
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND
HANSCOM AIR FORCE BASE, MASSACHUSETTS

MCI-75-2 September 1972

SATIN COMPUTER SECURITY

Approved for public
release; distribution

unlimited

INFORMATION SYSTEMS TECHNOLOGY APPLICATIONS OFFICE

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

20100827137

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for
any purpose other than a definitely related government procurement
operation, the government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data is not to be regarded by implication or otherwise as in
any manner licensing the holder or any other person or conveying any
rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

A

-nuk W0UUL '+y^
MARK H. RICHARDSON, lLt, USAF
Techniques Engineering Division

uiZ f.lAto
ROGEBHl. SCHELL, Major, USAF
Tegfmiques Engineering Division

FOR THE COMMANDER

ROBERT W. O'KEEFE, Colonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

I

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

MCI-75-2

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

SATIN Computer Security

5. TYPE OF REPORT ft PERIOD COVERED

Interim Report

6. PERFORMING ORG. REPORT NUMBER

MWP 4445
7. AUTHORfsJ

S.B. Lipner

B. CONTRACT OR GRANT NUMBERfs)

F19628-73-C-0001

9. PERFORMING ORGANIZATION NAME AND AODRESS

The MITRE Corporation
Box 208
Bedford, Mass. 01730

10. PROGRAM ELEMENT, PROJECT. TASK
AREA ft WORK UNIT NUMBERS

Project 6190

II. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command & Management Systems (MCV)
Electronic Systems Division, AFSC
L.G. Hanscom AFB. Bedford, Mass. 01731

12. REPORT DATE

27 September 1972
13. NUMBER OF PAGES

25
14. MONITORING AGENCY NAME & AOORESSf/f dliterent from Controlling Olllce)

Deputy for Command & Management Systems (MCI)
Electronic Systems Division, AFSC
L.G. Hanscom AFB, Bedford, Mass. 01731

15. SECURITY CLASS, fo/ thla report)

Unclassified

15a. DECLASSIFI CATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II different from Report)

IB. SUPPLEMENTARY NOTES

Since this material is of an interim nature, this document does not qualify
as an ESD Technical Report, and it is NOT AVAILABLE THRU DDC.

19. KEY WORDS (Continue ijn reverae aide It necessary and Identify by block number)

Communications Processors AUTODIN
Computer Security
Security Kernel

Certification

20. ABSTRACT (Continue on reverae aide It necessary and identify by block number; , _._ , „ . .
This paper deals with the computer security aspects of the SAC Automated Total
Information Network (SATIN). Threats to communications processors are
identified, and historical countermeasures reviewed. The paper examines
problems that will arise if security is not an explicit consideration in the
design of the SATIN communications processors. Use of segmented memory, multi-
state processor hardware and a separable software "security kernel" is
recommended for all SATIN communications processors. Early implementation and

certification of a SATIN BCP prototype are proposed.

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

SECTION III

SECTION IV

INTRODUCTION
OVERVIEW
DEFINITIONS

THREATS AND COUNTERMEASURES
INTRODUCTION
THREATS TO COMMUNICATION PROCESSOR
SECURITY
User Input Threats
Design and Programming Threats
Host Computer Threats

AUTODIN SECURITY MEASURES
System Characteristics
Security Controls

SATIN COMPUTER SECURITY PROBLEMS
INTRODUCTION
COMPUTER SECURITY PROBLEMS
Certification and Testing
Complexity
Off-The-Shelf Hardware
Off-The-Shelf Software

SATIN PROCESSOR SECURITY PROBLEMS
Headquarters SAC Communications
Processor (HCP)

Base Communications Processors (BCP)
Regional Communications
Processors (RCP)

SATIN COMPUTER SECURITY APPROACHES
INTRODUCTION
ALTERNATIVES
SATIN SECURITY TECHNIQUES

Choose Appropriate Hardware
Design Software for Security
Plan and Undertake Certification
Use High-Level Language

Page

ii

1
1
1

3
3

3
3
4
5
6
6
7

9
9
9
9

10
11
13
14

14
15

15

16
16
16
17
17
18
20
22

SECTION V SUMMARY 23

LIST OF ILLUSTRATIONS

Figure Number Page

1 Memory Configurations to Show Problems of
Conventional Memory Protection

2 Access Controls with Segmentation
3 Secure SATIN Software Structure

12
19
21

ii

SECTION I

INTRODUCTION

OVERVIEW

This paper discusses the computer security issues that must he
addressed in designing the SAC SATIN network. As a discussion of
computer security, the paper is primarily concerned with the hard-
ware architecture and software design and implementation for the
network's communications processors. The issues of link communica-
tions security and of physical and procedural security are not
addressed, except as they relate to hardware and software. The dis-
cussions in this paper are preliminary in nature and will be expanded
as the network design evolves.

Section II below provides background by discussing potential
threats to the security of communications processors and the ways
they have been countered in AUTODIN. Section III outlines some
problems and potential vulnerabilities that will be of concern in
the design and development of the SATIN communications processors.
Section IV identifies some approaches to providing security controls
for the SATIN communications processors. The remaining subsection
of Section I presents a few definitions of terms that will be used
in the remainder of this paper. Despite the inclusion of these
definitions this paper does not stand alone; the reader is assumed
to have some familiarity with the issues of computer security.*

DEFINITIONS

The following definitions are taken (more or less verbatim)
from Anderson.2 They seem to have gained some degree of acceptance
in discussions of computer security.

1
J. P. Anderson, Computer Security Technology Planning Study, James P.
Anderson & Company, Fort Washington, Pa., October, 1°72, ESD-*ni-73-51

2
Anderson, J. P., AF/ACS Computer Security Controls Study, James P.
Anderson and Company, Fort Washington, Pa., November 1971,
ESD-TR-71- 395

A threat is a deliberate covert attempt to:

(a) obtain information from a system;

(b) inject spurious information into a system; or

(c) deny the user population the services of a system.

An attack is a specific formulation and execution of a plan to
carry out a threat.

A vulnerability is a flaw in the design or implementation of a
system that renders it susceptible to attack.

A successful attack may require exploitation of several vulner-
abilities. For example, a general-purpose computer may have supervisor
services that do not adequately check input parameters, but users may
be forbidden machine-language access to the supervisor services. An
attack may then involve:

(1) exploiting compiler vulnerabilities to insert
machine-language code; and

(2) exploiting supervisor service vulnerabilities to
gain control of the system.

SECTION II

THREATS AND COUNTERMEASURES

INTRODUCTION

This section identifies the general categories of threats to
which a communications processor handling sensitive or classified
information may be subject. These threats are restricted when com-
pared to those that apply to a general-purpose (user-programmed)
computer, but still bear consideration during processor design and
implementation. The second subsection below provides an overview
of the security control mechanisms of AUTODIN, a system whose com-
munications processors are required to protect classified information.

THREATS TO COMMUNICATION PROCESSOR SECURITY

The following paragraphs enumerate three classes of threats to
the security of information in a communications processor or network
of communications processors. Many different attacks may be subsumed
under each class of threat. The choice of an attack against a
specific system is governed mainly by the vulnerabilities of that
system. These classes serve to provide an overview of potential
threats to communications processors, and to exclude some classes of
threats. For example, users do not normally program communications
processors and, for this reason, no threats based on user program-
ming are included.

User Input Threats

The simplest class of threat to the security of information in
a communications processor involves user input of a message that
causes compromise or falsification of classified information, or denial
of system service. This threat does not apply to a communications
processor with "complete and correct" security control mechanisms;
since the communications processor's user (subscriber) does not
insert programs himself, he can only take advantage of errors of
trap-doors (see next subsection) in the existing hardware and soft-
ware. Indeed, the function of an agent in a communications pro-
cessor programming team would typically be to "set up" user input
threats, rather than to act against the system himself.

A simple example of a user input threat is the possibility of
inserting a long or ill-formatted message that invokes a software
error and causes the processor to crash. If a system allows retrieval
of previously delivered messages (as do most store-and-forward
processors), it may be possible for a subscriber to retrieve a
message that he has no business seeing. Entry of a message that is
too long, has too many addressees, or ends improperly may cause errors
in a communications processor's buffer management routines and result
in improper handling of messages adjacent in time or storage to the
one in error.

User input threats were considered at length in the design of
AUTODIN, and numerous countermeasures were included. The design
philosophy of AUTODIN is discussed later in this section. The para-
graphs below address the threats associated with the communications
processor programming and design staff.

Design and Programming Threats

The most severe threats to security in a system of communications
processors come from the programmers and others who implement the
system. Such programmers can deliberately insert trap-doors — sections
of code intended to bypass critical security controls under known
circumstances. For example, a program might detect a message having
a specified addressee, precedence, and classification, and generate
an "unclassified" duplicate destined for an appropriate addressee.
Alternatively some messages might be altered in selected ways
(falsification of data) or caused to disappear from the communica-
tions processor (denial of service).

The reader of the preceding paragraph may envision an isolated
and organized section of code — perhaps beginning with a comment
line "*** DIVERT MESSAGE TO AGENT'S TERMINAL ***." In fact,
efficient (fast, compact) programs are often singularly obscure of
purpose and can conceal their true effect from their authors. Hiding
a small selective penetration in a large assembly-language program
is thus not especially difficult. Attacks aimed at communications
processor components that are not apparently security-related can
be even more effective. A distributed update of an obscure master
mode procedure in a vendor-supplied operating system is fairly
unlikely to be inspected for its true security implications. A
special update to processor or control unit microprograms can bypass
security controls and will likely be ignored by programmers (who see
it as part of the hardware) and by hardware staff (who consider it
a kind of software). The latter attacks have the advantage that they
can be performed by mail without inconvenience or danger to the agent
involved.

In Implementing a concealed trap-door of the sort mentioned, an
agent could elect to defer providing a full message rerouting cap-
ability. Instead, he might include only the handful of instructions
needed to detect a "patch" message and replace code at a location
specified by the messages with newly specified instructions. This
alternative provides in the communications processor a limited user
programming capability. The agent can replace the communications
processor programs (or such of them as he wishes) remotely by
message input.

To prevent design and programming threats, the communications
processor environment in its entirety must be safeguarded. The
communications processor program must be certified and protected
as though classified. All programmers must be cleared. Even the
assembler or compiler used to prepare object programs is capable
of inserting a trap-door, and must be certified for its security
role. This approach to safeguarding the communications processor
environment is the one followed by AUTODIN.

Host Computer Threats

A new class of threat is introduced in a network of communica-
tions processors that support attached (host) data processing computers.
The exact nature of this threat has not been defined as clearly as
those in the previous classes and, in some sense, this subsection
will "talk around" the nature of the threat. However, it does seem
that a potential threat exists, and it is clear that SATIN is a
potential point of attack.

The general nature of the host computer threat involves too
much trust between the host and communications processors. The host
processor knows that the communications processor is cleared for
top secret (for example) and is willing to pass it data of that
level. However, the communications processor also serves uncleared
subscribers, and can compromise the top secret information without
detection by the host. Similarily, the communications processor
sees the host as cleared for top secret, and will accept data up to
that level. If the host sends the communications processor a top
secret message, marked as unclassified and destined for an uncleared
user, the communications processor can do naught but deliver it. In
this case, a host processor security failure propagates through the
network.

The first class of network problems above is simply a manifesta-
tion of inadequate communications processor security. The second,
however, reflects a host computer problem that is relatively likely.
The communications processor cannot examine the content of a message

to discern its true classification. However, it is possible for the
communications processor to "selectively distrust" the host computer
and treat all of its output messages as tentative top secret. In
this case, the host computer is assumed to be unsuitable for secure
multilevel operation, and human review (external to the host) is
required before the tentative top secret data can be downgraded.

The basic problem reflected above is that each communications
processor in a network tends to trust its neighbors. While the nodes
of a network appear to exercise their security controls in series
(one after another), action by any node to change message classifica-
tion can defeat the remaining checks in the series. Thus, as in the
present manual security system, the responsibility for the original
classification of material rests with the originator — the host
computer.

AUTODIN SECURITY MEASURES3

System Characteristics

AUTODIN is a message switching network that provides for inter-
change of narrative and data messages among a large community of DOD
subscribers. Some AUTODIN subscribers are uncleared, while cleared
subscribers may exchange messages classified up to top secret. The
network includes a number of communications processors connected
to each other by medium-speed lines and to subscribers by low-and
medium-speed lines. The main subscriber methods of "controlling"
the communications processor software involve entering new messages
to be routed and delivered, and requesting retransmission of
messages already delivered. In each case, subscriber-entered
parameters such as addressee, classification, precedence, and
date-time group direct the operation of the message-switching soft-
ware.

The AUTODIN communications processors operate in a true multi-
level security mode, handling classified information and supporting
cleared and uncleared subscribers. There is no attempt to partition
classified buffers in core or drum stroage from unclassified ones;
all are drawn from a common pool on an as-needed basis. Similarly,
a single software package processes all messages, classified and
unclassified. The security checks performed by this package provide
AUTODIN's major security control mechanism.

3
Much of this material is taken from an outline, Computer Security ,
Aspects of AUTODIN, prepared by Miss H. C. Faust of NSA and presented
to the ESD Panel on Computer Security Technology on 18 May 1972.

Security Controls

The overall philosophy of AUTODIN's security controls has been
to include multiple redundant checks throughout message processing.
Typically the checks are performed by separate instructions inter-
preting distinct tables in the AUTODIN programs, and apply to
different parts of the message. For example, the classification
of an incoming message is indicated both by the fourth character
of its header and by four "classification redundancy" characters
later in the header. One routine checks the validity of the initial
classification character, while a second routine compares all five
classification characters. Should the validity check fail or the
characters not be identical, the message is rejected. A similar set
of redundant checks is applied to the (80-character) message buffers
that move through the AUTODIN communications processor. Each buffer
carries with it a classification character, and the classification
of every buffer of a message must be the same at every point of the
message's travels among core, drum, and communications circuits.
This sequence of checks insures that an error in handling a linked
list does not cause undetected intermixing of buffers from two
messages of different classifications.

A second AUTODIN security technique involves restricting user-
input control parameters to members of a predefined set. For example,
the classification characters referred to above may be A, T, S, C,
E, X, or U but no others. User choices of routing (destination) and
precedence are restricted in a similar way. The reaction of the
software to parameters outside the defined set is specified and
tested. Explicit controls also apply to message length and the
characters that frame various parts of the message. The software
reaction to unexpected parameters is required to be initiation of an
error routine, rather than an attempt to "carry on" and make sense
of the parameters in some creative and potentially dangerous way.

Subscriber inputs to AUTODIN are carefully segregated from the
AUTODIN programs. A subscriber might input a new message processor
program as the text of a message, but would have no way to force
the processor to transfer to his program. Programs, tables, and
message buffers are separated from each other in processor memory.
Thus insertion of message text in a program area would require a
read from the wrong drum or into the wrong memory area. For the
text read to contain instructions would require an extremely unlikely
accident or the existence of a programmer trap-door.

Message retrieval facilities in AUTODIN appear, at first glance,
to provide a way of obtaining information without authorization.
However, all retrieval requests are handled manually and a message,

once retrieved, receives the same processing as it would on initial
entry to AUTODIN. Thus an unauthorized subscriber might initiate
retrieval of a message, but the retrieved message would be delivered
only to its initial (authorized) addressee.

A final factor leading to the high degree of security achieved
by AUTODIN is the network's high degree of uniformity and stability.
While there are large numbers of terminals attached to AUTODIN, all
comply with a tightly specified set of interface standards and
message formats. Thus there is no need for large computer programs
that select among numerous alternative message formats and line
disciplines, then perform required processing for each alternative
case. The basic message processing sequence and security checks
apply uniformly to all messages and terminals. While new terminals
are frequently added to AUTODIN (and old ones removed), a terminal
change requires only a new table entry in the AUTODIN software. No
program changes are required and the table entry is highly formatted
and well-specified. The AUTODIN software therefore tends to be
straightforward and stable. There are no elaborate alternative paths
or frequent software changes that could serve to conceal a (deliberate
or inadvertent) circumvention of the AUTODIN software security con-
trols.

The AUTODIN security measures outlined above combine to achieve
two effects:

(1) It is extremely unlikely that a subscriber will cause
a security compromise from his terminal.

(2) A software trap-door intended to bypass AUTODIN's
security mechanisms in a useful way would have to
impinge on message parameters processed by a number
of separate program modules and would thus be
relatively large and detectable.

The software trap-door alluded to above is made more difficult to
insert by AUTODIN program and table preparation and checkout pro-
cedures. These procedures provide for high-level clearance of all
programmers, two-man review of all communications program updates,
and extensive software checkout.^ Thus it is unlikely that a single
programmer agent-in-place could successfully insert a trap-door in
the AUTODIN software.

4
This list of precautions makes an interesting contrast with the
alternative of using an off-the-shelf software system with little
or no review or examination of individual programs.

8

SECTION III

SATIN COMPUTER SECURITY PROBLEMS

INTRODUCTION

This section describes some of the technical problems of computer
security and points out their impact on the planned SATIN communica-
tions processors. The first subsection below is devoted to a discussion
of technical problems in any computer that must provide security.
The second subsection outlines the applicability of major problem
areas to each class (BCP, HCP, RCP) of SATIN communications processors.
While it is premature (in the absence of detailed system designs) to
perform a vulnerability analysis of the SATIN communications processors,
the discussions below can help system designers to avoid requiring
major vulnerabilities in the processor hardware and software.

COMPUTER SECURITY PROBLEMS

The paragraphs below describe some technical problems in computer
security that must be addressed by the SATIN communications processor
design. The most significant and pervasive problems are the first
two: the difficulty of certification and the impact of system com-
plexity. The remaining problems are listed because they tend to be
major contributors to the difficulty of certification and the growth
of complexity.

Certification and Testing

If an organization is to operate a computer system with multiple
levels or types of classified data and with a community of users
having diverse clearances, it must undertake to certify that the
system restricts each user to that data which he has need to know.
Evolving regulations and directives provide an organizational frame-
work for certification, but little technical guidance that would help
determine a system's adequacy. Some certification attempts now under-
way are based on the concept of a test team or penetration team.
Such a team is given access to the system and its documentation and
directed to "find the holes." Thanks to the underlying weakness of
most current systems, test teams have been quite successful in finding
"holes." In such cases, certification is usually denied and the
system continues to run in a closed (not multilevel) environment.

The danger and difficulty of the penetration team approach
comes from the question, "how much is enough?". If a test team
finds one or five or a hundred ways of penetrating a computer system,
one can say with certainty that the system is not secure. But if the
team finds no holes, or if the system builders repair the ones dis-
covered, that does not imply that the system is secure. The strongest
statement that can then be made is that the holes (if any) in the
system are well hidden. The operator of such a system is betting
that either:

(1) there are no holes in his system; or

(2) a potential attacker is less clever and persistent
than the test team.

With current complex systems (see below) the first possibility is an
unlikely one.

If a system is certified "hole-free" by an ad hoc test approach,
its operator must ask about the impact of changes and updates. If
one has certified a computer system (hardware and software) as an
integrated whole, any change requires recertification of the entire
system (as in AUTODIN). While a very simple change may have a
restricted and obvious effect changes of larger scale rapidly develop
the ability to obscure their effects — both functional and security.
Thus, at some ill-defined point, one must start certification from
the beginning after a change has been implemented.

The paragraphs above point out the difficulties of certifying
the security of any system, and the special problems of recertifying
a highly integrated system. Clearly, one would like an orderly
approach to certifying a system so that it could be confidently
asserted that the certification was complete. An approach to isolating
security controls from functional parts of the system would help by
allowing functional changes and evolution to proceed without requiring
recertification. If security controls could be minimized as well as
isolated, certification or testing would also be simplified since the
security controls would tend to become obvious and understandable.
However, the isolation must be absolutely complete and effective,
lest one leave in the security controls a trap-door suitable for
entry from any point in a large uncertified portion of the system.

Complexity

The paragraphs above mentioned the influence of complexity in
the development of uncertifiable computer systems. In this context,
complexity refers to the tendency of large interrelated blocks of

10

software to become inseparable from a system's security controls.
Thus the would-be certifier must understand every state and function
of programs that (he hopes) have nothing to do with security. The
danger is that one such program will in fact have a (negative)
security function.

Complexity in application programs appears to be a natural result
of functional diversity: to do a complex job, one writes a large
complex program. However, the impact of complexity on security results
from the inability of hardware/software systems to separate security
from other system functions. The following paragraphs address the
problems of current hardware and software.

Off-The-Shelf Hardware

Complexity in modern computer systems results mainly from the
hardware on which those systems are built: while one might build
inadequate software on better hardware, the bulk of existing hardware
simply fails to support anything but complexity. Typical third-generation
computer systems provide some form of memory protection (write and
read) and relocation, plus a set of two processor states (privileged
and slave). In the more privileged processor state, a process (program
in execution) can issue input/output instructions, reset the memory
protection, and control the entire state of the processor. In slave
state, a process can only execute ordinary arithmetic and logical
instructions on data within its memory partition. Some low-cost
minicomputers do not even provide the level of protection described
above.

If a computer operating system is required to provide security
controls in an environment such as that described, there is good
reason to believe that complexity must result. As an example of
this evidence, one may consider memory, access controls, and processes
in a simple communications processor. Figure la depicts the memory
of such a processor, including a processing program, message buffer,
and operating system. The processing program is operating on the
buffer, and the memory protection boundaries are set as shown. If
executive services are needed by A, it appeals to the operating system
which acts on B using its ability to address all of memory. Now
assume (Figure lb) that program A has finished with buffer B and
wishes to act on buffer D. There is no way to set the memory base
and bounds register so that A can access itself and D but not B.
A might appeal to the operating system to exchange B and D, but this
is exactly the sort of privileged operating system complexity (and
functional growth) that the example is intended to demonstrate.
Additional of a second or third application program (Figure lc) makes
more apparent the potential complexity of the operating system as

11

Operating
System C

Processing
Program A

Buffer B

Memory
Bounds

la. Configuration Processing Buffer B

Buffer

lb. Configuration - Ready to Process Buffer D

c
A

B

D

Processing
Program E

Processing
Program F

Buffer G

lc. Configuration - Additional Processing Programs

Figure 1. Memory Configurations to Show Problems of
Conventional Memory Protection

12

possibilities arise for each program to be granted access to some
buffers and denied others. A requirement for limits on interprogram
communication (calls, returns) even further complicates the problem.

The provision of only two processor states in conventional computers
makes more difficult the isolation and minimization of security controls.
While operating system designers might put operating system functions
requiring protection but not privilege in separate bounds-protected
programs, current hardware does not provide convenient communication
between a user program and such a separate operating system routine.
Such communication must be mediated (at some cost) by the privileged
portion of the operating system. The cost and difficulty of this
approach are so great that most operating system functions wind up in
the privileged portion of the executive.

Finally, the restriction on input-output instructions requires
that an elaborate system of input-output control programs be included
in the privileged portion of the operating system. These programs
are complex, and have the upsetting habit of requiring modifications
whenever a new input-output device is to be added to the computer.

The preceding paragraphs have illustrated the way in which
inadequate hardware leads to overly complex operating system software.
Practical illustrations of this effect are provided by most current
commercially available operating systems.

Off-The-Shelf Software

The subsection above discussed the complexity that appears in
an off-the-shelf computer's operating system as a result of the
computer's architecture. To this complexity is added a basic lack
of consideration for security in operating system design. The result
of this lack is often increased complexity coupled with dispersion
of security controls throughout the operating system.

A typical modern operating system is based on a set of inter-
connected tables or list structures. These list structures describe
the state of tasks in execution, main memory, input-output devices,
and files on secondary storage. Any change in the status of a process
is reflected in one or more tables. The security problems associated
with such a structure are twofold:

(1) Almost every table and table entry has some implicit
or explicit security role.

(2) Tables are accessed "as needed" from all parts of the
operating system.

13

In addition to these two underlying problems, modern operating systems
typically have no consideration of such notions as classification,
clearance, or need to know. The two underlying problems result in
dispersion of security control (or lack of control) throughout a
system, while the lack of explicit security control results in
potential security violations that are legal system operations. (For
example, read a top secret file and write its contents to an unclassi-
fied file.)

Modifying an off-the-shelf operating system for security is a
grim and ineffective business. At best it requires an examination
and rewrite of all security related code — usually the entire
operating system. Such efforts have been marked more by their cost
than their security. At worst a modification may put a thin veneer
of "security features" over a deep, complex, and unsecure structure.
Such features may be suitable for labeling output, but typically
provide no protection.

A final software aspect of computer security concerns languages
for system implementation. Most operating systems and communications
programs have historically been written in assembly language. In
addition to its known disadvantages for training, documentation and
maintenance, assembly language provides a ready vehicle for obscuring
the security implications of a program. The alternative, higher-
level language for system programming, is often claimed to be costly
of space and time. However, most recent experience and evolving
commercial practice tend to contradict these claims.

SATIN PROCESSOR SECURITY PROBLEMS

This subsection identifies those security problems discussed
above that appear likely to apply to each class of SATIN communica-
tions processor. Security implications of HCP, BCP and RCPs are
discussed in turn.

Headquarters SAC Communications Processor (HCP)

The Hq SAC HCP is planned to be a medium scale communications
processor providing interfaces among numerous computers, communica-
tions networks, and terminals. Its functions include message switching,
front-end processing and terminal control. The net effect of this
combination of functions and interfaces is to require a large amount
of application-level complexity. If this complexity is allowed to
impact (or be integrated into) the security-related portion of the
HCP operating system, the operating system will become very large
and any meaningful certification impossible. Further, the computer

14

communications and terminal environment at Hq SAC is a relatively
dynamic one. If this dynamism reflects to the security portion of
the HCP software, the recertification process will be almost
continuous.

As was mentioned in Section II, the primary threat to the SATIN
communications processors is from their programmers and implementors.
In practice the danger to the HCP is that, if its security controls
are not isolated, minimized, and effective, the class of programmers
and implementors will become very large. Not only will it encompass
those individuals who code "security features," but also all others
inside and outside of SAC who program the operating system, applica-
tions programs and even compilers. In effect there is no clear way
to prevent any individual who programs any part of the system from
attacking (probably with good success) its security.

Base Communications Processors (BCP)

The BCPs (and NAF HCPs) provide similar types of interfaces and
functions to those of the SAC HCP. The diversity of BCP functions
and the number of interfaces are somewhat lower than those for the
HCP. However the BCP, unlike the HCP, is to be a minicomputer. Thus
there is a danger that its hardware will provide completely inadequate
support for security control. In this circumstance, there is no
choice but to certify all BCP software (not clearly a possible task).
The dangers mentioned under the discussion of the HCP apply even more
strongly in this case.

Regional Communications Processors (RCP)

The primary functions of the RCPs are packet switching and
adaptive routing. This function in itself is a straightforward one
and security of a "pure" packet switching RCP could probably be
assured by techniques like those used by AUTODIN (including clearance
of all programmers and certification and control of the entire soft-
ware development environment). However, the RCPs, in addition to
packet switching, perform AUTOVON automatic dialing, interface to
the AABNCP, and may interface with other command control networks.
Thus the RCP begins to have multiple functions and interfaces
similar to those of BCPs and HCPs. In these circumstances, the
same security problems described above apply to the RCP.

15

SECTION IV

SATIN COMPUTER SECURITY APPROACHES

INTRODUCTION

This section describes technical approaches to providing certi-
fiable security controls for the SATIN communications processors.
The first subsection below presents a brief discussion of alternative
approaches to providing SATIN computer security. The second sub-
section identifies specific techniques applicable to the SATIN com-
munications processors.

The last subsection of Section III pointed out the essential
similarity of the security problems presented by RCPs, BCPs and HCPs.
All perform diverse functions and support numerous interfaces. Thus,
all will respond to similar security techniques. The techniques
identified below, implemented on processors of appropriate size and
power, should be equally applicable to RCPs, BCPs, and HCPs.

ALTERNATIVES

The subsection below identifies techniques for providing pro-
tection of multiple types of classified data in a single communica-
tions processor that supports a diverse collection of users. Alterna-
tives are available to the application of these techniques. These
alternatives involve:

(1) Clearing all terminals, terminal communications, and
users for all data processed in SATIN.

(2) Dividing the network so that a separate subnetwork
is provided for each classification, perhaps allowing
one-way communication from subnetworks of lower
classification to those of higher classification.

Both of the alternatives outlined are highly secure, relying basically
on personnel, physical and communications security rather than computer
programs. Ample precedents are available for certification of both
approaches, and no new techniques are required.

Unfortunately both alternatives identified above have several
disadvantages. The first (total clearance) requires numerous

16

•

communications security devices, cleared areas, and personnel
clearances. The cost of this approach can be quite high. Further,
some areas that require access to SATIN (as currently planned) are
not amenable to clearance; in effect, this alternative creates a
secure network that spreads without limit.

The second alternative identified (divided network) limits the
flexibility of application of SATIN. Some areas will require
multiple terminals for read/write network access at several levels
of classification. Computer interfaces will probably have to be
implemented with manual review and intervention. The number of
communications processors required by this alternative will be
greater than that for an integrated network. This alternative seems
costly and fails to meet major SATIN objectives.

SATIN SECURITY TECHNIQUES

The paragraphs below identify techniques that can be applied
to the provision of security in an integrated network that meets
SATIN requirements and objectives. These techniques are not detailed
completely below, but are promising and have been investigated for
application to general computer security problems. Each technique
identified provides a part of the solution to the SATIN computer
security problem. Together they offer the possibility of a certi-
fiably secure network.

Choose Appropriate Hardware

Section III identified security problems that result from the
use of inadequate processor hardware. Alternatives to such hardware
are available "off-the-shelf." These alternatives are characterized
by two kinds of features:

(1) Provision of a way of isolating security control
software from other executive and application
software components.

(2) Provision of a way of flexibly limiting the
context (memory addressing domain) of executive
and application programs.

The practical implementation of these features requires provision
of multiple processor execution states (at least three) and some
form of memory segmentation. The following paragraphs describe the
effect of providing these features.

17

Memory segmentation allows an executive program to establish
the address space perceived by a process. Unlike ordinary base and
limit registers described in Section II, segmentation allows efficient
and dynamic control over process context without requiring unnatural
and complex movement of information. Figure 2 depicts a memory con-
figuration under segmentation. In Figure 2a, a program A accesses
data in a buffer B. The program has read and execute access to itself
and read and write access to the buffer. Both A and B may occupy any
physical address in memory. In Figure 2b, a second program, C, has
read and execute access to itself and read-only access to B. In
Figure 2c, program A has read-write access to a new buffer D. The
key capability provided by segmentation is that of providing a pro-
cess with controlled (read, write, or execute) access to any informa-
tion in memory. Hardware aids to segmentation allow very rapid
switching from one set of accesses to another, and provide for checking
of the validity of every reference to memory at almost no cost.

Multiple execution states combine with segmentation to provide
a foundation for a secure system. With such multiple states, control
over security (corresponding to control over what segments can be
accessed at any time) can be isolated into a small security control
package (a kernel). The bulk of operating system services are pro-
vided by a "supervisor" that has considerable power over application
programs but no security role. Application (or functional) programs
are relegated to a third unprivileged execution state. Input-output
operations, normally restricted to the privileged part of the operating
system, may be performed by supervisor or functional programs, depending
on the exact nature of the processor hardware and on operating system
design.

The costs of processors with the features described need not be
great. In a minicomputer (BCP), the cost added need be no more than
a few thousand dollars per CPU over more conventional equipment.

Design Software for Security

The sections above have provided ample indication of the impor-
tance of early consideration of security in designing a computer
system. The discussion in the preceding subsection described a hard-
ware foundation for security controls. The software for the SATIN
communications processors must apply the hardware foundation to pro-
vide workable and certifiable security controls. Such controls must
not only protect classified messages from unauthorized processes,
but must also be sufficiently isolated from processor configuration
and function to prevent a requirement for constant recertification.

18

Program A

Buffer B

J, Segment 1 (RE)

J, Segment 2 (RW)

Figure 2a. First Program and Buffer

Program C >[< Segment 1 (RE)

^ Segment 2 (R)

Figure 2b. Second Program and Buffer

I Segment 1 (RE)

vp Segment 2 (RW)

Figure 2c. First Program and New Buffer

Figure 2. Access Controls with Segmentation

19

Figure 3 depicts an overall software structure capable of pro-
viding the required security controls. As indicated in the discussion
of hardware for security, the software structure is divided into
three components or layers. The lowest layer is a security control
"kernel" whose sole function is security management. The second, or
"supervisor" layer performs resource allocation and "recommends"
actions to the kernel. The supervisor cannot implement resource
allocation decisions that have security impacts without having those
decisions ratified by the kernel. The third, or functional, layer
performs the actions required by the communications processor users —
message switching, front-end processing, and terminal control. In
general, the functional programs operate on data (buffers) of one
classification at a time and appeal to the supervisor and kernel for
interprocess communication and privileged operations.

To provide stable, certifiably secure SATIN communications pro-
cessors, the kernel discussed above should be designed early, and
its security evaluated (see next subsection). The kernel must be
sufficiently flexible to accommodate SATIN functions and configura-
tions with a minimum of change and reprogramming. In general,
common kernel programs will learn about their specific environment
through formatted tables. The programs of the kernel must be uniform,
although each processor will probably require a new set of table
entries.

Plan and Undertake Certification

If SATIN is to perform its security functions with initial
operation, the approach that will lead to system certification must
be identified early and followed in parallel with design and implemen-
tation. If a security kernel is to be used, it should be designed
early, and the strongest analytic tools available applied to evaluating
the security of the design. A prototype kernel should be implemented
and tested, both analytically and by attacks. To the extent that the
kernel is successfully minimized, such testing and evaluation should
be simplified.

Cognizant agencies should be made aware of security plans as
the kernel prototype is designed and implemented. The certification
plan for SATIN should be made explicit, and reviews applied to a
design, not solely to a finished system. Test plans should be
developed, emphasizing examination of specific (provably) required
security controls, rather than an endless search for "holes." In
this way, a closed certification process can be followed, with the
potential for developing a secure system in a known time.

20

Applicat ion-Or iented

Resource
Management

Security

Control

Kernel

Supervisor

Functional

Figure 3. Secure SATIN Software Structure

21

Use High-Level Language

At several points above, this paper has emphasized the utility
of assembly language code for concealing security flaws. While a
security kernel should be small and offer few places for conceal-
ment, the use of high-level languages throughout the SATIN communica-
tions processors still seems appropriate. In addition to advantages
of program visibility, such usage should offer improved documentation,
training and maintenance during the life of SATIN.

While the use of a high-level language is desirable, it is not
mandatory for security. Thus this subsection is a suggestion, while
those preceding it were strong recommendations.

22

SECTION V

SUMMARY

The SATIN communications processors, while not as vulnerable
as general purpose user-programmed computer systems, present several
computer security problems. Current common computer system design
techniques do not appear especially promising as ways of solving
the SATIN problems. For this reason, use of hardware possessing
multiple processor states and memory segmentation is recommended.
A security kernel can be built on this hardware that will centralize
security functions in a configuration-independent module. Certifica-
tion of this single kernel will then suffice for secure operation of
all SATIN processors using the kernel (BCPs, RCPs, or HCPs). Early
design and implementation of such a kernel, leading to certification
coordinated with appropriate agencies, is recommended.

23

