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ABSTRACT 

In this paper we present an application of fault identification and control 
reconfiguration in the context of a high performance aircraft. A second order 
divided difference filter is used to identify an internal leakage fault in an electro-
hydraulic actuator found in the aircraft elevator. The identified fault information is 
then utilized in the formulation of an aircraft systems model for prognosis-based 
control. An optimization based reconfiguration strategy is presented to minimize 
degradation of the fault in presence of performance, actuation, and mission 
constraints. The strategy is then validated through Hardware-in-the-Loop 
Simulations. 

INTRODUCTION 

Modern technological systems rely heavily on sophisticated control systems to 
meet increased safety and performance demands. This reliance on control is 
particularly prevalent in safety critical applications, such as spacecraft, aircraft, 
nuclear power plants, chemical plants processing hazardous materials etc., where 
unattended and minor faults could potentially develop into catastrophic failures if 
maintenance is not performed in a timely and proper manner. By compensating for 
faults to some degree, conventional closed loop feedback control design for a 
process plant or air vehicle system may prevent that fault from being observed and 
will eventually develop into a control loop malfunction resulting in unsatisfactory 
performance (even instability). Hence, there is a requirement to identify the faults 
as soon as they occur and modify the control strategy to ensure stability and 
performance [1].  

Most of the existing research in the literature is centered around the objective of 
recovering as much of the pre-fault system performance as possible [2]. Some of 
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10000 ft altitude and 500 /ft s velocity to obtain a simplified aircraft model in the 
longitudinal plane.  
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where h is the altitude, θ is the pitch, tv is the velocity, α  is the angle of attack, q  
is the pitch rate, tδ  is the thrust, and eδ  is the elevator deflection. This model is 
connected to a simple first order model for thrust and a nonlinear hydraulic actuator 
model as given in Eq.(2) with internal leakage: 
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where Lx  is the displacement of the piston, 1 2LP P P= −  is the load pressure of the 
cylinder, A  is the ram area of the cylinder, fcF  represents the modeled Coulomb 
friction force, f%  represents the external disturbances such as unmodeled friction 
forces, tmC  represents the coefficient of the total internal leakage of the cylinder, vx  
is the displacement of the spool of the directional proportional valve, LQ  is the load 
flow. More details on the terms in the dynamics equations can be found in [4]. LF  
represents the aerodynamic forces acting on the actuator and are calculated as [5]: 
 ( ) ( )*, ,2l L hF MK q MC α δ δ=  (3) 

hC  is the nonlinear hinge coefficient which depends on α and the control surface 
deflection δ . q is the dynamics pressure and M is the mach number. The 
degradation model is an empirical model for the wear rate of a PTFE material seal. 
It is given as: 
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CONTROL 

The aircraft control structure has two main loops: the velocity loop and the 
altitude loop. The velocity loop is controlled with a simple lead compensator where 
as the altitude loop is controlled using a cascaded PI control with stability 
augmentation and angle of attack feedback: 

 ( )
30

,      i

ff p p p p ff

vi hi
t v t e q h h e

KK K
u e u Ku K e u

s s
K

s
q K θ

α θα θ= + = − − − + + − +
+

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

(5) 

The position control for the actuator is achieved by generating a reference force 
trajectory based on the reference position trajectory. A Lyapunov based control 
design is then used to develop a control structure to track the reference force 
trajectory. The reference force trajectory and the control input are given in Eq. (6): 
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RESULTS AND CONCLUSION 

Fault Identification 

The states and the internal leakage fault in the hydraulic actuator are identified 
using a second order divided difference filter (DDF) [6]. The discrete form of the 
actuator equations are given in Eq. (7): 
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where 1 4, ,x x…  are states (position, velocity, load pressure and spool position), 5x  
is the parameter appended as a state for unknown internal leakage fault and 6x  is 
the appended state for estimating friction. Vector ( )v k  is the process noise 
covariance. It is important to estimate friction online because of the large 
uncertainty associated with offline friction estimation. Adding the friction 
parameter improves the estimation accuracy significantly. The process covariance, 
measurement noise covariance and the initial state estimate variance used for the 
estimation and fault identification are as follows: 
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Figure 2(a) shows the results of fault identification with step changes in the leakage 
levels. The actual measured flow rate is shown in Figure 2(b). As can be seen, very 
small leakage rates are difficult to identify. However, as leakage becomes greater 
than .01 /ltrs s  the fault levels are distinctly identified with a constant ratio between 
the voltage to the leakage valve and the identified coefficient. 

Reconfiguration for Life Extension 

After the aircraft and the actuator models are combined, the gains of the aircraft 
controller are tuned through optimizing the following objective function with 
constraints: 
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Figure 2: Fault identification for step changes in the leakage level and measured v/s estimated flow 
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where rw  is the degradation of the actuator, ft  is the final time, ye  is the output 
error. Eq. (10) includes constraints on degradation level, time domain constraints 
such as rise time rt , settling time st , maximum overshoot pm  etc. The first half of 
the objective function as given in Eq.(9) ensures that the degradation at the end of 
the mission is minimized and the second part ensures that the system follows the 
trajectory as closely as possible. Using this objective function, it is possible to 
generate a trade-off between the degradation level and the maximum performance 
attainable. The reconfiguration supervisor uses a mixed integer programming 
optimization strategy to find the best possible response while keeping the 
degradation for a particular mission below a pre-specified level. This can also be 
interpreted as minimizing the degradation given the mission and performance 
constraints. This is achieved using the following objective function: 
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The optimization minimizes the sum of rise times (performance) of the step 
response of the aircraft. This optimization is also performed over the number of 
steps in the trajectory (assuming that the trajectory is supplied in terms of step 
changes in altitude for a longitudinal aircraft model).  

The step response is used as a performance measure in this case so that the 
aircraft can get to the desired altitude as fast as possible. This measure gives a 
buffer in case there is fault allowing more time to get to the desired waypoint. 
Figure 3 shows the response of the system before and after reconfiguration. 

0 50 100 150 200 250

0

1

2

Time (s)

 

 

0 50 100 150 200 250

0

5

Le
ak

ag
e 

va
lv

e 
co

m
m

an
de

d 
(v

ol
ts

)

Estimated
Commanded

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (s)

Le
ak

ag
e 

ra
te

 (l
trs

/s
)

 

 

Estimated
Measured



 

           
                                     (a)                                                                                  (b) 

Figure 3: Response before and after reconfiguration 
 

The reconfiguration strategy modifies the waypoint map by adding two 
additional waypoints – one between original waypoints 1 and 2; and the second 
between original waypoints 2 and 3. Further the performance times for the entire 
mission profile were modified as given in Table 1. This results in reduction in 
degradation by almost a factor of 2 as seen in Figure 3 within first 350s of the 
experiment. 

Table 1: Reference and response before and after reconfiguration 
Ref 

Before 1800 200 1000 500 1500 100 300 800 1300 600 

Ref 
After 900 1800 1000 200 1000 500 1500 100 300 800 1300 600 

Resp 
Before 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 

Resp 
After 24.4 24.4 23 23 23 20 28 20 19.5 20 20 20 
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