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Chapter 1

Introduction

In this thesis we explore the viability of using ghost imaging for stand-off sensing. To

this end we characterize the image quality of such systems. and compare the results to the

image quality of an equivalent laser radar system. We connect our work back to previous

theory developed for transmissive ghost imaging, as well as to experiments done in reflection.

Finally, we explore ways to improve the quality of reflective ghost imaging. The most

promising of these approaches is the application of compressive sensing. which leverages the

structure of natural images to reduce image capture time while improving image quality.

Ghost imaging exploits the correlation between two light fields to create an image that

neither field alone could provide. We denote these two fields the "signal" and "reference":

the signal field interacts with the target, after which a single-pixel "bucket" detector makes

a power measurement of the field; simultaneously, the reference field's transverse power dis-

tribution is measured with a high spatial-resolution detector. which is usually a scanning

pinhole or a CCD array. The signal and reference fields have some cross correlation, de-

termined by the choice of source, so measuring the reference field provides some knowledge

of the field illuminating the target. Since the power measurement on the signal arm is a

function of the target and the field illuminating it. we are able to reconstruct the target by

correlating the power measurement with the output of the high spatial-resolution detector.

This imaging technique has become known as ghost imaging because the image information



is contained in the correlation between the two measurements: neither measurement alone

contains sufficient information to reconstruct the target.

The first ghost imaging experiment used biphoton pairs for the signal and reference

fields, which were generated by spontaneous parametric downconversion (SPDC) and post-

selection [1]. Because biphotons are entangled states-with a phase-sensitive cross correlation

between the signal and reference fields stronger than allowed by classical physics-for which

the quantum theory of photodetection is needed to calculate the measurement statistics. it

was initially thought that ghost imaging was a non-local quantum phenomenon. However.

the non-classical nature of ghost imaging was called into question when experiments were

later performed using a classical pseudothermal light source [2, 3]. In this setup laser light

is passed through a ground-glass diffuser, after which it is divided by a 50 50 beam splitter

into identical signal and reference fields with a phase-insensitive cross correlation.

Gaussian-state analysis has enabled a unified treatment of biphoton and pseudothermal

ghost imaging that shows the image formation process is one of classical coherence propaga-

tion, with high contrast in Dc-coupled biphoton ghost images being the principal ghost-image

signature of that non-classical source [4]. In particular, identical statistics for pseudothernal

ghost imaging result from the use of quantum photodetection theory, in which both the light

beams and photodetcctors are treated quantum-mechanically; and semiclassical photodctcc-

tion theory. in which the light beams are treated classically but photodetectors inject shot

noise on top of any fluctuations in the illumination. A thorough review of these considera-

tions can be found in [5]. For our purposes. it suffices to note that we can-and will-use

semiclassical photodetection theory when dealing with classical sources.

To date, Gaussian-state analysis of transmissive pseudothermal ghost imaging has pro-

vided expressions for its spatial resolution, image contrast and signal-to-noise ratio (SNR)

behaviors; i.e.. a complete characterization of its performance [4, 6]. However, one of the

more interesting potential applications of ghost imaging is stand-off sensing, in which the

bucket detector observes the target in reflection. not transmission. Preliminary table-top ex-

periments have demonstrated the feasibility of this approach [7, 8], but there has been little



exploration of the statistical characteristics of these images. Developing that theory within

the Gaussian-state framework, which is a focus of this thesis, must confront an additional

complication not seen in previous work: viz., the speckle induced by reflection from rough-

surfaced objects. In particular, we shall report expressions for the spatial resolution, image

contrast. and SNR of reflective ghost imaging of speckle targets for classical and non-classical

sources in Chapters 2 and 3, respectively. These will be compared with the corresponding

results for the transmissive case. in which there is no target-induced speckle. In Chapter 4

we will use this framework to obtain performance results for the reflective form of computa-

tional ghost imaging [9, 10], in which the reference beam is removed. Then. in Chapter 5.

we will provide a preliminary stand-off sensing performance comparison between reflective

ghost imaging and a conventional direct-detection laser radar.

The effects of turbulence on transmissive ghost imaging have been explored experimen-

tally [8] and theoretically [11]. As most practical applications of reflective ghost inaging will

require propagation through atmospheric turbulence, in Chapter 6 we extend our analysis

to include turbulence on all paths. The effects of turbulence on image resolution will be

explored for classical, non-classical, and computational reflective ghost imaging, as well as

for a laser radar system. In Chapter 7 we explore ways to improve the image quality of

reflective ghost imaging. The first of these methods is to employ multiple co-planar bucket

detectors on the signal arm; since the target-induced speckle decorrelates with transverse

separation in the detector plane, each bucket detector observes different speckle behavior.

allowing us to average out its deleterious effects on the SNR. The second method is to use

multiple sources at different wavelengths. This again seeks to average out the target-speckle

effects: if the wavelengths are far enough apart, the returns associated with each source have

uncorrelated speckle statistics. Finally, we extend the compressive sensing methods used in

transmissive imaging [12] to reflective imaging. Compressive sensing allows for reduced im-

age capture time and higher quality reconstructions when the target is sparsely represented

in some basis [13, 14]. Chapter 8 concludes the thesis with a brief summary of results and

suggestions for further research.
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Chapter 2

Ghost Imaging with Pseudothermal

Light

2.1 Theoretical Setup

In stand-off sensing, targets will most likely be separated from the source by distances on the

order of kilometers. This indicates that high-powered classical sources might be necessary.

While we also consider low-flux quantum sources in Chapter 3, we start our analysis with

the system shown in Fig. 2-1, which utilizes pseudothermal light to perform reflective ghost

imaging. A continuous-wave (cw) laser beam is passed through a rotating ground-glass

diffuser followed by a 50 50 beam splitter to produce identical, spatially-incoherent signal and

reference beams whose temporal bandwidths are much lower than those of the single-pixel

(bucket) and high spatial-resolution (CCD array) detectors. The signal beam illuminates

a rough-surfaced planar target at distance L from the beam splitter, and some of the light

reflected from that target is collected, after L-m propagation, by the bucket detector. The

reference beam directly illuminates the CCD array which, for theoretical convenience. we

have placed L-in away from the beam splitter.1 The photocurrents from the bucket detector

'This assumption implies that we will form a 1:1 ghost image. In an actual implementation of reflective
ghost imaging the CCD array would be in the focal plane of a lens located near the transmitter and we
would obtain a minified ghost image.
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Figure 2-1: Setup for pseudothermal reflective ghost imaging.

and each pixel on the CCD are sent to a correlator, whose output for the CCD pixel located

at transverse coordinate pi is

1 pi'/2

C(pi) = dt ii(t)'2 (t), (2.1)

where T, is the averaging time and we have suppressed an L/c time delay in i1 (t) that is

needed to account for the delay incurred by the light returning from the target.

The configuration and notation we are using parallels the semiclassical treatment of

transmissive ghost imaging in [9] with the principal distinction being that in the transmissive

case the bucket detector would be behind a transmission-mask target L-m from the signal

source, whereas here that target is viewed in reflection. We have also switched the labels

for the signal and reference fields; in [9] the reference field illuminates the target, while the

signal field goes to the high spatial-resolution detector.

All the fields shown in Fig. 2-1 are complex envelopes about center frequency we of



linearly-polarized light fields normalized to have V/photons/m 2s units as functions of their

transverse coordinate vectors and time. As a result, under the assumption of shot-noise

limited detectors with quantum efficiency q. the photocurrents from the bucket and the

CCD can be written as

im(t) Jdr [qPm(r) + A m()] h(t - r), for m = 1. 2. (2.2)

Here: Pm(t) =A fdp Em(p, t)i 2 is the photon flux on the circular active region Am of

detector n; q is the electron charge; Aim(t) is the shot noise from detector m; and h(t)

is the detector's baseband impulse response, normalized to satisfy fdt h(t) = 1. Phys-

ically, qrPm(t) is the conditional mean of im(t), given the illumination, so that Aim(t)

is the photocurrent fluctuation conditioned on knowledge of the illumination. Note that

given the photon-flux waveforms P1 (t) and P2 (t), the shot-noise currents Aii(t) and Ai2 (t)

are statistically independent, zero-mean, random processes whose correlation functions are

(-Aim(tI)Aim(t 2 )) = q2 Pm(ti)(ti - t 2 ).

The fields that determine the preceding photon fluxes are found from diffraction theory.

applied on three separate patlis: the reference path (R), from the source to the high spatial-

resolution detector; the signal path (S). from the source to the target; and the target-return

path (T), from the target to the bucket detector. In the ensuing work, we will denote fields

that have propagated L-rn on path m with a prime; i.e., if we start with some field Em(p', t),

after L-m propagation it becomes E' (p, t) as

E' (pIt) dp' Em(p'.t) k .eko(L±jpp'12 /2L) m = R. S, T (2.3)

where ko = wo/c is the wave number. and we have suppressed time delays. The fields

are defined as follows: ER(P, t) is the reference field at the source. and EI(p, t) is the

field illuminating the CCD: Es(p. t) is the signal field at the source, and E'(p, t) is the

field illuminating the target; Er(p, t) = E'(p, t)T(p) is the target-return field. which is



the propagated signal field immediately after reflecting off a target 2 with field-reflection

coefficient T(p), and E+(p, t) is the field illuminating the bucket detector. Since we are

using the semiclassical theory of light, each photodetector is taken to directly measure the

classical field impinging it, so E1(p, t) = ER(p, t). and E2 (p. t) = El (p. t).

Whereas in transmissive ghost imaging it is ordinarily the case that the target's field-

transmission coefficient is assumed to be deterministic, the targets of interest for reflective

ghost imaging will have microscopic surface variations-from a nominal, smooth surface

profile whose standard deviations can greatly exceed the illumination wavelength and whose

transverse correlation scale can be sub-wavelength. When such a surface is illuminated by

laser light it gives rise to laser speckle in the target return, and a reasonable statistical model

for that behavior is to take the target reflectivity to be

T (,p) = T(p)e2ikoAz(p). (.

where the height variations Az(p) are modeled as a zero-mean, real-valued, Gaussian random

process with a transverse correlation on the order of a wavelength. Thus T(p) is a zero-mean.

complex-valued Gaussian random process that is completely characterized by the correlation

function [15]

(T*(pi)T(p 2)) = A T(PI)6(p1 - P2), (2.5)

where Ao is the center wavelength of the illumination and T(p) is the target's intensity-

reflection coefficient. which is nonrandom and the quantity that we are seeking to image

with the Fig. 2-1 setup.

In order to proceed further, we need to specify the source-field characteristics. Following

the Gaussian-state analysis of Erkmnen and Shapiro [4, 6, 9], we shall assume that Es(p. t)

and ER(p, t)-the identical outputs from the 50-50 beam splitter in Fig. 2-1-are zero-mean,

coniplex-valued Gaussian random fields that are completely characterized by their common

2 We have assumed a stationary target, so that its field-reflection coefficient is constant in time.



cross-spectrally pure phase-insensitive correlation function per the Gaussian-Schell model as

(EP(pi, t)Em(P2 . t2 )) = 1 2)/a -p -2 P /2 2-(e2-t 1 )2 /2T0 C2  f, m c {R, S}. (2.6)
lraa

with photon-flux P, e-2 intensity radius ao. coherence length po, and correlation time To.

The preceding setup fully specifies all that is needed to compute the spatial resolution.

image contrast. and SNR of the pseudothermal reflective ghost image. Before doing so.

however, let us introduce one final condition. We shall assume that the CCD pixel active

region. A1 , is sufficiently small that IE1(p, t) 12 is essentially constant over each pixel, allowing

us to use P1(t) = AiEi(p, t)12, where A1 is the area of A1. This condition ensures that the

spatial resolution we obtain is limited by the field statistics, not by the CCD's pixel size.

2.2 Spatial Resolution and Image Contrast

The spatial resolution and image contrast of the pseudotherinal reflective ghost image are

properties of the ensemble-averaged photocurrent cross correlation, i.e., Eq (2.1) averaged

over the shot noise and the fluctuations in the fields that illuminate the two detectors. Those

field fluctuations arise from the randomness imposed by the ground-glass diffuser and, for the

field illuminating the bucket detector, the target's surface roughness. It is easy to see that

the fields illuminating the detectors are zero-mean random processes that are statistically

stationary in time, and thus from Eq (2.2) the ensemble-averaged ghost image satisfies

(C(p1)) = (ii(t)i2(t))

= 1r A1 drI dr2 h(t - ri)h(t - 72 ) dp' (I|E'~1 ri|1g(' 2)) (2.7)



Back propagating with Eq (2.3) to the field illuminating the target, the intensity correlation

becomes

(IE' (pi.T1)I2 |E'( p', r 2)|2)k- L2 Jdp2 Jdp3 eika(lp'-31-L'-p2| 2 )/2L

x (El*(pi, r1)E'*(p 2 , T2 )E'1 (pI. Ti)E'(p3- T2 )) (T*(p 2) T(p3 )), (2.8)

where we have exploited the statistical independence of E,, (p. t) and T(p), i.e.. the fluctua-

tions due to propagation through the ground glass and those induced by the target's surface

roughness. Equation (2.3) shows that E, (p, t), for m = R. S, is a linear transformation

of the zero-mean Gaussian random process E,, (p, t); hence it too is a zero-mean, Gaussian

random process. Thus, as in the Gaussian-state analysis of transmissive ghost imaging [4],

we employ Gaussian moment-factoring to write the fourth-order field moment in terms of

second-order moments. Making use of Eq (2.5) to evaluate the surface moment, and for A 2

being the area of A 2, Eq (2.8) becomes

(ERI(p1, r I12|EIT (p'. 72)12)

= Jdp2 T(p 2) [(|Ej(pi, i) 2 )( E' (p2, 72)| 2 ) + I(E*(pl, T)E'(P2, 2))|2] (2.9)

which clearly indicates the role of photon-flux correlation in ghost image formation.

Pseudothermal ghost imaging is performed with spatially incoherent light, i.e., po < ao

holds in the source's Gaussian-Schell model spatial correlation. Moreover, stand-off sensing

pseudothermal ghost imaging will be performed in the far field, for which koaopo/2L < 1

prevails. Following Erkmen and Shapiro [5], we can propagate the Gaussian-Schiell correlation

function in Eq (2.6) into the far field and obtain

(E'*(P1. t1)E' (P2, t2)) =F 2 C (if+pT/a Lp /p Le-(te22 (2.10)

for e. m E {R. S}, with aL 2L/kopo and PL = 2L/koao being the new intensity and

coherence radii. respectively.



To reduce Eq (2.7) to a form in which we can easily assess the reflective ghost image s

spatial resolution and image contrast, we need to define detector's impulse response h(t).

For now, let us take this to be a DC-coupled Gaussian of bandwidth QB, 3 i.e..

h(t) = (2.11)

Because we have assumed that the detector bandwidth is sufficient to follow the temporal

behavior of the light emerging from the ground glass, we have that QBTO > 1. This lets us

simplify the evaluation of the temporal integrals and obtain

(C(pi)) = 2 a d 2 T(p2)e2(IP+1 2±P-)/al [1 + e-Lpi-p2t/pl) (2.12)
L aI

When the intensity radius aL is nmuch larger than the target's transverse extent, so that the

entire target is uniformly illuminated on average, we get our final form for the ensemble-

averaged photocurrent cross correlation.

q 2TI2 AIA42 2P 2 12/p
(Cpi 2 r 2 Jdp2 T(p 2)[+ e-[I i-P2|/P2 1. (2.13)

L waL

Equation (2.13) shows that the ensemble-average photocurrent cross correlation consists

of a featureless background term.

Co q 2 AA 2  ) 2 JdP2 T( 2 ). (2.14)

plus the image-bearing tern,

C((1p) = dP2 T(P2)e IP . (2.15)

Resolution The image-bearing term contains the target's intensity-reflection coefficient

T(p2) convolved with a Gaussian point-spread function (PSF) that limits the spatial resolu-

3 The frequency response associated with this impulse response is H(Q) f dt h(t)e j0t = e-2 2 3.



tion to the target-plane coherence length PL = AoL/7rao. This is the same spatial resolution

that was previously found via Gaussian-state analysis for far-field transmissive ghost imaging

with a pseudothernial source [4]. Indeed, the only difference between Eq (2.15) and the cor-

responding result for the transmissive case is the factor A 2/L 2 that appears in the former.

In transmissive ghost imaging all the light that passes through the target is collected by

the bucket detector. but the quasi-Lambertian nature of the rough-surfaced target combines

with the stand-off measurement by the bucket detector to introduce the solid-angle subtense

factor A2/L2 < 1 in Eq (2.15).

Contrast Turning now to the image contrast implied by Eq (2.13). we will employ the

contrast definition from [4]. viz.

m inax7z[C(p1)] - inin7z[C(pi)] (2.16)
Co

with the assumption that the target is entirely contained within a region R centered at the

origin in transverse coordinates and having a diameter that is much smaller than aL. For

simplicity. we will also assume that PL is small enough to resolve all features in the target's

intensity-reflection coefficient. so that

dp2 T(p 2)e P1 2 / 7rpT(p1) (2.17)

and we will take maxR[T(p1)] = 1. min- [T(p1)] = 0. Thus

C ~ rp 2 /AT, (2.18)

where AT -f dp 2 T(P2) is the effective area of the target. Thus C ~ 1/number of on-

target resolution cells. This image contrast coincides with what was previously derived for

DC-coupled transmissive ghost imaging in far-field operation in [4].



2.3 Signal-to-Noise Ratio

The featureless background that we encountered in the preceding section can be eliminated

by means of AC-coupling one or both of the photodetectors in the Fig. 2-1 setup. as has

sometimes been done in pseudothermal ghost-imaging experiments [16]. SNR analysis for

transmissive ghost imaging is simplified substantially by inclusion of such AC-coupled detec-

tors [6]. so we shall take the same route here by assuming that the photodetectors' baseband

frequency response include a DC block. Specifically, the detectors' frequency response is now

modeled by

H BG = -2n2/nQ2 -292/Q2HB (Q) =e BQ2/ _ e- NQ/~ (2.19)

where the DC-notch bandwidth, flyN. is much smaller than both fQB, the detectors' high-

frequency cutoff, and 1/TO, the source bandwidth.4 With this AC-coupling we have that the

average photocurrent cross correlation is background free, viz.. Eq (2.13) becomes

q 2q2 AIA2 (2P )2IIP 2p

(C(p1)) =qL A1 21 dp 2 T(p 2)e' 2 /PA. (2.20)

Thus it is appropriate to define the ghost image's SNR at the image point pi via

(N, C(pi))2 (C (p 1))2 (.1SNR (.1
Var [C(pi)] (C 2 (p1)) - (C(p 1 )) 2 '

i.e, it is the ratio of the squared strength of the image component of the photocurrent cross

correlation divided by the variance of that cross correlation.

Equation (2.20) provides an expression for the numerator in Eq (2.21) and the second term

in its denominator. However, to simplify our results. we shall assume that PL is sufficiently

small to resolve all features in T(p), reducing Eq (2.20) to

A1A2q2 2 (2P) 2 T() (2.22)
(CQpi)) = L2 7a 2 2(1) (222

L TraL

4 Because we have assumed a narrowband pseudothermal source, QNTo < 1 is a more stringent condition

than QN < QB-



This leaves us with the formidable task of evaluating

1 ,e1/2 r'i /2
(C2 (p1)) = dt du (ii(t)i2 (t)iI(u)i2(u)). (2.23)

71 -T 1 /2 J-T 1/2

which requires us to determine an eighth moment of the fields and a fourth moment of the

target's field-reflection coefficient. Fortunately, Gaussian-moment factoring can be applied

to both of these moment evaluations, but the Fresnel-propagation kernels that canceled out

in finding the average photocurrent cross correlation do not do so here. We can simplify the

analysis by using the dimensionless difference coordinate v = pLko(p'- p")/L, where p' and

p" are coordinates at the bucket detector, and defining

A = jdpT2 p)
A - J 2 , pL (2.24)

F = dv e v12/20(v, 4a). (2.26)

where O((. D) is the dimensionless version of the two-circle overlap function for circles of

diameter D.

O (0 D ) = CO co 1D , < D ,( . 7

0, else

a = VA 2/-ra', and T($) =F[T(p)](() is the Fourier transform of the target. F was

normalized so that it approaches one for very large receiving apertures; i.e., lin,,,, F = 1.

Next, we assume that A'r/p2 > 30, which is equivalent to saying that the ghost image

consists of at least 10 x 10 resolution cells. The full derivation under these conditions is



shown in the Appendix, with the resulting SNR being

SNR= 2 T

FITA+ T2_ -9 _ + T) P["4 + ± + TP1)TOo L2

p2ip +7 1 1 0 2A2  711 A2  A 1 L 3 4,A 2  16v2Aii 2 I 2 A 2

(2.28)

where I= PTop 2/a2 is the source brightness in photons per spatiotemporal mode.

Equation (2.28) was written in its full form to allow for any size bucket detector. This

is useful when looking at small bucket detectors, such that A2 -> 0; even for high-brightness

illumination and a long integration time. we are limited in such situations to SNR < 1

because there is no averaging of the target-induced speckle. However, for a lensed ghost

imaging system it is reasonable to assume that the area of the collecting lens in front of the

bucket detector is at least as largc as the area of the source beam, or A 2/7ra! ;> 1. In this

regime, we can simplify Eq (2.28) to

T2(
SNR-2 T PA'r T1 7ra6 T(pi) L2  v4rp72(p1) LT(p1)ToQBpL L2+Tp1)To 2A2 + + 3Air + 16xA 1r 2I2 L

(2.29)

The terms in the noise denominator of Eq (2.29). which originate from different, comnbina-

tions of field variations and shot noises, have important physical interpretations. From left

to right in that denominator we have: the noise contributed by target-plane speckle from

the pseudothermal illumination; the noise contributed by the speckle on the bucket detec-

tor arising from the target's surface roughness; the beat noise between the pseudothermal

speckle on the CCD pixel and the bucket detector's shot noise; the beat noise between the

CCD pixel's shot noise and the pseudothermal speckle on the bucket detector; and the beat

noise between the shot noises on the two detectors. From here it is of interest to look at the

low-brightness (I < 1) and high-brightness (I > 1) SNR asymptotes. These are given by

16&/ Tj A1ry2 I2  A2SNRL = T(pi) . (2.30)
V7TO QBOp L(2



and

SNR A- T (2.31)
_AT -2 7( T, F zraO

2rp2 P1 T 2A2

respectively.

The low-brightness SNR is dominated by the beat noise between the detectors' shot

noises. It coincides with the low-brightness SNR found for transmissive ghost imaging [6],

except for the following two differences: the reflective case has the target's average intensity-

reflection coefficient, T(p1), appearing in lieu of transmissive target's |T(p1 )|2; and the

reflective case includes the solid-angle scaling factor. A 2 /L 2 , previously encountered in our

comparison of the these ghost imagers' spatial resolutions.

The reflective ghost imager's high-brightness SNR asymptote is controlled by the two

speckle terms from Eq (2.29), i.e., the speckle arising from the pseudothermal source's spa-

tial incoherence and the speckle arising from the target's surface roughness. Neither speckle

noise can be said to universally dominate the high-brightness SNR asymptote. as their rel-

ative strengths are governed by both spatial and temporal factors. We need to look at two

limiting cases: when the integration time is short enough that the source's spatial incoherence

dominates the noise, and when the integration time is long enough that the target-induced

speckle dominates the noise. These short integration-time and long integration-time, high-

brightness SNR asymptotes are

SNRH. short-Tj 27- L T2 (p1 ), (2-32)
To A'

and
2 A2

SNRH, long-Tj -A2 (2-33)

Here we see the short integration-time. high-brightness SNR for reflective ghost imag-

ing equals the high-brightness SNR for transmissive ghost imaging with T2(p1 ) appearing

instead of |T(p1 )|4. This agreement is to be expected, as both of these SNRs are limited

by the speckle created by the pseudothermnal illumination. However, as the integration time



increases, the high-brightness SNR for the reflective case saturates at the value given by

Eq (2.33). Here the SNR is limited by the target-induced speckle. Because we have assunmed

a stationary target whose field-reflection coefficient is constant, no amount of post-detector

integration will reduce its speckle noise, and SNR saturation occurs. Furthermore, this effect

can be severe: for A 2 /7ra! = 1 we find SNRH,1OngI' = 3.266, and for A 2/7ra2 = 2 we have

SNRH,longT, = 5.54. So, for realistic stand-off sensing, the SNR will be limited to single-digit

values if no further measures are taken to average out the target-induced speckle.
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Chapter 3

Ghost Imaging with Non-Classical

Light

3.1 Theoretical Setup

Our analysis of reflective ghost imaging in Chapter 2 focused on a pseudotherial light source

with classical phase-insensitive correlation between the signal and reference fields. This setup

was chosen because we felt it most closely resembled a system that could be reliably con-

structed for experimentation. However, it behooves us to consider alternative light sources.

especially those with quantum entanglement between the signal and reference fields. In this

chapter we derive the resolution. contrast, and SNR for ghost imagers with phase-sensitive

correlation between the signal and reference fields. We work within a Gaussian-state frame-

work as done in [4]. exploring correlations ranging from the classical limit up to the quantum

limit. But first. we need to reframe our setup in terms of quantum mechanics, as shown in

Figs. 3-1(a), 3-1(b), and 3-1(c).

We start by replacing the signal and reference fields at the source with their associated
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Figure 3-1: The setup in Fig. 2-1 is reframed in terms of quantum mechanics. The source
is changed, the classical fields become field operators, and we have to inject vacuum at the
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field operators Es(p. t) and ER(p, t). These fields obey the commutator relations

[Ef (pi, t1), Em(p 2, t 2)] -0, (3.1)

[Edpi, t), E(p 2. t2)] =o,m6(pi - p2)6(ti - t2), (3.2)

where f, m E {S, R. T}. The propagation of the classical fields in Eq (2.3) becomes its

operator counterpart

I koeiko(L+pp' |2 2L)
Em(p~t) - dp'Em(p'.t) i2rL for m - R, S,T. (3.3)

The signal and reference field operators have the same basic interpretation as their classical

counterparts, i.e., having the statistics of zero-mean Gaussian random processes. but the

target-return field description has changed. In order to preserve the field conuntator re-

lations in Eqs (3.1) and (3.2), we have to inject vacuum to compensate for the loss at the

target. as shown in Fig. 3-1(c) and modeled as

ET(p t) = E' (p.t)T(p) + vacs(p.t)/l - T(p)|2 . (3.4)

where Evac.S(p, t) is a vacuum-state field operator.5

The photodetectors can now be thought of as making a measurement of a quantum field

operator. Since we are dealing with sub-unity quantum efficiency detectors, we have to inject

vacuum-state field operators to maintain the field commutator relationships at the detectors.

as shown in Fig. 3-1(b). Thus, our photocurrent is a measurement of the quantum operator

I(t) = q dT dpE.(p.T) Ex(p. T)h(t -- ) for x -1.2, (3.5)
J JA A3-5

'Strictly speaking, this expression requires |T(p)1 < 1 for all p. which conflicts with the statistics we
have assumed for the field reflection coefficient. However, the A2/L angular subtense factor that we will
encounter on the target return will make our statistics a reasonable approximation for the detected field
operator. Also note that the vacuum-state field operator will not contribute to the bucket-detector output.



where

E7(p. t) - VI E (p. t) + y1 - 77 vacm(p, t). (3.6)

and x - 1 for m = R, and x = 2 for m T. For this treatment our source will be an

SPDC, whose output is Gaussian-state light with a phase-sensitive cross correlation between

the signal and reference (signal and idler) fields given by [5, 6]

I I ~2P (p 2
(ER(pit)p, t2)) = 2 4+4)0

The fields will be taken to have no phase-insensitive cross correlation, no phase-sensitive

autocorrelation, and a phase-insensitive autocorrelation given by

(E((p1, t1)E ( P 2 ,-t2)) =2e 2 t 2P2 )/a P1-p2/2pge-(tu t1
2/p2  m =R, S. (3.8)

Tra5

Looking at the Gaussian-state cross correlation function in Eq (3.7) we see two separate

correlations. In the low-brightness limit the second term becomes dominant, and the state

can be approximated as a biphoton state with a correlation much stronger than the clas-

sical limit. Conversely, in the high-brightness limit the first term dominates, and the light

approaches a classical state. with the correlation being the same as for the Gaussian-Schell

model in Chapter 2. Equation (3.7) captures this full quantum-to-classical behavior, allowing

us to say that at low-brightness we have an entangled biphoton state, and at high-brightness

we have a classical state with phase-sensitive cross correlation between signal and reference

fields.



3.2 Resolution and Contrast

To evaluate the resolution and contrast, we follow the same procedure as for classical light;

i.e.. we look at an ensemble average of the product of the photocurrents as

(C~p1)) = i Z~2(t))

= q2 A1 dJ1 dJT h(t - T1)h(t - T2) jdp' (E4(p 1 , T) (p'., T 2)Z1 (p ,7 1 )$ 2 ( p', T2)).

Substituting in Eq (3.6) and recognizing the independence of the zero-mean vacuum fluctu-

ations from the field fluctuations, we have

(E'(pi, T1)E k(p', T2)Zij(pi. T1)$k2(p', T,2)) = r/2(E" (p1,ITE 715 ( p', 72)5 ( pI T1)$ p',))).

From Eq (3.3) we then find that

(Z( p, ) Ej (p', T2)E'(p1,T1)E(p'.T2)) = Jdp2  dp 3 eiko(P P32p 1 -p 2 )/2L

x(E '(p 1. T1)E (P2 -) 2E' (pi T1)E' (p3, T2,)))(T* (p2)T(p3)).

once again leaving us needing to evaluate the fourth order field moment after L-meters of

propagation., as well as the second order target-surface moment. The target moment is

treated in the same manner as it was for classical illumination, and is thus evaluated with

Eq (2.5). Since our fields are normally ordered, and we have Gaussian-state light, we apply

the Gaussian-moment factoring theorem to arrive at

(E'(pi, T1)E(p t )E(pi, T1)El(p', T2))

- dp2 T(p 2 ) [|59(pi. T1)| 2)(|$s(P 2 , 72)12) + |(E(p1, T1)E'(P 2 , T2))|12

which is similar to the form we found for pseudothermal light, except that we have a phase-

sensitive cross correlation in lieu of a phase-insensitive cross correlation. To finish the eval-



uation, we need to propagate the phase-sensitive cross correlation and phase-insensitive

autocorrelation L meters as follows:

(Ek'(pi, t 1)E'(p 2, t2)) ( 2Pe) e 2 e1P2j2 e-1I1+P2I/2pL
S 7raf f

x )e(|Pi+2± /ao 6 (t2-I) 2/2o + i 2 e( 2+1p2 J 2 )/2ag (t2-t,)2/TJ (39)
2 7) PTp2

and

(P 7(i ti)E', (P2, t2)) = -2e 2e-( (P2IP12)/alaP1-P2/2pig(t2-ti)/r , (3.10)
7aL

for m = R, S. We can now evaluate the ensemble average of the correlation function, once

again assuming that the on-target average illumination pattern is wide enough that it is

essentially uniform across the target. With that, we find that the mean of the correlation

becomes

q 2rTI2 A1 Au 2P )2 1p

(C(pI)) - j2 < Jdp2 T(p2) I + e-IP+ 2 /PI (+ 1j (3.11)

where once again I = PTop2/a2. As was done in Chapter 2, this can be broken into the

background term

q2 72 AIA 2  2P 2
Co L2  ( a ) JdP2T(0). (3.12)

L TraL

and the image-bearing term

q2r 2 A1 A2 (2P 2 2 /P(
C1(P1) = 2 2 dP2 T(P2)Ikp 2+P2 /i +. (3.13)

L TaL 2 v_2 I

Resolution Comparing this to our results from pseudothermal illumination, we see that

the image is blurred by the same PSF, except that the coordinates are inverted (p1 -+ -p1).

Thus, the image has the same resolution of PL = AoL/7ao.



Contrast Comparing Eq (3.12) to Eq (2.14). we see that phase-sensitive and phase-

insensitive imaging have the same background term. Comparing Eq (3.13) to (2.15), we

see that the image-bearing terms differ; this is due to our inclusion of non-classical correla-

tions effects. If we look at the high-brightness case. the classical correlation dominates the

non-classical correlation, and the image-bearing term for classical phase-sensitive imaging is

the same as the image-bearing term for phase-insensitive imaging (except for the coordinate

inversion).

To evaluate at the contrast we will use Eq (2.16), the definition we used for the phase-

insensitive imaging. Using the simplifying assumption that the PSF is narrow enough to

resolve all target-features, and that naxz[T(p1)] 1 and min[T(p1)] = 0, we can say

dp 2 T(p 2 ) XIH P2 2 /PL ~ T -p1). (3.14)

and simplifv our contrast definition to

AT (2 +i). (3.15)
AT 2v I/_ )-T

where once again AT = fdp 2 7(p 2 ). In the high-brightness limit, Eq (3.7) approaches a

classical phase-sensitive cross correlation and the contrast in Eq (3.15) approaches Eq (2.18).

our result from the pseudothermal ghost imager. However, in the low-brightness limit the

the quantum correlation dominates, and the contrast in Eq (3.15) grows without bound.

This is the same behavior seen in transmissive biphoton imaging [1. 4]. Thus, maximally

correlated phase-sensitive imaging has the same resolution as phase-insensitive imaging, but

improved contrast in the low-brightness limit.

3.3 Signal-to-Noise Ratio

The derivation of the SNR for phase-sensitive light will follow what was done in Section 2.3

for the phase-insensitive case. The SNR will be defined as in Eq (2.21) as the ratio of the



squared mean to the variance for the image-bearing portion of the photocurrent correlation,

which will now be given by Eq (3.13). We will be implementing a DC-block in the detector

response as modeled by Eq (2.19), and will assume that the target features are completely

resolved by the imager, allowing us to use the simplification in Eq (3.14). With that, the

mean of the image-bearing term becomes

C1(p 1) = q2 A1 A 2q ) 2 7p/T(--p) (2 + 1). (3.16)C,(P) L2 7ra 2 2-\/27E(

leaving us neceding to evaluate the image-bearing terns second moment

(02(P)) 1 '/2 ,/2

(C 2 ()) 1 T dt du (ii(t)12(t)i1(u)2(u)). (3.17)
1I ]-T /2 J-T /2

In evaluating Eq (3.17), we have our first major departure from the derivation in Section

2.3. In Chapter 2 we used a semiclassical treatment of the light, where fluctuations in

the measurement were treated as coming from the conversion of the continuous field to

discrete charges in the detector, which we called the detector shot noise. However, we

are now dealing with quantum-mechanical entangled fields, and must use a full quantum

treatment. In quantum optics theory, measurement fluctuations arise from fluctuations of

the quantum field. coupled with the type of measurement being performed. Mathematically.

these noise terms appear from applying the commutator operations in Eqs (3.1) and (3.2)

when normally ordering our higher order field-moments. While the noise qualitatively comes

from different sources, quantitatively this has the same effect as the semiclassical treatment:

after normally-ordering our fields we have an eighth-order moment, two sixth-order moments.

and a fourth-order moment. This comes as no surprise, as it was shown in [4] that ghost-

image formation using a downconversion source is inherently a classical phenomenon, with

the only non-classical features coming from the stronger-than-classical correlation of signal

and idler photons. As before, since these higher-order moments are all normally ordered. and

the fields are zero-mean, we can apply the Gaussian-moment factoring theorem to express

them as the sum of products of second order moments.



We evaluate the moments at a distance of L-meters from the source, using Eq (3.9) for

the phase-sensitive cross correlation and Eq (3.10) for the phase-insensitive autocorrelations.

All other second-order moments evaluate to zero. We will again move to the normalized

and difference coordinate v = pLko(p' - p")/L, where p' and p" are coordinates at the

bucket detector. The definitions of F, a. AF and AT are the same as in Chapter 2. Finally.

assuming that there are at least 10 x 10 resolution cells in the image and inverting our

coordinate system as pi -- -p1, we have

_Tj. E2

SNR A )

Ar+T/_a__ L2 11p4 a 0 a2 1p
2vWp T(pl) 2  To 2A2T(pi)2 A2 IqT(P1) A1Z7 3 4,-A2 16v A2ZE27p

(3.18)

where ]I = + 1). Please see the Appendix for the full derivation. This result is quite

unwieldy, so we would like to simplify it by assuming that the receiving aperture is at least

as large as the source aperture., giving us

T(p1) 2T1 2
To

SNR - TA' TT Dwa% T(p1) L2  4,wp 2 (p1 ) T(p 1 )/TOQBp2 L2

+(p1) TT-ta0,2 + + O'QB+ ~

/2L p TO 2A 2  I, A2 3A 1 Ii 16/5A1I2i}2 A2

(3.19)

This result corresponds to the transmissive result calculated in [6], in the same nIanner as

its classical phase-sensitive counterpart in Chapter 2 did: that is. there is now a solid-angle

subtense factor on terms associated with the bucket detector. and a target-speckle term in

the variance that does not diminish with integration time.

In the classical limit f -± 1. Eq (3.19) becomes Eq (2.29), and we can see that classically

correlated phase-sensitive imaging has the same SNR characteristics as phase-insensitive

imaging with pseudothermal light. This means that the high-brightness limit is also the

same, and is given by Eq (2.31). Now, in the low-brightness limit the quantum correlation



is significant, I[ -+ 21 , and the low-brightness SNR becomes

TI 8A 1 ry2I (320
SNRL = 2T(i) " (3.20)

T07,QBTO0 2 L 9

This equals the classical low-brightness limit divided by a factor of 2v 2rX, which means

that for I < 1, the low-brightness SNR is orders of magnitude larger for quantum-correlated

light than for classically correlated light. This is the second signature of biphoton state ghost

imaging: improved low-brightness SNR.



Chapter 4

Computational Reflective Ghost

Imaging

4.1 Theoretical Setup

Ghost imaging requires knowledge of the time-varying speckle pattern illuminating the tar-

get. Because the ground-glass diffuser in Fig. 2-1 randomly modulates the source field, we

measure the reference field's speckle pattern with the CCD array, and exploit its correlation

with the speckle pattern impinging on the target to form the ghost image. Suppose, however,

that a known source is subjected to a deterministic spatiotemporal modulation, through use

of a spatial light modulator (SLM). in a manner that projects a time-varying but determin-

istic speckle pattern on the target. In this case the speckle pattern at the target can be

computed from diffraction theory, and we do not need the reference arm to form a ghost

image [9]. As shown in Fig. 4-1, we form a computational ghost image by cross correlating

the computed reference-arm photocurrent.

ii (t) = JdTq P(F)h(t - r), (4.1)
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Figure 4-1: Setup for computational reflective ghost imaging.

with the measured photocurrent, i2 (t), from the bucket detector. Here.

PI(t) = A1jE(pi, t)|2, (4.2)

gives the computed photon flux for a CCD pixel located at p1 in terms of the computed

speckle pattern E 1 (pi, t)12.

The SLM is traditionally a square of size D x D, coiposed of a grid of square pixels

of size d x d. Each pixel centered at transverse location pt causes a phase shift <p(t) on

the light impinging it, imparting a spatially-varying phase shift on the resulting field. This

means that. assuming the light hitting the SLM can be approximated as a plane-wave, the

field leaving the SLM is

rect e - Y) (4.3)

where rect(-) is the unit-length rectangle function. p = (x. y), and pt = (x/, y) is the center

of pixel f. Propagating this into the far field results in

E'(p',t) sine I
AoL (AoL)

s nc )e-iko(x'xt.+y'y)/L -iko(|x'\ 2+Iy' 2)/2L i4p(t)
Siic(oL)

where sinc(-) is the sine function, and p'= (x', y').

(4.4)

I arget

E(p, t) = rect X f



4.2 Comparison to Pseudothermal Ghost Imager

For comparison with the pseudothermal ghost imager, we would like to derive the spatial

resolution, image contrast, and SNR of this computational counterpart. Looking at Eq

(4.4), it is not immediately clear how to make the connection to imaging with Gaussian-

state light. However, as the field in Eq (4.4) is the sum of a sufficiently large number

of weighted independent, identically distributed (IID) random variables, from the Central

Limit Theorem it will have Gaussian random process statistics [9]. This can be seen in

Fig. 4-2, which shows a pseudorandom phase modulation pattern in (a). and the resulting

far-field intensity pattern in (b). Thus, we can treat the far-field pattern E (p. t) hitting the

target and the reference field Ei(pi, t) = E'(p. t) - now calculated from the phase shifts

by Eq (4.4) - as zero-mean. complex-valued Gaussian random processes. Furthermore, to

simplify our analysis, we shall assume that we can use the Gaussian-Schell model for the field

correlations as given in Eq (2.10). Under these conditions, the far-field coherence length can

be approximated as PL = 2L/kOD, and the far-field intensity radius by aL ~ 2L/kd. With

these assumptions, all the derivations from Chapter 2 carry over to computational ghost

imaging by simple omission of the CCD array's shot noise.

Resolution Under the Gaussian-Schell assumption the spatial resolution of the conputa-

tional ghost imager is identical to that of the pseudothermal ghost imager at PL = 2L/kod;

therefore, in practice., the resolutions should be similar.

Contrast The computational imager has the same image contrast as pseudothermal ghost

imaging for DC-coupled operation, found in Eq (2.18). Moreover. AC-coupling of the bucket

detector's photocurrent or the CCD arrays computed photocurrent will eliminate the fea-

tureless background term in the photocurrent cross correlation, giving the computational

ghost imager the same high-contrast behavior seen earlier for AC-coupling in pseudotherial

ghost imaging.



Signal-to-noise ratio There is an interesting difference between computational and pseu-

dothermal ghost imaging that appears when we compare their SNR formulas. Since the

reference arm is computed. there are no shot noise fluctuations on the current ii (t) asso-

ciated with our high-spatial resolution reference arm, and the computational ghost image's

SNR is given by

T2

AT 7 2 T 1 1ra T(p1) L2
A/ + Tp,=~ +)TFr (i

2+p TO 2A2 + 1IA2

Comparing this formula with the pseudothermnal result from Eq (2.29) we see that the noise

denominator for the computational ghost image's SNR contains, from left to right, terms

that represent: the noise from the speckle pattern cast on the target; the noise from the

speckle on the bucket detector arising from the target's surface roughness: and the beat noise

between the computed field speckle on each pixel and the bucket detector's shot noise. It

follows that the high-brightness SNR asymptote for computational ghost imaging is identical

to that for pseudothermal ghost imaging, as it is limited by the source and target-induced

speckle. However, the computational ghost image's SNR enjoys a considerable advantage at

low source brightness, viz., its low-brightness asymptote of

SNRcomp. L - T(p1) TrI ,-A (4.6)

which is significantly higher than that for the pseudothermal ghost imager because it scales

linearly, rather than quadratically, with source brightness.

Interestingly, the computational low-brightness limit also compares favorably to the non-

classical limit in Eq (3.20). Both scale linearly with the brightness. but given our receiver

bandwidth and pixel size assuniptions of QBTO > 1 and A1 < p2L, the SNR for computational

imaging in the low-brightness limit is orders of magnitude larger than the corresponding low-

brightness (biphoton) limit for non-classical ghost imaging.



(a) The pseudorandom phase modulations applied (b) The far-field intensity pattern cast by the SLM.
to the pixels of the SLI. The phases at each pixel The field distribution closely mimics that of a Gaus-
are IID uniform random variables on 0 to 27r, with sian random process, with the coherence length be-
a new realization at each time epoch. ing inversely proportional to the extent of the SLM,

and the intensity radius inversely proportional to
the width of each pixel

Figure 4-2: One realization of a pseLdorandom phase pattern cast on an SLM and resulting
calculated far-field intensity pattern.
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Chapter 5

Comparison to a Laser Radar System

5.1 Theoretical Setup

The importance of ghost imaging for stand-off sensing rests on it offering some advantage

over a comparable laser radar system for the same application. We will use the results from

Chapters 2, 3, and 4 to provide a preliminary comparison between ghost imaging and laser

radar for stand-off sensing. The laser radar system we shall consider is shown in Fig. 5-1. It

is a direct-detection system in which a ew laser beam is used to produce a spatially coherent

beam at range L-m whose deterministic intensity pattern matches in both photon flux and

intensity radius the average intensity pattern of the Gaussian-Schell model we employed

for the ghost imager. A fraction of the laser light reflected by the target is focused onto a

CCD array by a lens that is co-located with the laser transmitter. A target image is then

formed by T1-s time averaging of the output currents from each CCD pixel. The entrance

pupil for the laser radar's receiving lens will be taken to coincide with the bucket detector's

A2 active region in the ghost imager, and we will assume shot-noise limited CCD operation

as was the case for the Fig. 2-1 setup. 6

6We recognize that most laser radar systems employ pulsed sources. We have chosen the cw case to put
the laser radar on the most equal footing with the ghost imager for a baseline comparison between their
spatial resolutions, image contrasts, and signal-to-noise ratios.



The laser radar image for the CCD pixel at location pi is

(p1 = dt is (t),(51
TI _11/2

where i3 (t) is the photocurrent from that pixel. This photocurrent will have the same

structure as seen in Eq (2.2) for ghost imaging, i.e.. it will consist of a term driven by the

photon flux P3 (t) illuminating the pixel in question plus the shot noise from that pixel. We

shall assume the DC-coupled photodetector model from Eq (2.11), and we will assume the

pixels are small enough that they do not limit the laser radar's spatial resolution. Once

again we shall assume 1:1 imaging. although the actual system will cast a minified image on

the CCD. and we shall invert the image plane coordinates so as to obtain an erect image

of the target. With these assumptions stanidard Fourier-optics thin lens theory leads to the

following expression for E3(pi, t), the field illuminating the CCD pixel at pi:

[t p kolpl/2L P 2 /a 2  1(irD2|p -p1||AoL).E3(Pl, 0) - dp T(p)eh ~ - L2~/~ J~D2 p p~AL
2ral AL 2  (D2 )p - p1 |/2AoL

where D2 is the diameter of A 2, J1 is the first-order Bessel function of the first kind, and we

have suppressed absolute and quadratic phase factors that do not contribute to |E3 (p1. t)| 2.

The photon flux for the pixel at pi is thus P3 (t) = A1|E 3 (pi, t)12, and the photocurrent i3 (t)

Is

i3 (t) = qqP 3 (t) + Ai 3 (t), (5.3)

where the second term is the shot noise. Since the source is not fluctuating the detector

response will not have a noticeable effect on the photocurrent, and has been omitted. In

keeping with what we did for ghost imaging, we shall assume that the target is uniformly

illuminated by the laser radar. so that we can use e-p/i 1 in Eq (5.2).



CCD E3 (p t E, t)

Target T(p)

Laser El(p, t)

L - meter free
space

propagation

Figure 5-1: Setup for direct-detection laser radar.

5.2 Spatial Resolution and Image Contrast

To derive the laser radar's spatial resolution and image contrast, we once again look at the

ensemble-averaged image. Averaging Eq (5.1) over the target's surface roughness and the

detector's shot noise we find

q77A1 A2 2P J1(-rD2|lp - pil/1 L 2
(Ipi)) A2 L 4  dpT(p) (5.4)

AL -TaL grD2|p - pil/2AOL '

which shows that the target image is proportional to the target's intensity-reflection coeffi-

cient convolved with the familiar Airy disk PSF for incoherent imaging.

Resolution Our laser radar has a spatial resolution given by 1.22AoL/D 2 . In our ghost

imaging setup, with D2 = 2ao, the spatial resolution is given by PL = AoL/7ao = 2AoL/7rD 2 ,

which is comparable to that of the laser radar.

Contrast Equation (5.4) also shows that our direct-detection laser radar's image is not

embedded in a featureless background, making its image contrast superior to that of DC-

coupled pseudothermnal ghost imaging but equivalent to that of the Ac-coupled version.



5.3 Signal-to-Noise Ratio

We define the laser radar's SNR by

SR (I(p1))2  ('(P1))2
SNR Mp),(l)(5.5)Var[I(p1)] (I 2(pi)) - (I(pi)) 2 '

to enable a direct comparison with the ghost imaging SNR from Eq (2.21). We will assume

that the Airy disk PSF resolves all significant features in the target's intensity-reflection

coefficient, yielding

(I(i))-gr/A1A2 2P(pi)) = L2  2 T(p 1 ). (5.6)
LLw

The variance calculation we need is much simpler than what we performed for ghost imaging.

Making use of the iterated-expectation formula.,

Var(I(pi)] = E{P3(t):-r /2st ru/21[Var( I(pi)) I{P3(t) -T[/2 < t < T/2} )1

+ Var{P3 (t): -r/ 2<tsr/21[E( I(pi) I {P3 (t) -T[/2 < t < T 1/2})]. (5.7)

we can easily evaluate the noise denominator in Eq (5.5). The first term on the right in

Eq (5.7) is due to the target-induced speckle, and is given by (I(p1)) 2, and the second term

on the rigit in that equation is due to the shot noise, and is given by q(I(pi))/T. This

leaves us with

SNR T(pi) (5.8)
T(pi) + L2A( 2P.8

From this SNR expression we imlmediately see that when both the source brightness

and integration time are sufficiently high, the laser radar's SNR saturates at a maximum

value of unity, limited by the target-induced speckle. With the small CCD pixels we have

assumed, ghost imaging still experiences a spatial averaging of the target speckle oil the

bucket detector, whereas no such effect is available for the laser radar system. Thus the

laser radar's performance is inferior to that of the ghost imager when both systems have

target-speckle limited SNRs. Outside of this limiting scenario, the relationship between the



two systems' SNRs is more complicated, as we will now show.

To compare the stand-off sensing SNRs for ghost imaging and direct-detection laser radar

in more detail, consider the plots shown in Figs. 5-2(a) and 5-2(b). Both figures assume

AO - 1.5 pm operation for ghost imaging and laser radar, with their transmitters having the

same photon flux. For ghost imaging we assume the source parameters are ao = 1 cm and

po = 0.15/7 mm. The target is assumed to be at L = ki range. with effective area A' =

100 in2 . Thus aL = AoL/7rpo = 10 in implies that the target illumination is nearly uniform

on average, with spcckle-linitcd spatial resolution given by PL = AoL/wrao - 0.15/7r n.

The CCD array's pixel area will be taken to satisfy A1 - 0.1p2, and the bucket detector's

area will be set to A2 = ra2. Both detectors will have 77 = 0.9 quantum efficiency with

bandwidths obeying QBTo = 100. The laser radar's transmitter will produce a spatially

coherent Gaussian intensity pattern on the target with the same aL value, and its CCD

array will.be identical to that of the ghost imager. We are interested in the SNR behavior

of our systems as a function of source brightness and detector integration time: specifically,

we look at the detector integration-time dependence of the SNRs for a strong source, and

the SNR source-strength dependence for a long integration time.

Figure 5-2(a) plots the SNRs for pseudothermal ghost imaging, non-classical SPDC ghost

imaging, computational ghost imaging, and direct-detection laser radar versus the normalized

integration time, T1/TO. when T(pi) = 1 and the transmitter's source brightness is I =

109 photons/mode. All three ghost-imaging systems show the same high-brightness behavior.

and we see a slight SNR advantage for laser radar operation when TI/T < 10', with the

ghost imagers offering higher SNRs when all three systems approach their target-speckle

limits. Figure 5-2(b) plots the four systems' SNRs versus the source brightness, assuming

T(p1) = 1 and T/To = 107. Here we see that computational ghost imaging provides

the best performance, while laser radar operation is the worst performer except for I ~

10-. Pseudothermal ghost imaging is outperformed by computational operation until both

systems' SNRs reach their coimion target-speckle limit. At very low brightnesses. the SPDC

imager trails only the computational imager, but. its performance quickly converges with that
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Figure 5-2: Signal-to-noise ratio comparison between pseudothermal ghost imaging, conpu-
tational ghost imaging, and laser radar operation. The parameter values assumed are given
in the text.

of the pseudothermal imager.

Thus, for very low-brightness illumination, the SNRs are ordered from best to worst as

follows: computational ghost imager. SPDC ghost imager, laser radar, and pseudothermal

ghost imager. However. it should be noted the the SNRs in this range are of the order

--8, which provides little usable information. Once the brightness has increased to the

point where we can retrieve some image information, the SNRs are clearly arranged from

best to worst: computational ghost imager. SPDC and pseudothermal ghost imagers (which

have converged), and the laser radar. It thus is reasonable to say that, for the systems we

have compared, that computational ghost imaging has the best SNR behavior. followed by

SPDC and pseudothermal ghost imaging, with the laser radar at the back. However, for

short integration times and a very high-brightness source. there is an advantage to the laser-

radar system. This is similar to the behavior seen in pulsed laser-radar systems, indicating

that for a definitive comparison between ghost imaging and laser radars. we should include

comparisons to a pulsed laser radar systems.

4



Chapter 6

Evaluation of Turbulence Effects

6.1 Turbulence Review

Our analysis in the preceding chapters had assumed all light fields were propagating through

free space; that is, we have not taken into account any effects the propagation medium

might have on real-world experiments. In many stand-off sensing applications the fields will

be propagating through the atmosphere. The earth's atmosphere is comprised of a variety

of gases and entrained particulates. causing wavelength-dependent absorption and Rayleigh

scattering [17]. These effects will cause attenuation, but that can be minimized with an

appropriate choice of the operating wavelength. The most deleterious atmospheric effects

arise from propagating in bad weather, i.e., though fog or clouds [171. Here the scattering is

so severe that neither laser radar nor ghost imaging can be expected to provide useful standoff

imaging. However, even in clear weather. the atmosphere is in constant flux. This random

mixing of the air parcels with ~1K temperature fluctuations create random spatiotemporal

variations in the refractive index known as atmospheric turbulence [17]. For a real world

analysis. the turbulence-induced effects on the resolution of a remlote-sensing systemi must be

explored. Initial work has been done to explore turbulence for transmissive ghost imaging

with classical pseudothermal light in [11]; our results will be for reflective imaging with

classical and non-classical sources, computational imaging. and also provide a comparison



to laser radar systems.

To start, we shall consider operation in good weather, at a wavelength for which absorp-

tion and scattering effects are minimal. In such scenarios, atmospheric turbulence yields

refractive index changes on the order of 10~6 [17]. While these changes might seem small.

their effect on light propagating over a long distance is profound. For instances, two in-phase

fields at A = 1.5 puim propagating through media with a refractive index difference of just

10' will be out 7 rad of phase in just .75 in. For propagations over several kilometers. with

refractive index variations in both time and space, the accumulated phase distortions will be

significant. Moreover, because these phase changes are spatially varying, constructive and

destructive interference occurs. i.e.. initial phase fluctuations lead to intensity fluctuations

known as scintillation [18].

For our analysis we will be using the Kolmogorov model for turbulence. Kolmogorov

said that for turbulence that caused the spatial variations of the refractive index to occur

on distance scales between a maximiun Lo ~ 10 - 100 n and a minimum to ~ 10-3 m,

the temperature fluctuation spatial-structure function followed a two-thirds power law [19].

That is, the second moment of the temperature difference between two points is proportional

to two-thirds the distance between the points as

Dyr(p) = ((T(po + p) - T(po)) 2 )

= C9f p| 2/3. (6.1)

where D71 is the temperature structure function and Ci, is the temperature structure con-

stant.

The temporal fluctuations come from two sources: the changing of the shape of the

refractive index structure as the current eddies mix the air, and the drifting of the structures

with the average wind velocity [20]. In normal conditions, the time evolution is dominated

by the latter mechanism, and the refractive index structure thus has a typical coherence time

of rc = 10- - 10-2 second. This means that on shorter time scales the turbulence can be

thought of as frozen.



There has been a lot of work done in analyzing laser beam propagation through turbu-

lence, and for our work we take advantage of the Extended Huygens-Fresnel Principle [17].

This is written as the propagation of a spherical wave, multiplied by some path-dependent

complex exponential which encompasses the turbulence-induced amplitude and phase vari-

ations for a particular path. defined by its starting and ending coordinates. For Xm(p. p')

and #m(p, p') being the log-amplitude and phase variations from p' to p on path m, if we

suppress the time delay the Extended Huygens-Fresnel Principle becomes

P k 0 ekO(L+|ppI/2L)

E',(p.t) = dp' Em(p'. t) ex" (P!P)" (P')' k i2p-L . (6.2)

We can usually take Xm and 0,m to be jointly Gaussian, allowing us to construct a structure

function 7 [20]

Dm' (p, p') ((Xmn(Po + p, p' + p') - Xm(Po , p')))

+ ((&m(Po + p, p'o + p') -- 9m(po, p')) 2) (6.3)

which satisfies [171

2 L |p_ + p'(L - z)|(.4
Dm(p p') = 2.91k2j dzCm(z) (L )(6.4)

for the refractive index structure constant CWm(z) - 10- 1 C.(z). When considering prop-

agation that is approximately parallel to the earth, it is reasonable to assume that the

structure constant is stationary. i.e. Cim(Z) - cim. Since Xm and Om are jointly Gaussian

we can define a complex random process

wm(p, p') = Xm(p, p') + im(p. p') (6.5)

7 The Gaussian assumption and its associated structure function are limited in validity to what is known as
the weak-perturbation regime. However, a more general derivation will lend greater validity to the correlation
function expression. given below in Eq (6.6), that will suffice for our purposes in this chapter.



whose correlation function on path m can be evaluated as

(6 hr(PeP2)+'.".(P3P4)) = exp (-D(p1 - P3, P2 - P4)/ 2 )

|exp ( 1 - P31| + (P1 - P3) -2(P2 - P) +p2 - P2 6.6)
2p2

where we have used the square-law approximation to the rigorous 5/3-law behavior and

pm = (1.09k 2C mL)--3/ for m = R, S., T, (6.7)

is the turbulence coherence length on path m, under the assumption of a constant Cm

profile. In what follows, we shall assume that there is sufficient physical separation between

the reference. signal, and target-return paths so that their turbulence effects are uncorrelated.

6.2 Classical Source

6.2.1 Resolution analysis

We start by looking at the ghost imaging system that we developed in Chapter 2, which uti-

lized a pseudothermal source and a 50 50 beam splitter to create signal and reference fields

with a phase-insensitensive cross correlation; we now add statistically uncorrelated turbu-

lence on all three paths. W'Ve look at an ensemble average of the correlation of photocurrents

produced by each detector, using the sane assumptions employed in our resolution analysis

in Chapter 2 to arrive at

(C(p1)) = (ii(t)i2(t))

= q2r A1 JdTJ dT2 h(t - ri)h(t - 72 ) dp' (EA*(pi, Ti)El(pi, TI)E*(p' T2 )ET(p', T2 )).

Using Eqs (6.2) and (6.5) to back-propagate E§(p'. t 2 ) to E' (p2. t 2 ). once again suppressing

the time delays, and recognizing the independence of the randomness in the target surface,



field speckle, and turbulence, we have

(E*(1 ri)E'z(pirE*( J(p', dp 3 -iko(IP'P21'2+IP'-P 3 12 )/2L

x (er(P' P2)e r7(P'.P3)) (E*(pi, Ti)E'(pi, T1)E'*(p2, T2)E' (p 3 , 72))(T*(p2)T(p 3 )).

Using Eq (2.5) to evaluate the surface moment. this simplifies to to

(E'*(i ri) E'*(p', T2)q~ i riE (p', -F2)))

I dp2'T(p2)( E'*(p1, ri)E' *(P2, 72?)E' (p1. r1)E' (P2- T2))L2 R

Interestingly, since (e*r(P' P2)+V)T(P' P2)) = 1, we find that the turbulence on the target-return

path does not affect the resolution of the final image.

In our resolution analysis in Chapter 2 we could stop here and use the Gaussian-Schell

model to evaluate the fourth-order field moment. However. since we are allowing for turbu-

lence on the signal and reference paths, we have to back propagate these fields to the source,

giving us

(El*(p 1, r1)E'* (p22 T2)E'(p1, T)E's(p 2 , 72)) dp dp dpi dp'

k iko(L+Ip1-p'12/2L) -iko(L+|p 2-p'| 2/2L)

{E E*(p', T1)ek pc- ' "S . E2 's )
-127,TL E (P2 ) -i2,rL

k eiko(L+|p1-p''12 /2L) ko(L+\p2-p'2'2/2L)

x ER( p 'eZR(P1]7'') 0 . Esp', TC2 )eS(P2P)) oe2
z27rL 227rL

We can now use Gaussian moment factoring and Eq (2.6) to evaluate the fourth-order field

moment. and Eq (6.6) to evaluate the turbulence. Taking into account our DC-block filter



and using the far-field assumption, we have

(ER'*(pi, r71)E'*(P2, Tj2))E (P 1 , ri) E' (P2 ,72)) =
27rL )

(2P ) 2

7ra 21 dp' dp' dp'1 dp'i'j- 
2i

x e , P H P91- P J e P2 '2 -P) e\' |2/2p-p'2 -p',2' */2p -(1p,\12+\p'2|2+\pl, \p2 l) 3/a2

x e- p'n p1/2p2 1-p,2-p 1|2/2P2 -_1-2-11 /T0.2 (6.8)

In evaluating Eq (6.8) we will assume that the turbulence coherence length on each path

m will stay large enough that pm > Po as po is typically on the order of a few wavelengths.

We will still assume that ao > po, but we will make no assumption about the relative sizes

of ao and pm Under these conditions, we find that

q2 rf A 1 A 2 (2P >2
(C(Pi)) = 22 \ )

L2 7ra 2

2p p2 2
2pipi a (p2 +p2) dP2 T(P2)e2 22 2hph

" p 2P 42"+*"2A +P1 .)

Our PSF has now widened, with the resolution transforming as PL -+ p' for

, / 2p p2 + a2(p2 + p2)
PL =PL p2 

2p pS
(6.10)

By means of Eq (6.7) p' can be rewritten purely in terms of source size and structure

constants on each path as

PL 1+ (1.09k2L)6/5 [(Cs)615

It is also worth noting that turbulence on the signal and reference paths have identical

impacts on the PSF, and thus identical contributions to resolution degradation.

(6.9)

(6.11)+ (C n)6.5



6.2.2 Special cases

We would now like to look at a few special cases that illustrate most of the turbulence

behavior that we are interested in. These are: no turbulence on either path; turbulence

on only one path, which corresponds to the computational case; and symmetric turbulence

on both paths, which is a good approximation when both paths are going through similar

atmosphere.

No Turbulence As the turbulence coherence lengths increase without bound (PR -

00. pS -a 00) the effects of turbulence vanish. In this limit p'L = PL, and Eq (6.9) be-

comes

(C(p 1 )) = 2 Y2 dP2 T(P2)eP 2 -P21 L, (6.12)
LL ra

which matches Eq (2.15). our result calculated without turbulence.

Computational Case When doing the computational case the reference arm is calculated,

so there is no turbulence to account for on the reference path. Thus we can let pR -4 oo,

and we find that

q rA 1 A 2  2P 2p2 P1 pp21 T e6

L2P \jaJ2da P2 T(P2)C- 72p±0 (6.13)
L raL S 0

Be comparing Eqs (6.9) and (6.13), we see that computational and non-computational ver-

sions have different PSF's and that the resolution for the computational case is better. That

is,

2p; + a2 2p(p2 + a +(pi + p2)
pL 2 2 pL-20A2ps 2pR (

It should be noted that while this situation describes the computational case. it is possible

to have a non-coniputational case in which there is only turbulence on one arm. Since the



turbulence on both paths have identical effects., a situation where there is turbulence on

only the reference path, and not the signal path, would be described by Eq (6.13) with PR

substituted for ps.

Symmetric Case In nany situations the signal and reference paths will be going through

atmosphere with similar turbulence, and thus approximately the same structure functions

and coherence lengths. This lets us say PR = Ps = pt, and

2 2 1P, _P21 2  P2q2rT2 AA 2P 2 2 \#-2 at
(C(pi)) q 2=2 2 ] dp 2 T(p2)e PL P" .a, (6.15)

L TaL Pt +

6.3 Non-classical Source

Having looked at the effects of turbulence for a classical light source, we once again turn our

attention to non-classical sources. We again perform a Gaussian-state analysis, following the

resolution derivation in Chapter 3 with turbulence added on all three paths. For propagation

through turbulence we will replace Eq (6.2) with its operator equivalent

koeiko(L+\p-p'j2 2L)

(pt) = Jd p'Em( p',t e*"(P')n . . for m= S,R,T.

where ET(p, t) = 'E(p, t)T(p) + vac,s(p, t)1 -|T(p)|2 and e*'(P P') is the same coi-

plex random process from Eq (6.5) which encapsulates the effects of turbulence on path m

from p' to p. We take the ensemble average of the photocurrents, which after normally

ordering the field operators and applying Eq (3.6) becomes

(C(p1)) - (ii(t)i2(t))

=q2 , 2 A1 fdlT1 JdT2 h(t - T1)h(t - T2 ) dp' ((p. Ti)E7 p' , 7 2 )$ (pp1-T1)E'( p', p2)).



We back propagate, evaluate the surface moment with Eq (2.5) and the turbulence with Eq

(6.6) to get

($t(piTi) E (p'. T2)$'(pi, 71)$' (p', T2))

=~(2 L2 d" pP1 T, 2)$) p1"1$'(P2.72T')$ R'(P 1- T1)$k's (P2-2) (6.16)

Again, we find that there is no effect from the turbulence on the target-return path. Propa-

gating back to the source. evaluating the field and turbulence moments, and implementing

the DC-block filter. we arrive at

{E'( p1.1 {(p2 ,72)(P1: T1)$'s2 p2- (2)L Jdp' Jdp' Jdp'' Jd p'4
e ' P -i'e T 2) p - ~ -p -E''2 ( p I, +|pld+ l | + p l da

x (e- P P' 2 -2 /2T 6  _P - p P -(12 2/T

x cp, pi'K/2pc (72-Tl>2 /2T + i () T1pa eKe(2 T . (6.17)

PI-(P'I-P'I',r ) 2(P " P /2 p /

Equation (6.17) can be directly evaluated, and we find the photocumrrent average to be

qbfpA11A2 2P 2 2 Spp

2)

L2 ,ra p2 +

x Jdp2 T(p2) e ni 2pNul+"s(pi+"), (6.18)

where I = PTops/as - PTopl/al is the brightncss tcrm from the SNR derivations. Sincc

we are operating in the far field. there is no resolution gain from the use of entangled signal

and reference fields, even in the low-brightness limit in which the Gaussian state becomes

the biphoton state. Turbulence causes the same resolution spreading in phase-sensitive

ghost imaging as it does in phase-insensitive ghost imaging. regardless of the nature of the

correlation (classical or non-classical).



6.4 Laser Radar

Finally, we would like to compare the turbulence-induced degradation suffered by ghost

imaging systems to that for a laser radar system under the same atmospheric conditions.

We will be using the laser radar system developed in Chapter 5. and start by taking anl

ensemble average of the image-bearing term in Eq (5.1) to arrive at

(I(p1)) = qrA1(E*(p1 , t)E3(pi, t)). (6.19)

Propagating back to the lens, we have

(I(pi)) = gri.41 dpl dp"'(E E2(p' t)0E2 (p",t ))
A2  A 2

x ko p +B 12 i jO 12k e- iko(L+Ip1-P' 1 
2L) k0 eiko(L+|p1-p"12/2L)

X e2 C e H 127. (6.20)-i27rL i27rL

We are not considering any turbulence between the lens and the CCD array. For con-

venience we are using a 1:1 imaging system, but in a realistic implementation the image

produced is a minified version of the target. For this system we are considering turbulence

on both paths, viz., on the signal path (S). from the source to the target, and the target-

return path (T). from the target to the lens. Thus, back propagating to the target we

have

(E *(p'. t)E2 (p", t)) J dp 2  dp 3 (C +(P'P2)+DT(P" P3))(T*(p 2 )T(p3 ))

k0e- iko(L+Ip'-p 2 1
2/2L) koeiko(L+|P" -p 3 12/2L)

-27L i2-rL



Using Eq (2.5) and the far-field assumption this simplifies to

IP /I_ 2

2p2

(E*(p', t) E2 (p",))= dp2 T-(P2)

x (E*(p 2, t)E 1 (p 2 , t))e--p/ e2L 2pCeL PP2e- L P"P2.

Now. back-propagating (E*(p 27 t)EI(p2. t)), and assuming the far-field condition, we have

_2P -'N fIf 2IE~(2 t)EI(P2, t)) 2 2 CV" e* (P2 P'2)±'S (P2 P'2')) J) 0 0~(PP
/E P, w2 dlfpl )e-. -F,2L 2

2
2 2

C aL _6 pS

+ 7aLi

Our laser radar system is constrained, for comparison purposes, to have an on-target average

illumination pattern equal to that of the ghost imager. Since the laser is a coherent source.

that means that the source beam waist we for this system is approximately the same size as

the source coherence length po for the ghost imaging system. As such. we can assume that

for the laser radar system wo < ps, which let us simplify to

(E*(p 2, t)E1(p 2 , t)) = 2P e "
7ra-

indicating that for this system there is no effect on the resolution from turbulence on the

signal path.

This lets us rewrite Eq (6.20) as

(I(Pi)) - 2 dp' dp" T ( (0(p" - p') e C"p'H/24e ("-P'. (6.21)
,NOL 4 7laL I L

A2 A 2

where T( ) is again the two-dimensional spatial Fourier transform of T(p). We invert the

coordinates as pi --+ -pi so that we have an upright image, and use difference coordinates



to evaluate the integrals over the lenses to arrive at

qA 1 A2 2P *pk _, k2 irD ( J1(rD2|p1I/AoL) 2

kPli/ L2 -ra2 * 27rL 2  
2 A2L 2  wTD2|p1|/AoL )

To evaluate the spreading due to turbulence we can approximate the Jinc PSF, which has its

first zero at |p1 = 1.22AOL/D2, as a Gaussian PSF with an e-1 point at ilPI = 2AoL/YrD2,

rD2 J1 (7DrD2IpI/AoL) 2 'rD$2 -pi12 _D2
. A-+ 2 2 (6.23)

AOL 2  7rD 2 |p1|/AoL 4AL2

This lets us simplify Eq (6.22) to

gA1Ap 22P 2p

(I(p1)) - 2 2 p P2 2/4 dpT(pje it ' +)/. (6.24)AOL 4 raL 2py + D2 /4

We can now say that the effect of turbulence on the resolution is to degrade it by a factor

of 24+D
2

/4 For a comparison to the ghost imaging system, we once again say that all

lens diameters are of the same size. so that D = 2aO, and our spreading factor becomes

2p'+a. This is the same spreading we found when there was turbulence on one arm of the

ghost imaging system, as shown in Eq (6.13). From this we can conclude that ghost imaging

systems can be constructed that do not suffer resolution degradation from turbulence worse

than the degradation found in a flood-light illumination laser radar system. It should also be

noted that for a raster-scanning type laser radar system, which we have not yet considered,

the source beam size is significantly larger than for the flood-light system, and therefore

the turbulence on the signal path will no longer be insignificant. Indeed. partially coherent

beams. such as our pseudothermal source, have been shown to be less affected by turbulence

than similar fully coherent beams [21, 22], indicating that ghost imaging might have an

advantage in comparison to a raster-scanning laser radar. We also might expect that the

effects of turbulence on the SNR of ghost imaging and laser radar systems could be different.

but we have not explored this issue.



Chapter 7

Improving Ghost Image Quality

So far we have analyzed reflective ghost imaging for classical and non-classical sources, as

well as for a computed reference beam. These results were compared to a laser radar system;

ghost imaging has a somewhat advantageous asymptotic SNR behavior for high-brightness

illumination and long capture times, as well as improved low-brightness behavior when there

is a non-classical correlation between the fields, and when a computed reference arm is

employed. However, the SNR is still limited by the speckled nature of the return patterns

cast by the rough surface of the target. In this chapter we propose three methods to improve

the image quality, focusing on reducing the target-speckle imposed SNR limit.

First, we propose a detection scheme in which multiple bucket detectors are employed.

each capturing the returned light at different transverse locations within the same plane., as

detailed in Fig. 7-1. The target-speckle attributes of the returning field decorrelate with

transverse location, so each detector should see different speckle behavior, allowing us to

average it out and improve the asymptotic SNR. This same target-speckle averaging could

also be accomplished by the use of multiple wavelength illumination, as shown in Fig. 7-4. If

we use several narrow-band sources sufficiently far apart in wavelength, the return patterns

from each source will have uncorrelated speckle statistics at the same transverse location,

allowing us average out the speckle effects. Finally., each bucket detector measurement in

a ghost imaging setup can be thought of as a random projection of the target reflection



pattern. Since we know the pattern being cast on the target, compressive sensing methods

can be applied to the bucket detector measurements to achieve a high-quality image quickly.

This connection has already been made, and experimentally verified, in [12] for transmissive

ghost imaging. In reflective-imaging we have the added complication of the target-speckle,

but we will demonstrate that a connection can still be made back to the idea of projective

measurements. enabling the use of compressive sensing techniques.

7.1 Multiple Bucket Detectors

For this setup we consider n co-planar bucket detectors in some arbitrary setup. The corre-

lation function at each transverse location p1 is taken to be the average of the correlation

function for the CCD pixel at pi and each bucket detector. The output photocurrent of a

CCD pixel will still be denoted as 2i(t), while the output of each bucket detector f will be

labeled iW(t) for 2 < f < n + 1. We thus build up the correlation function pixel-wise as

1 +1 1 i/2

C( p1) - - ( dt ZI1(t) jit(t ). (7.1)
n ,2T1 _,,/ 2

The resolution and contrast for this system can easily by found from

1 1 Tr /2

(C(p1)) = - di (i1)i1f,(t)) (7.2)
n 2TI f-11/2

by recognizing that (i1 (t)it(t)) is the same for all C, and not a function of time. The average

correlation function becomes (C(pi)) = (ii(t)i[(t)), which is what was derived in Chapter 2

for one bucket detector. Thus. no resolution or contrast gain is realized by utilizing multiple

bucket detectors.

However, this setup does offer a SNR enhancement. Using the SNR definition in Eq

(2.21). as well as the same simplifying assumptions that allow us to use Eq (2.22) for the
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Figure 7-1: Reflective ghost imaging with multiple bucket detectors.

first moment, we are left only needing to calculate the second moment of

(C2 (P1)) -

1 n- I- i , /2 r /2

2 E 1: d -T 1 /2 J-T/
n (=2 in=2 I 7 2 -1/

We are interested in raising the high-brightness, long integration time SNR asymptote, so

we restrict our analysis to this limit, in which we find

SNRH, long-Ti

2 2A2/7a 2
+ +

n+1 n+1

[-2 m=2

where

Ft.m = 1
,m 27r du e-IV-Aml2/20(v, 4 a).

(7.3)

(7~4)

du (ii1(t) i e(t)i1',(u)i'm (u)).

(7.5)



The F function in Eq (2.26) comes from integrating over the bucket detector in two different

coordinates systems ---p' and p" a function of the difference of these coordinates. To evalu-

ate it we moved to the normalized difference coordinates v = pLko(p'- p")/L and integrated

over the two-circle overlap function. This worked because the different coordinate systems

were for the same bucket detector, and centered at the same point. Since we are now using

multiple bucket detectors, we have to account for the difference in their transverse location.

We want to recenter one coordinate system so that both are aligned by shifting it by some

,- p" where p' is the center of detector f. and p" is the center of detector m. Thus, we

now define v = pLko(p'- p")/L + At,m for At,m = PLko(p' - p" )/L, allowing us to correctly

use the two-circle overlap function to evaluate our expression.

The averaging over speckle statistics is encapsulated in F, and is where we see the ad-

vantage of using multiple bucket detectors. As the distance between the detectors increases.

lt,m and the deleterious speckle effects decrease. which leads to an SNR increase. Looking

again at detector sizes of A2 = Ta , and placing two detectors side-by side (centers separated

by 2ao). we find ftm = 0.049. which is a significant decrease from r, = F = .61; this con-

figuration yields an SNR of 6.03. If we separate the detectors by a distance of 2ao (so that

the centers are 4ao apart) we have fL,m = 4.3 x 10', and a SNR of 6.52, which is twice that

of the single detector case. Thus, detectors of this size that are side-by-side have slightly

correlated speckle statistics, while detectors with centers separated by 4ao have essentially

uncorrelated speckle behavior, as can be seen in Fig. 7-2. This makes intuitive sense because

the speckle fluctuation's average size are inversely proportional to the coherence length of

the light illuminating the target as 'speckle length' = 2L/kopL = ao. Locations separated

by lengths significantly greater than ao in the bucket detector plane will have uncorrelated

speckle statistics. This means that adding bucket detectors far enough apart linearly in-

creases the SNR, while detectors placed closer together will yield a slightly lower increase,

as seen in Fig. 7-3. This speckle averaging is the same effect that is seen when increasing

the size of the bucket detector.
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7.2 Multiple Wavelengths

In place of-or possibly in conjunction with-using multiple bucket detectors we can use a

multiple wavelength source to increase the SNR. Whereas the bucket detectors in Sec. 7.1

see different speckle statistics due to their transverse separation, the return fields for the

various wavelengths have different speckle statistics at the same transverse location because

each wavelength diffracts differently from the rough surface. This will allow us to make

multiple co-linear measurements to average out the effects of the target speckle.

For the multiple bucket detector setup we did a full treatment, finding the correlation

between the speckle statistics for bucket detectors separated by arbitrary distances. This

was because it is reasonable to assume that in an implementation we could be constrained

by the size of the array: we might want to pack the detectors tightly. We should not be

constrained to choosing similar wavelengths for our sources. Thus, we are only interested

in finding the cut-off wavelength separation at which the return fields have uncorrelated

target-speckle statistics, and the image characteristics in this regime.

We start with the setup in Fig. 7-4, and we build up the correlation function as the

average of separate correlation measurements made at every wavelength. Each wavelength

diffracts differently, so if we assume the same source coherence and intensity radii, the on-

target average illumination pattern will be more spread out for some wavelengths, less for

others. This will result in less power being measured at each detector (both CCD and bucket)

at certain wavelengths; therefore, when averaging the separate correlation functions, we need

to scale the measurements appropriately. For our work, we will scale each measurement by

(pLp) /L)2, where aL and p) are the on-target intensity and coherence radii at

wavelength At. and aL and oL are the average of {af} and {pM}, respectively. Following

our previous work. CCD output i(O(t) associated with wavelength At is correlated with the

bucket detector output if (t) for each f and averaged as

1 (L\2 1 I T/PL LZf (7.6)C( p1) = - Z (0 '2 aLn 1 -1 P) aL T T/2f= (L)



The resolution and image contrast are found from an an ensemble average as

a(f) a

aL
(7.7)

p 2

Since each (i((t)4)(t)) is a function of the wavelength At, they each have a different point-

spread function, and therefore the resolution is limited by the longest wavelength used to

miaxt(p~f) = 2L/iinf(k)ao. Looking at the contrast, we find the background term becomes

CO= Lq11A2 (P)-276aL/

2

PL dP2T(p2).
1 (PL

(7.8)

and the image-bearing term, under the assumption that each wavelength is short enough to

resolve the target, becomes

qC2(P q 2 AA 2 2P 2
C1 (p1) = L2 -L7#9#.

L Tra
(7.9)

Using the definition in Eq (2.16). we find

C = (7.10)
A,,

-f=1 (PL

This differs from the results for using multiple bucket detectors only slightly, as the coherence

lengths are added in parallel; since the on-target coherence lengths the will be of the same

order of magnitude, the contrast has the same basic interpretation as being approximately

the inverse of the number of resolution cells in the image.

Turning to the SNR evaluation. and the definition in Eq (2.21), we are left only needing

1f dt ( () 1 t).
T1 -TJ/2

(C(p1)) =



to evaluate the second moment of the correlation function as

n n -2 2 n2) (n) 4

f=1 P PL aL

1 J 1/ 2 T1 / 2
x dt du (if (t)i (t)im)

-T 1/2 J,-T/2

We again look at the high-brightness long-integration-time limit where the effects of the

target speckle dominates. To do this we need to review our treatment of the scattering

effects of the rough surface given in Eq (2.4). This treatment was for a single wavelength

Ao, and the phase-insensitive autocorrelation is given by Eq (2.5). We are now dealing with

multiple wavelengths of light, so we define the target reflection coefficient for wavelength At

as

Tf(p) = V/T(p)e 2 z'kAz(p) (7.12)

where kf = 2r/A(. The phase-insensitive cross correlation of reflection coefficients for differ-

ent wavelengths is thus

(T*(p)T(p')) - /'T( p)'T(p'){e-2i(k'z(p)-k z(p)))

= y/T( p)T(p') e~?o2(k2+k2,)+4kk,.Kzz(p-p')

As before. we are assuming that the covariance function Kzz (p - p') for the height variations

Az(p) is very narrow, allowing us to approximate

{T*(p)T,( p')) = AtAro(p - p')T(p)e-2a(kj-kr) 2  (7.13)

Thus, when o (ke - km) 2 
- 1. then (T,*(p)Tm(p')) = AtAmo(p - p')T(p)e 2 ~ 0. and

the return fields from the two different-wavelength sources are essentially uncorrelated. This
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gives us the minimum wavelength-separation criterion between two wavelengths as

/ u > A-27o-
(7.14)

where A is approximately the average of the wavelengths. In this regine, we can approximate

the exponential as a Kronecker delta function, i.e., e- 2o-(kt-km)
2 - 6f., This gives us a high-

brightness long-integration-time SNR of

SNRH. long-Tj =
n2A 2

a F0rgl
(7.15)

This is the same basic result we found for the multiple bucket detector setup, when the

bucket detectors were sufficiently separated; averaging over multiple correlations, each with

uncorrelated speckle statistics, leads to a linear increase in the maximum SNR.

Bucket
Detectors



7.3 Compressive Sensing

In traditional sensing methods, resolution is limited by the Nyquist rate, i.e., you must

sample at a rate at least twice as high as the desired signal bandwidth in order to acquire

them. However, when dealing with signals that have a sparse representation in some basis,

the captured data can then be compressed, reducing the number of bits needed to accurately

represent it [13]. A sparse representation means that in some basis, almost all coefficients

are close to zero, so most of the information is held in only a few significant coefficients [14].

For a simple example, imagine some audio signal composed of only three frequencies. If we

wanted to sample in time, then, according to Nyquist, we would have to sample at twice the

highest frequency to have a faithful representation of the signal. However, in the frequency

domain. this signal can be represented by only three coefficients; if we wanted to compress

the signal. we could represent it in the frequency domain and only keep the three important

data points corresponding to the three frequencies present, significantly reducing the number

of data points required to represent the signal.

Any signal with some definable structure is likely to have a sparse representation in

some basis [14]. Of interest to us are "natural images." Natural images are generally

discontinuously smooth; that is. they are composed of areas of slowly varying features that

are separated by sharp boundaries. As is exploited in a number of image compression

schemes. such as the ubiquitous JPEG format, natural images have a sparse representation

in the 2-D discrete cosine basis [14].

Compressive sensing is a means to directly acquire the significant coefficients of a signal

in its sparse basis, requiring significantly fewer measurements than if the signal was sampled

at the Nyquist rate [131. Conceptually, this technique exploits our knowledge of the structure

of the image; we know that it is sparse in some basis (even though we don't know which

coefficients matter), and use this knowledge to reduce the amount of information we need to

acquire.

At the heart of this technique is the notion that the information is preserved through

linear transformations: therefore, by taking a series of linear projections, enough information



can be gathered to reconstruct the signal. This process involves projecting the sparse target

onto a series of vectors to build up a vector of projections [14]. This series of projections

takes the form of a measurement matrix A such as

y = Ax (7.16)

where x is a sparse representation of our signal. and y is the vector of projections. The

most cfficient measurement matrices have the lowest correlation between columns of the

measurement matrix. This is often referred to as incoherence [14], and means that for each

projection, each coefficient of x receives a nearly uncorrelated weighting. To recover x one

uses linear programming methods and knowledge of the measurement matrix to find x based

on an L 1-optimization.

The authors of [12] realized that the output of a bucket detector in transmissive ghost

imaging is simply the projection of the target transmissivity pattern onto some illumination

pattern. Therefore. by sending a series of illumination patterns at the target a data set of

minimally correlated projections can be built up. which is the ideal data set for compressive

sensing. By using an SLM. they controlled the illumination patterns cast on the target, and

used that knowledge to perform the reconstruction. In traditional ghost imaging. the known

illumination pattern is used to perforni a correlation with the bucket detector's output to

form an image. However, by instead performing compressive sensing on that output (again

using knowledge of the illumination pattern) the sparsity of natural images is leveraged to

perform a better reconstruction from fewer measurements.

The projective measurement made by the bucket detector in transmissive ghost imaging

can be viewed in terms out the output current as

i2(t) - dp I(p, t)|T(p)| 2  7.17)

where I(p, t) = |E(p, t) 2. and we are ignoring shot-noise for the moment. This can be



written in matrix form as

i2= IT (7.18)

where T is a column vector of |T(p)|2 indexed by the transverse location p. I is the pseudo-

random measurement matrix with columns indexed by time t, and rows indexed by p. Our

output is thus a column vector indexed by time. Now, T is not sparse in its spatial repre-

sentation, but for the rotation matrix 4 to some sparse basis, we have

T = 4'T' (7.19)

where T' is our representation of the target transmissivity in the sparse basis. If we combine

the basis rotation matrix and measurement matrix as A = IT we then have

i2= AT'. (7.20)

In reflective imaging. it is a little more complicated to frame the bucket detector's output

as a projective measurement, due to the scattering from the rough surface. However, we can

make the connection as follows. First. since the bucket detector measures the total power

that passes through the collecting lens, we can theoretically look in any plane behind the

lens to make our connection: the total power will be the same in every plane. Therefore,

we can look in the image plane for our connection, where the transverse intensity pattern

is a product of the illumination pattern I(p. t) E'(p, t)|12, the target reflectivity T(p).

and and exponentially distributed random process S(p). Here S(p) accounts for the effects

of the rough-surface scattering, and for each pixel in the final image can be thought of

as a collection of independent, identically-distributed (IID) exponential random variables.

Therefore, we can write the output of the bucket detector as

12 (t)= dpI(p.t)S(p)T(p). (7.21)



This can be put in matrix form as

i2 = IST (7.22)

where I is the intensity matrix illuminating the target as before, T is a column vector of

'T indexed by transverse location p, S is a diagonal matrix with each element being an IID

exponential random variable, and i 2 is our projective measurements. indexed by time. Thus.

the only difference between the transmissive and reflective cases is the diagonal matrix S.

Now. rotating to a sparse basis as in Eq (7.19). have an output

i2= AT' (7.23)

for A = IS4. While our measurement matrix still has columns that are fairly uncorrelated,

we no longer know the measurement matrix. Whether we can fully recover T'. or merely a

speckled version, is the subject of current research.
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Chapter 8

Conclusion and Future Work

In this thesis we developed a framework for analyzing reflective ghost imaging systems in the

context of stand-off sensing. We developed results for three possible imaging systems, which

were then compared to each other as well as to a basic laser radar system. We then applied

turbulence on the propagation paths for these systems and analyzed the resulting resolution

degradation. Finally, we explored ways to improve reflective ghost imagers. primarily the

high-brightness, long integration time SNR.

The first system we explored utilized pseudotherimal light for the signal and reference

beams. with a classical phase-insensitive cross correlation between them. This is realized by

passing laser light through rotating ground glass, and then a 50-50 beam splitter to create

identical spatiotemiporally random fields on both arms. This system is perhaps the most

robust of those we explored; the laser source call be made very strong without affecting the

correlation between the fields, and we do not need to worry about the calibration of an SLM.

The next system we investigated utilized the output of an SPDC. along with a polarizing

beam splitter, to create entangled signal and reference beams with a non-classical phase-

sensitive cross correlation. We evaluated these fields within a Gaussian-state framework,

where the low-brightness limit is the biphoton state and the high-brightness limit is classically

correlated light. Finally, we investigated a computational ghost imaging system in which the

signal arm is created by modulating the phase front of a laser with amn SLM, and the reference



field is calculated from the known applied phase modulations. The laser radar system we

used for comparison is a flood-light system in which the target is uniformly illuminated, and

a CCD array is used to make a high-resolution spatial measurement of the reflected field.

We compared these systems through their resolutions. contrasts. and signal-to-noise ra-

tios. To facilitate the comparison we said all lenses were of identical area gras, where ao is

the average intensity radius of the source for ghost imagers. We found that all three ghost

imagers, as well as the laser radar system. have the same effective resolution of PL = 2L/koao.

Looking at the contrast, the pseudothermal ghost imager, SPDC ghost imager in the high-

brightness regime, and the computational ghost imager have a constant background term

which limits the contrast to Eq (2.18). This can be overcome by AC-coupling the outputs of

either detector. In the low-brightness regime the output of the SPDC becomes the biphoton

state, and the resulting images are background free. This is also true for the laser radar,

and thus both systems have an unlimited contrast as defined in Eq (2.16). For AC-coupled

operation., all ghost inager systems and the laser radar system have the same resolution and

contrast. However, a performance difference can be found in the SNR of each system.

The maxinmum SNR for each system is achieved when the source is strong and the inte-

gration time is long. This averages out the shot noise in the detectors. and for ghost imaging,

the speckled nature of the spatiotemporally varying light that illuminates the target. How-

ever, the roughness of the surface creates speckle in the return field that is time-invariant;

integrating for longer will not remove this randomness. These target-speckle variations are

different at each transverse location, and are the limiting factor in the SNR for both ghost

imagers and laser radars.

However, ghost imagers have an advantage. The size of the target-induced speckle is

inversely proportional to the coherence length of the light at the target. Thus, the average

size of these speckles for a ghost imager is ao = 2L/kopL. If our receiving lens is of the same

size as, or larger than, the transmitting lens, there will be some averaging of the speckle by

the bucket detector. For laser radar the target is illuminated with nearly uniform light. so

the speckle size cast on the receiving lens is much smaller than for a ghost imager. However.



for ghost imaging the light is captured by a bucket detector. while for a laser radar the light

is focused onto a CCD array: the speckle size is much larger than a CCD pixel, resulting in

almost no speckle averaging. Therefore, while the laser radar system is limited to SNR - 1.

the ghost imager can achieve an SNR in the low single digits. As discussed in Chapter 2, for

a receiving lens of area A2 =r the miaximumn SNR for the ghost imagers is 3.266.

For low-brightness situations, we saw a larger difference in the SNR behavior of the

various systems. For the pseudothermal ghost imager, we make two measurements of classical

light, and thus have randomness from both measurements. For the SPDC imager. the low-

brightness limit is approximately the biphoton state; while we still have randomness from

the two measurements, it is significantly lower than for the pseudothermal imager. However.

the computational imager has a better low-brightness SNR asymptote than both systems.

as it only has randomness from one measurement. The only area where the laser radar

has better SNR characteristics than the ghost imagers is for very short integration times.,

and very high-brightness illumination. This is because the laser radar only has to overcome

shot noise. which can be accomplished with either a long integration tinic or high-brightness

illumination: the ghost imagers also have to average out the randomness of the source. which

can only be accomplished with a sufficiently long integration time.

After exploring the basic image characteristics for these systems, we looked at the effects

of turbulence on the image resolution. We found that ghost imagers, classical or quantunI.

have the same resolution degradation from turbulence. There was less degradation for com-

putational imaging, as there is no turbulence on the reference path. It is also worth noting

that turbulence on the return path, from the target to the bucket detector, has no effect

on resolution. In comparison, the laser radar system had the same degradation as the coin-

putational imager. Thus. ghost imagers and laser radar systems suffer similar resolution

degradation from turbulence.

Finally, we looked at ways of improving the SNR performance of ghost imaging. We

showed that bucket detectors spaced far enough apart measure light with uncorrelated target-

speckle statistics; thus. by using multiple bucket detectors at different transverse locations,



we can increase the maximum SNR linearly with the number of detectors. We also showed

that light sources far enough apart in wavelength result in uncorrelated target-speckle statis-

tic at the bucket detector; thus. by measuring each wavelength separately we can increase

the SNR linearly with the number of source wavelengths utilized. We also explored applying

compressive sensing methods to improve image quality while reducing image capture time.

We have provided a simple connection between reflective ghost imaging and compressive

sensing. but some theoretical issues require further exploration. If the target has a sparse

representation, then a speckled version of the target should still have a sparse representation

(though not as sparse). Therefore, we should be able reconstruct the speckled version of the

target with compressive sensing. However, we would like to reconstruct the actual target

without the speckle. We will look into ways of adapting compressive sensing techniques to

do this, possibly utilizing multiple bucket detectors or multiple wavelength sources. We will

also explore ways of measuring the quality of these images. and perform a more rigorous

comparison to modern pulsed laser radar systems.



Appendix A

Detailed SNR Derivation

In this appendix we will show in more detail the derivations performed to arrive at the SNR

expressions for the pseudotherinal ghost imager in Eq (2.28) and the SPDC imager in Eq

(3.18). These derivations parallel each other., so we will not show as much detail in the

derivation of Eq (3.18); the differences are in the sources of noise, the correlation functions.

and the complexity of the subsequent integrations. To complete the SNR derivations, we

need to calculate the second moment of the correlation function (C2(p1)).

A.1 Pseudothermal Ghost Imager

We will first perform the derivation

the second moment

for the pseudothennal ghost imnager, and thus start with

(C2(pi)) = dt
T! -11/2 -1/

du (ii(t)i 2 (t)ii(u)i2 (u)).

Using Eq (2.2) to expand the current expressions, recognizing the statistical independence

of the shot noise and the fields, and using our shot noise assumptions from Chapter 2 we

(A.1)



arrive at

(i1(t)i2 (t)i1(u)i2 (u)) =

JdT JdT2 Jda JdT4 h(t - Ti)h(t - Tg)h(u - r3)h(u -r4) x

[q 4,rf'(Pi (ri)P2 (T2)P1 (73)P2 (74 )) + q 2 2(Pi(Ti)Pi (T3)Ai2(T2)Ai2 (r4 )) +

q2 /2 (P2 (72 )P2 (T4)Aii (ri) Ai (73)) + (A Ti(ri)A1 (T3)Ai 2( 2)Ai 2(74)))

Using iterated expectations and (Aim(ti)Aim(t2)) q /Pm-(t 1 )6(t 1 - t 2), Eq (A.1) can be

written as the sun of four terms as

(C2(p1)) =T 1 + T2 + +T 4  (A.2)

where

T1  fd7i J dT3 d4 dp' jdP" h(t - 1 )h(t -7 2 )h(u - 73 )h(u -74)

x, q/A(E(pi, rI2E2(P', )72 |E1 (P1, r3)1 I E2 (P", r4)1)

- f= T d dJa d 3 jdp' h(t - ri)h(t - T2 )hQu - Ts)h(U - 72)

T3 - JrITIJddj dP'jdu'2 t )h( - )h(u T~~-7 )

x q4 13A 1 (|EI(pjir) |E2 (p' 2 )I E2 (p", r4)2)

T4 J dri Jd2 h(t - ri)h(t - T2 )h(u - Ti)h( - 72 )q4 r 2 (|E 1(p 1 .r| 2 |E 2 (p', T2)|).

These four terms represent our four sources of noise: Ti comes from the randomness of the

fields at the detectors due to the fluctuations of the pseudothermal source and scattering off

the target: T2 arises from the randomness in the field at the high spatial-resolution detector

beating with the shot noise in the bucket detector; T3 comes from the randomness in the field

at the bucket detector beating with the shot noise in the high spatial-resolution detector;



and finally, T4 is the beat of the shot noises from the two detectors. The most complicated

of these terms is T1, and in fact the methods used to solve the other terms are a subset of

those used to solve T1 . Therefore, we will show the most detail in the derivation of T1, and

show the parallels for the other terms.

A.1.1 Source fluctuations noise term, T1

To evaluate T we want our averaging of the fields to be a jointly Gaussian eighth-order

moment. so that we can use Gaussian-moment factoring. However, the measured fields

E1 (p1 . t) and E2(p. t) are not jointly Gaussian. due to the reflection off of the target. Since

we are using a semiclassical treatment, we directly measure the fields impinging the detectors.

so E1(p, t) = E' (pi, t) and E2 (p, t) = E+(p, t), the latter of which we can back propagate

to Es(p'. t) by Eq (2.3).

With that, we find the field average from T1 becomes

(| E1(pi ,rI12|1E? (p'. T2q|E(i _F3)1|2(" r4)12) = 2 dp dp4 dp4 dp5- ,_) 2 EI~l E) ("i)27 JdP2 JdP3 JPJ

x(E*(pi1, ri) E'(pi. ri) E'*(P2, r2) E' (P3, T2) E'*(pi, 7 3) E'(p1. rF) E *(P4, r4) E'(p5, r4))
/mfm\r-(m\ -

2
-(L+-iP2 12) (L+V-/P312) - (L±I"p12) (+p"P 2

x {T*( p2)T p 3 )T* p4 )T(p 5 ))e 2 +|, p e2+T | 2 P p C 2eL±+p"P5

We now have a fourth-order moment in the target surface, and an eighth-order moment in

the fields to evaluate. Both terms are higher-order moments of zero-mean Gaussian random

processes. so we can apply the Gaussian-moment factoring theorem to express them in terms

of second order moments. Since we are using pseudothermal light, only the phase-insensitive

moments matter; the phase-sensitive cross correlation between E' (p. t) and E' (p, t), as well

as the phase-sensitive autocorrelation for each field. are zero. The same is true for the

surface, which only has a phase-insensitive autocorrelation. Thus,

(T*(p2)T(p 3 )T*(p 4)T(p 5 )) = 6(p2 - P3)(P4 - pA)A4T(p 2)T(p 4 )

+ 6(P2 - p5)6(p 4 - p3)A4T(p 2)T(p4), (A.3)



giving us

(|E 1(pi, ri)2E2(p', _F2)|2 iEi(pi, T3)|2|E 2 (p", 4)|2) = 1 dp 2  dP 4 T(p 2)T(p 4)

x [(E'*(p1. ri)E' (pi, I )E'*(p2- -F2)E'(P2, 7 2) E*(p1, rs)Ek(p t. 3)E'*(p4, rF4)E' (P4, r4))

+ (E*(pi, Ti)E' (pi, r1)E'*(p 2, r 2)E' (p 4 , T2)E*(pi, T3)E(p i, r3 )E'*(p 4. r4)E'(P2, 74))

x eC d L 2- P ")e-_ P4'P'-p"] (A.4)

We now apply the Gaussian-moment factoring theoren to the eighth-order field moments.

setting all phase-sensitive moments to zero and applying our DC-block filtcr, to arrive at

a complicated expression that is a function of the propagated Gaussian-Schell correlation

function in Eq (2.10). In this model the time and space arguments are separable, so we can

perform the time integrations (over u, t, T1, T2. T3. r4) and the spatial integrations (over p2,

p4, p', p/") separately.

Time integrations Each time integral is of some function that is a product of correlations

functions and detector responses, all of which are of a Gaussian form. This means that the

integrations, while conplicated, are tractable for a computer to evaluate. The end result is

a function of exponentials and error functions. but using our assumption of T1 /To > 1 we

can say that crf[Tj1/To) 1 and exp[-(T/To)2] ~ 0, giving us fairly simple results.

Spatial integrations The spatial integrals are more complex, as the target surface is

involved, and not all of the propagation terms canceled. However, the the coorelation func-

tions are Gaussian, so with a few basic manipulations we can evaluate these integrals. First,

we apply our previously stated assumptions that the the coherence length at the target is

small enough to resolve all features, and the intensity radius is large enough that the average

on-target illumination pattern is approximately constant so that

dp 2 T(p 2)e 21p2l/aLe- \P,- / T(pm) dp2 e |P2/K . (A.5)



Second, we define the Fourier transform of the target as T( ) so that

dp 2 T(p 2 )e P2P' P") = Tp -p") . (A.6)

Finally, we need to handle the integrations at the bucket detector. For the first eighth-order

term in Eq (A.4). the propagation terms cancel, so we can simply evaluate f dp' f dp" -

A2. However, in the second term. the propagation terms do not all cancel, and leave complex

exponentials that will effect a Fourier transform to the difference coordinates L(p' -p

This will leave us needing to evaluate three different functions of these difference coordinates.

First, we have

I pkk p'p| 
2

L A2 L due
p2 k J

where we have employed the normalized difference coordinate v = pLko(p' - p")/L, and are

utilizing the two-circle overlap function and parameter a = 4/7ra as defined in Chapter

2. There is no closed form of this integral that we could identify, but it is constant for a

given a, so we have defined the normalized parameter F in Eq (2.26) so that

ep dl 2T
2

Jfdp d p" 
A2 JA

A a 2 (A.8)

Second, we need to evaluate terms of the form

T(p1) dp' dp" T (p' -- p") e

To do this we will employ the difference coordinate (

transform definition

x(p) = -'[X( )(1)

_iLJ4 ~ ,1 __

2J P - - " ( A.9)

= (p' - p") and the inverse Fourier

d( X( )e*P

2 O(v,4a). (A.7)



to arrive at

T(pI) dp' dp" T
\p-p" e p e '-

(P'- ")6 2T I plIe p.ip,-p"I)

= T(p1) 2 l [(()(p1) * F1 [e 2()](p1) * F- 1 O .2 (() I(P1).

Since F- 1[T(()](pi) = T(p 1 ) and -1e-P /2(()](p1) - (1/rpL)e-P1I/2P1, and PL is small

enough to resolve all features, we have FT [T( )](p1 ) *F- [e-Pig/2(=)](p1 )= T(pi). Also,

the two-circle overlap function O((, 2r) is simply the convolution of two circles of radius r

as

wIr 2O(. 2r) = cire ( )
Ir

*circ ,

where circ(-) is the unit-length circle function. The inverse Fourier transform of a circle is a

Jinc function as

(A.11)

whose width is PL and thus resolves the target. This leaves us with

T(p1) Jdp' d p" T (p' - C 'L- P e CL Pia'-P"p = -T(pi)A 2 .p) )

Finally, we need to evaluate I dp' f dp" IT (L(p' - p")) 2. We again use difference

coordinates and the two-circle overlap function to evaluate this, and define the term AF as

in Eq (2.25) to arrive at

I dp' i dp"
To (kp'1 (A.13)

It should be noted that, by Parseval's theorem, A'r > A' with equality when T(() is very

narrow. in which case A' fd T( ) 12 fdp T(p) 2 AT. With the final assumption

(A.10)

(A.12)

7r2.F-1 [O ((, 2r) (()] (p1)

2 = A L 2 A/
P") 2 k 2 F-

0

r 4 ( 1( 11

p1|r



of AL/pi > 30, we can combining all of these terms to arrive at an expression for the field

noise of

2P \4 A2A2q 47r472p4To A' A1 A' L2  T 2wL 2F 1
T = T + TFp) 2 +7 p2TP

T Ta 2 L 4T1, y'27 p 2 TO V 2rp1 A2 ,k To Ak

(A.14)

A.1.2 Remaining noise terms

Evaluating the next three terms only involves a subset of the operations needed evaluate

T1. We again need to back propagate to E'(p'. t) with Eq (2.3) to arrive at functions of

higher-order Gaussian moments. For T2 and T3 we evaluate sixth-order Gaussian moments,

and for T4 we have a fourth-order Gaussian moment; all of these can be expressed in terms of

sums of products of the correlation function in Eq (2.10) by Gaussian-moment factoring. All

of the temporal integrations occur over a products of Gaussians, and can again be evaluated

by mathematical software. such as MATLAB or Mathematica. All of the spatial integrals

can be evaluated with the methods used for T1 . With this, we arrive at expression for these

three noise ternis as

2P )
Ta = 2

2P ) 3

T3 = Ta )

2P \2
T4 = ra 2

rL

q~rjfAiA 22,L T(Pm)
L2T1

q4rq3AIA221,p2 4rA 2p ± L 2 -
PT L +k2( p1)

LT 1  3 k0

q4 I2A1A2 FPiG2BT()
4x'L2 T1

(A.15)

(A.16)

(A.17)

Combining all of these terms, and substituting ao = 2L/kopL. we now can write the



second moment of the correlation function from Eq (A.2) as

2 2P 2) A A

(C2 (p1)) = a 2 1

x 2+ - -2 (p1)4 A!1.-P ±LT(i

+ L 9 T(pi
P L2To0 rA 2 pi

aLX ir B

16v 2P2p2 Tj2A 1 A 2 L2T

2 g71 TO 2 4

L4 T

A/ a 2
+ F

V- p24-rA2

P Lr47T A 2

PL 4T71A,

+0 T(p1)T0 2 A2

4 a 2

3+ 0 T2 p)
_3 47wA2j

T(P)].

The mean of the correlation finction can be found in Eq (2.22), giving us a squared mean of

A ( Ap) qA4 ( 2P 4
(C(p1)) 2 = I - 7r2p P72 (p1).

L 7raL
(A.19)

Combining this with the second moment in Eq (A.18), and substituting the dimensionless

brightness term I PTop2/a 2, we arrive at to SNR of

SNR = (C(pi))2
(C 2(p1 )) - (C(p1)) 2

_ T2(PL)

L2

+L T(pi) +
qI A2

iIT

A 1,I0

+ T V()
To

3 + a 23 4,7A21

A/ a
H- Fp2 01wA2 0 2 A2 (PI)

HTODBP6 wL 2 Y()-T 2 (Pi) + TOB /LT(pi) -
169 ,2 A19q2_T2 As

which simplifies to Eq (2.28), which we reproduce here:

T(Pi)",

A' +A'/ 02 2(1T1,, s aOT2p_ FT 2A2 2
2 T+ (~P1)

V - PL TO 2A~
H- T(pi) L2 H- ~~LT( [I H- a0]1) _L2  p2 T2 [(p 3) 4 a

771 A2 A171I 3 4,sA21
7 (P1)TQBP L2

16V2-A1,22 A2

(A. 21)

(A.18)

SNR =

(A.20)

-



A.2 SPDC Ghost Imager

The derivation for the SPDC ghost imager closely follows that of the pseudothermal ghost

imager, so we will provided a less detailed derivation. The deviations come in the generation

of the noise terms, their physical interpretation, and the cross correlation function between

the signal and reference fields.

As before. the SNR derivation requires evaluation of the second moment of the correlation

function

7T1/2 f T1/2

(C(i)=dt du((1i(t)12 (t)11 (U)12(U)). (A. 22)
TF -T /2 -T /2

We can use Eqs (3.5) and to write the currents in terms of the detected field operators

E1 (p, t) and E2 (p. t) as

(11(t)'12 (t)11 (U)72(U))

= q4A2 drJ dT 2 JdT 3 d4j dp' dp" h(t -i)h(t - r)h(u -T 3)h(u -T 4 )

x(E'(pi, r1)E1(pi, rI)E (P'., r,))E2(p, r2)Ej (pi, T3) E1(p1.T3 rsE (p", r4)E2(p"l. r4))

We now use the commutator relationships in Eqs (3.1) and (3.2) to normally order the field

operators as

((p1. r1) E1(p1, T1)E, (p', T2,) )E2 (p'. r) E'(pi, r3) E1(pl, rTE3 r) E2 (" rPT 4)

(p1. T1)E (p,72)El (pi rFa) E2 (p", r4) 1l(pi, Ti) E(' r)1p1 3)2 (P"- T4))

x (E((pi, ri)E (p', T 2 ) (pi, T3 )EI(pi, ri)E1(pi, 73 )E 2 (p"- , 4 )) (p' - p")6(T2 - T4 )

x (E(p 1 . T) (p'. 7 2 )E(p", 74 )E 2(p'. T2)E1 (p1.T3) E2 (p".T4 )) 3 (T1 - 73)

x (El(pi, ri)E (p'. r 2 )E1 (p 1 , T3 )E2 (p", T4 ))6(p' - p")6(r2 - 7 4 )6(T 1 - 7 3 ).

Using Eq (3.6) we can write this in terms of the propagated field operators E' and ER.

Since the terms are normally ordered, and the vacuum terms are zero mean and commute



with each other and the field operators, this is simply

(El(p1. r1)E1(pi i, T)E (p '2 )E2 (p- 2 )E (p1. T3 )E1(pi, T3)E2(p", r4 )E 2 (p", T4))

= 2i 4 (E (p 1 .r1i)E(p', r 2 )E2(p1,r3)Et(p",rm)Ek(p1,71i)EL(p'. ' 2 )ER(P1,rT3)ZT(p" .)

x R3 E pi, Ti)F(p'r 2)E(pi, ra)E5(pi, ri)E(pi, 3 )Er(p". r4))R(p' - p")(2 -4)

x r 3 (E2(pi, ri)E(p' r 2 )$(p" , r 4 )EG(p'- T 2 )Ek(p1, T3 )ET (p", r4))3(R1 - 7)

x 2 (E$(pi, ri)BE7(p'. r)E(pi, r 3 )Ei(p", r 4 )) (p' - p") (2 -r4)(r1 - -).

We again have the correlation second moment as a sum of four terms. (02(p1)) - Ti +

T2 + T3 + T4. where

T1 =JdTr dr dT3fd4j dp'j d p" h(t - T1)h(t - r2)h(u - r3 )h(u - r 4 )q4 r4 A2

x (i, / riE( r iEtp1 T3)E'(p",7r4) E' (pi. ri)E', (p', r2E'(pi, T3) E' (p", r4)),

T9  J dTi fdr dr 3 j dp' h(t - Ti)h(t -T)h(u - 7 3 )h(u - T2)q47A2

x (P1, i) O4(P" r2)ER (P1- rsT)E p1 F r i E'' E~i 3)

T3 Jd1 Jdr 2 fdrI4 dj dp" h(t -7 1 )h(t -rg)h(u - 1 )h(u -7 4)q 4 3 Ai

x (, 1 T1 ,7 (P'-raT,) (P",rTs) (P 1.r1) T'(P',r2,)ET(p"-rTs)),

T4 JdT Jd 2 h(t - ri)h(t - 72 )h(u - ri)h(u - T2 )q 4
q2

x (E(i r) (p.2E(pi, ri)EkT9(p',72))

We now have four terms which can be described as arising from: the randomness in the

fields from the source fluctuations and scattering; the source randomness in the reference field

mixing with the fluctuations from the measurement of the signal field; the source randomness

in the signal field mixing with the fluctuations from the measurement of the reference field;

and the beating of the randomness from the two quantum measurements of the Gaussian

field operators. For simplicity., we will evaluate these terms separately



We first back propagate ET(p, t) to E' (p', t) by Eq (3.3), making our noise terms a func-

tions of normally ordered Gaussian moments. to which we can apply the moment factoring

theorem to obtain an expression which is a sum of the product of second order moments.

In the classical case. the signal and reference fields had phase-insensitive cross and auto

correlations given by Eq (2.6). For the SPDC ghost imager we have a phase-sensitive cross

correlation given by Eq (3.7) and a phase-insensitive autocorrelation for each field given by

Eq (3.8). These propagate into the far field as Eq (3.9) and (3.10). After performing Gaus-

sian moment factoring our terms are the product two different correlation functions, one of

which is complex. However, after some additional manipulation the temporal and spatial

terms can be separated, and evaluated as they were for the classical case. Substituting in

our dimenlsionless brightness term I, the first term T1 evaluates to

16q 4 1 A2A 4 A' TO 1 1
T1= + 1+ +T-1

x 2L4T4p4 /irp±TI + 8T,1

A T0  Q2 (2 r2 9 4 T 2 ~A' To L2 1 1 L2 -

V/2-7p2 T, A 2kp2 / 8712 A jxk p

The remaining noise terms are evaluated in the same manner, giving us

16q 4 3A9A 2 B3 1

To = +T~2  1 i T(-p).

e terL2T3Tit2tmi aaf

16q 4 73 AA1 3 1 -4 L 2 ~
'T3= 2-+ T2

7rL4To*T~p 9 2 +2 5 rkp 2.

0/qy A1 AL v2 71 1 3 kLA

T4 = V-q472 I22Q + 1) T(-p1).
v/2 E2LTT1p2 2 v/72,I

Combhining these terms. and substituting ao = 2L/kopL. we have an expression for the second



moment of the correlation function

16q 4 A2 A 2I 4 To
(O2(pi)) = 2

2L To4 p T1 [y 2-cp 2A'r

+ + a TrF _

2irp2 4,wA 2 To 2 2 I 271
+ 1)2

To 2 7

A2

+ 1) T 2(-P)

+ (2 -27I +

1

2 I
a 2

+ 0
47A2.

1 -+ Iw1
(2I 971

T(-p1) JL 2TQBp1

16v'5AIA 2I272 I

The mean of the correlation function is in Eq (3.16), and after substituting in our bright-

ness term I, we have a squared mean of

16q 4 4 A AP A (-1 ( 2
C1 (pi) = 2 (-p1)

7T 2 L 2~o pi27-
+ 1)2 (A.23)

Combining this with our second moment, and substituting If = (1/(2 27r1) + 1). we arrive

at the SNR expression in Eq (3.18), which we reproduce here:

1 2

T, rb a) 2 +7b0 2ATp) 9 L2 + ;1 pL [ 4[
A2177T(pi) AjIT 3

4 a v@2TO 2Rp2

47rA2 ]16v2AIA22,72T(p)

(A.24)

SNR
4+ 0

v rp T(pi)2

7--p1)L 2

A2 -T

TF rpiT(-p1)
A1L +1)
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