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FOREWORD  
 

Flying insects display remarkable agility, despite their diminutive eyes and brains. Over the past 

two decades the has been increasing interest in investigating how insects use their vision to 

stabilize flight, regulate flight speed and altitude, avoid collisions with objects, and detect and 

intercept other moving targets (Srinivasan, 2011) [1]. This project, funded by the US Army 

Research Office, is part of a larger and continuing effort in our laboratory to understand the 

mechanisms of visual guidance in flying insects, and to use this biological inspiration to design 

novel algorithms for the guidance of autonomous aerial vehicles. 
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STATEMENT OF THE PROBLEM STUDIED 
 

The aim of this project is to design, develop and field-test biologically inspired strategies, 

algorithms and hardware for vision-based guidance of aircraft to achieve a variety of tasks, listed 

below. 

i) Control of aircraft altitude and attitude, terrain following, and obstacle avoidance  

ii) Horizon-based stabilization and control of aircraft attitude 

iii) Detection of moving targets by a moving vision system, using algorithms based on 

analysis of optic flow. 
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SUMMARY OF THE MOST IMPORTANT RESULTS 

 

i) Control of aircraft altitude and attitude by using ‘virtual optic flow’ 

Flying at a constant, low height above the ground is important when there is a need to perform 

close-up photographic exploration of terrain, or, in a military application, to evade detection by 

enemy radar.   If the ground speed of the aircraft is known (e.g. through measurement of 

airspeed, or from GPS information), then, following the example of the honeybee [1, 2], the 

height above the ground can be computed and regulated by measuring the optic flow that is 

generated by the image of the ground. The optic-flow based approach is attractive because it only 

requires the presence of a small, inexpensive, low-resolution video camera on board. This is in 

contrast to traditional methods of height measurement that use heavy, bulky and power hungry 

instrumentation such as radar or ultrasound, radiate energy, and compromise stealth. 

 
Optics of the vision system 

During high speed flight at low altitudes, the image of the ground, as imaged by a downward-

looking camera, can move at a very high velocity, complicating the measurement of optic flow. 

To address this problem, we have designed and developed a vision system that uses a camera and 

a specially shaped convex mirror profile as shown in Figs. 1a,b to achieve two objectives. They 

are: (i) To reduce the speed of the image of the ground to values that are low enough to permit 

accurate measurement; and (ii) To remove the perspective-induced distortion of different regions 

of the ground in front of the aircraft (see Fig. 1c). This ensures that there is no variation in image 

velocity along the vertical axis of the remapped image (Fig. 1d), thus promoting the accurate 

measurement of optic flow along this axis [3].  

 
This way of mapping the world is similar in some respects to that achieved by the compound 

eyes of semi-terrestrial crabs that live on a flat substrate [4]-- although the objective in the case 

of the crab seems to be translate range measurements into angular measurements in the eye, 

rather than to measure image velocities.  
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a    b  

 

c      d  
Figure 1 Illustration of vision system for terrain following. (a) A video camera views the ground through 
a specially shaped, curved reflecting surface (b) View of system installed on the underside of a model 
aircraft (c) Simulation of view in the mirror as captured by the camera during horizontal flight over an 
infinite horizontal plane (d) Unwarped version of (c), remapped as in Fig. 3b, showing the removal of the 
perspective distortion along the vertical axis.  
 
When using optic flow to compute the range of an object, it is important to bear in mind that it is 

only the translation-induced component of optic flow that contains information on range – 

nearer objects induce higher magnitudes of optic flow. The flows induced by any accompanying 

rotations of the aircraft – for example, yaw, pitch or roll – do not carry information on range, 

because their magnitudes are independent of range. Consequently, we cannot work directly with 

the raw optic flow readings. It is necessary to (i) measure the rates of yaw, roll and pitch using 

gyroscopes (ii) use the gyroscopic readings in conjunction with pre-computed optic-flow 

templates for yaw, roll and pitch to determine the rotation-induced flow components and (iii) 
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calculate the translation-induced component of optic flow by subtracting, or ‘peeling off’ the 

flow components that are generated by the rotations. The residual pattern of optic flow, which is 

purely that induced by the translational component of the aircraft’s motion, can then be used 

compute range. 

 

We have developed a simpler solution to the above problem.  This is to artificially create the 

effect of a purely translatory forward motion of the aircraft by configuring two of the 

camera/mirror systems of Fig. 1, as shown in Fig. 2. The apparent optic flow that is measured by 

comparing the images acquired by these two systems at the same instant of time is then exactly 

equal to the flow that would have been registered by the rear mirror system if it (and the aircraft) 

had made a pure translation to the position of the front mirror system. The ‘virtual optic flow’ 

generated by this coaxially arranged, dual camera-mirror system provides an accurate and 

immediate reproduction of the translation-induced component of the flow, without having to 

move the aircraft at all. This flow can then be used for a variety of purposes, including (i) 

computing a range map of the environment, (ii) fitting a plane to the range data to estimate the 

distance and the orientation of the ground plane relative to the aircraft (iii) using this information 

in a feedback loop to control the aircraft’s altitude and attitude. 

 

 

Figure 2 Illustration of twin coaxial camera/mirror system for measuring virtual translational optic flow. 
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Calibration of the vision system 

Fig. 3a shows a view of the laboratory test arena in which the device was calibrated, and Fig. 3b 

shows the virtual optic flow computed between the images captured by cameras 1 and 2. Nearer 

points of the environment generate greater magnitudes of virtual optic flow. 

Fig. 4a shows the range readings computed by the vision system for a vertical cross section of 

the arena, and Fig. 4b shows a reconstruction of the terrain based on the range readings. The 

error in the range readings is less than 5% [5] [6].  

 

a    b  
 
Figure 3 (a) Test arena for calibration of the vision system (b) Virtual translational optic flow measured 
from the images captured by the two coaxial cameras of the vision system 
 
 

a b  
 
Figure 4 (a) Range as a function of (roll) view angle (blue curve and SD bars) as computed by the vision 
system at one cross section of the arena, compared with the true range (grey curve) (b) reconstructed 
terrain profile of the area, compared with the actual profile, which is represented by the boundary planes 
of the co-ordinate axes.  
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This system is used to estimate the aircraft’s height above ground.  If we assume the ground to 

be approximately planar and horizontal, we can also use the range readings to estimate the 

orientation of the aircraft relative to the ground, and therefore its attitude in relation to pitch and 

roll.  Fig. 5 illustrates the magnitude profile of the virtual optic flow (or, effectively disparity) 

that would be generated in the vision system by the ground during horizontal flight at zero pitch 

and roll. The measured virtual optic flow magnitudes are fitted to a planar model of the ground to 

estimate the roll and pitch of the aircraft [5].  

 
 
Figure 5 Magnitude of the virtual optic flow that would be generated in the vision system by the ground 
during horizontal flight at zero pitch and roll. 
 

Field tests of vision system 

Fig. 6 shows a view of the vision system, mounted on the nose cone of a model aircraft - a Super 

Frontier Senior-46 (wingspan 2040mm). 

 
 

Figure 6 View of vision system mounted on the nose cone of a model aircraft 
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Fig. 7 shows the results of a flight test of the system. The graphs compare the roll and pitch, as 

computed by the vision system, with the roll and pitch as reported by the gyros. The agreement is 

good, allowing for the fact that gyro readings are not 100% reliable because of drift [5]. Hence, 

in estimating attitude the vision system that we have developed is likely to be more accurate than 

the gyros. 

 

Figure 7 Comparison of pitch (upper panel) and roll (centre panel) as computed by the vision system, 
with the corresponding values computed from the gyroscopic signals. The bottom panel shows the 
altitude, as computed by the vision system. 



FINAL REPORT: DAAD19-03-1-0359 12 

Closed-loop control of altitude and attitude 
 
The next step was to test the performance of the vision system in closed loop [7]. Fig. 8a shows 

the performance of the system in regulating altitude and attitude, where control alternates 

between the manual mode (when the aircraft is controlled by a pilot) and the auto mode (when 

the autopilot is in operation). In the auto mode the system is commanded to hold the altitude at 

10m and the pitch at 0 deg. It is evident from Fig. 8a that the system performs these functions 

well. When control is passed from manual to auto at a height of 20 m and a pitch of -35 deg, the 

system is able to attain the target parameters within about 3 seconds. The left-hand panel of Fig. 

8b is a view of the aircraft flying in a different auto mode where it is commanded to maintain an 

altitude of 15m and a roll angle of -45 deg. The right-hand panel shows an image captured by the 

front camera at the same instant of time. 

 

 
 
Figure 8 Performance of system in controlling altitude and attitude (a) Altitude (black trace) and pitch 
(blue trace) during periods of manual flight (white background) and automatic flight (pink background). 
During the auto mode the system is commanded to hold the aircraft at an altitude of 10 m and a pitch of 0 
deg. (b) View of aircraft (left panel) and image acquired by the front camera (right panel) during an auto 
mode in which the aircraft is commanded to maintain an altitude of 15 m and a roll angle of -45 deg.  
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Obstacle detection and avoidance  
 
The mapping performed by the mirror shown in Fig. 1 has an additional advantage: the largest 

magnitude of the virtual optic flow that is sensed by the system defines the radius of a ‘collision-

free’ cylinder of space (a clear zone) through which the aircraft can fly safely (Fig. 9).  

 

 
Figure 9 Illustration of how the terrain-following vision system of Fig. 1 defines a collision-free cylinder 
whose radius depends upon the highest magnitude of optic flow that is measured. 
 

The smaller the flow magnitude, the larger the radius of this cylinder, and the safer the passage. 

Collisions with obstacles can be avoided by defining a collision-free cylinder of a prescribed 

radius, and computing the magnitude of optic flow corresponding to this radius. Any object that 

generates optic flow of a magnitude greater than this criterion value will penetrate the collision-

free cylinder and be flagged as an obstacle. Control is then applied to veer away from the 

obstacle, thus moving it outside the cylinder [7]. An example of collision avoidance using this 

technique can be viewed in the movie in the accompanying Powerpoint presentation. 

  
 
ii) Horizon-based stabilization and control of attitude 
 

Conventional methods of estimating and stabilizing attitude involve the use of gyroscopes to 

measure the rates of roll and pitch. This approach has the disadvantage that the instantaneous 

attitude is determined by integrating these rates over time, which means that the error in the 

estimate of the attitude will increase with time, due to the presence of noise in the rate signals. 

The problem does not arise if the horizon is used to estimate attitude, because this visual feature 
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provides an absolute external reference and there is no cumulative error arising from integrating 

angular rates over time.  

 

Flying insects control their attitude in roll and pitch by using three visual sensors, known as 

ocelli, to monitor the horizon [8] [9].  We have incorporated this principle into a vision system, 

as detailed below, that is capable of monitoring roll and pitch accurately and robustly, regardless 

of the position of the sun, clouds or other confounding factors. 

 

We have developed an algorithm to locate the profile of the horizon in the image captured by one 

or more on-board cameras. The colour of each pixel in the image is analysed to determine 

whether it belongs to the ground or to the sky [10] [11].  This determination is carried out by 

generating a signal-derived variable, U, which is an optimally weighted linear combination of the 

R, G and B colour components of the pixel. The pixel is declared to belong to the sky or the 

ground according to whether U is greater or lower than a preset threshold. This procedure 

enhances the speed of discrimination and maximises its accuracy [11]. Horizon pixels are 

identified as those lying at the transition between ground and sky. The positions of these horizon 

pixels in the image are then back-projected into the external environment using the known 

geometry of the camera’s optics, and a 3-D plane is fitted to these points as detailed in [11]. The 

orientation of this plane relative to the vision system then specifies the attitude of the aircraft 

relative to the horizon, thus determining its pitch and roll. This scheme is robust to the position 

of the sun and to changes in illumination because it locates the horizon by using information on 

colour, rather than intensity. A further advantage of this system is that it does not require a 

separate set of optoelectronic sensors for monitoring aircraft attitude – the algorithm can be 

incorporated into a vision system that is already place, e.g. for sensing optic flow.  

 

The performance of this scheme is illustrated in Fig. 10a, which shows the results of a test in 

which the aircraft was initially flown manually, and subsequently commanded to hold a pitch 

angle of 0 deg and a roll angle of 40 deg during the time interval 38 – 107 sec. Manual control 

was resumed after 107 sec.  It is evident that the aircraft maintains the prescribed attitude in a 

stable and accurate manner during the period of automatic control.  The left-hand panel of Fig. 

10b shows one frame captured by the camera during the auto mode, with the red line showing 
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the estimated horizon profile and the numbers indicating the computed values of roll and pitch. 

The right-hand panel of Fig. 10b shows an animated reconstruction of the instantaneous 

orientation of the aircraft relative to the ground plane. Recent work has demonstrated that this 

technique for monitoring and controlling aircraft attitude can be used to automate the execution 

of a variety of aerobatic manoeuvres such as loops and Immelmann turns [12]. 

a    

b  
Figure 10 Insect ocellus-inspired system for measuring and stabilizing aircraft attitude by monitoring the 
horizon. (a) Illustration of system performance. The graphs show pitch (green trace) and roll (red trace) 
during the manual flight mode (blue trace low), and during the auto mode (blue trace high) when the 
system is commanded to hold a pitch angle of 0 deg and a roll angle of 40 deg. (b) The left-hand panel 
shows an image captured by the vision system when the aircraft is under automatic control and 
commanded to maintain the pitch and roll angles indicated above. The right-hand panel shows an 
animation of the orientation of the aircraft relative to the ground plane at the same instant of time. 
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iii) Detection of moving targets 
 
 

While it is relatively straightforward to detect a moving object in a scene when the observer (or 

camera) is stationary – for example, through frame subtraction – this task becomes much more 

complex when the observer is in motion. The reason is that, when the observer moves, the 

images of the object as well as the background are in motion. Relative motion between the object 

and the background is not a reliable cue for detecting a moving object.  This is because the image 

of a stationary object can move relative to the image of its background if the observer is 

undergoing translatory motion and the object is nearer to the observer than is the background. 

 

We have developed and tested two classes of algorithms for detection of a moving target by a 

moving vision system. 

 

1. One class of algorithms involves (a) measuring the optic flow field in the entire scene and (b) 

detecting the presence of the moving target through the motion contrast that it presents against its 

immediate background. This motion contrast is detected by applying a Difference-of-Gaussian 

(DOG) filter to the optic flow field. The technique is refined by (i) assuming a planar model for 

the structure of the background and (b) predicting the likely location of the target in each frame 

from information on its position and velocity as measured during the past two frames. 

The results of this approach are shown in the next 6 figures and described in the legends. 

 



FINAL REPORT: DAAD19-03-1-0359 17 

 
 
Figure 11 (a) Robotic gantry for testing moving object detection algorithms (b) Panoramic imaging 
system comprising a camera (left) and a specially profiled reflective surface (right) (c) Raw image 
recorded by the system (d) Unwrapped image 

 

 
 
Figure 12 Experimental configuration for testing the detection of a small target moving from the bottom 
of the image to the top (1) or from the top to the bottom (2) while the vision system itself moves 
continuously toward the top (i.e. in the same direction as (1)) 
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 Figure 13 Test image sequences for detecting a small target moving from the bottom of the image to the 
top (upper row) and from the top to the bottom (lower row) while the vision system itself moves toward 
the top at a constant speed. 

  

 
  

Figure 14 Tests of moving target detection by a moving vision system. The graph shows the fraction of 
frames in which the moving target is detected for various object speeds, using (1) a DOG filter to extract 
optic flow contrast and (2) a DOG filter in conjunction with a model that assumes a planar background. 
The graph also compares the results obtained with and without the use of a scheme to predict the target 
location in the next frame on the basis of the measured object velocity between the previous two frames. 
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Figure 15 Position errors in the detection of the location of a moving target by a moving vision system, at 
various object speeds. The graph shows position error (in pixels) using (1) a DOG filter to extract optic 
flow contrast and (2) a DOG filter in conjunction with a model that assumes a planar background. 

 

Figure 16 False positives in the detection of the location of a moving object by a moving vision system, 
at various object speeds. The graph shows position error (in pixels) using (1) a DOG filter to extract optic 
flow contrast and (2) a DOG filter in conjunction with a model that assumes a planar background.  
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2. A second class of algorithms that we have investigated involves (a) measuring the optic flow 

field that is generated in the entire scene by a pure translation of the vision system and (b) 

computing a range map for the entire scene using stereo vision. Moving targets are then detected 

as locations where the measured optic flow field vector does not match the vector that is 

predicted from the measured range map and the known direction of translation. 

The results of this approach are shown in the next 4 figures and described in the legends. 

 

 

Figure 17 Input scene, with the observer moving along a linear trajectory at a constant speed. The scene 
contains a static object (right) and an object undergoing self-motion (left). 

 

Figure 18 Optic flow: the magnitudes of the computed optic flow vectors. 
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Figure 19 Stereo disparity: the computed stereo disparity for the scene. Note that the objects are at about 
the same distance as the background plane. 

 

 

Figure 20 Moving object detection: The self-moving object is automatically detected by combining 
information from the measured optic flow and stereo disparity fields. 
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