

(Eg(017 T1)E/T (Pl TQ)E;%(plv T1)E§-(PI, Tz))

A2 nl - 2 o ~
=22 o T(p2) [(Elpr 1) P (Es(pe.72) ) + [ Eplpr. ) Eslpo. 7)) P
which is similar to the form we found for pseudothermal light, except that we have a phase-

sensitive cross correlation in lieu of a phase-insensitive cross correlation. To finish the eval-
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uation, we need to propagate the phase-sensitive cross correlation and phase-insensitive

autocorrelation L meters as follows:

. . 2P ik o2 ik |2 270 2
E/ t El 1t — [ 67E|Pll eﬁflpﬂ eflpl‘f'p?l /2PL
(ERr(p1,t1) Es(pa2, t2)) (mz%)
) 1 5
x | e~(piPHpal)/ag  ~(ta—tr)2/21§ L (3)4 2Ll Hlpa) 208 o~ 0T | (3.9
2\ PTp7
and
(E:L(plvtl)E;(p%tQ» — 2_1:;61;2}‘%(|P2|2—|pl|2)e—([/01|2+|P2|2)/¢12L—|;01—;02IQ/QPQLe—(tz—tl)?/?ToZ7 (3‘10)
may

for m = R, S. We can now cvaluate the ensemble average of the correlation function, once
again assuming that the on-target average illumination pattern is wide enough that it is
essentially uniform across the target. With that, we find that the mean of the correlation

becomes

q27’}2441A2 21 2/ - 122 1 .
= dp-T(p->) |1 pi+p21°/p .

where once again T = PTyp3/a3. As was done in Chapter 2, this can be broken into the

background term

22 A1 Ay [ 2P\
Coy= 21 1“( )/dpgT(pg), (3.12)

2 2
L Tay

and the image-bearing term

2P AyAs (2P 20
Cilpy) = L2 2( 2) /dpzT(pg)e"”‘“’z' /”L<

2
L e

N 1) . (3.13)

Resolution Comparing this to our results from pseudothermal illumination, we see that
the image is blurred by the same PSF, except that the coordinates are inverted (p; — —p1).

Thus. the inage has the same resolution of pr = A\yL/may.

32



Contrast Comparing Eq (3.12) to Eq (2.14). we see that phase-sensitive and phase-
insensitive imaging have the same background term. Comparing Eq (3.13) to (2.15), we
see that the image-bearing terms differ; this is due to our inclusion of non-classical correla-
tions effects. If we look at the high-brightness casc, the classical correlation dominates the
non-classical correlation, and the image-bearing term for classical phasc-sensitive imaging 1s
the same as the image-bearing term for phase-insensitive imaging (except for the coordinate
inversion).

To evaluate at the contrast we will use Eq (2.16), the definition we used for the phase-
insensitive imaging. Using the simplifving assumption that the PSF is narrow enough to

resolve all target-features, and that maxz[7T(p1)] = 1 and ming [T (p1)] = 0, we can say

/dPQ T(p2>e_|Pl+P2|2/P‘i ~ ﬂ-p%T(_pl) (314)

and simplify our contrast definition to

o 1 )
Cr —= +11, 3.15
Ar (2\/2& ’ (3.15)

where once again Ar = [dp, T(p2). In the high-brightness limit, Eq (3.7) approaches a
classical phase-sensitive cross correlation and the contrast in Eq (3.15) approaches Eq (2.18),
our result from the pseudothermal ghost imager. However, in the low-brightness limit the
the quantum corrclation dominates, and the contrast in Eq (3.15) grows without bound.
This is the same behavior seen in transmissive biphoton imaging [1, 4]. Thus, maximally
corrclated phasc-sensitive imaging has the same resolution as phase-insensitive imaging, but

improved contrast in the low-brightness limit.

3.3 Signal-to-Noise Ratio

The derivation of the SNR for phase-sensitive light will follow what was done in Section 2.3

for the phase-insensitive case. The SNR will be defined as in Eq (2.21) as the ratio of the



squared mean to the variance for the image-bearing portion of the photocurrent correlation,
which will now be given by Eq (3.13). We will be implementing a DC-block in the detector
response as modeled by Eq (2.19), and will assume that the target features are completely
resolved by the imager, allowing us to use the simplification in Eq (3.14). With that, the

mcan of the image-bearing term becomes

22 A A, (2P 1
Ci(p1) = d nL21 - (mg) o T (=p1) (2—“\/—271 + 1) ; (3.16)
L

leaving us needing to evaluate the image-bearing term’s sccond moment

Tr/2 Iy/2

@2(,,1)):%2 / at [ du a0 (i), (3.17)

=T7/2 =17/2

In evaluating Eq (3.17), we have our first major departure from the derivation in Section
2.3. In Chapter 2 we used a semiclassical treatment of the light, where fluctuations in
the mecasurement were treated as coming from the conversion of the continuous field to
discrete charges in the detector, which we called the detector shot noise. However, we
are now dealing with quantum-mechanical entangled fields, and must use a full quantum
treatment. In quantum optics theory, measurement fluctuations arise from fluctuations of
the quantum field. coupled with the type of measurement being performed. Mathematically,
these noise terms appear from applying the comnutator operations in Egs (3.1) and (3.2)
when normally ordering our higher order ficld-moments. While the noisc qualitatively comes
from different sources, quantitatively this has the same effect as the semiclassical treatment:
after normally-ordering our ficlds we have an cighth-order moment, two sixth-order moments,
and a fourth-order moment. This comes as no surprise, as it was shown in [4] that ghost-
image formation using a downconversion source is inherently a classical phenomenon, with
the only non-classical features coming from the stronger-than-classical correlation of signal
and idler photons. As before, since these higher-order moments are all normally ordered. and
the fields are zero-mean, we can apply the Gaussian-moment factoring theorem to express

them as the sum of products of second order moments.
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We evaluate the moments at a distance of L-meters from the source, using Eq (3.9) for
the phase-sensitive cross correlation and Eq (3.10) for the phase-insensitive autocorrelations.
All other second-order moments evaluate to zero. We will again move to the normalized
and difference coordinate v = prko(p’ — p”)/L, where p’ and p” arc coordinates at the
bucket detector. The definitions of I, a, A}, and A%, are the same as in Chapter 2. Finally,
assuming that therc are at least 10 x 10 resolution cclls in the image and inverting our

coordinate system as p; — —p;. we have

2
1o
SNR = ——
A/T*‘% +:l_, I'rad 12 + 1.2 + mp? é—f— a2 + VL T ot I
V2rp2 T(p1)? To 242T (p1)? AInT(p1) AIn| 3 47w As 16v2A1 AxT?n2T (p1)
(3.18)

where [ = (9 \/}Trz + 1). Please see the Appendix for the full derivation. This result is quite
unwieldy. so we would like to simplify it by assuming that the receiving aperture is at least

as large as the source aperture. giving us

T,
T(p)* =1
SNR — o _
A/T n T2<p )ﬁ FTT(Z%IP i 'T(pl) L? i 477,027"2(p1)]1 T(pl)\//"_rTOQBp% EH
V23 YT, 24, In As 3AIn 16v2A, 2% As

(3.19)

This result corresponds to the transmissive result calculated in [6], in the same manner as
its classical phase-sensitive counterpart in Chapter 2 did; that is, there is now a solid-angle
subtense factor on terms associated with the bucket detector, and a target-speckle term in

the variance that does not diminish with integration time.

In the classical limit I — 1, Eq (3.19) becomes Eq (2.29), and we can see that classically
correlated phase-sensitive imaging has the same SNR characteristics as phase-insensitive
imaging with pseudothermal light. This means that the high-brightness limit is also the

same, and is given by Eq (2.31). Now, in the low-brightness limit the quantum correlation
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is significant, T — —2—\/%?, and the low-brightness SNR becomes

T, 8An°T As
NR; = 4 1= 7
SNRy Ty 7QpTop2 (p1)

[Se)

(3.20)

:ol

This equals the classical low-brightness limit divided by a factor of 2v/27Z, which means
that for Z < 1, the low-brightness SNR is orders of magnitude larger for quantum-correlated
light than for classically correlated light. This is the second signature of biphoton state ghost

imaging: improved low-brightness SNR.

36



Chapter 4

Computational Reflective Ghost

Imaging

4.1 Theoretical Setup

Ghost imaging requires knowledge of the time-varying speckle pattern illuminating the tar-
get. Because the ground-glass diffuser in Fig. 2-1 randomly modulates the source field. we
measure the reference field’s speckle pattern with the CCD array, and exploit its correlation
with the speckle pattern impinging on the target to form the ghost image. Suppose, however,
that a known source is subjected to a deterministic spatiotemporal modulation, through use
of a spatial light modulator (SLM), in a manner that projects a time-varying but determin-
istic speckle pattern on the target. In this case the speckle pattern at the target can be
computed from diffraction theory, and we do not need the reference arm to form a ghost
image [9]. As shown in Fig. 4-1, we form a computational ghost image by cross correlating

the computed reference-arm photocurrent,

i(t) = /dT qnPy(T)h(t —7), (4.1)
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Figure 4-1: Setup for computational reflective ghost imaging.

with the measured photocurrent, i5(¢), from the bucket detector. Here,
}51<t) = Al'El(plvt”?r (42)

gives the computed photon flux for a CCD pixel located at p; in terms of the computed

speckle pattern |Ey(py, ))°.

The SLM is traditionally a square of size D x D, composed of a grid of square pixels
of size d x d. Each pixel centered at transverse location p; causes a phase shift ¢((t) on
the light impinging it, imparting a spatially-varying phase shift on the resulting field. This
means that. assuming the light hitting the SLM can be approximated as a plane-wave, the

field leaving the SLM is

E(p.t) = Zrect (I ;If) rect (g—:—l—gﬁ> eed), (4.3)
¢

where rect(-) is the unit-length rectangle function, p = (z,y), and p; = (x¢, y¢) is the center

of pixel £. Propagating this into the far field results in

2 ,d /d . ’ ’ -7 713 ’ -
E'(p't) = Z )\O—Lb‘inc (—;O—L) sine (ﬁ) e~ hol@ ety v /L o= iko (&' P+ %) /2L gigu (1) (4.4)
¢

where sinc(+) is the sine function, and p’ = (2/,y').
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4.2 Comparison to Pseudothermal Ghost Imager

For comparison with the pscudothermal ghost imager, we would like to derive the spatial
resolution, image contrast, and SNR of this computational counterpart. Looking at Eq
(4.4), it is not immediately clear how to make the connection to imaging with Gaussian-
state light. However, as the field in Eq (4.4) is the sum of a sufficiently large number
of weighted independent, identically distributed (IID) random variables, from the Central
Limit Theorem it will have Gaussian random process statistics [9]. This can be seen in
Fig. 4-2, which shows a pseudorandom phase modulation pattern in (a), and the resulting
far-field intensity pattern in (b). Thus, we can treat the far-field pattern E5(p,t) hitting the
target and the reference ficld Ei(p1,t) = Eix(p,t) — now calculated from the phase shifts
by Eq (4.4) — as zero-mean. complex-valued Gaussian random processes. Furthermore, to
simplify our analysis, we shall assume that we can use the Gaussian-Schell model for the ficld
correlations as given in Eq (2.10). Under these conditions, the far-field coherence length can
be approximated as py ~ 2L/koD, and the far-field intensity radius by ap = 2L/kd. With
these assumptions, all the derivations from Chapter 2 carry over to computational ghost

imaging by simple omission of the CCD array’s shot noise.

Resolution Under the Gaussian-Schell assumption the spatial resolution of the computa-
tional ghost imager is identical to that of the pseudothermal ghost imager at p;, = 2L/kod;

therefore, in practice, the resolutions should be similar.

Contrast The computational imager has the same image contrast as pseudothermal ghost
imaging for bc-coupled operation, found in Eq (2.18). Moreover, Ac-coupling of the bucket
detector’s photocurrent or the CCD array’s computed photocurrent will eliminate the fea-
tureless background term in the photocurrent cross correlation, giving the computational
ghost imager the same high-contrast behavior seen earlier for AC-coupling in pseudothermal

ghost imaging.
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Signal-to-noise ratio There is an interesting difference between computational and pseu-
dothermal ghost imaging that appears when we compare their SNR formulas. Since the
reference arm is computed, there are no shot noise fluctuations on the current 7, () asso-
ciated with our high-spatial resolution reference arm, and the computational ghost image’s

SNR is given by

T
7—2(P1)Té
SNReomp = —— _ - (4.5)
\/57_7:/7% To 2A2 77:2: 2

Comparing this formula with the pscudothermal result from Eq (2.29) we sce that the noise
denominator for the computational ghost image’s SNR contains, from left to right, terms
that represent: the noise from the speckle pattern cast on the target; the noise from the
speckle on the bucket detector arising from the target’s surface roughness; and the beat noise
between the computed field speckle on each pixel and the bucket detector’s shot noise. It
follows that the high-brightness SNR asymptote for computational ghost imaging is identical
to that for pseudothermal ghost imaging, as it is limited by the source and target-induced
speckle. However, the computational ghost image’s SNR enjoys a considerable advantage at

low source brightness, viz., its low-brightness asymptote of

7 _A
SNRcomp, L — T(pl)TIHI 2

T (4.6)

which is significantly higher than that for the pscudothermal ghost imager because it scales
linearly, rather than quadratically, with source brightness.

Interestingly, the computational low-brightness limit also compares favorably to the non-
classical limit in Eq (3.20). Both scale linearly with the brightness. but given our receiver
bandwidth and pixel size assumptions of Qg7 > 1 and 4; < p%, the SNR for computational
imaging in the low-brightness limit is orders of magnitude larger than the corresponding low-

brightness (biphoton) limit for non-classical ghost imaging.
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(a

to the pixels of the SLM. The phases at each pixel The field distribution closely mimics that of a Gaus-

are IID uniform random variables on 0 to 27, with sian random process, with the coherence length be-

a new realization at each time epoch. ing inversely proportional to the extent of the SLM,
and the intensity radius inversely proportional to
the width of each pixel

S

The pseudorandom phase modulations applied (b) The far-ficld intensity pattern cast by the SLM.

Figure 4-2: One realization of a pseudorandom phase pattern cast on an SLM and resulting
calculated far-field intensity pattern.
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Chapter 5

Comparison to a Laser Radar System

5.1 Theoretical Setup

The importance of ghost imaging for stand-off sensing rests on it offering some advantage
over a comparable laser radar system for the same application. We will use the results from
Chapters 2, 3, and 4 to provide a preliminary comparison between ghost imaging and laser
radar for stand-off sensing. The laser radar system we shall consider is shown in Fig. 5-1. It
is a direct-detection system in which a cw laser beam is used to produce a spatially coherent
beam at range L-m whose deterministic intensity pattern matches —in both photon flux and
intensity radius-- the average intensity pattern of the Gaussian-Schell model we employed
for the ghost imager. A fraction of the laser light reflected by the target is focused onto a
CCD array by a lens that is co-located with the laser transmitter. A target image is then
formed by T;-s time averaging of the output currents from each CCD pixel. The entrance
pupil for the laser radar’s receiving lens will be taken to coincide with the bucket detector’s
A, active region in the ghost imager, and we will assume shot-noise limited CCD operation

as was the case for the Fig. 2-1 setup.®

6We recognize that most laser radar systems employ pulsed sources. We have chosen the cw case to put
the laser radar on the most equal footing with the ghost imager for a baseline comparison between their
spatial resolutions, image contrasts, and signal-to-noise ratios.
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The laser radar image for the CCD pixel at location p; is

T /2
(o) = ~ / dt is(t), (5.1)

Tr J om0

where i3(t) is the photocurrent from that pixel. This photocurrent will have the same
structure as seen in Eq (2.2) for ghost imaging, i.e., it will consist of a term driven by the
photon flux P5(¢) illuminating the pixel in question plus the shot noise from that pixel. We
shall assume the DC-coupled photodetector model from Eq (2.11), and we will assume the
pixels are small enough that they do not limit the laser radar’s spatial resolution. Once
again we shall assume 1:1 imaging, although the actual system will cast a minified image on
the CCD, and we shall invert the image plane coordinates so as to obtain an crect image
of the target. With these assumptions standard Fourier-optics thin lens theory leads to the

following expression for F3(ps,t), the field illuminating the CCD pixel at py:

. 2 /5 2P Unl2 /42 A J (7TD2|p - pl’/)\OL)
Eq(p1.t)= [dpT ikolpl®/2L | 27 —lpl*/a 2“1 ‘ 59
3(p1, ) / Y (p)e Wa%e L)\(Q)LQ 7TD2|p—P1‘/2/\0L : (O )

where Dy is the diameter of Ay, J; is the first-order Bessel function of the first kind, and we

have suppressed absolute and quadratic phase factors that do not contribute to |Es(py, t)]%.
The photon flux for the pixcl at p; is thus Ps(t) = Ai|E4(p1,t)]?, and the photocurrent 45(¢)
18

i3(t) = qnPs(t) + Aia(t), (5.3)

where the second term is the shot noise. Since the source is not fluctuating the detector
response will not have a noticeable effect on the photocurrent, and has been omitted. In
keeping with what we did for ghost imaging, we shall assume that the target is uniformly

illuminated by the laser radar, so that we can use e”1?I’/%% x~ 1 in Eq (5.2).
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Figure 5-1: Setup for direct-detection laser radar.
5.2 Spatial Resolution and Image Contrast

To derive the laser radar’s spatial resolution and image contrast, we once again look at the
ensemble-averaged image. Averaging Eq (5.1) over the target’s surface roughness and the
detector’s shot noise we find

qnA, A2 2P / (Jl(m’)ﬂp — y//\UL))'2
1 =~ | T 3 5.4

which shows that the target image is proportional to the target’s intensity-reflection coeffi-

cient convolved with the familiar Airy disk PSF for incoherent imaging.

Resolution Our laser radar has a spatial resolution given by 1.22\L/Ds. In our ghost
imaging sctup, with Dy = 2aq, the spatial resolution is given by pp, = AL /may = 2\L /7 D>,

which is comparable to that of the laser radar.

Contrast Equation (5.4) also shows that our direct-detection laser radar’s image is not
embedded in a featureless background, making its image contrast superior to that of DC-

coupled pseudothermal ghost imaging but equivalent to that of the Ac-coupled version.
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5.3 Signal-to-Noise Ratio

We define the laser radar’s SNR by

SNR = <](p1)>2 — <[(p1)>2 (55)

Varll(py)] - (I2(py)) = ((p1))*

to enable a dircct comparison with the ghost imaging SNR from Eq (2.21). We will assume
that the Airy disk PSF resolves all significant features in the target’s intensity-reflection

coefficient, yielding

_qnA Ay 2P

{(I(p1)) = —ZQ—F‘QLT(PJ (5.6)

The variance calculation we need is much simpler than what we performed for ghost imaging.

Making use of the iterated-expectation formula,

Varll(p1)] = Eipy)—1 p<i<ry oy [Var(I(p1)) | {Ps(t) : =T1/2 <t < Ty /2}))]

+ val"{p3(t):_T]/QStSTI/Q}[E( I(pl) i {Pg(t) . —T1/2 § t S TI/Q} )] (57)

we can easily evaluate the noise denominator in Eq (5.5). The first term on the right in
Eq (5.7) is due to the target-induced speckle, and is given by (I(p;))?, and the second term
on the right in that equation is duc to the shot noise, and is given by ¢(I(p;))/7;. This
leaves us with
SNR = T(P13 . (5.8)
Tl + A4 2Pk

From this SNR expression we immediately see that when both the source brightness
and integration time are sufficiently high, the laser radar’s SNR saturates at a maximum
value of unity, limited by the target-induced speckle. With the small CCD pixels we have
assumed, ghost imaging still experiences a spatial averaging of the target speckle on the
bucket detector, whereas no such effect is available for the laser radar system. Thus the
laser radar’s performance is inferior to that of the ghost imager when both systems have

target-speckle limited SNRs. Outside of this limiting scenario. the relationship between the
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two systems’ SNRs is more complicated, as we will now show.

To compare the stand-off sensing SNRs for ghost imaging and direct-detection laser radar
in more detail, consider the plots shown in Figs. 5-2(a) and 5-2(b). Both figures assume
Ao = 1.5 um operation for ghost imaging and laser radar, with their transmitters having the
same photon flux. For ghost imaging we assume the source parameters are gp = 1cm and
po = 0.15/7 mm. The target is assumed to be at L = 1km range. with effective area A7. =
100m?. Thus ayp = AL /mpy = 101 implies that the target illumination is nearly uniform
on average, with speckle-limited spatial resolution given by pr = AgL/may = 0.15/7m.
The CCD array’s pixel arca will be taken to satisfy A; = 0.1p3, and the bucket detector’s
arca will be sct to As = wa3. Both detectors will have n = 0.9 quantum efficiency with
bandwidths obeying Q5T = 100. The laser radar’s transmitter will produce a spatially
coherent Gaussian intensity pattern on the target with the same az value, and its CCD
array will be identical to that of the ghost imager. We are interested in the SNR behavior
of our systems as a function of source brightness and detector integration time: specifically,
we look at the detector integration-time dependence of the SNRs for a strong source, and

the SNR source-strength dependence for a long integration time.

Figure 5-2(a) plots the SNRs for pseudothermal ghost imaging, non-classical SPDC ghost
imaging, computational ghost imaging, and direct-detection laser radar versus the normalized
integration time, T7/T,, when T(p;) = 1 and the transmitter’s source brightness is 7 =
10° photons/mode. All three ghost-imaging systems show the same high-brightness behavior,
and we sec a slight SNR advantage for laser radar operation when 77/T) < 10*, with the
ghost imagers offering higher SNRs when all three systems approach their target-speckle
limits. Figure 5-2(b) plots the four systems’ SNRs versus the source brightness, assuming
T(p1) = 1 and T;/Ty = 107. Here we see that computational ghost imaging provides
the best performance, while laser radar operation is the worst performer except for Z ~
10~2. Pseudothermal ghost imaging is outperformed by computational operation until both
systems’ SNRs reach their common target-speckle limit. At very low brightnesses. the SPDC

imager trails only the computational imager, but its performance quickly converges with that
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(a) Signal-to-noise ratios versus normalized integra- (b) Signal-to-noisc ratios versus source brightness,

tion time, T7/Tp, for high source brightness T = 7 = PTyp¢/a3, for long integration-time opcration
PTyp/ad = 10°. Ty/Ty = 107,

Figure 5-2: Signal-to-noise ratio comparison between pseudothermal ghost imaging, compu-
tational ghost imaging, and laser radar operation. The parameter values assumed are given
in the text.

of the pseudothermal imager.

Thus, for very low-brightness illumination, the SNRs arc ordered from best to worst as
follows: computational ghost imager, SPDC ghost imager, laser radar, and pscudothermal
ghost imager. However, it should be noted the the SNRs in this range are of the order
1078, which provides little usable information. Once the brightness has increased to the
point where we can retrieve some image information, the SNRs are clearly arranged from
best to worst: computational ghost imager, SPDC and pseudothermal ghost imagers (which
have converged), and the laser radar. It thus is reasonable to say that, for the systems we
have compared, that computational ghost imaging has the best SNR behavior, followed by
SPDC and pscudothermal ghost imaging, with the laser radar at the back. However, for
short integration times and a very high-brightness source, there is an advantage to the laser-
radar system. This is similar to the behavior seen in pulsed laser-radar systems, indicating
that for a definitive comparison between ghost imaging and laser radars, we should include

comparisons to a pulsed laser radar systems.
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Chapter 6

Evaluation of Turbulence Effects

6.1 Turbulence Review

Our analysis in the preceding chapters had assumed all light fields were propagating through
froc space; that is, we have not taken into account any effects the propagation medium
might have on real-world experiments. In many stand-off sensing applications the fields will
be propagating through the atmosphere. The earth’s atmosphere is comprised of a variety
of gases and entrained particulates, causing wavelength-dependent absorption and Rayleigh
scattering {17]. These effects will cause attenuation, but that can be minimized with an
appropriate choice of the operating wavelength. The most deleterious atmospheric effects
arise from propagating in bad weather, i.c., though fog or clouds [17]. Here the scattering is
so severe that neither laser radar nor ghost imaging can be expected to provide usctul standoft
imaging. Howcver, cven in clear weather, the atmosphere is in constant flux. This random
mixing of the air parcels with ~ 1K temperature fluctuations create random spatiotemporal
variations in the refractive index known as atmospheric turbulence [17]. For a real world
analysis, the turbulence-induced effects on the resolution of a remote-sensing system must be
explored. Initial work has been done to explore turbulence for transmissive ghost imaging
with classical pseudothermal light in [11]; our results will be for reflective imaging with

classical and non-classical sources, computational imaging, and also provide a comparison
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to laser radar systems.

To start, we shall consider operation in good weather, at a wavelength for which absorp-
tion and scattering effects are minimal. In such scenarios, atmospheric turbulence yiclds
refractive index changes on the order of 107 [17]. While these changes might sccm small,
their effect on light propagating over a long distance is profound. For instances, two in-phase
fields at A = 1.5 pm propagating through media with a refractive index difference of just
107% will be out 7 rad of phase in just .75m. For propagations over several kilometers, with
refractive index variations in both time and space, the accumulated phase distortions will be
significant. Moreover, because these phase changes are spatially varying, constructive and
destructive interference occurs, i.e., initial phase fluctuations lead to intensity fluctuations
known as scintillation [18].

For our analysis we will be using the Kolmogorov model for turbulence. Kolmogorov
said that for turbulence that caused the spatial variations of the refractive index to occur
on distance scales between a maximum Ly ~ 10 — 100m and a minimum £, ~ 1073 m,
the temperature fluctuation spatial-structure function followed a two-thirds power law [19)].
That is, the second moment of the temperature difference between two points is proportional

to two-thirds the distance between the points as

Il

(T(po+ p) — T(po))*)
= C7lp|*”, (6.1)

DTT(p>

where Dpr is the temperature structure function and C3 is the temperature structure con-
stant.

The temporal fluctuations come from two sources: the changing of the shape of the
refractive index structure as the current eddies mix the air, and the drifting of the structures
with the average wind velocity [20]. In normal conditions, the time evolution is dominated
by the latter mechanism, and the refractive index structure thus has a typical coherence time
of 7. = 107® — 1072 second. This means that on shorter time scales the turbulence can be

thought of as frozen.
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There has been a lot of work done in analyzing laser beam propagation through turbu-
lence, and for our work we take advantage of the Extended Huygens-Fresnel Principle [17].
This is written as the propagation of a spherical wave, multiplied by some path-dependent
complex exponential which encompasses the turbulence-induced amplitude and phase vari-
ations for a particular path, defined by its starting and ending coordinates. For x.,(p. p')
and ¢, (p, p') being the log-amplitude and phase variations from p’ to p on path m, if we

suppress the time delay the Extended Huygens-Fresnel Principle becomes

iko(L+|p—p'|*/2L)

12mL

k’()e

El(p.t) - / dpl Epn(p.t)exn (om0 (6.2)

We can usually take x,, and ¢,, to be jointly Gaussian, allowing us to construct a structure

function” [20]

Din(p. p') = {(Xm(po + P, Py + P)) = Xm(P0. £)))?)

which satisfies [17]
L 2 (L= 2)\**
D(p.p) = 2.91k2/ dzC? (2) (lp i pL< ”) (6.4)
0

for the refractive index structure constant C?2, (z) = 1072C7.(z). When considering prop-
agation that is approximately parallel to the earth, it is reasonable to assume that the
structure constant is stationary, i.e. C2 (z) = CZ . Since X, and @y, are jointly Gaussian

we can define a complex random process

Um(p, P') = Xm (P, P') + idm(p, ) (6.5)

"The Gaussian assumption and its associated structure function are limited in validity to what is known as
the weak-perturbation regime. However, a more genceral derivation will lend greater validity to the corrclation
function expression, given below in Eq (6.6), that will suffice for our purposes in this chapter.
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whose correlation function on path m can be evaluated as

(evmlpro2tonParv) = exp (—D(py = ps, p2 — p1)/2)

— 2 — ) - _ _ 2
%exp(_lpl psl* + (p1 pgpz(pz p1) + |p2 p4|) (6.6)

where we have used the square-law approximation to the rigorous 5/3-law behavior and
pm = (LO9K*C2 [ L)™*® form = R, S, T, (6.7)

is the turbulence coherence length on path m. under the assumption of a constant C?
profile. In what follows, we shall assume that there is sufficient physical separation between

the reference. signal, and target-return paths so that their turbulence effects are uncorrelated.

6.2 Classical Source

6.2.1 Resolution analysis

We start by looking at the ghost imaging system that we developed in Chapter 2, which uti-
lized a pseudothermal source and a 50 50 beam splitter to create signal and reference fields
with a phase-insensitensive cross correlation; we now add statistically uncorrelated turbu-
lence on all three paths. We look at an ensemble average of the correlation of photocurrents
produced by cach detector, using the same assumptions employed in our resolution analysis

in Chapter 2 to arrive at

(Clpy)) = (i (t)ia(t))

= ¢*n* Ay /dﬁ /dTQ h(t — m)h(t — ’/"2)/ dp' (Eg(p1, 1) ER(p1, 1) EF (0, ) En(p, 72)).
As

Using Eqgs (6.2) and (6.5) to back-propagate F}.(p',t2) to E5(pa, ta), once again suppressing

the time delays, and recognizing the independence of the randomness in the target surface,
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field speckle, and turbulence, we have

<Eg(p1,T])E;z(p],Tl)Eéf(pl,TQ)E%(/)I, 47T9Lr) /dpg /dp e —iko(|p' —p2)2+|p —p3|?)/2L

x (eVT(P ) V1P P\ (B (o) 1) ER(p1. 1) ES (pa. 72) Es(p3, 72)) (T (p2) T (p3))-

Using Eq (2.5) to evaluate the surface moment, this simplifies to to

(Ex(p1, 1) ET (0. 72) Ex(p1. 1) Er(p'. 7))

1 £ /% ! /
= ﬁ /dpz T(P2)<ER(P1;T1)E5 (02,72)ER(01;7'1)E5(P2:7'2))

. . 0= (o y /o,
Interestingly. since (e?r(#p2)+vr(p.p2)y — 1 we find that the turbulence on the target-return

path does not affect the resolution of the final image.

In our resolution analysis in Chapter 2 we could stop here and use the Gaussian-Schell
model to evaluate the fourth-order field moment. However, since we arc allowing for turbu-
lence on the signal and reference paths, we have to back propagate these ficlds to the source,

giving us

(Bx(p1, 1) ES (p2. 12) ER(p1. 1) Eg(p2. 2)) = /dp1 /dpo /dp /dp

koe™ iko(L+|p1—p} 2 /2L) koe™ —iko(L+|p2—phl?/2L)

(Eilph, m)ehioneh) B3 (ph 7o) 3o

—127 L —127 L
k etho(L+|p1— pY12/2L) kOeZkO(LHPz py12/2L)
x F vr(p1, p E u ws(p2, p)
r(pY,m1)e 5T s(py, Ta)e 9l

We can now use Gaussian moment factoring and Eq (2.6) to evaluate the fourth-order field

moment. and Eq (6.6) to evaluate the turbulence. Taking into account our DC-block filter
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and using the far-field assumption, we have

(BB (o) Enton, ) Bston i = (52) (25) [t [ [t [aps

N ,
e 2P (Pl =p) o 2P (PPl e 1P =P 121207 o =10 =P5 12 /20% o~ (10 P +105 17 +1p7 12 +lpy |?) /ad

x e 1P1=PE /208 =Py =Pl 1?1205 o= (r2=1)* /TG (6.8)

In evaluating Eq (6.8) we will assume that the turbulence coherence length on each path
m will stay large enough that p,, > py. as py is typically on the order of a few wavelengths.
We will still assume that ag > pg, but we will make no assumption about the relative sizes

of ag and p,,. Under these conditions, we find that

2 2 9,2 2 _lei=pat® "JQZRPAZ@‘
(Clpr)) — LA (2PN 2% L / dps Tlpo)e 7 T o

L maz ) 2pges + ag(pr + 03)

(6.9)

Our PSF has now widened, with the resolution transforming as p; — p/ for
2p%0% + ag(pk + p3 ) .

o1 :PL\/ i=s 2{)0[() i——2 (6.10)

RFS

By mecans of Eq (6.7) p} can be rewritten purcly in terms of source size and structure

constants on cach path as

2 .
o, = % L+ L09KLYS | (C26)™" + (€2.)™°]. (6.11)

It is also worth noting that turbulence on the signal and reference paths have identical

impacts on the PSF, and thus identical contributions to resolution degradation.
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6.2.2 Special cases

We would now like to look at a few special cases that illustrate most of the turbulence
behavior that we are interested in. These arc: no turbulence on either path; turbulence
on only onc path, which corresponds to the computational case; and symmetric turbulence
on both paths, which is a good approximation when both paths are going through similar

atmosphere.

No Turbulence As the turbulence coherence lengths increase without bound (pp —
00. pg — oo) the effects of turbulence vanish. In this limit py = pr. and Eq (6.9) be-

comes

(Clpr)y = LT (,r) [doaTipuje st (6.12)

which matches Eq (2.15), our result calculated without turbulence.

Computational Case When doing the computational case the reference arm is calculated,
so there is no turbulence to account for on the reference path. Thus we can let pr — oo,

and we find that

(] n A1A2 2P 2 QP% / |Pl pal? 203 o
d P 2p5+ag ]
<(Y(pl)> JE (7'('(1% st P2 T( )6 s (b 13)

Be comparing Eqs (6.9) and (6.13), we sce that computational and non-computational ver-

sions have different PSF’s and that the resolution for the computational casc is better. That

2p% + ag ao 20%0% + aj (P + Ps) (6.14)
20% 20%0%

It should be noted that while this situation describes the computational case. it is possible

is,

to have a non-computational case in which there is only turbulence on one arm. Since the
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turbulence on both paths have identical effects. a situation where there is turbulence on
only the reference path, and not the signal path, would be described by Eq (6.13) with pg

substituted for pg.

Symmetric Case In many situations the signal and reference paths will be going through
atmosphere with similar turbulence, and thus approximately the same structure functions

and coherence lengths. This lets us say pr = ps = p;, and

2

22 2 2 lor—pal® _p
g‘n"AiAy [ 2P Slenpe
(C(pl)> = 77[/21 2 (Wa% p?ﬁf ag dp? T(pg)e pi Pt (615)

6.3 Non-classical Source

Having looked at the effects of turbulence for a classical light source, we once again turn our
attention to non-classical sources. We again perform a Gaussian-state analysis, following the
resolution derivation in Chapter 3 with turbulence added on all three paths. For propagation

through turbulence we will replace Eq (6.2) with its operator cquivalent

N Koetko(L+lp—p'|?/2L)

127 L

EL(p.t) = / dp'E(p/ t)evr(oe form=S,R.T,

where ET(Pa t) = [Efg(p, HT(p) + Evac,S(pv )1 = |T(P)|2] and e¥(P#) is the same com-
plex random process from Eq (6.5) which encapsulates the effects of turbulence on path m
from p’ to p. We take the ensemble average of the photocurrents, which after normally

ordering the field operators and applying Eq (3.6) becomes

(C(p1)) = (i1(t)ia(1))

=t [an [ b= nne—n) [ ap o m) B0 ) Erlor ) By 4 )
Aa
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We back propagate, evaluate the surface moment with Eq (2.5) and the turbulence with Eq
(6.6) to get

<Elﬂj(p1* Tl)Eg(p/7 TQ)E%(pla Tlﬂ%‘(ﬂl; TZ))
1 ” ” % r- » +
=13 [ P2 T(p2){Ep(pr. 1) Ed(p2. 2) E(p1. 1) Es(pa. 7)) (6.16)

Again, we find that there is no effect from the turbulence on the target-return path. Propa-
gating back to the source, evaluating the field and turbulence moments, and implementing

the DC-block filter. we arrive at

(Ed(pr. 1) Ed(po. ) E(p1. 1) E(p2. 72)) = (;—OLY (7a0> /dpl /dpo /dP /dp

ik, ik,
X ej_LQPI'(pll—P/{)e%lP?(p{z_ 9) |P Pll /()Pﬁe—lpz ‘ /OPse_(|P1| +1p7 |2+|P2| +ioy1? /ao

i 2
% | e~ 1Pa=P1 21205 o= (ra=70)? /215 _ AR _ao_r)e‘lpé—pél‘z/p%e—(m—ﬂ)Q/T{f
m Plopy

1 9
o [ o-los=errr2ed o~ -m2remg i (2] B0 lel el )/TE | (6.17)
T Plypg

Equation (6.17) can be directly evaluated, and we find the photocurrent average to be

(Clpr)) = >’ A1 Ay <2P>2 20%0% (1 L] )
L? wai ) 2ppp% + aglpk + p%) 22T

2 252 .2
_lerteol” 2PRPS

x /dpﬁ(pg)e CANT AT AT (6.18)

where T = PTypi/al = PTyp:/aj is the brightness term from the SNR derivations. Since
we arc operating in the far field, there is no resolution gain from the use of entangled signal
and reference fields, cven in the low-brightness limit in which the Gaussian state becomes
the biphoton state. Turbulence causes the same resolution spreading in phase-sensitive
ghost imaging as it does in phase-insensitive ghost imaging, regardless of the nature of the

correlation (classical or non-classical).
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6.4 Laser Radar

Finally, we would like to compare the turbulence-induced degradation suffered by ghost
imaging systems to that for a laser radar system under the same atmospheric conditions.
We will be using the laser radar system developed in Chapter 5, and start by taking an

ensemble average of the image-bearing term in Eq (5.1) to arrive at

(I{p1)) = qnAi(E5(pr. ) Es(p1, 1)), (6.19)

Propagating back to the lens, we have

<I(pl)> = qT]Al /dp/ /dp”(E;(p’, t)Eg(p"j))
.AQ A2
,f;;bnlpup koe*iko(L—HPl —p'|2/2L) koeikO(L"'lpl“P”lZ/?L)

—i2m L 127 L

ikq
X eﬁho

/|2

e (6.20)

We are not considering any turbulence between the lens and the CCD array. For con-
venience we are using a 1:1 imaging system, but in a realistic implementation the image
produced is a minified version of the target. For this system we are considering turbulence
on both paths, viz., on the signal path (5), from the source to the target, and the target-
return path (7'), from the target to the lens. Thus, back propagating to the target we

have

(B3 (P, 1) Ex(p”. 1)) = /de /dp3(e‘”}(”/”’Q)W”("'/”’S))(T*(Pz)T(P-s))
kpe— tRo(LH1p =22 /2L) I siko(L+p"—psl?/2L)

—127L 127 L

X (Ey(pa, ) E1(ps3, t))
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Using Eq (2.5) and the far-field assumption this simplifies to

(B3 (6 1) Bl 1)) = / dp T (p2)

X (Ef(pz,t)El(P%t))e’%le’lze%“]{l{p

|2 e = 2P 2

Now, back-propagating (E;(pa, t)E1(p2. 1)), and assuming the far-field condition. we have

ph1% 1Y) k2 WTOPT(PQ“P{_;)
(E7(pa.t)Er(p2.t)) = ( )/dpg /dp” (eV5p2P)+us(p2rt)y e _g—wé—‘— “0©
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— S AR A

]+ 0 Wai

Our laser radar system is constrained, for comparison purposes, to have an on-target average
illumination pattern equal to that of the ghost imager. Since the laser is a coherent source,
that means that the source beam waist wy for this svstem is approximately the same size as
the source coherence length pg for the ghost imaging system. As such, we can assume that

for the laser radar system wg < ps, which let us simplify to

. 2P 2[pA2I2
(ET(p2. ) Er(pa, 1)) = e i

7TCLL

indicating that for this system there is no effect on the resolution from turbulence on the

signal path.

This lets us rewrite Eq (6.20) as

gné, 2P
1
< (pl)> )\2L4 aL

dp” ( (p' ~p)> Ip”fp’lz/i’t?%e—%(P”—p’)m_/ (6.21)

A2

where T(€) is again the two-dimensional spatial Fourier transform of T(p). We invert the

coordinates as p; — —p; so that we have an upright image, and use difference coordinates
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to evaluate the integrals over the lenses to arrive at

_ qnA1A; 2P Pk
(H{p1) = =73 o (p1) *

. - 2 2
Qe"mV%é x WQD% (Jl(ﬂDg'pll/AOLU . (6.22)
2n L /\OL WDglpl I/)\QL

To evaluate the spreading due to turbulence we can approximate the Jinc PSF, which has its

first zero at |p1| = 1.22)\L /D5, as a Gaussian PSF with an e™! point at |p;| = 2\oL /7D,

le.,
WD% Ji(mDs|p1]|/AoL) 2 7TD§ e—?pnfzﬁ%%é (6.23)
)\3[/2 ’R'Dglpl I/)\()L 4)\3[/2 ' .
This lets us simplify Eq (6.22) to
5 2
qnA A3 2P 207 / ~lp-p1 PR 2T
1 = = d > N LE 20+ D7/ 6.24
{I(p1)) NIt 7l 37 1 DY pT(p)e 0rs 0 (6.24)

We can now say that the effect of turbulence on the resolution is to degrade it by a factor
) 2p2+D2 /4 v . ) . . ) , .
of T For a comparison to the ghost iimaging system, we once again say that all
=T

lens diameters are of the same size, so that D = 2ay. and our spreading factor becomes

\/ Qp;f;;aé. This is the same spreading we found when there was turbulence on one arm of the
ghost imaging system, as shown in Eq (6.13). From this we can conclude that ghost imaging
systems can be constructed that do not suffer resolution degradation from turbulence worse
than the degradation found in a flood-light, illumination laser radar system. It should also be
noted that for a raster-scanning type laser radar system, which we have not vet considered,
the source beam size is significantly larger than for the flood-light system, and therefore
the turbulence on the signal path will no longer be insignificant. Indeed, partially coherent
beams, such as our pseudothermal source, have been shown to be less affected by turbulence
than similar fully coherent beams [21, 22], indicating that ghost imaging might have an
advantage in comparison to a raster-scanning laser radar. We also might expect that the
cffects of turbulence on the SNR of ghost imaging and lascr radar systems could be different,

but we have not explored this issue.
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Chapter 7

Improving Ghost Image Quality

So far we have analyzed reflective ghost imaging for classical and non-classical sources, as
well as for a computed reference beam. These results were compared to a laser radar system;
ghost imaging has a somewhat advantageous asymptotic SNR behavior for high-brightness
illumination and long capturc times. as well as improved low-brightness behavior when there
is a non-classical correlation between the fields. and when a computed reference arm is
employed. However. the SNR is still limited by the speckled nature of the return patterns
cast by the rough surface of the target. In this chapter we propose three methods to improve

the image quality, focusing on reducing the target-speckle imposed SNR limit.

First, we propose a detection scheme in which multiple bucket detectors are employed,
cach capturing the returned light at different transverse locations within the same plane, as
detailed in Fig. 7-1. The target-speckle attributes of the returning ficld decorrelate with
transverse location. so cach detector should sce different speckle behavior, allowing us to
average it out and improve the asymptotic SNR. This same target-speckle averaging could
also be accomplished by the use of multiple wavelength illumination, as shown in Fig. 7-4. If
we use several narrow-band sources sufficiently far apart in wavelength, the return patterns
from each source will have uncorrelated speckle statistics at the same transverse location,
allowing us average out the speckle effects. Finally. each bucket detector measurement in

a ghost imaging setup can be thought of as a random projection of the target reflection
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pattern. Since we know the pattern being cast on the target, compressive sensing methods
can be applied to the bucket detector measurements to achieve a high-quality image quickly.
This connection has already been made, and experimentally verified, in [12] for transmissive
ghost imaging. In reflective-imaging we have the added complication of the target-speckle,
but we will .den'lonstratc that a connection can still be made back to the idea of projective

mcasurcments, cnabling the use of compressive sensing techniques.

7.1 Multiple Bucket Detectors

For this setup we consider n co-planar bucket detectors in some arbitrary setup. The corre-
lation function at each transverse location p; is taken to be the average of the correlation
tunction for the CCD pixel at p; and each bucket detector. The output photocurrent of a
CCD pixel will still be denoted as 41(¢), while the output of each bucket detector ¢ will be

labeled 4¢(t) for 2 < £ < n+ 1. We thus build up the correlation function pixcl-wise as

n+l Ty /2

Zf,

dt iy (4)ie(t). (7.1)

~17/2
The resolution and contrast for this system can easily by found from

1 n+1 1 17/2

C = — — dt (21(t)ee(t 7.2

(Clo) =237 [, Ao (7.2)
=2 I

by recognizing that (i;(¢)i¢(t)) is the same for all £, and not a tunction of time. The average

correlation function becomes (C(p1)) = (i1(t)i¢(¢)), which is what was derived in Chapter 2

for one bucket detector. Thus, no resolution or contrast gain is realized by utilizing multiple

bucket detectors.

However, this setup does offer a SNR enhancement. Using the SNR definition in Eq

(2.21). as well as the same simplifying assumptions that allow us to use Eq (2.22) for the
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Figure 7-1: Reflective ghost imaging with multiple bucket detectors.

first moment. we are left only needing to calculate the second moment of

1 n+l n+1 T:/2 Ty/2
) = n) /_ a’ff du iy (t)ie(t)11 (1)t (w)). (7:3)

Tij2 J-T/2

=2 m*’

We are interested in raising the high-brightness, long integration time SNR asymptote, so

we restrict our analysis to this limit, in which we find

: n?2A,/ma2 )
SNRz, 1ong- 7, = Hm—ol/—n (7.4)
Z Z rf.m
=2 m=2
where
1 i
Cem = o fa’v e =2’ 20(v, 4a). (7.5)
2m
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The I" function in Eq (2.26) comes from integrating over the bucket detector in two different
coordinates systems—p’ and p” -a function of the difference of these coordinates. To evalu-
ate it we moved to the normalized difference coordinates v = ppko(p’ — p”)/L and integrated
over the two-circle overlap function. This worked because the different coordinate systems
were for the same bucket detector, and centered at the same point. Since we are now using
multiple bucket detectors, we have to account for the difference in their transverse location.
We want to recenter one coordinate system so that both are aligned by shifting it by some
py — p., where pj is the center of detector £, and p” is the center of detector m. Thus, we
now define v = prko(p' — p")/ L+ A¢m, for A¢,, = prko(p)— p)/ L, allowing us to correctly

use the two-circle overlap function to evaluate our expression.

The averaging over speckle statistics is encapsulated in I'g,,, and is where we sce the ad-
vantage of using multiple bucket detectors. As the distance between the detectors increases,
I'¢sn and the deleterious speckle effects decrease, which leads to an SNR increase. Looking
again at detector sizes of Ay = ma3, and placing two detectors side-by side (centers separated
by 2ag), we find I'z,, = 0.049, which is a significant decrease from T'; = [' = .G1; this con-
figuration yields an SNR of 6.03. If we separate the detectors by a distance of 2aq (so that
the centers are 4ag apart) we have I'y,, = 4.3 x 1077, and a SNR of 6.52, which is twice that
of the single detector case. Thus, detectors of this size that are side-by-side have slightly
correlated speckle statistics, while detectors with centers separated by 4ag have essentially
uncorrelated speckle behavior, as can be scen in Fig. 7-2. This makes intuitive sense because
the speckle fluctuation’s average size are inversely proportional to the coherence length of
the light illuminating the target as ‘speckle length’ = 2L /kgpr, = ag. Locations separated
by lengths significantly greater than ag in the bucket detector plane will have uncorrelated
speckle statistics. This means that adding bucket detectors far enough apart linearly in-
creases the SNR, while detectors placed closer together will yield a slightly lower increase,
as seen in Fig. 7-3. This speckle averaging is the same effect that is seen when increasing

the size of the bucket detector.
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7.2 Multiple Wavelengths

In place of—or possibly in conjunction with—using multiple bucket detectors we can use a
multiple wavelength source to increase the SNR. Whereas the bucket detectors in Sec. 7.1
see different speckle statistics due to their transverse separation, the return fields for the
various wavelengths have different speckle statistics at the same transverse location because
each wavelength diffracts differently from the rough surface. This will allow us to make

multiple co-linear measurements to average out the effects of the target speckle.

For the multiple bucket detector setup we did a full treatment, finding the correlation
between the speckle statistics for bucket detectors separated by arbitrary distances. This
was because it is reasonable to assume that in an implementation we could be constrained
by the size of the array; we might want to pack the detectors tightly. We should not he
constrained to choosing similar wavelengths for our sources. Thus, we are only interested
in finding the cut-off wavelength separation at which the return fields have uncorrelated

target-speckle statistics, and the image characteristics in this regime.

We start with the setup in Fig. 7-4, and we build up the correlation function as the
average of separate correlation measurements made at every wavelength. Fach wavelength
diffracts differently, so if we assume the same source coherence and intensity radii, the on-
target average illumination pattern will be more spread out for some wavelengths, less for
others. This will result in less power being measured at cach detector (both CCD and bucket)
at certain wavelengths; therefore, when averaging the separate correlation functions, we need
to scale the measurements appropriately. For our work, we will scale cach measurement by
(pr/ pg))(ag) /ar)?, where ag) and p(Lﬁ) are the on-target intensity and coherence radii at
wavelength A¢, and ar and pj, are the average of {ag)} and {pg’)}, respectively. Following

our previous work. CCD output igé) (t) associated with wavelength \; is correlated with the

bucket detector output ig)(t) for each ¢ and averaged as

L (o) (O 1 e
C(Pl):;z F) (é _T_I/ dt iy (t)iy” (t). (7.6)

(=1 L ~T1/2
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The resolution and image contrast are found from an an ensemble average as

no o\ O\ /2 .
<c<p1>>:—jzz(-%) (—) 7 [ aiw o). (7

=1 \PL —T1/2

Since each (i(lg)(t)z'gf)(t)) is a function of the wavelength A, they each have a different point-
spread function, and therefore the resolution is limited by the longest wavelength used to

maxf(pg)) = 2L /ming(k¢)ag. Looking at the contrast, we find the background term becomes

2 2 2 n _ 2
gn°AAy (2P 71 oL ,
Co = i (m‘z%) - E (W) /dpz T (p2), (7.8)

=1 \PL

and the image-bearing term, under the assumption that each wavelength is short enough to

resolve the target, becomes

22 A4 (2P \? )
Ci(py) = L2 ( ) T (p1)7py. (7.9)

2 3
L Tay

Using the definition in Eq (2.16). we find

-1
n

2
T 1
C= yw > (p?”) : (7.10)

(=1

This differs from the results for using multiple bucket detectors only slightly, as the coherence
lengths are added in parallel; since the on-target coherence lengths the will be of the same
order of magnitude, the contrast has the same basic interpretation as being approximately

the inverse of the number of resolution cells in the image.

Turning to the SNR evaluation, and the definition in Eq (2.21), we are left only needing
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to evaluate the second moment of the correlation function as

a(L)ag;m)
Bl )
1 m=1 PLPL L

fi/2 TI/ GO ()i (1) ()il
X — dt / (®)i;™ (u)is™ (u)). (7.11)

~T7/2 Tl/”

We again look at the high-brightness long-integration-time limit where the effects of the
target speckle dominates. To do this we need to review our treatment of the scattering
effects of the rough surface given in Eq (2.4). This treatment was for a single wavelength
Ao, and the phase-insensitive autocorrelation is given by Eq (2.5). We are now dealing with
multiple wavelengths of light, so we define the target reflection coefficient for wavelength A,

as
Ti(p) = /T (p)e*Fea=to), (7.12)

where k; = 27 /X, The phase-insensitive cross correlation of reflection coefficients for differ-

ent wavelengths is thus

(T7 (p)Tn(p)) = /T ()T (p') {2 kedzlp) =k Az(p))

= /T (p)T (p)e 202 ki ki) tkekn Koz (p—p')

As before, we are assuming that the covariance function K. (p— p’) for the height variations

Az(p) is very narrow, allowing us to approximate

(17 (P)Tm(p))) = Medmd(p — p') T (p)e 2 ke )’ (7.13)

Thus, when o2(ke — k,,)* = 1, then (T} (p)T,n (")) = Mdmd(p — p')T (ple 2 = 0. and

the return fields from the two different-wavelength sources are essentially uncorrelated. This
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Figure 7-4: Reflective GI system using multiple lasers at different wavelengths, and one
bucket detector for each wavelength.

gives us the minimum wavelength-separation criterion between two wavelengths as

32
AN > —, (7.14)
2ra,
where A is approximately the average of the wavelengths. In this regime, we can approximate

. . % 3 R Al U et 1Y 2 a A .
the exponential as a Kronecker delta function, i.e., e 27:ke=kn)* 5§, This gives us a high-

brightness long-integration-time SNR of

'?'IQAQ
Tag

SNR#, tong1y = (7.15)

This is the same basic result we found for the multiple bucket detector setup, when the
bucket detectors were sufficiently separated; averaging over multiple correlations, each with

uncorrelated speckle statistics, leads to a linear increase in the maximum SNR.
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7.3 Compressive Sensing

In traditional sensing methods, resolution is limited by the Nyquist rate, i.e., you must
sample at a rate at least twice as high as the desired signal bandwidth in order to acquire
them. However, when dealing with signals that have a sparse representation in some basis,
the captured data can then be compressed, reducing the number of bits needed to accurately
represent it [13]. A sparse representation mcans that in some basis, almost all coefficients
arc close to zero, so most of the information is held in only a few significant cocfficients [14].
For a simple example, imagine some audio signal composed of only three frequencies. If we
wanted to sample in time, then, according to Nvquist, we would have to sample at twice the
highest frequency to have a faithful representation of the signal. However, in the frequency
domain, this signal can be represented by only three coefficients; if we wanted to compress
the signal, we could represent it in the frequency domain and only keep the three important
data points corresponding to the three frequencies present, significantly reducing the number
of data points required to represent the signal.

Any signal with some definable structure is likely to have a sparse representation in
some basis [14]. Of interest to us are “natural images.” Natural images are generally
discontinuously smooth; that is, they are composed of areas of slowly varying features that
are separated by sharp boundaries. As is exploited in a number of image compression
schemes, such as the ubiquitous JPEG format, natural images have a sparse representation
in the 2-D discrete cosine basis [14].

Compressive sensing is a means to directly acquire the significant cocfficients of a signal
in its sparse basis, requiring significantly fewer measurcments than if the signal was sampled
at the Nyquist rate [13]. Conceptually, this technique exploits our knowledge of the structure
of the image; we know that it is sparse in some basis (even though we don’t know which
coeficients matter), and use this knowledge to reduce the amount of information we need to
acquire.

At the heart of this technique is the notion that the information is preserved through

linear transformations; therefore, by taking a series of linear projections, enough information
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can be gathered to reconstruct the signal. This process involves projecting the sparse target
onto a series of vectors to build up a vector of projections [14]. This series of projections

takes the form of a measurement matrix A such as
y = Ax (7.16)

where  is a sparse representation of our signal. and y is the vector of projections. The
most efficient measurement matrices have the lowest correlation between columns of the
measurement matrix. This is often referred to as incoherence [14], and means that for cach
projection, cach coefficient of @ reccives a nearly uncorrelated weighting. To recover @ one
uses linear programming methods and knowledge of the measurement matrix to find  based

on an Ly-optimization.

The authors of [12] realized that the output of a bucket detector in transmissive ghost
imaging is simply the projection of the target transmissivity pattern onto some illumination
pattern. Therefore, by sending a series of illumination patterns at the target a data set of
minimally correlated projections can be built up, which is the ideal data set for compressive
sensing. By using an SLM, they controlled the illumination patterns cast on the target. and
uscd that knowledge to perform the reconstruction. In traditional ghost imaging, the known
illumination pattern is used to perform a correlation with the bucket detector’s output to
form an image. However, by instead performing compressive sensing on that output (again
using knowledge of the illumination pattern) the sparsity of natural images is leveraged to

perform a better reconstruction from fewer measurements.

The projective measurement made by the bucket detector in transmissive ghost imaging

can be viewed in terms out the output current as

ia(t) = / dpl(p. 0T (P, (7.17)

where I(p,t) = |E(p,t)|%. and we are ignoring shot-noise for the moment. This can be
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written in matrix form as
1o = IT (7.18)

where T is a column vector of |T(p)|* indexed by the transverse location p, I is the pseudo-
random measurement matrix with columns indexed by time ¢, and rows indexed by p. Our
output is thus a column vector indexed by time. Now, T is not sparse in its spatial repre-

scntation, but for the rotation matrix ¥ to some sparsc basis, we have
T =9T (7.19)

where T is our representation of the target transmissivity in the sparse basis. If we combine

the basis rotation matrix and measurcment matrix as A = I'W we then have

is = AT’ (7.20)

In reflective imaging, it is a little more complicated to frame the bucket detector’s output
as a projective measurement, due to the scattering from the rough surface. However, we can
make the connection as follows. First, since the bucket detector measures the total power
that passcs through the collecting lens, we can theoretically look in any planc behind the
lens to make our connection: the total power will be the same in every plane. Therefore,
we can look in the image plane for our connection, where the transverse intensity pattern
is a product of the illumination pattern I(p.t) = |E5(p,¢)|*, the target reflectivity T(p),
and and exponentially distributed random process S(p). Here S(p) accounts for the effects
of the rough-surface scattering, and for each pixel in the final image can be thought of
as a collection of independent, identically-distributed (IID) exponential random variables.

Therefore, we can write the output of the bucket detector as
alt) = [ do1(p.0S(pIT (o). (7.21)
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This can be put in matrix form as

io = IST ~ (7.22)

where I is the intensity matrix illuminating the target as before, T is a column vector of
T indexed by transverse location p, S is a diagonal matrix with each element being an IID
exponential random variable, and 4, is our projective measurements, indexed by time. Thus,
the only difference between the transmissive and reflective cases is the diagonal matrix S.

Now, rotating to a sparse basis as in Eq (7.19), have an output
ip = AT’ (7.23)
for A = ISW. While our measurcment matrix still has columns that are fairly uncorrelated,

we 1o longer know the measurement matrix. Whether we can fully recover 7, or merely a

speckled version, is the subject of current research.
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Chapter 8

Conclusion and Future Work

In this thesis we developed a framework for analyzing reflective ghost iinaging systems in the
context of stand-off sensing. We developed results for three possible imaging systems, which
were then compared to each other as well as to a basic laser radar system. We then applicd
turbulence on the propagation paths for these systems and analyzed the resulting resolution
degradation. Finally, we explored ways to improve reflective ghost imagers, primarily the

high-brightness, long integration time SNR.

The first system we explored utilized pseudothermal light for the signal and reference
beams, with a classical phase-insensitive cross correlation between them. This is realized by
passing laser light through rotating ground glass, and then a 50-50 beam splitter to create
identical spatiotemporally random ficlds on both arms. This system is perhaps the most
robust of those we explored; the laser source can be made very strong without affecting the
correlation between the ficlds, and we do not need to worry about the calibration of an SLM.
The next system we investigated utilized the output of an SPDC, along with a polarizing
beam splitter, to create entangled signal and reference beams with a non-classical phase-
sensitive cross correlation. We evaluated these fields within a Gaussian-state framework,
where the low-brightness limit is the biphoton state and the high-brightness limit is classically
correlated light. Finally, we investigated a computational ghost imaging system in which the

signal arm is created by modulating the phase front of a laser with an SLM, and the reference
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field is calculated from the known applied phase modulations. The laser radar system we
used for comparison is a flood-light system in which the target is uniformly illuminated, and

a CCD array is used to make a high-resolution spatial measurement of the reflected field.

We compared these systems through their resolutions, contrasts, and signal-to-noise ra-
tios. To facilitate the comparison we said all lenses were of identical area wa2, where aq is
the average intensity radius of the source for ghost imagers. We found that all three ghost
imagers, as well as the laser radar system, have the same effective resolution of p; = 2L /ko@y-
Looking at the contrast, the pseudothermal ghost imager, SPDC ghost imager in the high-
brightness regime, and the computational ghost imager have a constant background term
which limits the contrast to Eq (2.18). This can be overcome by Ac-coupling the outputs of
either detector. In the low-brightness regime the output of the SPDC becomes the biphoton
state, and the resulting images are background free. This is also true for the laser radar.
and thus both systems have an unlimited contrast as defined in Eq (2.16). For Ac-coupled
operation, all ghost imager systems and the laser radar system have the same resolution and

contrast. However, a performance difference can be found in the SNR of each system.

The maximum SNR for each system is achieved when the source is strong and the inte-
gration time is long. This averages out the shot noise in the detectors, and for ghost imaging,
the speckled naturce of the spatiotemporally varying light that illuminates the target. How-
cver, the roughness of the surface creates speckle in the return ficld that is time-invariant;
integrating for longer will not remove this randomness. These target-speckle variations are
different at each transverse location, and are the limiting factor in the SNR for both ghost

imagers and laser radars.

However, ghost imagers have an advantage. The size of the target-induced speckle is
inversely proportional to the coherence length of the light at the target. Thus, the average
size of these speckles for a ghost imager is ag = 2L/kopr. If our receiving lens is of the same
size as, or larger than, the transmitting lens, there will be some averaging of the speckle by
the bucket detector. For laser radar the target is illuninated with nearly uniform light. so

the speckle size cast on the receiving lens is much smaller than for a ghost imager. However,
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for ghost imaging the light is captured by a bucket detector, while for a laser radar the light
is focused onto a CCD array; the speckle size is much larger than a CCD pixel, resulting in
almost no speckle averaging. Therefore, while the laser radar system is limited to SNR =1,
the ghost imager can achieve an SNR in the low single digits. As discussed in Chapter 2, for

a receiving lens of area Ay = ma?, the maximum SNR for the ghost imagers is 3.266.

For low-brightness situations, we saw a larger difference in the SNR behavior of the
various systems. For the pseudothermal ghost imager, we make two measurements of classical
light, and thus have randomness from both measurements. For the SPDC imager, the low-
brightness limit is approximately the biphoton state; while we still have randomness from
the two measurements, it is significantly lower than for the pseudothermal imager. However,
the computational imager has a better low-brightness SNR asymptote than both svstems,
as it only has randomness from one measurement. The only area where the laser radar
has better SNR characteristics than the ghost imagers is for very short integration times,
and very high-brightness illmmination. This is because the laser radar only has to overcome
shot noisc. which can be accomplished with cither a long integration time or high-brightness
illumination: the ghost imagers also have to average out the randomness of the source, which

can only be accomplished with a sufficiently long integration time.

After exploring the basic image characteristics for these systems, we looked at the cffects
of turbulence on the image resolution. We found that ghost imagers, classical or quantum,
have the same resolution degradation from turbulence. There was less degradation for com-
putational imaging, as there is no turbulence on the reference path. It is also worth noting
that turbulence on the return path, from the target to the bucket detector. has no effect
on resolution. In comparison, the laser radar system had the same degradation as the com-
putational imager. Thus, ghost imagers and laser radar systems suffer similar resolution

degradation from turbulence.

Finally, we looked at ways of improving the SNR performance of ghost imaging. We
showed that bucket detectors spaced far enough apart measure light with uncorrelated target-

speckle statistics; thus, by using multiple bucket detectors at different transverse locations,
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we can increase the maximum SNR linearly with the number of detectors. We also showed
that light sources far enough apart in wavelength result in uncorrelated target-speckle statis-
tic at the bucket detector; thus, by measuring each wavelength separately we can increase
the SNR linearly with the number of source wavelengths utilized. We also explored applying
compressive sensing methods to improve image quality while reducing image capture time.
We have provided a simple connection between reflective ghost imaging and compressive
sensing, but some theoretical issues require further exploration. If the target has a sparse
representation, then a speckled version of the target should still have a sparse representation
(though not as sparse). Therefore, we should be able reconstruct the speckled version of the
target with compressive sensing. However, we would like to reconstruct the actual target
without the speckle. We will look into ways of adapting compressive sensing techniques to
do this, possibly utilizing multiple bucket detectors or multiple wavelength sources. We will
also explore ways of mcasuring the quality of these images, and perform a more rigorous

comparison to modern pulsed laser radar systems.
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Appendix A

Detailed SNR Derivation

In this appendix we will show in more detail the derivations performed to arrive at the SNR
expressions for the pseudothermal ghost iimager in Eq (2.28) and the SPDC imager in Eq
(3.18). These derivations parallel each other, so we will not show as much detail in the
derivation of Eq (3.18): the differences are in the sources of noise, the correlation functions,
and the complexity of the subsequent integrations. To complete the SNR derivations, we

need to calculate the sccond moment of the correlation function (C*(py)).

A.1 Pseudothermal Ghost Imager

We will first perform the derivation for the pseudothermal ghost imager, and thus start with

the sccond moment

17/2 71/‘)
o) =g [t [ w0 wis(w). (A1)

T7/2 71/"

Using Eq (2.2) to expand the current expressions, recognizing the statistical independence

of the shot noise and the fields, and using our shot noise assumptions from Chapter 2 we
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arrive at

/dﬁ /dTQ /dT3 /du (t — m)h(t — 2)h(u — 13)h(u — 74) X

[g* 7" (P1(70) Pa(72) Py (73) Pa(74)) + ¢° 07 (P1(71) P1(73) Ao (72) Aia(74)) +
02 { Po (1) Po(74) Aty (11) Ay (73)) + (Ady (1) Aty (73) Ao (72) Adn(74))]

Using iterated expectations and (Aip, (61)Aiy(t2)) = ¢*nP,(t1)6(t1 — t2), Eq (A.1) can be

written as the sum of four terms as

(Cpr)) =Ty + T+ T3+ T (A.2)

wherce

T, :/dﬁ /d@ /dr3 /dr4 /Azdp'/odp"h(t — )Rt — 7o) h(u — T5)h(u — 74)

x ¢'nt A3 Er(pr, 1) P E2 (0. m2) P Ev (o1, 73) PLE= (07, 7)),

= /dﬁ /d’ff) /d’Tg/ dp' h(t — 1)h(t — 72)h(u — 73)h(u — 72)
As
x ¢ AL En(pr. )P Ei(pr 7)1 Ba(p' . 72) 7).

T, — /dﬂ /dﬁ/dm/ dp/ dp” h(t — m)h(t — )h(u — m)h(u — 74)
Ao 2

x q'n° Ar (| Er(prm) P Ba (') P B2 (0" 1) ),

T, = /dﬁ /dT2 h(t — 1)h(t — To)h(u — 7)h(u — 72)¢* (| EL(pr. ) 2| Ea (0], 72) 7).

These four terms represent our four sources of noise: Tj comes from the randomness of the
ficlds at the detectors due to the fluctuations of the pseudothermal source and scattering off
the target: T, arises from the randomness in the field at the high spatial-resolution detector
beating with the shot noise in the bucket detector; T3 comes from the randomness in the field

at the bucket detector beating with the shot noise in the high spatial-resolution detector;
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and finally, T} is the beat of the shot noises from the two detectors. The most complicated
of these terms is 77, and in fact the methods used to solve the other terms are a subset of
those used to solve T). Therefore, we will show the most detail in the derivation of T, and

show the parallels for the other terms.

A.1.1 Source fluctuations noise term, 71}

To evaluate 77 we want our averaging of the fields to be a jointly Gaussian cighth-order
moment, so that we can use Gaussian-moment factoring. However. the mecasured ficlds
Ei(p1.t) and Es(p.t) are not jointly Gaussian, due to the reflection off of the target. Since
we are using a semiclassical treatment, we directly measure the fields impinging the detectors,
so BEi(p.t) = Er(pi1.t) and Ex(p,t) = E7(p.t), the latter of which we can back propagate
to E5(p’.t) by Eq (2.3).

With that, we find the field average from 77 becomes

0B P10 Pl Pt 7P) = () [t [ans [, [

X (Eﬁz*(Pl-ﬂ)Eﬁz(pl-,T1)E§(P2,TQ)E/5( p3.72) EG(p1.13)ER(pr 13) ES (ps. 7a) E5(ps. 7))
X (1™ (p2)T(p3)T"(ps)T(ps))e” SR (Lo =pal?) o S (L1 =03 ) = 5P (Lt 10" =pil?) 5P (Lt 16 —ps ),

We now have a fourth-order moment in the target surface, and an cighth-order moment in
the fields to evaluate. Both terms are higher-order moments of zero-mean Gaussian random
processes, so we can apply the Gaussian-moment factoring theorem to express them in terms
of second order moments. Since we are using pseudothermal light, only the phase-insensitive
moments matter; the phase-sensitive cross correlation between E5(p.t) and Ey(p,t), as well
as the phase-sensitive autocorrelation for each field. are zero. The same is true for the

surface, which only has a phasc-inscnsitive autocorrclation. Thus,

(T (p2)T(p3)T* (pa)T(ps)) = 8(p2 — p3)d(pa — p5)NT (p2) T (ps)
+8(ps — ps)8(ps— p3) AT (p2) T (pa), (A.3)
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giving us

(E:l o) FIE(P P B mP (o )P = 75 [des [dpiT(pa) T

X [(Eg(Plz 71>E22(P1~, Tl)Eg(Pz-, Tz)Els(Pza TZ)EE(PL TS)E;%(PL T3)E§(P47 74)E3(P47 T4))
+ (E?E(Pla Tl)E;{(plle)Eg(p% Tz)E’s(/M»Tz)Eg(PlyTs)E%(Pla 73)E/§(P4:T4)E§(P27 T4>>

% 6%102'(!7'—117")6—%1”4'(”/_‘0”)]. (A.4)

We now apply the Gaussian-moment factoring theorem to the eighth-order field moments,
setting all phasc-sensitive moments to zcro and applying our DC-block filter, to arrive at
a complicated expression that is a function of the propagated Gaussian-Schell correlation
function in Eq (2.10). In this model the time and space arguments are separable, so we can
perform the time integrations (over u, t, 71, 72, 73, 74) and the spatial integrations (over po,

pi. P, p") separately.

Time integrations Fach time integral is of some function that is a product of correlations
functions and detector responses, all of which are of a Gaussian form. This means that the
integrations, while complicated, are tractable for a computer to evaluate. The end result is
a function of exponentials and error functions, but using our assumption of 77 /Ty > 1 we

can say that crt[T7/Tp] = 1 and exp|—(T7/T)?] = 0, giving us fairly simple results.

Spatial integrations The spatial integrals arc more complex. as the target surface is
involved, and not all of the propagation terms canccled. However, the the coorelation func-
tions are Gaussian, so with a few basic manipulations we can evaluate these integrals. First,
we apply our previously stated assumptions that the the coherence length at the target is
small enough to resolve all features, and the intensity radius is large enough that the average

on-target illumination pattern is approximately constant so that
/dpz T(pQ)elepzlz/aiefimfszQ/pi ~T(p:) /dpg e~lPi=p2*/p, (A.5)
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Second, we define the Fourier transform of the target as T(&) so that

/ dpsT (pa)e™ 70 =P — T (%(p’ - p”)) : (A.6)

Finally, we need to handle the integrations at the bucket detector. For the first eighth-order

term in Eq (A.4), the propagation terms cancel, so we can simply evaluate [, dp’ [ 00" =

A3. However, in the second term, the propagation terms do not all cancel, and leave complex
ko

exponentials that will effect a Fourier transform to the difference coordinates 52 (p’ — p”).

This will leave us needing to evaluate three different functions of these difference coordinates.

First. we have

p3 kU) —p"|? L2 12
/Adp/Adp” e —Agﬁ/due*'z’ O(v. 4a), (A7)
2 2 L™0

where we have employed the normalized difference coordinate v = ppko(p’ — p”)/L, and arc
utilizing the two-circle overlap function and parameter a = /As/ma3 as defined in Chapter
2. There is no closed form of this integral that we could identify, but it is constant for a

given a. so we have defined the normalized parameter I' in Eq (2.26) so that

" _ppkBle -1 5 r
dp' y dp'e 272 = AQ%/T§~ (A.8)
2 2 )

Second, we need to evaluate terms of the form

7o) [ af [ T (S0 = gy ) e Hhe o
. 2 2 ’

To do this we will employ the difference coordinate & = kL—O(p’ — p") and the inverse Fourier

transform definition




to arrive at

d do" T _ p?,ké o' =p"1? 22 p1(p' ~p")
pl/ap/fbp ( pp)) e
21¢12 /9 * ky [A
= T(p1) 4> kof T(E))(pr) » FH e H ()] (pr) + F ! {o <e,2f"\/f) <s>} (p1).
Since F1T(€)](p1) = T(p1) and F e PLlF/2(€)](py) = (1/mp2 )e~121*/20%  and py is small
enough to resolve all features, we have F~[T(&)](p1) x F e L /2(£)](py) = T(p1). Also,

the two-circle overlap function O(&, 2r) is simply the convolution of two circles of radius r

as

Tr20(€,2r) = circ ('5') ('5') (A10)

where cire(+) is the unit-length circle function. The inverse Fourier transform of a circle is a

Jinc function as

wrF 0620 (€)) ) o (121 (A1)

whose width is ~ py and thus resolves the target. This leaves us with

”2“'3 ’ 2k ; " L2
T(p: /dp /dp// < p —p )) e~ 1P =p" e PP =p") _ TQ(Pl)AQF- (A.12)
0

Finally, we need to evaluate [ 4 dp' [ Azdp” |T k” - p” ))[z We again use difference

coordinates and the two-circle overlap function to evaluate this, and define the term A, as
in Eq (2.25) to arrive at

/ dpl/ dpll r[[‘ (@(p/ _ pl/))
Ao A2 L

It should be noted that, by Parseval’s theorem, A% > A%.. with equality when T(&) is very

9

AQII; AL (A13)

narrow. in which case An ~ [d€|T(€)]* = [dp|T(p)|* = A} With the final assumption
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of A%/p% > 30, we can combining all of these terms to arrive at an expression for the field

noise of

AL L2 Ty 2nLT

S N S Sl
\/%p% Azﬂkg Ty Azkgp% (o)

(A.14)

(p1) +

oo (2PN ARt T [ Ay Tio,
' 2 LTy Varp: | Ty

mar

A.1.2 Remaining noise terms

Evaluating the next three terms only involves a subset of the operations needed evaluate
Ty. We again need to back propagate to Fg(p'.t) with Eq (2.3) to arrive at functions of
higher-order Gaussian moments. For 75 and T3 we cevaluate sixth-order Gaussian moments,
and for Ty we have a fourth-order Gaussian moment; all of these can be expressed in terms of
sums of products of the corrclation function in Eq (2.10) by Gaussian-moment factoring. All
of the temporal integrations occur over a products of Gaussians, and can again be evaluated
by mathematical software, such as MATLAB or Mathematica. All of the spatial integrals
can be evaluated with the methods used for 7. With this, we arrive at expression for these

three noise terms as

2P \* P A2 A2 p2
T‘) - 1< L A']"
2 (WQQL> 1T, T(p1) (A.15)
2P\’ P AL A2mp3 [dmAgp? L2
T3 = - — | T Al
8 (77@%) LATy 3 + k%} (p1) (A.16)
2P\’ ¢*n2 A1 Ao/Tpi g
Ty, = = T(p1). A7
4 <7ra%) 4\/§L2T] (p1> ( )

Combining all of these terms, and substituting ay = 2L/kopr. we now can write the
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second moment of the correlation function from Eq (A.2) as

9 2P 4A2qu4n4T0 0 4
(C*(p1)) = ( 2) i7"

way
Al T, A a? TI I ma?
+ 7-'2 F 0 OT
l:\/‘)ﬂ'pL (pl) \/Qﬂ‘p% 471'/42 TO 2 Ao (pl)
2
w_ﬁv_ L % a4y 2
TP TonAgpLT(p DY BT [3 i 47TA2] ()
16\/§P9p%772A1A2L2T0 o) (A.18)

The mean of the correlation function can be found in Eq (2.22), giving us a squared mean of

<Omaf—/“4q”(25)/ﬁﬁ7%m> (A19)

4 B
L Ta;j

Combining this with the sccond moment in Eq (A.18), and substituting the dimensionless

brightness term Z = PTypz /aj, we arrive at to SNR of

_ (C(p1))°
SR (C%(p1)) = (C(p1))?

T A% T Ag 2 Ty 7
17—‘2 01/[ d —17/2(91) % + 1 T%T(Pﬁ

Verpi Ty V2mpt AmAy 12 Ay
”TPL 4 ag :I 2 TOQBPL\/%LH TI
- S By T(pr) ~ 2 T(p1)].
UIAQ (o) + AT [3 47 Ao (1) 16247212 A, (p1) T (p1) ],
(A.20)
which simplifics to Eq (2.28), which we reproduce here:
2 T

SNR = T)(Pl)fﬂ |

—A/ e Traf | Tlpy) 12 | 7i7%(p1) [4 | _af T(p1)ToQpp2 v/ L2
N TV itam, + =5+ Tt [§ + 47;;12] + A

(A.21)

36



A.2 SPDC Ghost Imager

The derivation for the SPDC ghost imager closely follows that of the pseudothermal ghost
imager, so we will provided a less detailed derivation. The deviations come in the generation
of the noise terms, their physical interpretation, and the cross correlation function between
the signal and reference fields.

As before, the SNR derivation requires evaluation of the sccond moment of the corrclation

function

Ty/2 TI/" R R

(C(pn)) = / [ a0 i) (A.22)
17/2 11/2

We can use Egs (3.5) and to write the currents in terms of the detected ficld operators

Ei(p.t) and Ey(p,t) as

(12 ()12 (t)11 (u)1

= gt A2 /dﬁ /d%/dr)/dr / / dp" h(t — 7)h(t — 72)h(w — 73)h(u — 1)

x (L 1'( P1. Tl)El(Pl 1) :t(P . T2) A?( )E (PhTB)El(PLTs)E (p".74) AQ(P”-,TD)-

LD —k

We now use the commutator relationships in Eqs (3.1) and (3.2) to normally order the field

operators as

(EY(pr. 1) Br(pr, ) EN(p s ) En(p. ) EX(pr. 73) Ex (pr. 73) ES (" 7a) B (0", 74))
= <EI(P1 Tl)EzT(PI TZ)EI(M T3)E;(p//,T4)E1(p1,TI) AQ(PI, )E (p1.73)Ea(p”, 74))
X (E(p1. 1) B30 72) Bl (p1. 1) Er (o1, 1) Ex (p1. 73) En(p, 73))8(p" = p")d(m2 = 7a)
x (E](pr. 1) EL(p. 72) EN(p", 74) Es(p', 72) Ex(p1, 75) B (9 74))8(1 — 73)
x (E{(p1.71)ES(p'. 72) Ev(pr, 73) Ex(p”, 74))0(p = p")6 (72 — 74)0(11 — 73)

Using Eq (3.6) we can write this in terms of the propagated field operators E’g and E}z

Since the terms are norinally ordered, and the vacuum terms are zero mean and commute
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with each other and the field operators, this is simply

(El(pr. 7)) Er(pr, 1) BN, 72) Ea(p, 72) EY (1, 73) Ex(pr, 73) EN (9", 74) Ea(p”, 7))

P1.71) A;T(Plsz) Ag(PlaTs) A;(P”:74)E}3(P17Tl)Eér(Pl:Tz)E;z(PlaTS)E/T(P”-/7’4))
T

) ;(Pl77~)E}a(Pla”'d) 'fe(Pl:Tl)Eﬁz(PlaTe»)EAIT(P”-/T4)>5(Pl —p")o(r2 — 1)
x 7’ Ag P1.T1) A?(P':Tz) A?(P"»Tzz) Aé(P’ T2>ER( P1, Ta)E}(P":H))(S(Tl — 73)
JE7 (P 72) ER( JE7(

P, 74))5(0 - pP )5(72 — T4)d(m — 73).

. . .« A Y
We again have the correlation second moment as a sum of four terms, (C*(p1)) = 11 +

15 + 15 + Ty, where

T, = /dTl /de) /dT3 /du/ dp’ / dp" h(t — 1)h(t — To)h(u — 73)h(u — 74)q"'n" A3
Ag P

x (ER(pr.m) EL (P ) EZ(pr. ) EX (0", 72) Epr. 1) B (0 72) ER(p1, ) B (7)),

T, — /d /d%/dm/)dp (£ = m)h(t = 1B — 73)h(u — )by A2

Pl TI)E P, T’))ET (p1. Ts)F (p1. Tl)E ( )E (p1.73)),

Ty = /dﬂ/d")/dﬂf dp/ dp" h(t — 1) h(t = T2)h{u — 1 )h(u — T1)g'n Ay
AZ 2

X <ER(plaTl)ET<p : TE)E?‘(P aTi)ER(Pbﬂ)ET(P 772>ET(PH» 1)),
T, = /dﬂ /de h(t = T)h(t = 7)h(u = 7)h(u = 72)g*n’

X (Eg(Pth)E;(P,:Tz)EA}z(Phﬁ)EAéﬁ(P’:Tﬂ)

We now have four terms which can be described as arising from: the randomness in the
fields from the source fluctuations and scattering; the source randomness in the reference field
mixing with the fluctuations from the measurement of the signal field; the source randomness
in the signal field mixing with the fluctuations from the measurement of the reference field;
and the beating of the randomness from the two quantum measurements of the Gaussian

field operators. For simplicity, we will evaluate these terins separately
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We first back propagate E4(p,t) to Egx(p/,t) by Eq (3.3), making our noise terms a func-
tions of normally ordered Gaussian moments, to which we can apply the moment factoring
theorem to obtain an expression which is a sum of the product of second order moments.
In the classical case, the signal and reference fields had phasc-insensitive cross and auto
corrclations given by Eq (2.6). For the SPDC ghost imager we have a phase-sensitive cross
corrclation given by Eq (3.7) and a phasc-insensitive autocorrelation for each ficld given by
Eq (3.8). These propagate into the far field as Eq (3.9) and (3.10). After performing Gaus-
sian moment factoring our terms are the product two different correlation functions, one of
which is complex. However, after some additional manipulation the temporal and spatial
terms can be separated, and evaluated as they were for the classical case. Substituting in
our dimensionless brightness term Z. the first term 77 evaluates to

16¢*n* AZAZTA T AL Ty 1 1
I - 2 2 (a T2(—
VT e Ve T\ ,/—271 Tz ) TP

A Ty I ( 1 > L, ]
+ 27°T T (-
,/_QWLTI Akl p? \/_ 7 %12 ) Mnki? (=p1)

The remaining noise terms arc evaluated in the same manner, giving us

164> AT ALT? < 1 )
2= 2T 9 v +1)T(= :
L TTipt \2v2rT (=p1)
16¢*n> A, AZT? ( 1 ) [4 L? }
Ty = -+ T*(—p1).
s O, =yl ERerry I
4,2 2
g " A1 AL} 1
2 (s 1) T
2m2 L2 T5Trpy 2V 21T

Combining these terms, and substituting ay = 2L/kypr. we have an expression for the second
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moment of the correlation function

~ 16q4n4A2AgI4 TO [ A/ TI 1 2
o) = L 2 (1) TR(-
(C*(p1)) TIATS P Ty onpt | To \2v2r1 (—p1)
A e TT ( 1 )2 mal ( 1 ) T (—p1)L2
+ tos o= 1 T (=p1) + +1
V2mpidrAs - To 2 \2¢/27T Ay (=) 2T AyIn
2T (— 2 _ 27 2
+( 1 +1) mpr T (=p1) [fl_+ a? }+< 1. +1> T(—p)V/7L TOQBpL]
2vert A 227 T 16324, AsT2n2

3 47 AQ

The mean of the corrclation function is in Eq (3.16), and after substituting in our bright-

ness term Z, we have a squared mean of

16g'n" AT AST" ! ’
= - A2

Combining this with our second moment, and substituting I = (1/(2v/27Z) + 1), we arrive

at the SNR expression in Eq (3.18), which we reproduce here:

T2
TO]I

SNR = =

‘Al‘r+:1'(7)??1_[21 +zl I'ra? 2+ L2 + P L_l_%_ a2 + VaL2ToSigp? I
V2rpi T(p1)? 1 To 2427 (p1)? AInT(p1) — AiZn |3 ' 4mdz | 16V2A AT T (1)

(A.24)
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