
-^
^

ESD-TR-77-23

SFEP SUBSYSTEM SPECIFICATION

Honeywell Information Systems, Incorporated
Federal Systems Operations
7900 Westpork Drive
McLean, VA 22101

October (976

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

20100827250

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for
publication.

J£&L
WILLIAM R. PRICE, Capt, USAF
Techniques Engineering Division

ROGER R. SCHELL, Lt Col, USAF
kay System Security Program Manager

FOR THE COMMANDER

DERESKA, Colonel, USAF
Deputy Director, Computer Systems Engineering
Deputy for Command & Management Systems

SECURITY CLASS'FICATION OF THIS "AGE (Wi»u Tim* Knfrmd)

REPORT DOCUMENTATION PAGE
I. REPORT hUWCER

ESD-TR-77-23

2. GOVT ACCESSION NO

I

4. TITLE (mid Submit)

SFEP SUBSYSTEM SPECIFICATION

7. AUTHORf*)

C. H. Bonneoo
J. J. Carnal I
M. F. Hall

9. PERFORMING ORGANIZATION NAME AND AOORESS

Honeywell Information Systems, Incorporated
Federal Systems Operations
7900 Westpark Drive, McLean, VA 22101

II. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division
Hanscom AFB. MA 01731

RFAD INSTRUCTIONS
BEFORE COMPLETING FORM

3. PECI^TKT'n CATALOG NUMBER

S. TVFE OF REP&fvT • PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

• . CONTRACT OR GRANT NUMBERf*;

FI9628-74-C-0I93

10 PPCGPAM ELEMENT. PROJECT, TASK
»Pf« A *oRK UNIT NUMBERS

12. REPORT DATE

October 1976
IS. NUMBER OF PAGES

186
14. MONITORING AGENCY NAME ft ADORESV" dlfUfnt from Controlling Otllco) IS. SECURITY CLASS, (ol ihl, roporl)

UNCLASSIFIED

IS*. DECLASSIFICATION'DOWNGRAOING
"jHEOULE rVA"

IS. DISTRIBUTION STATEMENT (of Ihl* Rtpotl)

Approved for Public Rlease; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (ol tho mbtlrmcl mnfrmd In Block 20, II dlllotmnt from Roporl)

IB. SUPPLEMENTARY NOTES

IS. KEY WORDS (Conllnu* on revrf tldo II nmcmttmry and idonllly by block number;

Computer Security
Secure Front-End Processor

20 ABSTRACT (Conllnuf on r»"»r»» mldo II nocomtmry trtd Idontltr by block number)
This specification defines the technical requirements for hard-
ware and software for a Secure Front-End Processor (SFEP). The
SFEP is intended to serve as the front-end processor for Multics
and other Honeywell 6000/Series 60 machines allowing the con-
current handling of multi-level classified traffic in a secure
manner. The SFEP hardware elements include a Honeywell Level 6
computer, a Security Protection Module (SPM), a communication

Continued on reverse side

DD | JAN 73 1473 EDITION OF I NOV C5 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Whmn Dmlm Bnlmrod)

SEC JR|T> CLASSIFICATION OF THIS PAG€(Whv, Dutm Enffd)

20. ABSTRACT (Cont.)

network interface unit, and a central system interface
unit. The software elements include a security kernel,
operating system, application and support software.

IEi URITY CLASS. I»IC ATION OF TMIt F-AOefWM" Omtm Enffd)

Preface

Air Force Systems Command terminated the effort which
this document describes before the effort reached its
logical conclusion. This specification has not been
formally approved but was published in the interest of
capturing and disseminating the computer security technology
that was available at the time of the termination.

This specification describes the hardware and software
necessary for the front-end processor subsystem of a secure
general-purpose computer system (Multics). This subsystem
includes a secure communications processor and a software
security kernel for the processor which would be suitable
for many minicomputer applications with security
requirements.

Although the design specified for the front-end
processor subsystem appears sound for the most part, the Air
Force did not approve the specification. The Air Force
review generated significant technical comments. The review
noted inconsistencies within the specification and between
this specification and the specifications of components of
the subsystem. The review also noted that a lack of clarity
and the use of undefined terms make the specification
difficult to understand for the reader who is not familiar
with the project. More specific technical comments can be
found in an appendix to this specification.

TABLE OF CONTENTS

1.0 SCOPE

2.0 APPLICABLE DOCUMENTS

2.1 General Applicability

2.2 Military Specifications and Standards

2.3 Government Documents

2.4 Honeywell Documents

2.5 Other

3.0 REQUIREMENTS

3.1 SFEP Definition

3.1.1 SFEP Functional Definition

3.1.1.1 Security Requirements

3.1.1.1.1 Mediation Requirements

3.1.1.1.2 Isolation Requirements

3.1.1.2 System Overview

3.1.1.2.1 Mediation Implementation

3.1.1.2.1.1 Mapping Mechanism

3.1.1.2.1.2 Access Control

3.1.1.2.1.3 Segmented Memory

3.1.1.2.1.4 Descriptor Mechanism

3.1.1.2.2 Isolation Implementation

3.1.2.2.1 CALL and RETURN

3.1.2.2.2 TRAP and TRAP RETURN

3.1.2.2.3 INTERRUPT and INTERRUPT RETURN

3.1.2.2.4 DISPATCH

3.1.2.2.5 SELECTIVE DESCRIPTOR INVALIDATION

3.1.2.2.6 SPM T5D

Page

1

2

2

2

3

3

4

5

6

6

7

8

10

11

14

15

17

17

18

19

20

23

25

28

28

28

in

TABLE OF CONTENTS (Continued)

Page

3.1.2 Functional Interface Definition 29

3.1.2.1 Interface Between the SFEP and the 29
Outside World

3.1.2.1.1 Terminal Interface 29

3.1.2.1.2 Central System Interface 30

3.1.2.1.3 Network Interface 32

3.1.2.1.4 Support Functions 32

3.1.2.2 Interface Between the SFEP Hardware 33
Components

3.1.2.3 Interface Between the SFEP Software 33
Components

3.1.3 Major Component List 34

3.1.3.1 Hardware 34

3.1.3.2 Software 34

3.1.4 Government Furnished Property List 34

3.1.5 Government Loaned Property List 34

3.2 SFEP Characteristics 34

3.2.1 Performance 34

3.2.2 Physical Characteristics 36

3.2.2.1 Weight 36

3.2.2.2 Outline Dimensions 36

3.2.3 Reliability 36

3.2.3.1 Mean-Time-Between-Failures (MTBF) 37

3.2.3.2 Probability of Failure Induced Security 37
Compromise

3.2.3.3 Useful Life 37

3.2.4 Maintainability 37

3.2.4.1 Maintenance Concept 38

IV

TABLE OF CONTENTS (Continued)

3.2.4.1.1 Organizational and Field Levels of
Maintenance

3.2.4.1.2 Depot Level Maintenance

3.2.5 Environmental Conditions

3.2.5.1 Temperature

3.J.5.2 Altitude

3.2.5.3 Humidity

3.2.5.4 Vibration

3.2.5.5 Shock

3.2.5.5.1 Equipment

3.2.5.5.2 Mounting Base (Crash Safety)

3.2.5.5.3 Bench Handling

3.2.5.6 Explosive Conditions

3.2.6 Transportability

3.3 Design and Construction

3.3.1 Materials, Parts, and Processes

3.3.1.1 Hardware

3.3.1.1.1 Materials

3.3.1.1.1.1 Aluminum

3.3.1.1.1.2 Elastomeric Materials

3.3.1.1.1.3 Wire

3.3.1.1.1.4 Conformal Coatings

3.3.1.1.2 Processes

3.3.1.1.2.1 Soldering

3.3.1.1.3 Parts

3.3.1.1.3.1 Parts Selection and Standardization

3.3.1.1.3.2 Electrical Connectors

Page

39

39

39

39

39

40

40

40

40

41

41

41

41

41

41

42

42

42

42

42

4 3

4 3

4 3

43

4 3

4 3

TABLE OF CONTENTS (Continued)

Page

3.3.1.2 Programming Standards and Conventions 44

3.3.1.2.1 Verification 44

3.3.1.2.2 Consistency 44

3.3.1.2.3 Performance 44

3.3.2 Electromagnetic Compatibility 46

3.3.2.1 TEMPEST 47

3.3.2.2 Bonding M

3.3.2.2.1 Jumpers 47

3.3.2.2.2 Bonding Surface Preparation 47

3.3.2.2.3 Removable Panels 48

3.3.3 Identification and Marking 48

3.3.4 Workmanship 48

3.3.5 Interchangeability and Replaceability 49

3.3.5.1 General 49

3.3.5.2 Module Interchangeability 49

3.3.6 Safety 49

3.4 Documentation 51

3.4.1 Drawings 51

3.4.2 Manuals 51

3.4.3 Specifications 52

3.4.4 Test Plans 52

3.5 Logistics 53

3.6 Personnel and Training 53

3.7 Major Component Characteristics 54

3.7.1 Hardware Components 54

3.7.1.1 Bus 54

VI

TABLE OF CONTENTS (Continued)

Page

3.7.1.2 Central Processing Unit (CPU) 56

3.7.1.2.1 Standard Level 6/40 56

3.7.1.2.2 Level 6/40 Security Modification 57

3.7.1.3 Security Protection Module (SPM) 60

3.7.1.3.1 Process Initiation 61

3.7.1.3.2 Memory Access 63

3.7.1.3.2.1 Memory Descriptor 63

3.7.1.3.2.2 Multilevel Memory Descriptor 67
Structure

3.7.1.3.2.3 Memory Reference Sequence 70

3.7.1.3.2.4 Memory Access Rules 72

3.7.1.3.3 I/O Access 73

3.7.1.3.3.1 I/O Descriptors 73

3.7.1.3.3.2 I/O Descriptor Structure 77

3.7.1.3.3.3 I/O Access Sequence *> 79

3.7.1.3.3.3.1 Premapped I/O Sequence 83

3.7.1.3.3.3.2 Mapped I/O Sequence 84

3.7.1.3.3.4 I/O Access Rules 88

3.7.1.3.4 SPM Access 88

3.7.1.3.4.1 Selective Descriptor Invalidation 88

3.7.1.3.4.2 SPM T§D 90

3.7.1.3.5 CALL/RETURN/VALIDATE 90

3.7.1.3.6 SPM Generated Traps 92

3.7.1.3.7 Traps and Interrupts 94

3.7.1.4 Multi-Line Communications Processor (MLCP) 95

3.7.1.4.1 Communication Line Adapters (CLA) 96

VII

TABLE OF CONTENTS (Continued)

Page

1.1 Synchronous Line Adapter 96

1.2 Asynchronous Line Adapter 96

1.3 Modem Bypass Synchronous Line Adapter 96

1.4 MIL-188 Line Adapter 96

1.5 Programmable Asynchronous Line Adapter 97

3.7.1.

3.7.1.

3.7.1.

3.7.1.

3.7.1.

3.7.1.

3.7.1.

3.7.1.

3.7.1.4.

3.7.1.

3.7.1.

1.6 HDLC Line Adapter

1.7 Broadband Line Adapter

1.8 ACU Line Adapter

Verification

2.1 Premapped I/O

2.2 Mapped I/O

3.7.1,5, Memory

3.7.1.6 6000/Series 60 Interface Unit (IU)

3.7.1.7 Inter System Link (ISL)

3.7.2 Software Components

3.7.2.1 General Issues

3.7.2.1.1 SFEP Software Design Philosophy

3.7.2.1.2 Distributed Versus Separate Processes

3.7.2.1.3 Security Versus Policy

3.7.2.2 Kernel

3.7.2.2.1 Process Control

3.7.2.2.1.1 Process Definition

3.7.2.2.1.2 Process Multiplexor

3.7.2.2.1.2.1 Create/Delete Process

97

97

97

97

98

98

99

99

100

104

104

104

105

106

107

107

107

109

110

vm

f

TABLE OF CONTENTS (Continued)

Page

3.7.2.2.1.2.2 Dispatch HO

3.7.2.2.1.2.3 Process Synchronization m

3.7.2.2.1.2.3.1 Wake-Up HI

3.7.2.2.1.2.3.2 Block 112

3.7.2.2.1.2.4 Trap Handler 112

3.7.2.2.1.2.4.1 Set Trap Handler 113

3.7.2.2.1.2.4.2 Trap Return 113

3.7.2.2.1.2.5 Clock Management 113

3.7.2.2.2 Segment Control 114

3.7.2.2.2.1 Create/Delete Segment 116

3.7.2.2.2.2. Initiate/Terminate Segment 116

3.7.2.2.2.3 Get Segment Attributes 117
-

3.7.2.2.2.4 Wire/Unwire Segment 117

3.7.2.2.2.5 Primary Memory Manager Interface 117

3.7.2.2.3 Device Control 118

3.7.2.2.3.1 Add/Remove Device 121

3.7.2.2.3.2 Initiate/Terminate Device 121

3.7.2.2.3.3 Send/Receive Message 122

3.7.2.2.4 Bootload 123

3.7.2.2.4.1 Static Initialization 125

3.7.2.2.4.2 Dynamic Initialization 125

3.7.2.3 Operating System (OS) 126

3.7.2.3.1 Process States 127

3.7.2.3.2 Process Scheduling 128

.7.2.3.3 Process Dispatching 129 j

IX

TABLE OF CONTENTS (Continued)

Page

3.7.2.3.4 Interrupt Interception and Routing 129

3.7.2.3.5 Trap Interception and Routing 129

3.7.2.3.6 Interprocess Communications and 130
Synchronization

3.7.2.3.7 Real Time Clock Manager 130

3.7.2.3.8 Memory Manager 131

3.7.2.3.9 Intraprocess Task Management 132

3.7.2.4 Application Software 132

3.7.2.4.1 Answering Service 132

3.7.2.4.2 Terminal Handler 134

3.7„2.4.3 Communications Network Interface 134

3.7.2.5 Support Software 134

3.7.2.5*. 1 Operator Console Communications 135

3.7.2.5.2 SFEP Initialization Module 135

3.7.2.5.3 Debug Module 136

3.7.2.5.4 Audit Log 136

3.7.2.5.5 SFEP Memory Dump Module 137

3.7.2.5.6 Test and Diagnostics 137

4.0 QUALITY ASSURANCE PROVISIONS 138

4.1 General 138

4.1.1 Responsibility for Tests 138

4.1.2 Special Tests and Examinations 138

4.1.3 Reliability Analysis 138

4.2 Quality Conformance Inspections 139

4.2.1 Engineering Design Evaluation 139

4.2.1.1 Hardware Verification 139

4.2.1.2 Design Evaluation Testing 139

T

TABLE OF CONTENTS (Continued)

Page

4.2.1.2.1 Prototype Development Tests 139

4.2.1.2.2 Prototype Test Software 139

4.2.1.3 SFEP Qualification Tests 140

4.2.2 Prototype Inspection and Test 140

4.2.3 Production Acceptance Tests and Inspections 140

4.2.3.1 Inspection Criteria for Aero Fabricated 140
Assemblies

4.2.3.1.1 Workmanship 140

4.2.3.1.2 Configuration 141

4.2.3.1.3 Electrical Parts Inspection 141

4.2.3.2 Production Acceptance Testing 141

4.2.3.2.1 Acceptance Tests 141

4.2.3.2.2 Production Test Software 142

4.2.4 Kernel Verification 142

4.2.4.1 Mathematical Model - 142

4.2.4.2 Formal Specification 143

4.2.4.3 Algorithmic Representation 143

4.2.4.4 Machine Language Representation 144

5.0 PREPARATION FOR DELIVERY 144

APPENDIX Air Force Comments on SFEP Subsystem Specification Al

XI

»

Figure
Number

6

7

8

10

11

12

13

14

15

16

17

TABLE OF FIGURES

6000/Series 60 Secure System

SFEP Subsystem Elements

SFEP Subsystem Block Diagram

SFEP Software Functional Block Diagram

Premapped I/O Flow

Mapped I/O Flow

Memory Descriptor Structure

I/O Descriptor Structure

SCOMP Outline Dimensions

Vibration Requirements

MLCP Functional Block Diagram

Binary Format

ISL*s Connecting Multiple Buses

ISL Address Recognition and Translation
Simplified

Bootstrap

Process States

Process Scheduling Flow

Page

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

xn

1 .0 SCOPE

This specificition establishes the performance, design,

development, and test requirements for the Secure

Front-End Processor (SFEP). The SFEP serves as the

front-end processor for Multics and other Honeywell

6000/Series 60 machines allowing the concurrent

handling of multi-level classified traffic in a secure

manner. The SFEP shall consist of elements of the

Honeywell Series 60 Level 6 commercial product, a

Security Protection Module (SPM), a communication

network interface unit, and a central system interface

unit.

2.0 APPLICABLE DOCUMENTS

2.1 General Applicability

The following documents, including the revisions

listed, form a part of this specification to the

extent specified herein. In the event of conflicts

between documents, the following precedence shall

apply:

A. The Statement of Work shall take precedence

over the Detail Specification.

B. The Detail Specification shall take precedence over

all documents invoked herein.

C. Any documents invoked herein shall take precedence

over all subsidiary documents.

2.2 Military Specifications and Standards

MIL-STD-130 Identification Markings of U.S.

Military Property

MIL-STD-461A 1 Aug. 68 Electromagnetic Interference

MIL-STD-1000 Drawings, Engineering and

Associated Lists

MIL-STD-1472A 15 May 70 Human Engr. Design Criteria

for Military Systems, Equipment

and Facilities

MIL-STD-810C Environmental Test Methods,

Military Standard

MIL-E-5400P Electronic Equipment, Airborne,

General Specification For

MIL-STD-454 Standard General Requirements

for Electronic Equipment

2.

2.2 Military Specifications and Standards (Continued)

MIL-STD-461A (3) Electromagnetic Interference

Characteristics, Requirements

for Equipment

MIL-C-38999 Connector, Electrical

MIL-STD-1472 Human Engineering Design

Criteria for Military Systems,

Equipment and Facilities

2.3 Government Documents

DCA Circular Test and Alterations, DCA Autodin
370-D195-2,
29 Jan 1975 TEMPEST Category II Testing

2.4 Honeywell Documents

BG8249A1 Detail Specification, Part I, Ruggedized

Level 6 Minicomputer

ESD-TR-76-366 Detail Specification, Part I, Security

Protection Module (SPM)

ESD-TR-76-355 Detail Specification, Part I, 6000/

Series 60 Interface Unit

3.

!

2.5 Other

F19628-74-C-0205 Secure Communications Processor

Architecture Study

Schiller, W. L. Mar. 1975 The Design and Specification

of a Security Kernel for the

• PDP-11/45, MTR-2934, MITRE

Corporation, Bedford, MA.

Schroeder, M. D. Mar. 1972 MA Hardware Architecture for
and
Saltzer, J. H. Implementing Protection Rings",

Comm. ACM 15(3), 157-170.

Bell, D. E. July 1975 Secure Computer System:

and Unified Exposition and

LaPadula, L, J. Multics Interpretation,

MTR-2997.

F19628-74-C-0173 Prototype Secure Multics Specification

F19628-74-C-0193 Security Kernel Specification for

Secure Communications Processor.

4.

3.0 REQUIREMENTS

This specification covers both existing equipment and

new equipment to be developed. The new equipment

shall be designed in accordance with the requirements

of this specification. The existing equipment shall

meet the requirements of this specification.

3.1 SFEP Definition

This specification defines the hardware and software

for a Secure Front-End Processor (SFEP) required to

concurrently handle multi-level classified traffic

between communication lines and a host computer (i.e.,

Multics and other Honeywell 6000/Series 60 machines)

while enforcing the access rules defined by military

security regulations.

The role of the SFEP in a secure, general purpose computer

system is shown in Figure 1. The SFEP seryes as the

interface between the host computer, the user terminals,

and an external communications network such as ARPANET.

The SFEP hardware and software elements are identified

in Figure 2.

The SFEP hardware shall consist of elements of the

existing Honeywell Series 60 Level 6 minicomputer system,

a to be developed 6000/Series 60 Interface Unit (IU), a

to be developed network interface unit, and a to be developed

Security Protection Module (SPM).

5.

3.1 SFEP Definition (Continued)

The SFEP software shall consist of a kernel, operating

system, application software, and support software.

In general, all of this software is to be developed,

however, whenever practical, the operating system, application

and support software elements shall be based on existing,

commercially available software packages.

3.1.1 SFEP Functional Definition

The primary function of the SFEP is to provide message

handling between remote user terminals, a central computer

system, and an external communications network. This

message handling must be done in a secure manner, i.e.,

military security regulations must not be violated.

The following paragraphs present the functional requirements

for providing a secure environment and define the

essential hardware and software functions.

6.

3.1.1.1 Security Requirements

SFEP shall provide a secure environment (i.e., information

access rules defined by military security regulations)

for message processing. To provide this environment, SFEP

shall support the concept of a reference monitor or security

kernel. The security kernel shall enforce the authorized

access relationships between subjects and objects through

a combination of hardware and software. Subjects are

active system entities such as a user or a process that

can access system resources; and objects are passive system

entities such as data, programs, and peripheral devices

that can be accessed by subjects. It should be noted that

devices can be subjects as well as objects.

The SFEP security kernel shall meet three essential design

requirements: (1) the security kernel shall be invoked on

every access to every resource -- complete mediation prop-

erty; (2) the security kernel shall be protected from un-

authorized alteration via concentric rings of protection --

isolation property; and, (3) the security kernel's correct-

ness must be provable in a rigorous manner using a mathe-

matical model as the basis for the criteria to be met --

verifiability property. The mediation and isolation require-

ments are defined in this section, the verification require-

ments are defined in 4.2.4.

7.

3.1.1.1.1 Mediation Requirements

The complete mediation property of the security kernel requires that

every use of any resource of SFEP (e.g., a memory location, a pe-

ripheral device, a communications line, a processor) is made only

via kernel-enforced checks. The kernel maintains process access

levels that are based on user clearance levels.

The access mediation within SFEP shall be implemented in terms of

rules that control the access of subjects to objects. Every object

shall be explicitly assigned a security attribute that shall re-

present the classification and categories of the object. Every sub-

ject shall be explicitly assigned a security access level that shall

represent the^clearance level and the set of access categories au-

thorized for the subject. Every subject shall be explicitly desig-

nated as trusted or untrusted. A subject may be designated trusted

if it has been verified analytically that its operations will not

transfer information of a given classification into objects of lower

classification, resulting in a compromise. Otherwise, the subject is

designated untrusted. The rules that control the access of subjects

to objects are as follows:

a. Before granting information-access, a subject's clearance

level and access category set shall be compared with an information

object's classification level and categories. The subject shall be

allowed to read the element of information only if the clearance

level of the subject is greater than or equal to the classification

level of the object, and the subject is authorized access to the set

of categories that are assigned to the object.

8.

3.1.1.1.1 Mediation Requirements (Continued)

b. No subject not specifically designated as trusted shall

have read-access to an object of a higher classification than one to

which the subject concurrently has write-access; i.e., information

from an object with a given classification may only be transferred

into an object with an equal or higher classification.

9.

S.1.1.1.2 Isolation Requirements

The SFEP security kernel shall be tamper proof, i.e., it must be

protected from unauthorized alternation. This protection shall

be provided via hardware-supported multiple execution domains

(or states or modes) based on access privilege. This domain

organization is termed a ring structure. When operating within

a ring, a process shall only have access to the resources of

that ring and of all rings of less privilege; the resources of

all rings of more privilege (i.e., inner rings) shall not

be directed accessible. Methods for crossing rings shall be such

that the isolation property is maintained.

Within SFEP, a minimum of three rings of privilege shall be

supported. ^These rings are named ring zero to ring n, with

ring zero being the most privileged. Ring 0 shall be the domain

of the security kernel. Untrusted subjects shall never occupy

ring 0 directly; only controlled access to the kernel shall be

allowed. The operating system shall occupy one of the outer rings

Although the operating system software itself is unverified,

it is necessary to isolate it from application software in order

to minimize the possibility of denial of service. Application

software shall occupy rings outside the operating system.

10.

3.1.1.2 System Overview

The message processing requirements shall be met with a

computer system based on the Honeywell Level 6 minicomputer

appropriately modified to meet the security requirements.

Both hardware and software elements shall be provided.

The SFUP hardware shall consist of elements of the existing

Honeywell Series 00 Level 6 minicomputer system, a to be

developed 6000/Series 60 Interface Unit (IU), a to be

developed network interface unit, and a to be developed

Security Protection Module (SPM). The IU shall provide

the interface between the Level 6 system and a central

system using the direct channel interface. The network

interface unit shall provide the interface between the SFEP

and an external communications network such as ARPANET.

The SPM shall support security/performance through hardware

mediation of the interfaces of the non-secure components

of the SFliP.

11.

3.1.1.2 System Overview (Continued)

The relationship of the SFEP hardware components are shown

on the SFEP subsystem block diagram in Figure 3. The

configuration shown is primarily illustrative and does not

represent any particular SFEP installation. In addition

to the standard central processor, security protection

module, memory, central system interface, and communications

interface required for all SFEP applications, Figure 3

also includes a network interface and illustrates the

potential for multi-processor configurations, supporting

mass store, and operator's console and associated diskette.

Although particular applications may not require the full

functionality of the SFEP configuration shown in Figure 3,

the system design must not preclude its inclusion.

The SFEP software shall consist of a kernel, an operating

system, application software, and support software. The

kernel software shall support the SPM in enforcing the

access controls required for handling multi-level security.

The operating system shall provide the resource management

functions that do not impact system security. The appli-

cation software shall provide terminal handling and network

interface functions. Support software shall provide start-

up, operator support, and troubleshooting functions.

12

3.1.1.2 System Overview (Continued)

Figure 4 presents the SFEP software functional block diagram

illustrating a process structure which satisfies the pri-

mary SFEP functional requirement (i.e., secure message

handling between terminals, the central system, and an

external communications network). Isolated user processes

are created by a trusted Answering Service process upon user

log-on. Each user is given an isolated and protected vir-

tual environment within which to communicate with the central

system or the communications network. The SFEP security

kernel is responsible for mapping and mediating all user pro-

cess accesses to its virtual resources. The virtual resources

of each process consists, as a minimum, of a single device

(terminal) channel, a terminal handler, and buffer space.

Depending on performance issues, user processes may also con-

tain the central system interface handler (within the dis-

tributed kernel) to complete the connection to the correspond-

ing central system user process or communicate indirectly via

the kernel Interprocess Communication (IPC) mechanism to a

separate trusted central system interface handler. The IPC

function may also be used to allow the implementation of re-

source ;il location policy mechanisms outside the kernel as

untrusted processes running at system high (e.g., scheduler

and memory manager). At user log-out, the Answering Service

13.

?

3.1.1.2 System Overview (Continued)

process deletes the user process from the SFEP system and

notifies the central system. The isolated virtual environ-

ment provided each user (enforced by the security kernel)

within SFEP shall allow concurrent handling of multi-level

security data in a manner which satisfies Dol) security

regulations.

The security requirements of mediation and isolation shall

be met by providing the following functional capability.

3.1.1.2. Mediation Implementation
1

The SPM shall mediate all interactions between elements of

the protected front-end processor. An SPM shall be asso-

ciated with each processor of SHIP. Through its SPM, each

processor shall communicate with the other processors, I/O

devices, and memory. An I/O device shall communicate to

memory through either the SPM of the processor that initiated

its current operation or any other designated SPM within the

system.

Mediation shall be implemented via a descriptor based vir-

tual resource management scheme. To accomplish this, a

mapping function, an access control function, a segmented

memory structure, and a descriptor structure shall be

supported.

14.

3.1.1.2. Mapping Mechanism
1.1

Fundamental to the concept of security is the management of virtual

resources. The set of virtual names by which a process (defined

to consist of a collection of resources and a state) invokes its

resources defines a virtual environment for the process. Real

resources shall be available to a process only through descriptors

generated by the security kernel. The descriptors shall be used by

the security kernel hardware to map the virtual resources of a

process to the real resources of the system. The resource mapping

function of SFEP shall be centralized within the Security

Protection Module (SPM).

When a processor makes a memory reference, the memory address

presented on the bus shall be intercepted by the SPM associated

with that processor and shall always be treated as a virtual

address. The SPM translates this virtual address into a physical

memory address. The physical address is then presented to memory,

and the appropriate read or write access is made. The data going

to and from memory shall not be examined by the SPM.

In order to satisfy the universal mediation requirement in the

simplest manner, the SPM would mediate each request by an I/O device

to reference memory. However, due to performance difficulties im-

posed by the bus architecture of SFEP, the SPM's active mediation

15.

3.1.1.2. Mapping Mechanism (Continued)
1.1

may cause unacceptable performance loss in high I/O bandwidth

applications. Thus, SFEP shall support two forms of I/O mediation-

Devices designated as premapped shall reference memory without

mediation by the SPM; memory addresses are absolute. Premapped

I/O mediation shall be performed completely at I/O initiation time

by the SPM; that is, the SPM shall validate at I/O initiation all

resulting I/O device memory accesses. At premapped I/O initiation,

the virtual address associated with the transfer is delivered to

the SPM. After suitable checking, the address shall be mapped by the

SPM to an absolute memory address and delivered to the device. Trans-#

fer of data will occur directly between the device and memory. Figure

5 functionally presents premapped I/O flow.

The SPM shall mediate each request by an I/O device designated as

mapped to reference memory. Mapped I/O devices shall reference

memory using only virtual addressing. At mapped I/O initiation the

virtual address associated with the transfer is delivered to the SPM

for set up, and then is delivered to the device as a virtual

address. The address of each item of data transferred shall be

delivered to the SPM for mediation (i.e., mapping and checking).

Each address delivered to the SPM shall be accompanied by the

identification of the transferring device in order to allow SPM

mediation to occur. Figure 6 functionally presents mapped I/O flow.

16.

3.1.1.2. Access Control
1.2

The access privilege of a process shall be controlled by the SPM

through comparison of an effective ring number generated by the

SPM during address formation and pertinent access control fields

contained in the descriptor controlling access to the accessed

resources. The access control rules are specified in detail in

3.7.1.3.

3.1.1.2. Segmented Memory
1.3

Access control shall be based on compartmentalizing all of the

stored information contained within SFEP memory into discrete

packages called segments each having associated with it a set of

access attributes that describe the fashion in which each process

is permitted to reference the contained information. Addressing

within SFEP shall be "two-dimensional"; that is, stored information

shall be addressed via an ordered pair (name, offset), where "name"

is the segment designator and "offset" is the word number in the

corresponding linear memory for that segment.

SPliP shall provide a maximum of 512 segments consisting of 2K 16-bit

words. These segments may be subdivided into 16 subelements called

pages consisting of 128 16-bit words. Access control shall be to the

segment level only.

17.

3.1.1.2. Descriptor Mechanism
1.4

Every resource that is allocated to a process shall be represented

by descriptors. Descriptors are constructed by the security kernel

and are structured in memory for use by the SPM. The descriptor

structure is the prime data base for the state of allocation of the

system resources. Descriptors shall be supported for both memory

and I/O devices. Descriptor Base Roots (DBRs) used by the SPM to

establish the set of descriptors for a process shall also be supported.

Memory descriptors provide the mechanism for the SPM to convert virtual

memory addresses presented by requestors (i.e., CPU's or mapped I/O

devices) to absolute memory addresses. In addition, the memory de-

scriptors provide the access control mechanism for the SPM to verify

that the process has the required access privilege to the referenced

memory location. The SPM shall insure that descriptor copies within

the SPM reflect the memory originals and that the memory originals

are updated to reflect the changes made to the SPM's copies (e.g.,

used and modified bits).

I/O descriptors provide the mechanism for the SPM to convert virtual

device addresses presented by requestors (i.e., CPU's) to absolute

device addresses. In addition, the I/O descriptors provide the access

control mechanism for the SPM to verify that the process has the re-

quired access privilege to the referenced device. The SPM shall in-

sure that descriptor copies reflect the memory originals and that the

18.

3.1.1.2. Descriptor Mechanism (Continued)
1.4

memory originals are updated to reflect the changes made to the SPM's

copies.

Details of what information shall be contained in the descriptors is

specified in 3.7.1.3.

3.1.1.2. Isolation Implementation
2

Isolation shall be based on a ring structured architecture. To assure

isolation, several special functions shall be provided. These are

functions associated with ring crossings and privileged functions for

controlling the SPM. The ring crossing functions include: CALL/

RETURN, TRAP/TRAP RETURN, and INTERRUPT/INTERRUPT RETURN. The priv-

ileged functions include: DISPATCH, SELECTIVE DESCRIPTOR INVALIDATION,

and SPM T5D.

The privileged functions directly accessing the SPM shall, of course,

be limited to the kernel software. To reduce mediation overhead, the

SPM shall be addressed as an absolute Programmed Input/Output (PIO)

type device. PIO refers to device control functions as opposed to

normal data transfer functions. The absolute channel number used to

represent the SPM shall be assignable at system configuration time.

This interface would restrict the kernel from performing I/O with other

devices whoso virtual addresses are identical to the SPM absolute

19,

3.1.1.2. Isolation implementation (Continued)
2

address and which utilize the same function codes as selected for the

SPM interface. To eliminate this restriction, the SPM function codes

shall be restricted to those not utilized by other devices.

Functions to support the isolation property may be distributed between

the processor, the SPM, and kernel software.

3.1.1.2. CALL and RETURN
2.1

CALL and RETURN instructions shall be provided by the processor and

be recognized by the SPM. A CALL is normally used to transfer to

inner ring procedures to accomplish more privileged operations than

those allowed at the current ring, and a RETURN is used to return

from an inner ring procedure back to the outer ring from which the

call originated. Since the CALL instruction may change the current

ring (R) to a lower number and thus place the processor in a more

privileged state, the SPM must guarantee that entry into the inner

ring is tightly and completely controlled by that inner ring. Thus,

the SPM must check that an inner ring may only be entered at specific

locations within specific procedures. Outward calls to untrustcd

code shall not be allowed since a potential for security compromise

would exist.

20.

3.1.1.2. CALL and Rl-TURN (Continued)
2.1

The SPM shall mediate the virtual entry point address placed on the

address bus by a process executing the CALL instruction in the same

manner as for a normal memory reference. However, unlike normal

memory references, no mapping is performed. That is, the SPM shall

only validate the virtual entry point address (i.e., caller has

execute access) and compute a new value of Rrnr as specified in 3.7.1.3.

If the effective ring number of the caller is outside the call bracket,

the SPM shall trap. Similarly, in order to control entry to the called

procedure, the SPM shall insure that only location zero of the called

procedure (defined by the direct page or segment descriptor) be a

valid entry point. If a call to an invalid entry point is attempted,

the SPM shall trap. It should be noted that the entry point limita-

tion is the degenerate example of a call limiter restriction specifying

the maximum offset within a segment or page to which a call can trans-

fer to be zero. The SPM shall perform all required access checks

prior to changing the current ring of execution and allowing the virtual

entry point address to be inserted into the CPU program counter.

21.

3.1.1.2 CALL and RETURN (Continued)
2.1

The security kernel shall provide process local stack space (stack

per ring) to support argument passing and to satisfy reentrancy

requirements.

Arguments shall only be passed via the stack mechanism. The called

function shall be responsible for performing argument validation

including caller stack validation. The caller's ring number shall

be provided to the called procedure to support general argument

validation. A special VALIDATE instruction shall be supported by

the SPM. VALIDATE shall indicate the access rights to a memory area

for a given level of privilege (i.e., specified ring number). Each

called procedure shall contain a check on the caller's level of

privilege; if the caller's ring is the same as the called, the argu-

ment validation checks are to be bypassed.

22

3.1.1.2. Trap and Trap Return
2.2

Traps are software initiated events (either intentional or uninten-

tional) to which the processor responds by saving the current state

of the processor in such a way that it can later be restored, and

transferring control to a specified memory location. In a secure

system, many traps occurring in a given ring are best handled by

software executing in that ring. Some traps, however, such as those

generated by the SPM, are best handled by Inner ring software. SFEP

shall allow trap handling to be performed 1n the ring appropriate to

the type of trap; however, initial processing must be performed

within the security kernel.

Upon the occurrence of a trap, CPU firmware shall select an area for

storage of Information about the state of the process and an entry

point to a service procedure. Since the CPU provides a single

storage area/entry point per trap type/trap occurrence and traps may

occur within any ring, all trap storage areas and service procedures

shall reside within the security kernel (i.e., ring 0). In addition,

the security kernel shall be solely responsible for specifying all

trap vectors and storage area pointers for each process.

23.

3.1.1.2. Trap and Trap Return (Continued)
2.2

«

The trap save area shall contain sufficient information to allow the

service procedure to determine the corrective action required to

resume normal process execution. Included within the trap save area

shall be the ring number of the process (R) at the time of trap.

The trap save areas shall be process local, not global. The security

kernel shall be responsible for insuring that each process has

sufficient real memory to support its virtual trap save area free

list upon process dispatch. A minimum of three save areas shall be

provided per running process in order to prevent a trap save area

run-out interrupt from occurring.

Upon the occurrence of a trap, the SPM shall force R =0, and
cur

shall translate the hardware-generated virtual addresses which specify

the trap handler entry point and the trap save area.

The trap return Instruction (RTT) shall restore the state of the

process from the trap save area as modified by the associated

service procedure. The restored state shall include the prevfqusly

saved value of R . The SPM need not check this ring number since
cur

24.

3.1.1.2. Trap and Trap Return (Continued)
2.2

It is issued by the kernel only. The trap return Instruction shall

be a privileged instruction; i.e., RTT shall be executable only within

ring 0 (attempted execution of RTT within an outer ring shall result

in a CPU-generated trap).

For those traps for which it is desirable to service in an outer

ring, the kernel service routine (in this case, a trap executive),

shall copy the non-security sensitive trap data from kernel space

to an area accessible to the actual handler in an outer ring. Prior

to the copy, the security kernel shall insure that the level of

privilege (ring) of an outer ring trap handler is greater than or

equal to the level of privilege in effect at the time the trap

occurred. The kernel service routine shall then transfer control to

the outer ring trap handler via the RETURN order. 4Jpon completion

of trap servicing, the outer ring trap handler shall CALL the kernel

to perform any necessary modifications to the original trap save

area data (in kernel space) and instruct the kernel to issue the RTT

instruction on its behalf.

3.1.1.2.2.3 Interrupt and Interrupt Return

Unlike traps, which are synchronous with and in some sense caused by

the currently executing process, interrupts are generally unrelated

to the current process (or at least asynchronous with it). However,

like traps, the processor responds to an interrupt by saving the

current state of the processor in such a way that it can later be

restored, and transferring control to a specified memory location

Thus.SFEP requirements for interrupts are similar to those for traps.

25.

3.1.1.2. Interrupt and Interrupt Return (Continued)
2.3

Upon the occurrence of an Interrupt of higher level than the

currently executing process level, CPU firmware shall save the

currmt state of the processor using the current level's interrupt

save area pointer, and restore the new state of the processor using

the interrupting level's save area pointer. The identity of the

interrupting channel shall be saved within the interrupting level's

save area. Since the CPU provides a single storage area per

interrupt level and interrupts may occur within any ring, all

interrupt save areas and associated interrupt handlers shall reside

within the security kernel (i.e., ring 0). In addition, the

security kernel shall be solely responsible for specifying all

interrupt level vectors for each process.

The interrupt save area shall contain sufficient information to

allow resumption of execution of the interrupted process. Included

within the save area shall be the ring number of the process (Rcur)

at the time of interrupt.

The process ring number in the interrupting level's save area shall

be ring 0 to force interrupt handling within the security kernel.

It should be noted that the identity of the interrupting channel is

absolute; it shall be the responsibi1ity of the security kernel to perform

the inverse mapping of an absolute to virtual device Identification

1n order to notify the process associated with interrupting device

(i.e., device wakeup function).

26.

3.1. |.2. Interrupt mid Interrupt Return (Continued)
2.3 '"

Upon the occurrence of an interrupt, the SPM shall force R « 0

in order to allow saving and restoring of processor state (under

firmware control) within kernel space. At the completion of the

firmware controlled interrupt processing, the interrupt handler shall

be entered with kernel privilege as specified in the interrupting

level's save area (new value of R is to be transmitted to the SPM)
cur

The interrupt return shall be accomplished by the level change

Instruction (LEV) which shall restore the state of the processor

from the interrupted level's save area. The restored state shall

include the previously saved value of R . The SPM need not check
cur

this ring number since it is issued by the kernel only. The LEV

instruction shall be a privileged instruction; i.e., LEVshall be

executable only within ring 0 (attempted execution of LEV within

an outer ring shall result in a CPU-generated trap).

27.

3.1.1.2. Dispatch
2.4

The security kernel shall include a dispatch function to be used to

initiate a new process, i.e., a ready process is to have its state

changed to running. Functionally, a process shall notify its asso-

ciated SPM that a new descriptor tree structure is to be utilized

for access mediation and the previous descriptor structure is to be

discarded. Details of the dispatch function are specified in 3.7.1.3.1.

3.1.1.2. SELECTIVE DESCRIPTOR INVALIDATION
2.5

It shall be a kernel responsibility to insure that changes made to the

descriptor structure in memory for the currently executing process are

reflected in the fast access copies retained by the SPM within its

Fast Access Descriptor Store (FADS). This shall be accomplished via

selective descriptor invalidation orders issued by the kernel to the

appropriate SPM. Upon receipt of such orders, the SPM shall retrieve

from memory the updated descriptor describing the resource as necessary

for mediation of subsequent resource accesses; the invalidated de-

scriptor within the FADS shall be overwritten by the newly retrieved

descriptor. Details of the SELECTIVE DESCRIPTOR INVALIDATION are

specified in 3.7.1.3.3.1.

3.1.1.2. SPM TSD
2.6

Within SFEP, the SPM test and diagnostic function shall be performed

by a trusted process. SPM T§D shall be performed periodically to

minimize the possibility that an SPM hardware failure results in the

undetected loss of the SFEP information protection mechanism. The

entire functionality of the SPM shall be thoroughly exercised via

28.

3.1.1.2. SPM T5D (Continued)
2.6

various restricted I/O operations. Any detected SPM failure shall

be immediately reported to the SFEP operator/security officer.

3.1.2 Functional Interface Definition

The interfaces between the SFEP and the outside world (i.e., external

to the SFEP), interfaces between the SFEP hardware components, and

interfaces between the SFEP software components arc specified below.

3.1.2.1 Interfaces Between the SFEP and the Outside World

SFEP interfaces to the outside world shall consist of terminal

communications lines, a central host computer interface, a

communications network interface, and an operator interface for

support functions.

3.1.2.1.1 Terminal Interface

SFEP shall provide the control of the communication lines and re

mote terminals. The SFEP shall be capable of supporting terminals

operating in both half-duplex and full-duplex modes and at a variety

of speeds (including 110, 134.5, 150, 300, 1200, 2400, 4800, and

9600 bps). The number of terminals shall be modularly expandable

up to a maximum of 256 terminals. Terminals supported shall in-

clude TTY Model 40 and all those supported by the current Multics

system.

29.

3.1.2.1. Terminal Interface (Continued)
1 r~

In particular, the following terminal interfaces shall be supported:

A. Asynchronous (transmits even parity)

a) Bell 103 interface, 7 bit ASCII, at 110, 150, and 300 baud.

b) Bell 103 interface, 6 bit EBCDIC, with odd parity at

134.5 baud.

c) Bell 202C6 interface, 7 bit ASCII, at 1200 baud (using com-

mon protocol established in MIT MAC-M-370).

d) Bell 202C5 and Bell 202C6 interfaces, at 1200 baud (using

Tcrminct 1200 line protocols),

c) Vadic 3400 interface, 7 bit. ASCII, at 1200 baud.

B. Synchronous (transmits odd parity)

a) Bell 208A and Bell 208B, 7 bit ASCII, at 4800 baud (using

G115 protocol).

b) Bell 209A, 7 bit ASCII, at 9600 baud (using G115 protocol).

3.1.2.1.2 Central System Interface

SFEP shall interface with the central system via the Direct Channel

Adapter (DCA) connected to the 6000 IOM. One central system inter-

face shall support all SFEP configurations including multi-computer

or multi-processor configurations. Throughput of the central

system interface shall only be constrained by 6000 IOM capability.

30

•:

3.1.2.1. Central System Interface (Continued)
2

The central system interface shall support the "scatter-gather" I/O

concept. That is, discontiguous areas of both SFEP and central

system memory may be accessed (data transferred) as a result of a

single I/O command from the SFEP CPU. The interface shall support

two data formats to convert 36-bit central system words to 16-bit

SFEP words : ASCII and binary. While operating in the ASCII mode,

the interface shall interpret a central system word as consisting

of two SFEP words; i.e., four 8-bit characters per central system

word. While operating in the binary mode, each central system word

shall be interpreted as consisting of two and a fraction SFEP words.

In the binary mode, only multiples of four central system words need

be transferred allowing a four-to-nine mapping.

31

3.1.2.1.3 Network Interface

SFEP shall be capable of providing an interface to networks such

as TON II (Autodin n), SATIN IV, or the ARPANET. In particular,

SI'F.P shall allow for the connection of a network interface im-

plementing the American National Standards Institute (ANSI) Advanced

Data Communication Control Procedures (ADCCP) - Independent Numbering,

X3934/589, Draft 3, 12 December 1974. Specifically, the operational

class defined as Primary-to-Primary, full duplex shall be used. The

interface shall be capable of operating at the standard communi-

cations circuit speeds of 110 bps to S6 kbps, and shall include

all responses and commands defined for the Primary-to-Priraary

Selective Reject Exception Recovery Class of Procedures. However,

the capability to intermix the Set Asynchronous Response Mode (SARM)

and the Set Asynchronous Response Mode Extended Format (SARME) com-

mands on any one circuit shall not be implemented. Any given

circuit shall optionally be capable of operating SARM or SARME but

not both. The command for the mode selected shall only serve as a

reset of the protocol.

3.1.2.1.4 Support Functions

SFEP shall provide utility-type functions to support successful

front-end operations. These utilities shall include the following:

Boot load - SFEP shall be loaded from the central system via

the central system interface.

Operator Interface - SFEP design shall allow the inclusion of

an optional operator's console to support configuration manage-

ment, debug, and T§D functions.

Debug - SFEP shall provide a debug capability including system

dump via the operator's console.

32.

3.1.2.1.4 Support Functions (Continued)

JjjJD - The ability to run Test f, Diagnostic software offline

shall be supported. T§D software shall be loaded via an optional

diskette interface and shall interface with the operator's

console.

Recovery/Restart - SFEP design shall not preclude the inclusion of

automatic recovery/restart capability. In addition, SFEP design

shall not preclude providing continued support to terminals in

the event of a central system failure including routing to

alternate hosts if allowed by the configuration.

3.1.2.2 Interfaces Between the SFEP Hardware Components

The primary interface between the SFEP hardware components shall

be the Level 6 asynchronous bus.

A private interface between the SPM and the CPU may be used as required.

3.1.2.3 Interfaces Between the SFEP Software Components

Two types of interfaces are specified between the software elements.

One is the interface between the untrusted processes and the

distributed kernel. The other is the interface between processes.

The interface between the distributed kernel and the untrusted

process software shall be a rigorously defined interface with

access only through the Call/Return mechanism. The interface is

precisely defined in the Security Kernel Specification for Secure

Communications Processor.

The interface between processes shall be through the Interprocess

Communication (IPC) mechanism. The IPC is specified in 3.7.2.2.1.

33,

3.1.3 Major Component List

3.1.3.1 Hardware

The SFEP hardware shall consist of the following major components:

Central Processing Unit (CPU)

Security Protection Module (SPM)

Memory

Bus

Communication Controllers (MLCP)

6000/Series 60 Interface Unit (IU)

Inter System Link (ISL)

Peripheral Device Controllers

Network Interface Controller

3.1.3.2 Software

The Sl'lil* software shall consist of the following major components:

Securi t y KcrnoI

OperaI i ng Sys torn

Appli cat ion Software

Support Software

3.1.4 Government Furnished Property List
i

Not applicable.

3.1.5 Government Loaned Property List

Not applicable.

3. 2 SI:_\i\» Charactcrist ics

3.1. I Per l o rmance

Performance degradation of SFTiP shall not exceed 25° of the performance

delivered by an equivalent nonsecure front-end processor system ("i.e.,

without the security protection mechanism) achieving 800,000 memory

references per second.

34

3.2.1 Performance (Continued)

SFEP shall have a minimum throughput capability of 10K char/sec.

This requirement results from assuming a maximum configuration

of 256 terminals operating at an average rate of 300 baud

(including sufficient margin).

35

3.2.2 Physical Characteristics

Although a commercial version can be provided, all

references within this specification pertain to a

• ruggedized unit.

The housing shall consist of a cast chassis capable of

holding 10 modules. A system may contain more than one

chassis and provisions shall be made to attach additional,

identical housings to the top and bottom of the basic

unit. Provisions shall also be made for interconnecting

the bus boards of additional chassis attached in the

above manner.

The front surface of the housing shall contain the control

panel and an air inlet. All external connectors as well

as air exhaust will be on the back surface.

3.2.2.1 Weight

The total weight of a ten card SFEP computer shall be

less than 150 pounds.

3.2.2.2 Outline Dimensions

Envelope dimensions shall include all protuberances

(e.g., handles and connectors) except guide pins. See

Figure 9.

3.2.3 Reliability

Design considerations and part selection shall be sufficient

to assure that the equipment meets or exceeds its reliability

requirements over its useful life.

36.

3.2.3.1 Mcan-Time-Bctwcen-Fnilures (MTBF)

Any single 10 board chassis configuration of the SFEP

shall have calculated MTBF of 2800 hours minimum based

on Honeywell commercial parts failure rates.

3.2.3.2 Probability of Failure Induced Security Compromise

As a design goal, the SFEP shall exhibit a probability of

less than 0.000001 per hour that hardware failure will

result in the undetected loss of secure data protection

functions. The probabilistic measure of security

compromise shall be established by analysis using

failure rate data as specified in Paragraph 3.2.3.1.

3.2.3.3 Useful Life

The useful life of the equipment shall be 10 years when

operated and maintained in accordance with the provisions

of this specification.

3.2.4 Maintainability

The unit shall be designed with maintainability as a prime

factor. The equipment shall comply with the following

maintenance requirements.

A. The equipment shall be capable of being repaired

with no special fixtures or tools.

B. Design configuration (layout) shall, to the maximum

extent possible, be planned to facilitate the sequence

of maintenance procedures (testing sequences, disassembly,

adjustments, alignments, etc.) to eliminate backtracking

redundant operations, or awkward activity by maintenance

personnel.

37

3.2.4 Maintainability (Continued)

C. Line replaceable units shall not require adjustment

or calibration in connection with replacement.

(See the following paragraphs for LRU definition.)

D. The Mean-Time-To-Repair (MTTR) to plug-in card

level, including fault isolation, removal, replacement

and verification shall not exceed 60 minutes.

E. Plug-in card and power supply removal and replacement

shall be no more time consuming than for the commercial .

equivalent.

F. The equipment shall be designed such that no

preventative maintenance, other than normal cleaning

is required.

G. External connectors shall be of the quick disconnect

type* Per MIL-C-38999 with a minimum of one inch (1M)

spacing provided between adjacent connectors.

3.2.4.1 Maintenance Concept

The equipment shall be designed to be maintained in

accordance with established Air Force practices, policies

and procedures. The existing three (3) levels of Air Force

maintenance shall be used: organizational, field, and depot.

The equipment shall be considered to meet the following

definitions of subsystem and LRU.

The computer shall be defined as a subsystem for maintenance

purposes.

Line replaceable units of the computer (subsystem) are:

• All 15" x 16" circuit cards (CPU, SPM, memory, MLCP, etc.)

• Power supply

• Front panel assembly
38.

3.2.4.1.1 Organizational and Field Levels of Maintenance

For ground installations, organizational level and field

level maintenance are synonymous and will consist of

isolation of failures to the LRU. The LRU will then be

sent to a depot for troubleshooting and repair. In cases

where the failure cannot be isolated to an LRU or where the

failure is associated with the housing assembly, the

subsystem shall be replaced and the faulty subsystem

shall be sent to the depot.

3.2.4.1.2 Depot Level Maintenance

Depot level maintenance consists of isolation and repair

to the part level.

3.2.5 Environmental Conditions

The unit shall be designed to meet all functional

specifications while subjected to the operational

environments specified below in any combination and after

being subjected to the non-operational environmental

conditions specified below.

3.2.5.1 Temperature

Operating: Continuous 0°C to 52°C

Non-Operating: -62°C to +85°C

3.2.5.2 Altitude

In accordance with MIL-E-5400P, Paragraph 3.2.24.2 for

Class 1A equipment with exception that the altitude

requirement is 0 to 8,000 feet for continuous operation

and 0 to 50,000 feet for exposure in a non-operating

condition. (NOTE: It is anticipated that a MIL-STD-704A

400 Hz aircraft power supply with integral high volume

fans will be developed at a later date. This supply would

permit operation at higher altitudes.)

39.

3.2.5.3 Humidity

The equipment shall maintain the specified performance

when exposed to a relative humidity of 951 for both

continuous and intermittent periods, including conditions

wherein condensation takes place in and on the equipment

in the form of both water and frost. Humidity tests shall

be run per method 507, procedure IV of MIL-STD-810C

(5 each, 24 hour cycles). A requirement established by

this Detail Specification is that circuit boards shall

be conformally coated. Uncoated circuit boards shall be

available as a standard option to those users who

specifically request uncoated boards. However, humidity

qualification tests shall be run on a unit with both

uncoated and conformally coated boards.

3.2.5.4 Vibration

The unit shall be capable of withstanding the following

vibration spectrum without isolators.*

5-2000 Hz, 2g peak per MIL-E-540CP curve IIA. (See Figure 10.)

With isolators, the unit shall be capable of withstanding

the following vibration spectrum.'

5-2000 Hz, lOg peak per MIL-E-5400P, curve IVA. (See Figure 10.)

3.2.5.5 Shock

3.2.5.5.1 Equipment

While isolated the equipment shall not suffer damage or

functional failure when subjected to 18 impact shocks of

15g consisting of three shocks in opposite directions

along each of three mutually perpendicular axes. Each shock

impulse shall have a time duration of 11 + 1 milliseconds.

The maximum acceleration shall occur at approximately

5 1/2 milliseconds.
40.

\

3.2.5.5.2 Mounting Base (Crash Safety)

With excursion stops or bumpers in place and with

maximum rated load applied in a normal manner, the

mounting base, individual isoaltors, or other attaching

devices shall withstand at least 12 impact shocks of 30g,

consisting of 2 shocks in opposite directions along each

of 3 mutually perpendicular axes. Each shock impulse

shall have time duration of 11 • 1 milliseconds. The

"g" value shall be within + 10 percent when measured

with a 0.2 to 250 Hz filter, and maximum "g" value shall

occur at approximately 5 1/2 milliseconds. Bending

and distortion shall be permitted; however, there shall

be no failure to the attaching joints and the equipment

or dummy load shall remain in place.

3.2.5.5.3 Bench Handling

In accordance with MIL-STD-810B, Method 516.1, Procedure V,

Non-operating condition.

3.2.5.6 Explosive Conditions

Unit shall not produce exposed arcs in normal operation.

3.2.6 Transportability

Transportability shall be considered when formulating

the design of the SFEP. MIL-P-9824 shall serve as a guide.

3. 3 Design and Construction

3.3.1 Materials, Parts, and Processes

Materials, parts, and processes shall conform to the

requirements of MIL-E-5400 when practical or unless

otherwise restricted herein. Design and application

considerations, as well as economic factors, shall govern

the selection of and use of materials, parts, and processes.

41.

7

3.3.1 Materials, Parts, and Processes (Continued)

HIS materials, parts, processes, and controlling specifications

used for the existing Level 6 design and Aero FMS's and FPS'suse

for the SFEP design shall be considered approved for the

SFEP upon verification of data substantiating that the

unit will perform satisfactorily in the specified environment.'

In addition, the following paragraphs identify specific

requirements and limitations in the use of materials,

parts, and processes.

3.3.1.1 Hardware

3.3.1.1.1 Materials

3.3.1.1.1.1 Aluminum

Aluminum alloys 2020 and 7178 shall not be used for

structural applications. Bare aluminum alloys 2024-T4

and 7075-T5 shall not be used in corrosion susceptible

areas without suitable protective finishes. 7075-T6

shall not be used in fatigue critical applications as

plate or as extrusions in sections greater than 0.25 inches.

3.3.1.1.1.2 Elastomeric Materials

Elastomeric components shall utilize only those elastomers

which have adequate resistance to aging, ozone, heat aging,

low temperature embrittlement and reversion, either »

temperature or moisture-temperature induced.

3.3.1.1.1.3 Wire

Wire used in all SFEP new designs shall conform to the

following specifications:

A. 300V, Single conductor - FMS 40052

B. 300V, Shielded - FMS 40022

C. 600V, Single conductor - PMS 40053

D. 600V, Shielded - FSM 40051
42.

3.3.1.1.1.4 Con formal Coatings

If required, printed circuit cards shall be conformally

coated per FPS 18035, Type V. .

3.3.1.1.2 Processes

3.3.1.1.2.1 Soldering

Electrical soldering practices shall be in accordance with

FPS 18167. Certification of soldering operators is

required.

3.3.1.1.3 Parts

3.3.1.1.3.1 Parts Selection and Standardization

Electronic part types for all new SFEP circuit designs

shall be selected from the Level 6 Standard Parts List.

All other electronic parts are non-standard. Selection,

qualification and screening criteria applicable to non-

standard parts shall be in accordance with Parts Control

Program Requirements of the Honeywell SCOMP Reliability
•a

Program Plan. SCOMP is an acronym for Secure Communications

Processor and SFEP is one application.

3.3.1.1.3.2 Electrical Connectors

Outside-world connectors of the SFEP shall meet the

requirements of MIL-C-38999.

43

3.3.1.2 Programming Standards and Conventions

For each program, routine, subroutine or function developed, the

structured programming concepts of top-down hicrarchial design, top-down

construction and restricted control logic structures shall be observed.

Programs shall be designed in a hierarchical manner and the levels of
«

the hierarchy shall correspond to the levels of control of the

program tasks. An essential characteristic is that each level of the

program design shall be logically complete. Control shall proceed

downward through the hierarchy; looping back through the structure shall

not be permitted. Program modules shall be programmed at the highest

level in the program hierarchical organization before modules of the

succeeding levels.

3.3.1.2.1 Vcrificat ion

To simplify vcrificution of the security kernel software, il is

anticipated that additional programming standards and conventions will

be required. For example, if a compiler is to be used to convert the

implementation language representation to machine language, an allowable

subset of the high-order language need be established.

3.3.1.2.2 Consistency

To insure consistency among the various program modules, programming

rules and conventions shall be established. For example, each module

should have only one entry point; similarly, each module should have at

most two exit points, one to handle error exits and one for normal exits.

3.3.1.2.3 Performance

To achieve SFEP performance requirements, programming rules and

conventions shall be established. In particular, the issue of degree

of process locality shall be addressed. Designers shall avoid specifying

multiple rings unless necessary because each ring in which a subsystem

executes adds segments to a process. Similarly, procedure segments and

44.

T

3.3.1.2. Performance (Continued)
3

data segments belonging to the same ring that are to have the same

access controls shall be bound together. Procedure (and data)

segment binding shall be done on the basis of the typical flow of

control through them (or by references to them) rather than by their

functional similarity.

45

!

3•3•2 Electromagnetic Compatibility

Electromagnetic compatibility criteria for the SFEP

shall be in accordance with the emissions and susceptibility

test requirements of MIL-STD-461A, Notice 3, 1 May 1970

for Class A3 equipment. Applicable requirements are:

CE03 - Conducted Emissions, power lines.

CE04 - Conducted Emissions, signal lines.

CS01 - Conducted Suscept., power lines, AF.

CS02 - Conducted Suscept., power lines, RF.

CS06 - Conducted Suscept., power lines, transient.

RE02 - Radiated Emissions, electric field.

RS03 - Radiated Suscept., magnetic induction field.

RS03 - Radiated Suscept., electric field.

46.

3.3.2.1 TEMPEST

TEMPEST criteria for the SFEP shall be as specified

by DCA Circular 370-D195-2.

Electric Field Space Radiation

Power Line Conduction

Black Signal Line Conduction

Red Signal Line Conduction

3.3.2.2 Bonding

Bonding shall comply with requirements of MIL-B-5087.

An electrical' bond is any fixed union existing between

two objects that results in electrical conductivity

between the objects. All permanent bonding inside the

SFEP must be accomplished by direct metal to metal contact

of properly prepared surfaces.

3.3.2.2.1 Jumpers

Bonding jumpers may be used to connect the SFEP chassis

to rack structure if shock isolators are required. Such

jumpers shall be at least 0.030 inches thick and have a

length to width ratio no greater than 5 to 1.

3.3.2.2.2 Bonding Surface Preparation

Surface preparation for an electrical bonding shall

47.

3.3.2.2. Bonding Surface Preparation (Continued)
2

be accomplished by removing all anodic film, grease,

paint or other high resistance material from the immediate

area to insure negligible RF impedance between adjacent

metal parts. Chromate conversion finishes shall not be

removed.

3.3.2.2. Removable Panels
3

Removable panels may be bonded through RFI gasket.

3.3.3 Identification and Marking

Identification and marking for Aero designed hardware shall

be in accordance with MIL-STD-130. Identification and

marking for BCO designed hardware shall be per BCO standards. .

If existing designs do not meet those requirements, it

shall be documented and corrective action shall be taken

if necessary.

3.3.4 Workmanship

Workmanship of Aero fabricated hardware shall be in accord-

ance with the applicable portions of UED 23036. BCO work-

manship standards shall apply to BCO fabricated hardware.

General workmanship shall be of high quality to assure com-

pliance with specification requirements including the ser-

vice life requirement.

48.

3.3.5 Interchangeability and Replaceability

3.3.5.1 General

Mechanical and electrical interchangeability shall exist

between like assemblies, subassemblies, and replaceable

parts regardless of manufacturer or supplier. Interchange-

ability, as used here, does not mean identity, but requires

that a substitute of like assemblies, subassemblies, and

replaceable parts may be easily effected without physical

or electrical modifications to any part of the equipment or

assemblies including cabling, wiring, and mounting.

3.3.5.2 Module Interchangeability

All major assemblies of the SFEP shall be replaceable and

interchangeable without electrical adjustment or calibration

3.3.6 Safety

A. The SFEP shall be designed to combine maximum safety

and stability, avoiding sharp edges, protrusions,

obstructions and any other mechanical or physical

features which constitute a hazard in accordance

with MIL-STD-1472, Sections 5.13.4 and 5.13.5.

49.

!

3.3.6 Safety (Continued)

B. Means to prevent accidental exposure to electrical

voltages in excess of 32 volts including potentials

on charged capacitors shall be provided. Equipment

shall be designed and constructed so that all

external electrical parts will be at ground potential

at all times. Where access is required for adjustment

purposes during the normal operation of equipment,

provide doors, covers or plates for compartments

which employ an interlock to remove potentials in

excess of 150 volts. Wiring shall be routed so as not

to have "hot" leads on male connector pins upon plug

disconnection. Provisions for avoiding electrical

hazards will be designed in conformance with

MIL-STD-1472, Section 5.13.7.1 and MIL-STD-454.

50.

3.4 Documentation

3.4.1 Drawings

All Aero engineering released drawings shall be equivalent

to or better than that required by MIL-STD-1000, Category

E, Form 3. BCO drawings shall conform to Honeywell

commercial standards.

3.4.2 Manuals

Any manuals generated for the SFEP shall be consistent

with existing Level 6 manuals and related documentation.

SFEP manuals shall supplement Level 6 manuals and shall

use identical terminology, style, and referencing pro-

cedures so that to the user, the set of manuals form one

monolithic set of documentation.

51.

3.4.3 Specifications

Specifications are required for all parts, materials

and processes utilized in the fabrication and assembly

of this unit. This requirement is necessary to assure

the validity of Qualification Test Results.

3.4.4 Test Plans

Test plans shall be per Aero Design Procedures paragraph

5.3.

52.

T

3.5 Logistics

Maintenance procedures, supply, facilities and facility

equipment, requirements shall be per the individual SFEP

procurement specification.

3.6 Personnel and Training

The Personnel and Training requirements relating to the

SFEP shall be per individual procurement specification.

53.

3.7 Major Component Characteristics

3.7.1 Hardware Components

3.7.1.1 Bus

The bus provides a common communication path between

units of the SFEP system. The bus is asynchronous in

design, permitting units of varying speeds to operate

efficiently on the same system. The design of the bus

permits the following types of communications to exist:

Memory Transfers

Interrupts

Command Transfers

The maximum system configuration supported by a single

bus is 23 connectable units. In this usage, a connectable

unit is one which interfaces the bus and generally occupies

one connector slot. The number of I/O devices on a single

bus may be greater than this number because many of the

units support several I/O devices through the same

connectable unit. For very large systems, buses may be

interconnected via the Inter System Link (ISL) described

in paragraph 3.7.1.7.

The bus permits any two units to communicate with each

other at a given time via a common (shared) signal path.

Any unit wishing to communicate, requests a bus cycle.

When that bus cycle is granted, that unit becomes the

Master and may address any other unit in the system as

the Slave. All transfers are in the direction of Master to

Slave only. Some types of bus interchange require a

response (Read memory for example). In cases where a

response is required, the requestor assumes the role of

the Master, indicates that a response is required, and

54.

3.7.1.1 Bus (Continued)

identifies itself to the Slave. When the required

information becomes available (depending on Slave response

time), the Slave now assumes the role of the Master,

and initiates a transfer to the requesting unit.

This completes the interchange which has taken two bus

cycles in this case. Intervening time on the bus between

these two cycles may be used for other system traffic

not involving these two units.

A distributed Tiebreaking Network provides the function

of granting bus cycles and resolving simultaneous requests.

Priority is granted on the basis of physical position,

top priority being given to the first unit on the bus.

The logic to accomplish the tiebreaking function is

distributed among all units on the bus. In any system,

memory is granted highest priority and the CPU the lowest

with other units being positioned on the basis of their

performance requirements.

In security discussions, references are made to the virtual

bus and the absolute bus and drawings occasionally show two

separate buses. There is one physical bus and the term

virtual or absolute refers only to the type of address that

is on the bus at any given time. Since transfers between

some units on the bus are always virtual (CPU to memory)

and others are always absolute (SPM to memory), it is

illustrative to show two buses in drawings.

55.

1

3.7.1.2 Central Processing Unit (CPU)

The Level 6/40 CPU was selected for the SFEP application

because it met the SFEP performance requirements, was

securable, and was at a stage of development whereby the

SPM interface requirements could still influence the de-

sign.

3.7.1.2. Standard Level 6/40
1

The Level 6/40 CPU has a contemporary architecture with

some of the key features being:

• 18 program visible general registers including multiple

accumulators, multiple address, index and control

registers.

• Bit, byte, and word instructions.

• Bit test, set, and mask capability.

• Immediate register to register and register to memory

operation.

• 64 interrupt levels.

• Multiple vectored trap structure

• Trap support of interpretive implementation of features

like floating point functionality.

• Hardware supported context save and restore.

• Multiple addressing modes including indexing, indirect,

base plus displacement, program counter relative auto

increment/decrement, etc.

56.

3.7.1.2. Standard Level 6/40 (Continued)
1

• Memory management option

• Scientific processing unit

• Business processing unit

• Stack, queue management

3.7.1.2. Level 6/40 Security Modification
2

To meet security requirements, both hardware and

firmware in the Level 6/40 CPU may have to be

modified. As a design objective, the changes to

the CPU hardware shall be minimized and changes

shall be implemented in the firmware whenever

possible.

The CPU shall be modified to: provide three (3)

special instructions (CALL, RETURN, VALIDATE);

change privilege for two (2) instructions (RETURN

FROM TRAP, I/O); provide for recoverability from

SPM traps; and provide process local trap save areas.

The CALL instruction is used to transfer to an inner

ring procedure to accomplish more privileged

operations than those allowed at the current ring.

The instruction shall do the following. If the SPM

access checks are passed, then: the effective

address (EA) (e.g., from a previously defined

base register) shall be forced into the program

counter (P) register; the old ring number shall

be made available to software (e.g., put it into a

CPU data register); and the new ring number shall

57.

3.7.1.2. Level 6/40 Security Modification (Continued)
2

be forced into the system status (S) register.

If the SPM access checks are not passed, a trap

shall be generated by the SPM.

The RETURN instruction is used to return from an

inner ring procedure back to the outer ring from

which the call originated. The instruction shall

do the following. If the SPM access checks are

passed, then: the effective address shall be forced

into the program counter; and the specified ring

number (e.g., from a CPU data register) shall be

forced into the system status register. If the

SPM access checks are not passed, a trap shall be

generated by the SPM.

The VALIDATE instruction is used to perform argument

validation in support of the CALL/RETURN.mechanism.

The instruction shall make known to the software

the access privileges of a specified memory area to

a specified ring.

The privilege level of the RETURN FROM TRAP

instruction shall be changed from unprivileged to

privileged.

All I/O instructions shall be changed from privileged

to unprivileged to allow non-kernel software to do

I/O.

58.

3.7.1.2. Level 6/40 Security Modification (Continued)
2

To allow recovery from SPM traps, the trap handling

firmware shall be modified to save the SPM fault

registers in the Trap Save Area (TSA). If it is

more convenient to do so, this feature may be

implemented in the SPM.

Process local TSA shall be provided by modifying

the trap handling firmware to add an extra level

of indirection on the Next Available Trap Save

Area Pointer (NATSAP).

Performance requirements may dictate hardware support

of stack pointer. If required, this function shall

be mechanized to save and restore the stack pointer

base register on the following: traps; interrupts;

and LEVEL, CALL, RETURN, and RETURN FROM TRAP

instructions.

59.

3.7.1.3 Security Protection Module (SPM)

The function of an SPM is to mediate, through a descriptor structure,

all interactions between elements of a protected minicomputer.

Each SPM shall contain the following functions:

a. The current and effective ring number of each requestor

it services;

b. a pointer (Descriptor Base Root) to the set of descriptors

which describe the accessible resources for each requestor;

c. a mechanism by which the protection state and set of re-

source descriptors may be initialized for each requestor - this

mechanism is generally under the control of the associated

processor;

d. a mechanism by which the SPM may walk through the descriptor

structure tc locate the proper descriptor applying to a requested

resource;

e. a mechanism by which the SPM may evaluate the propriety of

a requested access based on the following information: the identity

of the requestor, the access mode of the request, the resource

requested, the current protection state of the SPM for the

requestor, and the requestor's descriptor for the resource;

f. a mechanism by which the protection state of a requestor

may be changed, in a well-defined manner; and

g. a Fast Access Descriptor Store (FADS) in which the SPM

may place fast access copies of recently referenced descriptors.

60.

3.7.1.3 Security Protection Module (SPM) (Continued)

h. A mechanism for mapping virtual resource references

to real resource references.

These SPM functions shall support the following system level

functions as specified in the following subparagraphs.

• Process Initiation

• Memory Access

• I/O Access

• SPM Access

• CALL/RETURN/VALIDATE

• SPM Initiated Traps

• Traps and Interrupts

3.7.1.3. Process Initiation
1

The SPM will be initialized for a new process via a CPU dispatch

function sending the SPM the absolute address of the new

Descriptor Base Root (DBR). The SPM shall initate the dispatch

sequence only if the issuing processor is operating in the kernel

domain, the device address indicated by the I/O order is the

absolute channel address, and the function code indicates dispatch.

The SPM shall immediately block the CPU upon recognition of the

dispatch command. The SPM shall access memory to fetch the new

DBR starting at the absolute memory address indicated on the

data bus, and retain this DBR within its internal memory until

another dispatch order is issued. The DBR information shall contain

the new memory DBR and I/O DBR. The SPM shall then mark as invalid

all memory descriptors contained within its Fast Access Descriptor

Store (FADS). The SPM shall not invalidate memory descriptors

61.

3.7.1.3. Process Initiation (Continued)
1

for I/O devices in process (i.e., active devices - mapped).

At the completion of these steps, the SPM shall unblock the CPU

and allow normal operation. The security kernel shall insure

that process-local information contained in CPU registers is not

passed to the new process during dispatch.

The Descriptor Base Root (DBR) establishes the set of descriptors

for a process. The DBR provides the mechanism for the SPM

to find the memory and I/O descriptor trees for resource access

mediation for a process. The DBR construct shall support a structure

which defines distinct name spaces for I/O devices and memory. Thus a

name designated as an I/O device name will be interpreted in the I/O

device descriptor name space; a name designated as a memory address

will be interpreted in the memory descriptor name space. This

structure requires the DBR to have two components: the first describes

the set of memory descriptors, the second describes the set of I/O

descriptors.

Each component of the DBR shall contain the following information:

BASE - The Base field shall specify the physical memory

address of the tree of descriptors describing the re-

sources of the process. This field shall support as a

minimum identical precision as the corresponding field
*

in indirect memory descriptors (i.e., 16 bits).

LIMIT - The LIMIT field shall define the size of the described

resource. The LIMIT field shall have sufficient size to

allow resolution to a single descriptor within a segment.

TYPE - The TYPE field shall identify the type of the DBR com-

ponent. The TYPE field shall support a minimum of two
62.

3.7.1.3. Process Initiation (Continued)
1

encodings. One encoding shall identify a direct component DBR which

describes an array of resource descriptors contained in a segment;

another encoding shall identify an indirect component DBR which de-

scribes an array of descriptors that describe pages containing arrays

of resource descriptors.

3.7.1.3. Memory Access
2

The SPM shall mediate all references to memory made either by a CPU

or a mapped I/O device. When the memory reference is made, the memory

address presented on the bus shall be intercepted by the SPM asso-

ciated with that process or I/O device. The SPM translates this

virtual address into a physical memory address. The physical address

is then presented to memory, and the appropriate read or write access

is made. The data going to and from memory shall not be examined by

the SPM.

The following paragraphs present the specifications for the memory de-

scriptors, the multilevel descriptor structure, the memory access

sequence, and the memory access control rules for memory reference.

3.7.1.3. Memory Descriptor
2.1

Memory descriptors provide the data for the SPM to convert virtual

memory addresses presented by requestors (i.e., CPU's or mapped I/O

devices) to absolute memory addresses. In addition, the memory de-

scriptors provide the access control data for the SPM to verify that

the process has the required access privilege to the referenced memory

location. The information contained in a memory descriptor and the

interpretation of the descriptor fields by the SPM is specified below:

63.

3.7.1.3. Memory Descriptor (Continued)
2.1

DT - Directed Trap. The DT field of the descriptor provides

for software directed hardware traps. One encoding is

a no fault condition; all other encodings shall cause

the SPM to fault. A minimum of four encodings shall be

supported.

Rl, R2, R3 - Ring brackets. The ring brackets are used to

restrict the process to certain types of access when

executing in a given ring. For access rules, see

3.7.1.3.2.4; for ring definition see 3.1.1.1.2.

It must be true that R1<R2<R3. The term write bracket

shall apply to rings 0 to Rl inclusive. The term

read bracket shall apply to rings 0 to R2 inclusive.

The term execute bracket shall apply to rings Rl to R2

inclusive. The term call bracket shall a;,ply to rings

Rl to R3 inclusive. Each ring bracket field specifying

a privilege ring (Rl, R2 or R3) shall support a minimum

of 4 encodings.

R, W, I: - Read, Write, Execute permission. These fields define

allowed modes of access to the described resource.

Each field shall have two values (ON and OFF); if ON,

the respective mode of access shall be allowed, if OFF

the respective mode of access shall be denied. Read

permission refers to a data or address constant fetch

from memory; Write is a store into memory; and, Execute

is an instruction fetch from memory.

64.

3.7.1.3. Memory Descriptor (Continued)
2.1

A - Access Field. The access field shall determine whether

the access control fields (i.e., ring brackets and

R, W, E permission fields) of the descriptor are to

be used to control access to all resources described by

the descriptor regardless of the number of subsequent

levels of address translation. If the A field is ON,

then this descriptor's access control fields shall

apply; if OFF, either an inferior or superior

descriptor must provide the necessary access control.

T - Type field. The type field shall identify the type of

the descriptor. One encoding shall identify a direct

memory descriptor which directly describes a memory

segment. One encoding shall identify a direct memory

descriptor which directly describes a memory page.

One encoding shall identify an indirect descriptor

which describes an array of inferior descriptors.

A minimum of three encodings shall be supported .

BASE - The BASE field shall specify the physical memory address

of the base of the memory element described. This field

must have sufficient precision to address memory resources

without waste of physical address space. Thus, direct

memory descriptors shall support a BASE field allowing,

as a minimum, specification to the physical page address

(modulo 128 or 13 bits). Indirect memory descriptors

shall support a BASE field providing a factor of eight

increase in resolution over that provided by the minimum

direct descriptor resolution specified above; (i.e.,

modulo 16 or 16-bits). fir

3.7.1.3. Memory Descriptor (Continued)
2.1

LIMIT - The LIMIT field shall specify the size of the defined

resource. The LIMIT field shall have sufficient size to

allow resolution to a single memory location within a

segment, (i.e., 11 bits).

U, M - Used, Modified field. The U, M fields shall record and

limit the usage of the described resource. The U field

shall have two values (ON and OFF); if OFF and the

resource is accessed in any mode, the SPM shall update the

value to ON. The M field shall have two values (ON and

OFF); if OFF and the resource is accessed in the write

mode, the SPM shall update the value to ON. The U, M

£ield is specified to support general memory management.

IOCT - I/O Count. The IOCT field of direct memory descriptors

shall be incremented by the SPM at each initiation of

an I/O operation in/out of the described resource. This

field shall be used by system software to determine the

existence of I/O operations in progress within a resource

in order to maintain the resource in memory until all

outstanding I/O has completed. A minimum count of 16

shall be supported.

The interpretation of the above memory descriptor fields shall be

dependent on descriptor level (see 3.7.1.3.2.2). The T, DT, BASE,

and LIMIT fields are applicable for each level of memory descriptor.

The IOCT, U, and M fields are referenced and updated only for direct

descriptors. The access control fields Rl, R2, R3, R, E, and W are

only applicable for the descriptor which has its A field ON.

66.

3.7.1.3. Multilevel Memory Descriptor Structure
2.2

SFEP supports a general three-level memory descriptor system allow-

ing for the implementation of segments, pages, and paged descriptor

segments. The first descriptor table can be considered to be the

page table of the descriptor segment, the second table is a page

of the descriptor segment, and the third table is the page table for

the segment. The indirect descriptors in the descriptor segment are

called segment descriptors and the direct descriptors in the page

tables are called page descriptors.

The virtual memory address field presented by a processor is shown

in Figure 7. The field is 24 bits, however, the virtual address is

20 21 restricted to 2 words or 2 bytes. A word consists of 2 bytes

and a byte is an 8-bit information unit. The SPM shall be designed

to accept and map a virtual word address of 20 bits. The byte bit

shall be passed unmodified by the SPM. The most significant bit of

the address field shall be the SPM flag bit. If this bit is set (i.e.,

a "1"), it shall indicate that this is a virtual address and is to

be mapped by the SPM. If this bit is reset (i.e., a "0"), it shall

indicate that this address is an absolute address and requires no

mediation by the SPM.

The 20-bit virtual memory word address presented by a processor shall

be considered to consist of four fields, designated a, b, c and d.

The translation of a virtual memory address into a physical address

is illustrated in Figure 7 and shall proceed as follows:

67.

1

3.7.1.3. Multilevel Memory Descriptor Structure (Continued)
2.2

a. The SPM, given a virtual address, makes its first reference

to the first level descriptor table pointed to by the indirect

memory descriptor base root (DBR) known to the SPM.

b. The offset into this descriptor table is the first fiqld

of the virtual address (a) and the descriptor at that location is

referenced.

c. The first level descriptor must be an indirect descriptor.

Its pointer is used to access a second descriptor table, and

the second part of the virtual address (b) is used as an offset

into this second table.

d. If the second level descriptor is indirect, it similarly is

used to access a third descriptor table and the, third part of the

virtual address (c) is used to get the third level descriptor.

e. The third level descriptor must be a direct descriptor.

Its pointer is used to find the page of data, and the last part of

the virtual address (d) is an offset into the page to obtain the

actual data word being referenced.

If second level descriptor is direct, its pointer shall be used to

directly access the data segment. The offset into the data segment

shall utilize the combined c, d fields to obtain the actual data word

beine referenced.

In addition to the three-level memory descriptor system specified

above, SFEP shall support unpaged descriptor segments. In this

case, the memory descriptor portion of the DBR points directly

(indicated by DBR T field encoding = DIRECT) to the second level

68.

.3.7.1.3. Multilevel Memory Descriptor Structure (Continued)
2.2

descriptor table, and the combined a, b field is used to index

into this table. If the referenced level 2 descriptor is an indirect

descriptor, the Steps (d) and (e) presented above shall be followed.

If the referenced second level descriptor is direct, its pointer shall

be used to access the data segment. The offset into the data segment

shall utilize the combined c, d fields to obtain the actual data word

being referenced. Figure 7 also illustrates this alternate memory

descriptor structure.

69.

"

3.7.1.3. Memory Reference Sequence
2.3

As the SPM is walking through the descriptor tree, it shall

(at each descriptor level) compare the LIMIT field from the

previous level to the offset to be used to access the next level

descriptor. If the offset exceeds the associated LIMIT field

at any level, the SPM shall trap.

The SPM shall monitor the A-field of each descriptor encountered

1n Its search for a direct descriptor. The access field (ring brackets

and R, W, E fields) of the first descriptor encountered with the

A-f1eld ON shall define the appropriate access control for the

resource. If a direct descriptor 1s encountered without Its A-f1eld

or any previous A-f1eld ON, the SPM shall trap.

If the SPM does not encounter a direct descriptor at level 2 or at

level 3 of the descriptor structure, the SPM shall trap. A direct

descriptor encountered at level 1 shall also result in an SPM trap.

If the SPM encounters a descriptor at any level with Its DT field

set to a software-directed trap, the SPM shall trap.
•

Upon encountering the direct descriptor for the accessed memory

location, the SPM shall compare its LIMIT field to the page or segment

offset specified in the virtual address. If the offset exceeds the

LIMIT, the SPM shall trap.

70.

3.7.1.3. Memory Reference Sequence (Continued)
2.3

The SPM shall perform the access checks (I.e., ring brackets and

permission fields) obtained from the applicable descriptor (A-ON)

as specified 1n 3.7.1.3.2.4. If any access check falls, the

SPM shall trap. To support access checking, the SPM shall compute

an effective ring number for each Instruction execution as specified

In 3.7.U3.2.4.

The SPM shall set the U bit of the direct descriptor In memory

describing the accessed resource ON, If off, regardless of access

mode. In addition, the SPM shall set the M bit of the direct descriptor

in memory describing the accessed resource ON, If off, If the write

mode of access 1s Indicated.

Upon performing all checks, the SPM places the physical memory

address of the accessed resource on the address bus (I.e., physical

address • BASE field of direct descriptor + offset field of virtual

address). The memory shall respond appropriately via the data bus.

For performance reasons, the SPM shall retain copies of recently

referenced direct descriptors in its Fast Access Descriptor Store.

The SPM shall always attempt to locate a descriptor for the accessed

resource within its FADS prior to accessing the memory descriptor

tree in memory.

71.

3.7.1.3. Memory Access Rules
2.4

The following rules shall specify the required interpretation of the

access control information (i.e., ring brackets and R, W, E permission

fields) obtained from the applicable memory descriptor (A»ON). The

effective ring number (Reff) is the maximum of the ring numbers in

which the process is operating (Rcur) and all Rl fields encountered

in all descriptors during address preparation. The value of Rcff

shall be initialized to R „ at the beginning of each instruction cur

cycle and shall apply to the instruction fetch and all references

until the next instruction fetch. For each descriptor encountered

between instruction fetch and operand fetch, a new value of Reff

shall be computed as the maximum of the current Reff and Rl in the

descriptor and this new Reff shall apply to the fetch of subsequent

indirect addresses or data.

a. Write permission if and only if (W - ON) and Reff < Rl)

b. Read permission if and only if (R»ON) and (Reff £ R2).

c. Execute permission if and only if (E«ON) and (Reff <_ R2).

d. The use of R3 and the precise rules for entry/return to/

from a procedure resource are specified in 3.1.2.3.2.2.1.

In general, call permission if and only if (E • ON) and

(Reff < R3).

72.

3.7.1..1 1/0 Access
3

Two types of I/O will he supported by the SPP.P. These arc Direct

Memory Access (DMA) and Programmed I/O (PIO). The DMA devices,

once initiated by the processor, reference memory independent of the

processor to perform the required data transfer. PIO does not

reference memory, all data transfer takes place between the device

and the processor. Included in PIO are status requests to

the DMA devices. Two classes of DMA devices shall be supported,

these are the mapped and premapped devices. The SPM shall mediate

all references from the mapped devices to memory, while the premapped

devices can reference memory directly, i.e., without SPM mediation.

The SPM shall mediate all accesses from the processor to the device.

The following paragraphs present the specifications for the I/O

descriptors, the I/O descriptor structure, the I/O access sequence,

and the I/O access rules for I/O reference.

3.7.1.3. I/O Descriptors
3.1

I/O descriptors provide the mechanism for the SPM to convert virtual

device addresses presented by requestors (i.e., CPU's) to absolute

device addresses. In addition, the I/O descriptors provide the

access control mechanism for the SPM to verify that the process has

the required access privilege to the referenced device.

The information contained in an I/O descriptor and the interpretation

of the descriptor fields by the SPM is specified below.

73.

3.7.1.3. I/O Descriptors (Continued)
3.1

DT - Directed Trap. The DT field of the descriptor provides

for software directed hardware traps. One encoding is

a no fault condition; all other encodings shall cause

the SPM to fault. A minimum of four encodings shall be

supported.

Rl, R2, R3 - Ring brackets. The ring brackets are used to re-

strict the process to certain types of access when exe-

cuting in a given ring. For access rules, see

3.7.1.3.3.4 for ring definition, see 3.1.1.1.2.

It must be true that Rl ^ R2; it is not required that

R3 > R2. Each ring field shall support a minimum of

four encodings.

R, W, E - Read, Write, Execute permission. These fields

define allowed modes of access to the described

resource. Each field shall have two values (ON and

OFF) ; i f ON, the respective mode of access shall be

allowed, if OFF the respective mode of access shall

be denied. Read permission refers to a transfer from

the device to memory; Write refers to a transfer from

memory to the device; and Execute refers to trusted device

control operations.

74.

3.7.1.3. I/O Descriptors (Continued)
3.1

A - Access field. The access field determines whether the

access control fields (i.e., ring brackets and R, W,

E permission fields) of the descriptor are to be used

to control access to all resources described by the

descriptor regardless of the number of subsequent

levels of address translation. If the A field is ON,

then this descriptor's access control fields shall

apply; if OFF, either an inferior or superior descriptor

must provide the necessary access control.

MT - Mapping Type. The MT field shall specify whether the

described device is mapped or pre-mapped. The MT

field shall have two values (ON and OFF); if ON, then

the described device is a pre-mapped I/O device; if

OFF, then the described device is a mapped I/O device.

T - Type field. The type field shall identify the type of

the descriptor. One encoding shall identify a direct

I/O descriptor which directly describes an I/O

device. One encoding shall identify an indirect

descriptor which describes an array of inferior I/O

descriptors. A minimum of two encodings shall

be supported.

75.

3.7.1.3. I/O Descriptors (Continued)

BASE - The BASE field shall specify the physical memory

address of the base of a set of direct I/O descriptors.

The BASE field is only applicable for indirect I/O

descriptors. The BASE field shall have identical

precision as supported by indirect memory descriptors.

DEVICE - The DEVICE field shall identify the physical device

name (i.e., channel number) to be used upon access to

this descriptor. The DEVICE field is only applicable

for direct I/O descriptors. The DEVICE field shall

have sufficient size and precision to accomodate all

device names addressable by the processor (i.e,

10 bits).

LIMIT - The LIMIT field shall specify the number of potentially

accessible direct I/O descriptors. The LIMIT field shall •

have sufficient size to allow resolution to a single direct

I/O descriptor within a segment.

U, M - Used, Modified field - The U, M fields shall record and

limit the usage of the described resource. The U

field shall have two values (ON and OFF); if OFF and

the resource is accessed in any mode, the SPM shall

update the value to ON. The M field shall have two

values (ON and OFF); if OFF and the resource is accessed

in the write mode, the SPM shall update the value to

ON. The U, M field is specified to support general

resource management.

76.

5,7.1.3, I/O Descriptors (Continued)
Y.i

SPM - The SPM designator field shall specify the SPM to be

used for mapped I/O mediation (device to memory accesses)

in a multiprocessor configuration. The SPM field shall

have sufficient size to accommodate all assignable SPM

channel members.

CLASS - The CLASS designator field shall specify the device

type of the accessed resource to allow mediation of de-

vice control operations. The CLASS field shall support

a minimum of 16 device types.

The interpretation of the above I/O descriptor fields shall be

dependent on descriptor level . The T and DT fields are

applicable *or each level of I/O descriptor. The BASE and LIMIT

fields are applicable to indirect I/O descriptors only. The MT,

DEVICE, U, M, SPM, and CLASS fields are referenced only for direct

I/O descriptors. The access control fields, Rl, R2, R3, R, E, and

W are only applicable for the descriptor which has its A field ON.

3.7.1.3. I/O Descriptor Structure
3.2 —" *- —

SI'EP shall support a two level I/O descriptor system allowing for

the implementation of paged descriptor segments. The 10-bit

virtual device address (i.e., channel number) shall be considered

to consist of two fields, designated e, f. The translation of a

virtual device address into a physical address as illustrated in

Figure 8 shall proceed as follows:

77.

3.7.1.3. I/O Descriptor Structure (Continued)
3.2

(a) The SPM, given a virtual address, makes its first reference

to the first level descriptor table pointed to by the indirect

I/O descriptor base address known to the.. SPM

via the DBR received during process dispatch.

(b) The offset into this descriptor table is the first field of

the virtual address (e) and the descriptor at that location

is referenced.

(c) The first level descriptor must be an indirect descriDtor.

Its pointer is used to access a second descriptor table,

and the second part of the virtual address (f) is used as an

offset into this second table.

(d) The second level descriptor must be a direct descriptor.

Its pointer (i.e., DEVICE field) is used to access the physical

device being referenced.

In addition to the two-level I/O descriptor system specified above,

SFEP shall support unpaged descriptor segments. In this case, the

I/O descriptor portion of the DBR points directly (indicated by

DBR T field encoding = DIRECT) to the second level descriptor

table, and the combined e, f field is used to index into this

table. The referenced second level descriptor must be direct and

shall be used to access the physical device. Figure 8 also

illustrates this alternate I/O descriptor structure.

78.

3.7.1.3. I/O Access Sequence
3.3

The SPM shall mediate all accesses made by processors to devices

through the I/O descriptor tree structure. The SPM shall utilize

the I/O portion of the DBR received during process dispatch to

locate the direct descriptor for the device to be accessed. The

SPM shall interpret the two fields of the virtual device address

as a function of the Type fields encountered in the I/O descriptor

tree in memory. At each descriptor level, the SPM shall compare

the limit field from the previous level to the offset to be used

to access the next level descriptor. If the offset exceeds the

associated limit field at any level, the SPM shall trap.

The SPM shall monitor the A-field of each descriptor encountered in its

search for a direct descriptor. The access field (ring brackets and

R, W, E fields) of the first descriptor encountered with the A-field

ON shall define the appropriate access control for the resource. If a

direct descriptor is encountered without its A-field or any previous

A-field ON, the SPM shall trap.

If the SPM does not encounter a direct descriptor at level 2 of the

descriptor structure, the SPM shall trap. A direct descriptor en-

countered at Level 1 shall also result in an SPM trap.

If the SPM encounteres a descriptor at any level with its DT field set

to a software-directed trap, the SPM shall trap.

79.

3.7.1.3. I/O Access Sequence (Continued)
3.3

The SPM shall perform the access checks (i.e., ring brackets and -

permission fields) obtained from the applicable descriptor (A-ON)
«

as specified in 3.7.1.3.3.4. If any access check fails, the SPM

shall trap. To support access checking, the SPM shall compute an

effective ring number for each I/O instruction execution as specified

in 3.7.1.3.3.4.

The SPM shall set the U bit of the direct I/O descriptor in memory 4

describing the accessed resource ON, if OFF, regardless of access

mode. In addition, the SPM shall set the M bit of the direct descriptor

in memory describing the accessed resource ON, if OFF, if the write

mode of access is indicated.

If a device control operation is indicated by the function code

associated with each PIO operation, the SPM shall mediate the operation

if initiated by untrusted code. Trusted control operations shall be

allowed by the SPM if and only if (E-ON) and (Reff < R3) in the
•

access control field for the device. An example of a trusted control

operation would be a modify controller microcode operation. If the

control operation is initiated by untrusted code, the SPM shall use

the function code and the device type (supplied by CLASS field in I/O

descriptor) to validate the operation; that is, the SPM shall verify

that the operation is valid for that class of device. Since device

80.

3.7.1.3. I/O Access Sequence (Continued)
3.3

control operations may be performed by the CPU sending a control

word to the device, the SPM shall be required to examine the data

bus in order to perform control operations mediation. Although many

device control operations are physically performed by writing a

control word to the device controller, certain operations must be

allowable with only read permission (R • ON, W e OFF). That is, the

SPM shall support the concept of "write ring protection." Thus,

control operations shall be categorized into those allowable with only

write permission to the device (i.e., W - ON and Reff < Rl) and

those allowable with either read or write permission. For example,

both an end file tape and a tape rewind command are implemented by

sending a control word to the device controller; however, the end file

function must be restricted to processes having device write per-

mission while the rewind function is allowable with either read or

write access. As noted previously, these checks are ffequired only

for I/O operations initiated by untrusted code. All device control

decision tables shall reside solely within the security kernel data

base. Jf an illegal control operation is attempted, the SPM shall

trap.

Upon receipt of an I/O order from the processor, the SPM shall block

the CPU until the SPM receives an ACK from the mediated device (assuming

all SPM checks pass). The SPM shall then release the CPU (i.e., ACK'ed).

If a NAK is received by the SPM, the CPU request will be NAK'ed by the

SPM.

81.

3.7.1.3. I/O Access Sequence (Continued)
3.3

For PIO devices, no further mediation is required. That is, upon

performing all checks, the SPM replaces the virtual device address

with the absolute channel number retrieved from the direct I/O descriptor

(i.e., Device field), leaving the function code unmodified, and places

the I/O command on the address bus. Essentially, the basic SPM I/O

mediation only requires:

A. That the device has been assigned to the process, indicated by

the presence of an I/O descriptor.

B. That the descriptor defining the I/O device allows access in

the requested mode at the effective ring number of the process

requesting the transfer.
s

For performance reasons, the SPM shall retain copies of recently

referenced direct I/O descriptors in its Fast Access Descriptor Store.

The SPM shall always attempt to locate a descriptor for the accessed

resource within its FADS prior to accessing the I/O descriptor tree in

memory.

For DMA devices, further SPM mediation is required as specified in the

following subparagrnphs. The initiating processor shall signal the SPM

as to device type (i.e., DMA or PIO). Tne SPM shall categorize DMA

devices is premapped or mapped based on the MT-field in the direct

I/O descriptor.

82.

3.7.1.3. ['remapped I/O Sequence
3.3.1

The SPM shall determine that a device is to be treated as a premapped

I/O device by an examination of the MT bit (i.e., MT=ON) of the direct

I/O descriptor. Upon completion of the basic SPM I/O mediation specified

above, the following additional functions are required.

The SPM shall obtain a direct memory descriptor for the memory to be

accessed via the memory descriptor tree. The normal memory reference

sequence specified in 3.7.1.3.2.3 shall be follwed by the SPM,

including all specified validity checking. It should be noted that a

new Reff must be computed by the SPM for the memory resource.

The SPM shall insure that the range of affected memory addresses falls

within the range of memory described by the one direct memory descriptor;

the SPM shall compare the page or segment offset specified in the virtual

memory address plus the specified range to the limit field of the direct

memory descriptor. If this comparison fails, the SPM shall trap.

The SPM shall set the U bit of the direct memory descriptor in memory

describing the accessed resource ON if OFF; The SPM shall set the M-bit

of the direct descriptor in memory ON if OFF, if the write mode (to

device) is indicated (i.e., function code must be interpreted by SPM).

Tn addition, the IOCT field of the direct memory descriptor in memory

shall be incremented by the SPM to notify the security kernel of the

number of I/O operations initiated within the described memory resr.urcc.

83.

7»

3.7.1.3. Premapped I/O Sequence (Continued)
3.3.1

lor premapped I/O, the SPM shall map the I/O channel number and the

starting memory address. The SPM shall receive from the CPU, via two bus

cycles, the virtual channel number, the virtual starting address,

the range or number of words to be transferred, and a function code

indicating mode of access. The SPM shall map the virtual channel

number into an absolute channel number using the direct I/O descriptor.

The SPM shall map the virtual starting address into an absolute

starting address using the direct memory descriptor. The SPM shall '

pass the range and function code unmodified. Via two bus cycles,

the SPM shall send the absolute information to the device. Resultant

transfer of data shall occur directly between the device and memory

without intervention by the SPM.

3.7.1.3. Mapped I/O Sequence
3.3.2

The SPM shall determine that a device is to be treated as a mapped

device by an examination of the MT bit (i.e., MT=OFF) of the direct I/O

descriptor. Upon completion of the basic SPM I/O mediation specified

above (3.7.1.3.3.3), the following additional functions are required.

The SPM shall obtain a direct memory descriptor for the memory to be

accessed (i.e., initial access - unlike premapped I/O,

multi-page I/O shall be supported for mapped devices) via the memory

descriptor tree. The normal memory reference sequence specified in

3.7.1.3.2.3 shall be followed by the SPM, including all specified validity

checking. However, since all resultant memory relerences by the device-

are to be mediated individually by the SPM, there is no requirement for

access mediation using the direct memory descriptor during mapped device

initiation.

84.

3.7.1.3. Mapped I/O Sequence (Continued)
3.3.2

The SPM shall retain (tagged with a unique device identifier) for

each active mapped I/O device, the following information. An active

device is one for which the SPM has not been notified of I/O termi-

nation.

A. The effective ring number at which the device is to access

memory. The initially computed value of Reff shall apply for

the entire transfer regardless of the number of pages.

B. The memory descriptor tree pointer from the initiating process

DBR to allow the SPM to obtain additional memory descriptors if

multi-page I/O is performed.

To support multi-bus configurations, the SPM associated with the

initiating CPU shall examine the SPM field oontained in the I/O

descriptor to determine the identity of the SPM responsible for

subsequent device to memory access mediation. If the SPM field con-

tains its own device identifier, the SPM continues processing as

specified in the subsequent paragraphs. If another SPM is specified,

the SPM shall initiate an I/O sequence (using absolute addressing)

which transfers the device identifier, the initial memory descriptor,

the effective ring number, and memory DBR to the indicated SPM. That

SPM shall be responsible for subsequent device-to-memory access

mediation. The target SPM shall be that associated with the same

bus as the target device.

85.

3.7.1.3. Mapped I/O Sequence (Continued)
3.3.2

The SPM shall set the U bit of the initial direct memory descriptor in *

memory describing the accessed resource ON if.OFF. The SPM shall set

the M bit of the direct descriptor in memory ON if OFF* if the write

mode (to device) is indicated (i.e., function code must be interpreted

by SPM). In addition, the IOCT field of the initial direct memory

descriptor shall be incremented by the SPM to notify the security kerne.1

of the number of I/O operations initiated within the described memory

resource.

For mapped I/O, the SPM shall map only the I/O channel number. The SPM

shall receive from the CPU, via two bus cycles, the virtual channel

number, the virtual starting address, the range, and a function code

indicating mode of access. The SPM shall map the virtual channel

number into an absolute channel number using the I/O descriptor.

In order that the proper memory descriptor may be selected, all

virtual addresses from the mapped device shall be accompanied

by an identification of the requesting device. This shall be

accomplished by the SPM by setting the most significant bits of

the starting address equal to a unique device identifier and the

remaining portion of the starting address to the page or segment

offset specified in the virtual starting address. The SPM shall

pass the range and function code unmodified. Via two bus cycles,

the SPM shall send the modified information to the device.

86.

3.7.1.3. Mapped I/O Sequence (Continued)
3.3.2

When the virtual address associated with each request from the device

for data transfer arrives at the target SPM, the SPM shall retrieve

the memory descriptor and effective ring number by the device

identifier contained in the virtual address. The checking by the

SPM during mapped I/O transfer shall be identical to the checking

of a memory access by the CPU. The physical memory address placed

, on the bus by the SPM shall consist of the BASE address of the

direct memory descriptor plus the offset provided in the virtual

address provided by the device; i.e., the device identifier portion

-x>£ the virtual address is discarded by the SPM.

If the offset portion of the virtual memory address associated with

4 each request from the device overflows (i.e., exceeds page

boundary), the SPM shall retrieve a replacement direct memory descriptor

via the stored DBR. The U, M and IOCT fields of the new direct memory
»

descriptor in memory shall be updated appropriately (i.e., as done

for the initial descriptor). Permission checking shall then proceed

as before. It should be noted that multi-segment I/O need not be

supported; only a single segment may be accessed as a result of n

single I/O operation.

The SPM (or SPM's in a multiprocessor configuration) shall insure

the following condition on mapped I/O operations.
*

1. The device-to-memory access mediating SPM shall be that

specified in the device descriptor.

87.

3.7.1.3. I/O Access Rules
3.4

The following rules shall specify the required interpretation of

the access control information (i.e., ring brackets and R, W, E

permission fields) obtained from the applicable I/O descriptor

(A=ON). The rules for determining the effective ring number (Reff)

for the process are as specified in 3.7.1.3.2.4 for memory

access.

a. Write permission if and only if (W=ON) and foeff < Rl).

b. Read permission if and only if (R=ON) and (Reff < R2).

c. Control permission if and orly if (E-ON) and Reff < R3). If

control permission is granted, the requesting process shall

be assumed to be trusted and, thus, no function code checking

as specified in 3.7.1.3.3.3 shall be performed.

3.7.1.3. SPM Access
4

Direct SPM access shall be allowed by privileged CPU functions.

These include the DISPATCH, SELECTIVE DESCRIPTOR INVALIDATION, and

SPM T§D. The DISPATCH function is specified in 3.7.1.3.1. The other

two functions shall be implemented as specified below.

3.7.1.3. SELECTIVE DESCRIPTOR INVALIDATION
4.1

The SPM shall respond to DESCRIPTOR INVALIDATION orders from the CPU

by retrieving the specified descriptor from memory and overwriting

the invalidated descriptor in FADS.

88.

3.7.1.3. SELECTIVE DESCRIPTOR INVALIDATION (Continued)
4.1

The kernel shall be capable of invalidating all memory segment

descriptors, selected memory segment descriptors, all memory page

descriptors, selected memory page descriptors, selected I/O memory

descriptors, and all I/O device descriptors. An I/O output command,

with appropriate function code, issued by the kernel to the

appropriate SPM (absolute device address) shall be used to perform

selective descriptor invalidation. With the exception of I/O

memory descriptors, all descriptor invalidation orders issued by a

processor are to be directed to its associated SPM. In support

of multibus mapped I/O devices, the initiating processor shall

direct the selective I/O memory descriptor invalidation command

directly to the mediating SPM (device to memory accesses).

If the absolute channel provided by an I/O output command equals

the SPM and the CPU is operating in the kernel domain, and the

function code indicates memory segment descriptor invalidation,

the SPM shall mark all memory page descriptors invalid. If the

function code indicates selective memory segment descriptor invalidation,

the SPM shall mark the direct segment descriptor for the segment

identified on the data bus invalid. If the function code indicates

selective memory page descriptor invalidation, the SPM shall mark

the direct page descriptor for the page within the segment identified

on the data bus invalid. In none of the above cases shall the SPM

invalidate memory descriptors for active I/O devices. If the function

code indicates I/O descriptor invalidation, the SPM shall mark all

I/O descriptors invalid. If the function code indicates I/O memory

descriptor invalidation, the SPM shall mark the memory descriptor

for the absolute I/O device identified on the data bus invalid.

89.

3.7.1.3. SPM TSD
4.2

The SPM shall be directly accessible to privileged SPM T§D orders.

3.7.1.3. CALL/RETURN/VALIDATE
5

The SPM shall support the CALL, RETURN, and VALIDATE instructions.

These instructions are used to assure that all ring crossings

meet the isolation requirement. The following paragraphs present

the access rule specifications for these instructions. The memory

reference descriptor structure shall support these instructions.

The SPM shall mediate the virtual entry point address placed on

the address bus by a process executing the CALL instruction via the

memory descriptor tree structure as for a normal memory reference.

However, unlike normal memory references, no mapping is performed.

That is, the SPM shall only validate the virtual entry point address

(i.e., caller has execute access) and compute a new value of R
cur

If the effective ring number of the caller is outside the call

bracket, the SPM shall trap. Similarly in order to control entry

to the called procedure, the SPM shall insure that only location zero

of the called procedure (defined by the direct page or segment

descriptor) be a valid entry point. If a call to an invalid entry

point is attempted, the SPM shall trap. It should be noted that the

entry point limitation is the degenerate example of a call limiter

restriction specifying the maximum offset within a segment or page

to which a call can transfer to be zero.

The mechanism that accomplishes process requested cross-ring movement

shall be implemented as follows. An inner ring procedure that is

callable from an outer ring is defined as a "gate" by specifying in

90.

3.7.1.3. CALL/RETURN/VALIDATE (Continued)
5 ~

the ring brackets of the descriptor for the procedure segment a

value of R3 that is different from R2. Normally, transfers to a

segment cannot be made from rings above R2. However, a call instruction

is allowed to a procedure if the call is made from a ring less than or

equal to R3. If such a call is made, the new value of R„. „ becomes ^ ' cur

R2, and execution continues. The value of Reff after address

preparation for the call instruction is used in the comparison

with R2 and R3. The tests made in the call are as follows:

Reff > R3 entry denied, trap (outside call brackets)

R2 < Reff 6 R3 entry allowed, R2 becomes R
' cur

Reff * R2 entry allowed, R unchanged

The checks on call shall not preclude using the call instruction

to transfer to a procedure from within its execute bracket. Nor

shall it be required that a segment be a gate (i.e., R2 < R3) in

order to be called from within its execute bracket. Thus, the call

bracket is defined as Rl to R3, with R2 being the new ring of

execution if the segment is a gate and the call is from outside R2.

The only requirements for the cross-ring return instruction are

that the returning procedure be able to specify the ring to which

to return and that returns to inner rings be prohibited. Otherwise

with return shall operate like a transfer instruction. Assume that

Rto is the ring to which the procedure desires to return:

Reff < Rto Rto becomes R
- cur

Reff > Rto return denied, trap (inward return)

On a VALIDATE instruction, the SPM shall return to the CPU access

rights to a memory area for a specified ring.
91.

3.7.1.3. SPM Generated Traps
6

The SPM shall generate a variety of traps defined by the checking

conditions within the SPM. At least one trap type (defined

by a trap vector/save area) shall be reserved for SPM generated

security fault conditions. As part of the saved state of the pro-

cess, the SPM shall store suitable information in memory to allow the

security kernel to determine the cause of the trap and allow suitable

recovery to proceed. A list of the conditions that shall cause the

SPM to initiate the trap condition is presented below:

a) Memory Access

1. Directed fault

2. Limit violation

3. Write violation: (Reff>Rl) or (W • OFF)

4. Read violation: (Reff>R2) or (R - OFF)

5. Execute violation: (Reff>R2) or (E - OFF)

6. Missing access field: (A - OFF at all levels) *

7. No direct descriptor: (T • INDIRECT at all levels) *

8. Level 1 direct descriptor encountered *

b) CALL/RETURN

1. CALL violation: (Reff> R3)

2. Entry violation: (OFFSET + 0)

3. Return violation: (Reff> Rto)

*Since descriptor trees are generated only by verified kernel

software, the occurrence of these conditions would indicate a hardware

failure, rather than a security violation.

92.

•

3.7.1.3. SPM Generated Traps (Continued)
6

c) Device Access

1. Directed fault

2. Limit violation (indirect descriptors only)*

3. No direct descriptor; (T -indirect at all levels).*

4. Level 1 direct descriptor encountered*

5. Missing access field; (A-OFF at all levels)*

6. Write violation; (Reff>Rl) or (W-OFF)

7. Read violation; (Reff7R2) or (R-OFF)

8. Control violation; (Reff >R3) or (E=OFF)

The SPM shall store security trap information in the appropriate

trap save area in memory upon trap occurrences for access by the

security kernel trap handler.

*Since descriptor trees are generated only by verified kernel

software, the occurrence of these conditions would indicate a

hardware failure, rather than a security violation.

93.

3.7.1.3. Traps and Interrupts
7

The SPM shall force Rcur to 0 on every occurrence of a trap or

interrupt to allow CPU firmware to access to the appropriate
i

save/restore areas in kernel space. It shall also allow the

CPU generated virtual addresses for trap/interrupt handler entry

points to be accessed at kernel level of privilege.

94.

3.7.1.4 Multi-Line Communications Processor (MLCP)

The MLCP supports up to 8 full duplex (FDX) lines on a

single board using a single bus interface slot.

Line dependent logic is contained on Communications

Line Adapter (CLA) subboards (called daughter boards).

Each CLA consists of either one or two line interfaces

depending on the complexity of the particular line

adapter functions and data set interface to be supported,

and upon the availability of LSI for the interface.

These CLA's are interchangeable, and up to four CLA's

on each MLCP are provided as shown in the functional
block diagram, Figure 11.

Each line on an MLCP is considered as a FDX data path,

and each line direction is a channel to the SFEP system.

Each channel is capable of either sending or receiving

a communications type of data stream between memory

blocks and the communications interface via DMA type of

operation. In the process of transferring this data

stream, the MLCP is capable of fully delimiting the data

with special character generation, detection, and block

check information. The MLCP is also capable of edit and

conversion of prespecified sequences in the data stream.

Control of these data stream functions is designated by

configuration of a Communications Parameter Table (CPT)

and a Communications Control Table (CCT) which can be loaded

by software into the MLCP.

95.

I

3. 7.1

3.7.1.4.1.

3.7.1

3.7.1.4.1.

3.7.1.4.1.

4.1 Communication Line Adapters (CLA)

The MLCP supports up to 4 line adapters each of which

contains one or two interfaces. The CLA characteristics

re as follows:

Synchronous Line Adaptor

2 lines FDX

Speeds up to 10,800 bits per second

HIA RS 232 type of interface

Support for Basic Mode ASCII and BSC type of

communications line protocol

4.1.2 Asynchronous Line Adapter

2 lines FDX

Speeds up to 9,600 bits per second

EIA RS 232 type of interface

1 or 2 stop bits

Selection of speeds by parameter

Modem Bypass Synchronous Line Adapter

2 lines FDX

Capable of selecting a synchronous set of speeds

by program setable parameters

EIA RS 232 type of interface

Support for Basic Mode ASCII and BSC type of

communications line protocol

MIL-188 Line Adapter

1 line FDX

Speeds up to 10,800 bits per second

MIL-188 type of interface

Support for Basic Mode ASCII and BSC type of

communications line protocol

96.

.4.7.1.4,1.5 Programmable Asynchronous Lino Adapter

• 1 line FDX

• Speeds up to 10,800 bits per second

• OIA RS 232 type of interface

• 1 or 2 stop bits

• Program setup of speed to 1/2 bit accuracy.

3.7.1.4.1.6 HDLC Line Adapter

• 1 line FDX

• Speeds up to 72K bits per second

• EIA RS 232 and Broadband CCITT V35 type of interface

• Support of HDLC line protocol.

3.7.1.4.1.7 Broadband Line Adapter

• 1 line FDX

• Speeds up to 72K bits per second

• Broadband CCITT V35 type of interface

• Support for Basic Mode ASCII and BSC type of

communications procedures.

3.7.1.4.1.8 ACU Line Adapter

• Interface 801C type of automatic calling unit

• 2 lines FDX.

3.7.1.4.2 Veri ficution

The MLCP receives a starting address and a range or

tally count via a CPU IOLD instruction. The starting

address will be a 24 bit absolute address in the case

of premapped I/O or a 1 bit SPM

flag, 10 bit Device Id and 12 bit offset fields in the

case of mapped I/O. Although the operating mode is

selectable via the MT bit of the I/O descriptor,

the MLCP will normally run in the mapped I/O mode.

97.

3.7.1.4.2.1 Premapped I/O

In premapped I/O, it is verified that the device, the

affected memory locations and the access mode are all

valid for the initiating process during setup. The

DMA action then takes place without further checking.

This results in the need for verification that as a

minimum the MLCP firmware and/or hardware cannot modify the

A. Starting address

B. Range count

C. Access mode -

I). Message contents

3.7.1.4.2.2 Mapped I/O

In mapped I/O, it is verified that the device and

access mode are valid for the initiating process.

Each reference from the device to memory is then checked

and mapped. This /educes the verification task, but as

a minimum it must still be verified that the MLCP firmware

and/or hardware cannot modify the:

A. Starting address device Id or SPM flag bit

B. Message contents

98.

3.7.1.5 Memory

Memory is ultimately planned to be available in several

variations relative to speed and modularity. Memories

of varying speeds and modularities are usable on the

same system.

The memory module presently available is a semiconductor

memory that contains up to 32K words in blocks of 8K.

This module will occupy one bus slot and multiple modules

can be attached to a single bus. This module will have

an access time of 600 nanoseconds.

The memory module is available with either parity or EDAC

(Error Detection and Correction) protection. EDAC will

detect and correct single bit failures and detect multiple

bit failures.

3.7.1.6 6000/Series 60 Interface Unit (IU)

The IU provides a communication path between the SFEP

bus and the host computer as shown in Figure 1. The host

connection is through the Direct Channel Adapter (DCA) of

the 6000/I/O Multiplexer.

The IU operates in a "scatter-gather" mode via a list

processing technique that provides software generality and

efficiency.

There are two modes of data formatting that result

because of the 16 bit data bus in the SFEP and the 36 bit

data bus in the DCA. These two modes, ASCII and binary,

are software selectable and the formats are shown in

Figure 12. Details of the IU operation can be found in

IiSD-TR-76-355. "'

3.7.1.7 Inter System Link (ISL)

The ISL may be used to interconnect two NML buses.

One or more ISL's can connect to a single bus so that

multi-bus systems may be interconnected together.

Figure 13 illustrates a multi-bus system with its

ISL's.

An ISL consists of two NML boards interconnected by a

cable which may be up to 25 feet long. Each of the

halves of an ISL, (called ISL twins) are identical.

The ISL may be used to pass memory references, I/O

commands or interrupts from one bus to the other. Each

ISL twin can, therefore, assume the bus visibility of

a memory, an I/O controller or a Processor at different times

as it intercepts a bus transfer on one bus and reinitiates

it on a different bus. At system configuration time, each

ISL twin is made cognizant of certain memory addresses

and certain channel numbers to which it should respond.

During system operation, each ISL twin monitors all bus

traffic and responds to individual bus cycles within its

range on behalf of the actual unit to which the cycle was

directed. The ISL twin passes the information to its remote

twin which reinitiates the bus cycle. The response cycle

from the unit, if any, follows the same route in the reverse

direction and is finally routed to the originating unit.

100.

3.7.1.7 Inter System Link (ISL) (Continued)

The ISL twins are buffered and operate asynchronously

from each other. The intent of the design is to achieve

maximum bus performance for traffic which remains within

the bounds of a single bus. Traffic passing through the

ISL to the remote bus will, of course, be somewhat delayed.

For example, read from a memory on the same bus which

takes 1 microsecond might take 1.5 microseconds through

the ISL to an adjacent bus.

The ISL will respond to a memory reference which has an

address that the ISL has been preprogrammed to accept.

The ISL has a memory mask register, see Figure 14,

in which a 1 in a cell represents a 8192 word block

of memory and any memory reference with an address in the

8192 word block will be accepted by the ISL. The ISL

then adds a signed, 10 bit, displacement factor 6^ which

translates the address for the memory on the other bus.

Both the Mask Register and the displacement factor are

software loadable.

IOLD instructions to the ISL work similarly. There is a

channel number mask register and a displacement factor.

The result is any CPU can initiate a transfer from a

memory on any bus to a controller on any bus as long as

the ISL's have been properly programmed.

101.

3.7.1.7 Inter System Link (ISL) (Continued)

The displacement factor is a 10 bit number aligned

with the 10 most significant (0-9) bits of the

address bus. In a system with an SPM, the ISL must

not be allowed to modify bit 0 because it would

result in the absolution or virtualization of an

address passing through it. Therefore, the software

associated with an ISL must be verified.

In a system where the ISL is used to extend the
A-

bus (no CPU/SPM on the remote bus), the ISL will be

programmed to accept virtual addresses and the displacement

factor will be zero. In a multiprocessor environment

where the ISL is used to interconnect buses each

containing CPU/SPM's, the ISL must be programmed

to not respond to virtual addresses because of the

ambiguity of the source when it arrives at the SPM on

the remote bus.

The following rules apply in a multiprocessor environment:

1. There is an SPM for each CPU.

2. In a system utilizing mapped I/O, there can be no

more than one CPU/SPM pair per bus.

3. The ISL shall not respond to virtual memory references.

4. The SPM on the bus containing the I/O device must

map the device.

10 2.

3.7.1.7 Inter System Link (ISL) (Continued)

Since any CPU/SPM can initiate a transfer to/from any

device but only the SPM on the bus with the device can

map it, the initiating SPM must transfer the appropriate

memory descriptor, DBR and Reff to the SPM that will

do the mapping.

103.

3.7.2 Software Components

The Secure Front-End Processor software is composed of

the major components presented in Section 3.1.1.2. The

following subparagraphs will specify the characteristics

of these components required to satisfy SFEP functional

requirements.

3.7.2.1 General Issues

The following subparagraphs specify general philosophy

to be followed in the design of the SFEP software

components.

3.7.2.1.1 SFEP Software Design Philosophy

The major SFEP software components shall be structured

with respect to application dependency. That is, as a design

objective, the security kernel shall be suitable for all

applications (i.e., front-end processor and stand-alone

network applications) without modification. Similarly

as a design objective, the SFEP operating system shall be

expandable to allow satisfaction of all application require-

ments. The basic SFEP operating system components shall be

structured such that additional functionality may be in-

cluded without modifying overall operating system design.

The SFEP communications subsystem shall be the only software

component which is completely applications dependent.

104.

3.7.2.1.2 Distributed Versus Separate Processes

Following MULTICS, SFEP shall utilize the concept of

distributed processes. That is, the SFEP supervisor

(i.e., kernel and operating system) will not operate

in a dedicated process or address space. Instead, the

supervisor is distributed — its procedure and data

segments are to be shared among all SFEP processes. The

execution of the supervisor in the address space of each

process facilitates communication between user procedures

and supervisor procedures and allows the simultaneous

execution of supervisory functions by several processes.

If separate processes were utilized, additional overhead

would result from process identification and request

qucueing for service. The apparent advantage of separate

processes is isolation; however, the necessary isolation

within a distributed process is provided by the ring

mechanism. That is, the necessary isolation is achieved

by having the supervisory and user procedures execute in

separate domains (i.e., rings). Thus, the distributed

process philosophy shall be followed in SFEP software

design.

105.

I

3.7.2.1.3 Security Versus Policy

In any system, it is desirable to separate policy and

mechanism. This is particularly true in secure systems,

where the size and complexity of the kernel must be

minimized. The SFEP kernel shall contain the mechanisms

for implementing the elements of the system and the

security policy for controlling access to these elements.

Any policy that influences the allocation of physical

resources need not.be in the SFEP kernel. Unless performance

requirements demand it, the policy functions shall not

be in the kernel. However, since the actual allocation of

resources must be performed by the kernel in a secure and

correct manner, it is necessary to have external kernel

functions that communicate policy decisions made outside

the kernel to the implementation mechanisms within the

kernel.

The general security versus policy guidelines shall be

followed in SFEP software design. As an example of an

application of this philosophy, consider process scheduling.

The SFEP software design shall make a distinction between

the scheduler (i.e., code that implements the policy that

selects the next process to run) and the process multiplexor

(i.e., code that implements the mechanism that binds a

process to hardware). The correctness of the scheduler is

7<s>«-.

3.7.2.1.3 Security Versus Policy (Continued)

not necessary for security, thus the scheduler would not

be part of the security kernel but would reside in the

uncertified operating system.

3.7.2.2 Kernel

The security kernel is the software portion of the SFEP

reference monitor. The kernel, supported by the SPM, shall

enforce tne necessary authorized access relationships

between subjects and objects in order to maintain a secure

environment. Kernel requirements are specified in the

following subparagraphs.

3.7.2.2.1 Process Control.

3.7.2.2.1.1 Process Definition

A process shall be identified by a system-wide unique

identifier and consists of:

• an execution point defining the virtual memory location

of the currently executing machine instruction and the

effective ring of execution.

• a known segment table (kst) defining all segments the process

is currently "using"

• a known device table (kdt) defining all devices the process

is currently "using"

• a message queue holding messages sent to this process by

itself, other processes, or devices

t a trap vector defining execution points and trap information

save areas for well-defined traps which occur synchronously

in process virtual time

107.

3.7.2.2.1.1 Process Definition (Continued)

• a virtual time clock

• a virtual timer by which the process may keep watch on its

own use of the processor

• a real timer by which the process may time-out on its

operation or the operation of devices it is using

A process has two attributes that are visible to other

untrusted processes (subject to security and integrity rules):

its security level and its integrity level. These are assigned to

to it permanently when it is created, and never change.

»

Processes are aware of each other by process unique ID,

and communicate with each other by sending messages (uninterpre-

ed by the kernel) to each other in typical block/wakeup fashion,

subject to security and integrity level restrictions enforced

by the kernel.

Each process has a private workspace (or virtual memory and

virtual device space) of segments and devices it is referencing

frequently. Processes reference segments or devices by their

system-wide unique IDs to obtain their attributes or to add

them to their local workspaces. Once a process has added a

segment or device to its workspace, the process can then

reference it by workspace index.

108.

3.7.2.2.1.2 Process Multiplexor

The Process Multiplexor shall be responsible for multiplexing

processors among the coexisting processes. Processes coexist

in one of three execution states: running, ready or blocked.

A running process is one that is currently executing on a

processor; a ready process is one that would be running if a

processor were available for it to run on; and, a blocked

process is one that cannot make immediate use of a processor

(even if one were available) because it is waiting for an

event to occur - upon occurrence of the event, a blocked

process becomes ready.

The Process Multiplexor's tasks shall center around the

maintenance of a list of the coexisting processes called

the Active Process Table (APT). For each process on the

list, the Process Multiplexor associates the current

execution state and other necessary data in order to

support process dispatching. For example, for each blocked

process, the APT contains an identifier for the event being

waited for. When the event occurs, the interrupt handler

shall notify the Process Multiplexor which may then alter

the code for the execution state of the appropriate process

from waiting to ready. The scheduler may then make a policy

decision based on process priority as to which process

should be running; the designated process is then dispatched

by the Process Multiplexor.

109.

3.7.2.2.1.2 Process Multiplexor (Continued)

In addition to process dispatching, the Process Multiplexor

shall provide the mechanisms for creating/deleting processes

and synchronizing cooperating processes as specified in the

following subparagraphs.

3.7.2.2.1.2.1 Create/Delete Process

The Create/Delete Process mechanism shall only be utilized by the

SFEP Answering Service process to create a process per device

structure; i.e., creating a virtual machine environment per interactive

user session with the central system. Upon successful completion

of the login sequence (validated by the central system), the

Answering Service shall spawn a user process via the Create Process

function. Upon notification of process completion (as a result of

a user logout or hang-up), the Answering Service shall destroy the

user process via the Delete Process function.

The Create Process function shall generate the appropriate

descriptor tree (including DBR) to provide a spawned

process with a unique identity and allow it to be dispatched

by the Process Multiplexor. The descriptor tree shall

describe the resources required by the process to perform

its assigned task (e.g., message handling).

The Delete Process function shall delete the descriptor tree (including

DBR) for the appropriate spawned inferior process. Resources de-

scribed shall be made available to subsequent processes to be spawned

(e.g., new users entering the system).

3.7.2.2.1.2.2 Dispatch

The Dispatch function shall be responsible for initiating execution

of a new process; i.e., changing its state from ready to running.

110.

5.7.2.2.1.2.2 Disputch (Continued)

The disputch shall be accomplished by transferring the root of the

process descriptor tree to the SPM. The

dispatch function shall only be utilized by the scheduler to implement

its policy decision as to which process is to be activated.

During dispatch, the state of the previous process (i.e., registers)

shall be saved and the state of the new process restored.

3.7.2.2.1.2.3 Process Synchronization

The Process Multiplexor shall provide the facilities to allow the

sequential processes that coexist in the physical computer system

to cooperate. The synchronization mechanism shall be implemented

via the Block/Wakeup functions specified in the following sub-

paragraphs.

3.7.2.2.1.2.3.1 Wake-Up

The kernel shall provide two wake-up mechanisms in support of pro-

cess cooperation: an explicit wake-up and an implicit wakeup. The

explicit wake-up function shall allow one process to send a message

to another by calling the kernel directly. The kernel shall insert

the message into the receiver's message queue upon verifying that

the security level of the sender is less than or equal to the

security level of the receiver.

The implicit wake-up function, Device Wake-up, shall be provided by

the kernel to support interrupt handling as specified in 3.1.1.2.2.3.

Upon receipt of a device interrupt, the kernel shall associate the in-

terrupting device with a process and insert a interrupt notification

message in its message queue.

111.

3.7.2.2.1.2.3.1 Wake-Up (Continued)

The Wake-up functions shall be responsible for insuring that pro-

cesses waiting for events shall have their states appropriately

changed from waiting to ready in order to have them eligible for

dispatch.

3.7.2.2.1.2.3.2 Block

The kernel shall provide two block mechanisms in support of pro-

cess cooperation. Both block functions shall allow a process to

read its message queue; if a message exists, the caller is pro-

vided with the message by the kernel. However, if no message exists,

then one block function shall result in the process losing the

processor (BLOCK function). The BLOCK function shall be responsible

for changing the current process state from ready to waiting and

notifying the scheduler to select the next running process. Another

block function (INTERROGATE function) shall merely notify the caller

that its message queue is empty; no implied willingness to lose

the processor is to be assumed.

3.7.2.2.1.2.4 Trap Handler

As specified in 3.1.1.2.2.3, the security kernel shall be responsible

for basic trap handling. The kernel shall be solely responsible

for specifying all trap vectors and storage area pointers for each

process. However, the kernel shall provide the facilities to allow

certain types of traps to be handled in outer rings; the functions

required to support their functionality are specified in the follow-

ing subparagraphs. As expected, however, the kernel shall process

all security-related trap conditions (i.e., SPM traps) within ring-0

and shall insure that no trap condition be handled in a ring of less

privilege than that possessed by the execution point of the process

at the time of trap.

112.

3.7.2.2.1.2.4.1 Set Trap Handler

The Set Trap Handler function shall allow the caller to specify an

outer ring trap handler and associated trap save area for a designated

trap type. The kernel shall insure that the level of privilege of

the user supplied trap handler is greater than or equal to the

level of privilege of the requestor.

1.7.2.2.1.2.4.2 Trap Return

To support outer ring trap handling, the kernel shall provide a

Trap Return function to allow the kernel to perform required process

state modification (necessary to correct the trap condition) and issue

the privileged RTT instruction on the user's behalf. The kernel

shall insure that the level of privilege specified by the return is

less than or equal to the level of privilege of the outer ring trap

handler.

3.7.2.2.1.2.5 Clock Management

Since denial of service is not a security issue and the system

clock is an extremely noisy information channel, clock/timer

functions should be centralized within the Clock Manager component

of the operating system without requiring supporting kernel

functionality. However, the Level 6 architecture forces kernel

clock management support functions as specified below. The kernel

must manage both the system clock and watchdog timer since both

reside physically within the same segment as trap and interrupt

vectors (i.e, segment 0) which are required to be in kernel space

only. Thus, the clock/timer must also reside strictly within kernel

space since the segment is the basic unit of protection. CPU-

generated addresses relating to both the timer and the clock shall be

113.

3.7.2.2.1.2.5 Clock Management (Continued)

virtual, but shall always be mapped into the same physical addresses

regardless of which process is currently running. The following

clock/timer functions shall be supported by the SFEP security kernel:

Read Real Clock - Allows the system-wide real time clock to be

read

Set Real Timer - Allows a real timer to be created to provide a

wake-up to process in specified time period.

. Read Virtual Clock - Allows the process local virtual time clock

to be read.

Set Virtual Timer - Allows a virtual timer to be created to provide

a trap to process in specified virtual time period.

3.7.2.2.2 Segment Control

A segment is identified by a system-wide unique ID and is a fixed-

length vector of words of memory. (A "word" is the smallest

separately protectable unit of virtual memory.)

A segment has several attributes that are visible outside of

the kernel (subject to security and integrity rules): its length,

its security and integrity levels, and its ring brackets, which

define the effective execution rings of processes and devices

necessary to perform read, write, execute or call operations on

the segment's contents. These attributes are set at the time a

segment is created, and cannot be changed.

A process may obtain the attributes of a segment, delete a segment,

or «d<l n segment to its kst (initiate it) by supplying the

segment's unique ID. Once initiated, a process may reference the

segment's contents by index in its kst.

114.

3.7.2.2.2 Segment Control (Continued)

A process may create a segment by specifying its

intended length, security and integrity levels, and

ring brackets. If the segment can be created, the

kernel sets its contents to a predefined initial value

(zero) and returns its unique ID.

When a process initiates a segment, it specifies the

desired kst index it wishes for the segment. This index

must not already be used for another segment. The process1

allowable access permission (read, write, execute) on a

segment's contents is computed when the segment is initiated.

A process may request less access permission than that

allowed by security and integrity rules when it initiates

a segment.

When a process terminates (opposite of initiate) a segment,

the kst index for that segment becomes available to be

used for another segment.

When a process deletes a segment, the segment is also

terminated in the kst's of all processes having this

segment initiated.

The segment control function to be provided by the security

kernel are specified in the following subparagraphs.

U5.

3.7.2.2.2.1 Create/Delete Segment

The Create Segment function shall create a segment of

a given length, security/integrity level, and ring

brackets. The kernel shall assign the segment a unique

global identifier (returned to caller) and insert the

segment name and its attributes into the system global

segment catalog within the kernel data base. The

privilege level of the created segment shall not be

less than the privilege level of the creator.

The delete segment function shall delete the segment

with the given global identifier from all initiator

process1 local space and shall delete the segment from

the system global catalog. The privilege level of the

deleter shall not be less than the privilege level of

the segment.

3.7.2.2.2.2 Initiate/Terminate Segment

The Initiate Segment function shall make a segment known

to the requesting process, i.e., move the segment into the

process virtual space. The security kernel shall insure

that the requested access permission to the segment is

consistent with both the privilege level of the requesting

process and the privilege level of the segment as defined

in the global segment catalog.

The Terminate Segment function shall remove a segment from

the process virtual space. There are no contraints to

be imposed by the security kernel other than the local

segment identifier be valid and the segment not be wired.

116.

3.7.2.2.2.3 (iet Segment Attributes

The Get Attributes function shall provide the visible

attributes of a segment to a requestor whose privilege

level exceeds that of the segment.

3.7.2.2.2.4 Wire/Unwire Segment

The Wire Segment function shall prevent a process local

segment from being moved within its virtual space; i.e.,

the segment is fixed to physical memory.

The Unwire Segment function shall release a previously

wired segment allowing its movement within process

virtual space.

3.7.2.2.2.5 Primary Memory Manager Interface

The Memory Manager portion of the SFEP operating system

shall be responsible for all memory control policy decisions

The Primary Memory Manager function within the kernel shall

be responsible for carrying out its policy decisions in

a secure manner. The kernel memory manager shall insure

that some acceptable number of free primary memory blocks

always exist. In general, whenever the number of free

primary memory blocks drops below the acceptable limit,

the operating system shall be awakened to determine which

pages should be transferred to mass store. However,

within the SFEP environment, no supporting mass store

is required. Thus, this general functionality need not

be implemented, yet the primary memory manager function

within the kernel should not prevent its implementation.

117.

.3.7.2.2.3 Device Control

A device is identified by a system-wide unique ID.

From the viewpoint of a process accessing a device, a device

consists simply of a single "contents word", which the

process may read or write. All finer-grained indexing

of various parts of a device (status and control registers,

storage media contents, etc.) is accomplished by device-

specific protocol of reading and writing this contents word.

A device has several attributes that are visible outside

the kernel (subject to security and integrity rules):

its security and integrity levels, and its ring brackets,

which define the effective execution rings of processes

necessary to perform read, write, and control operations

on this device's contents. These attributes are set by the

kernel.

A process may obtain the attributes of a device, or add

a device to its kdt (initiate it) by supplying the device's

unique ID. Once initiated, a process may reference the

device's contents by index in its kdt.

11H.

3.7.2.2.3 Device Control (Continued)

When a process initiates a device, it specifies the

desired kdt index it wishes for the device. This index

must not already be used for another device.

When a process terminates (opposite of initiate) a

device, the kdt index for that device becomes available

to be used for another device.

From a security and integrity viewpoint, all I/O device

operations are always both read and write. This is true

because all operations may return status information

visible to a using process, and may result in a change

of state visible to the external world (e.g., line

turn-around). Therefore, a process must have security

and integrity levels equal to those of a device to

initiate it. The kernel assigns and changes the security

and integrity levels of devices as necessary to allow

them to be initiated by processes that need to use them.

A device may only be initiated in one process' kdt at a

time. Any simultaneous sharing of devices among processes

is accomplished outside the kernel via interprocess

communication.

The kernel supports a form of "write-ring" protection on

the actual data (as opposed to status and control

information) handled by the device. All the operations

that a process may perform on a device are partitioned into

four classes: trusted control, normal control, write and read

trusted control operations are those operations on a device

119.

I

3.7.2.2.3 Device Control (Continued)

that can potentially invalidate the security and

integrity checks made by the kernel (e.g., changes to

device controller microcode), and therefore, must be

restricted to trusted code. Normal control operations are

those that need to be available whether or not the process

is restricted to only read or only write the data handled

by the device (e.g., positioning operations, echoing, and

status returns). Write operations include actual writing

of the data of a device, and control operations that should

not be available to a process restricted to reading (e.g.,

erasing a tape). Read operations include actual reading of

the data of a device.

For each device type catalogued in the system, the kernel

maintains a map of the I/O operations in each of these

classes. When a process initiates a device, it may request

read-only, write-only, or read-write permission. After

initiation, the process may perform all normal control

operations, and either or both of the read and write

operations defined for the device.

There are also two generic types of I/O operations a process

may perform on an initiated device: synchronous and

asynchronous. Synchronous operations are
*

performed directly by a process, and take effect and return

values immediately. All control operations and some data

operations are synchronous. Asynchronous operations are

started by a synchronous set-up operation, and cause a

device to operate on behalf of, using the virtual memory

120.

3.7.2.2.3 Device Control (Continued)

space of, and asynchronously with, the starting process.

Normal data read and write operations are asynchronous.

The effective ring used by a device accessing a segment

during an asynchronous operation is that of the process

when it started the operation. Only one asynchronous

operation may be in progress on a device at a time.

Some synchronous operations (e.g., status) may be performed

on a device with an asynchronous operation in progress.

A device communicates with its using process (to indicate

termination of an asynchronous operation, or to signal

events that require the process' attention) by sending

the process its device unique ID as a message. The process

can then perform operations on the device to obtain more

detailed information.

The device control functions to be provided by the security

kernel are specified in the following subparagraphs.

3.7.2.2.3.1 Add/Remove Device

The Add/Remove Device functions shall only be used by a

trusted configuration process to add or remove physical

devices (and their associated attributes) from the kernel

data base.

3.7.2.2.3.2 Initiate/Terminate Device

The Initiate Device function shall cause an I/O device

(or channel) of the class specified to be allocated to the

invoking process. All devices shall be allocated at an

access level equal to that of the requesting process.

Each process shall have an associated list of currently

121.

!

3.7.2.2.3.2 Initiate/Terminate Device ("Continued)

"active" I/O devices which it has requested and received

access to.

The Initiate Device function shall verify that the requesting

process is eligible to receive the requested device (channel)

and that the device (channel) is not currently assigned

to another process. The kernel shall insure that only

one I/O descriptor per device (channel) exists.

The Terminate Device function shall return the specified

device to the device available pool. The I/O descriptor

for the specified device (channel) residing in the requesting

processes I/O descriptor tree shall be deleted.

3.7.2.2.3.3 Send/Receive Message

The Send/Receive Message functions shall provide the SFEP

kernel to central system kernel communications channel.

Essentially, these functions shall provide the Interface

Unit (IU) driver and associated resource manager.

«

Messages of up to one segment in length shall be transferable

between SFEP and the central system. This interface shall

support "scatter-gather" list processing, while allowing

IU operation as either a mapped or premapped device. The

list processing is required strictly to support the central

system. The scatter-gathering on the SFEP side shall be

provided by the SFEP I/O virtual mapping mechanism, i.e.,

all SFEP accesses are logically contiguous, but physically

scattered. The central system has no corresponding mapping

mechanism; thus, absolute physical addresses are required which

122.

3.7.2.2.3.3 Send/Receive Message (Continued)

necessitates list processing to minimize interrupt

handling overhead.

To minimize SPM functionality, the IU shall support

two distinct channels: set-up and connect. The setup

channel shall be used to notify the IU of the location

(virtual) of the control list, while the connect channel

shall be used to notify the IU of the location (virtual)

of the SFEP data area. Thus, the IU may access both the

control list and data area in a mapped manner.

The IU control list shall reside exclusively within kernel

space, while the message buffer shall reside in user space.

No copying of a message into kernel space shall be required

in order to initiate a transfer.

These kernel interface functions shall support both

binary format and character format transfers. Binary

transfers shall be performed only in multiples of four

central system words; character transfers shall be performed

in multiples of a full central system word.

Management of the interface resource shall be on a first-in/

first-out basis.

3.7.2.2.4 Bootload

SFEP shall be bootstrapped from the host processor through

the 6000 Series 60 Interface Unit. During the initial

stage of bootload, a portion of the security kernel shall

be transferred into SFEP memory. The initial portion of

the kernel shall be sufficient to initiate any remaining

123.

3.7.2.2.4 Bootload (Continued)

memory load required through the III. In Figure 14

is shown the contents of memory following the initial memory

load. In Figure 15, a DBR, two I/O descriptor, two memory

descriptors and a procedure segment have been loaded.

The DBR establishes the trees of I/O and memory descriptors.

The first I/O descriptor establishes the SPM as a device;

the second establishes the IU for further memory loading.

The first memory descriptor establishes the loaded procedure;

the second establishes a memory area for further input.

The processor Program Counter shall be set to extract the

first order of the procedure segment. The SFM shall load

the DBR from a predefined memory address as directed by the

bootload command line. The current ring shall be initialized

to the kernel domain, ring-0. The contents of the program

counter is a virtual address and the corresponding address

shall be fetched from memory using the initial DBR and memory

descriptors. Processing shall continue in ring-0 with all

addresses interpreted as virtual addresses until explicitly

changed by software.

In support of stand-alone secure computer applications,

the SFEP bootload procedure shall allow replacement of

the central system by a standard Level 6 peripheral (i.e.,

diskette) without bootload redesign. That is, only

replacement of the IU driver and its associated descriptor

with a diskette driver and diskette descriptor shall be

required for conversion.

124.

3.7.2.2.4 Bootload (Continued)

SPIT boot load/ini tiali z.ition may be accomplished in two

ways depending on system initialization philosophy. The

particular mode to be implemented, as specified in the

following subparagraphs, shall be application dependent.

SFEP shall utilize the static initialization approach;

however, SFEP design shall not preclude implementation

of dynamic initialization.

3.7.2.2.4.1 Static Initialization

In the static initialization method of bootload, the process

structures required for SFEP operation are supplied*

e.g., from a previous system. That is, the bootload modules

would manifest a fully initialized system, rather than

letting the system bootstrap itself in a complex way each

time it is loaded.

3.7.2.2.4.2 Dynamic Initialization

In the dynamic initialization method of bootload, the kernel

responsible for constructing the process structures required

for SFEP operation. This action requires the support of

appropriate kernel primitives to create the necessary

environment.

125.

3.7.2.3 Operating System (OS)

Supervisory control functions for SI-HP on-line

operational software shall be comprised of n combination

of executive modules, special processes, and

distributed kernel functions. Some normal OS functions

will be implemented in the kernel, descriptions of these

are included in the OS specification below.

Process scheduling (OS process)

Process dispatching (distributed kernel function)

Interrupt interception and routing (distributed kernel

function)

Trap interception and routing (distributed kernel

function)

Interprocess communication and synchronization

(distributed kernel function)

Real-time clock management (distributed kernel and

OS functions)

Memory management (distributed kernel function and

OS process)

Intra-process task management (distributed OS function)

This functionality shall support a multiprogramming with

priority processing environment in which all operational

software is resident in primary memory. Multiple processes

(isolated and protected by kernel functions and data)

shall time share access to common executive and application

functions written in reentrant procedure code.

126.

3.7.2.3.1 Process States

Since several processes must time share system time

and resources, each process may exist at different

times in different states or stages of processing.

A process may be in one and only one of the following

logical states:

• Dormant - The process does not exist in the

kernel process catalog. The process may physically

exist in the system, but it may not be scheduled

for execution until it has been "created" by

the kernel as requested by another process.

• Ready - The process exists in the process catalog,

is scheduled for execution and is not waiting for

any event to be completed other than the currently

executing process to block itself or a system

time-out to preempt it.

• Running - The process has been dispatched by the

kernel and is executing.

• Waiting - The process has blocked itself awaiting

the completion of some other event. That event

may be an input/output operation in progress or

the completion of another process execution cycle.

Figure 16 illustrates these four

process states and the kernel gates used to

effect changes in process state.

127.

'

3.7.2.3.2 Process Scheduling

Prime responsibility for process control shall

Teside in the kernel; however, to make provision

for varied scheduling policies without impacting

certified kernel code, the scheduling function

shall be divided into a set of kernel functions and

a separate isolated operating system process. The

kernel shall maintain all security sensitive system

level process state and status information needed by the OS

scheduling process to make scheduling decisions according to

operations policy. The kernel functions shall

maintain lists (queues) of processes by process

state as defined above. The process "ready" lists

shall be accessible by the OS scheduler process.

The OS scheduler shall perform two basic operations:

1. Select the next process to be run based on ready

process priority.

2. Optionally assign a watchdog, time-out to the

selected process. A watchdog time-out shall

serve two purposes: (1) to force a process block

and (2) to execute a wake-up operation.

The scheduling policy for SFEP operations shall

require scheduling decisions to be based on a

first-in/first-out (FIFO) within priority scheme.

128.

«

5.7.2.3.3 Process Dispatching

The scheduler process shall be dispatched by the

kernel whenever a running process "blocks" itself.

The scheduler will then decide which process is to

run next and call the kernel to execute the dispatch

operation. Figure 17 depicts the basic

scheduling mechanism.

3.7.2.3.4 Interrupt Interception and Routing

All interrupts shall be intercepted by the kernel

and either handled within the kernel or communicated

to the associated process. When an interrupt occurs,

the firmware shall direct a jump to the kernel

interrupt service function. The kernel shall record

the interrupt occurrence in an IPC and wake-up to

the associated process and then execute a level

change to cause the interrupted process to be

reactivated. When the process associated interrupt

is activiated, it must test for the occurrence of

the interrupt by checking its message queue.

3.7.2.3.5 Trap Interception and Routing

All traps shall be intercepted by the kernel and

either handled within the kernel or communicated

to the associated process. The method of communication

shall be the same as with interrupt handling except

that for traps, the kernel shall provide the

associated trap handler with a copy of the trap

save area.

129.

3.7.2.3.6 Interprocess Communication and Synchronization

Interprocess communication and synchronization

shall be provided via the following kernel

mechanisms:

• Wake-up - A running process signals the

kernel that it wants another process to be

activated. The wake-up causes the requested

process to be placed on a scheduler ready queue.

• Block - A running process signals the kernel

that it is ready to give up the processor to

await some action by another process or

completion of an I/O operation.

• Interprocess Communication - A message queue

is maintained by the kernel for each running,

ready or waiting process for the purpose of

conveying information from other processes to

that process under kernel control.

3.7.2.3.7 Real Time Clock Manager

A Real Time Clock Manager (RTCM) functionality

shall be provided by which system and applications

functions can obtain real time readings, one-shot

time-outs and cyclic time-outs. Additionally, the

RTCM shall provide for maintenance of virtual

time-outs; that is, time-outs within a given process

function only when the process is running.

130.

3.7.2.3.7 Real Time Clock Manager (Continued)

The kernel shall contain that part of the RTCM which

intercepts the RTC interrupt and updates the

distributed system clock. A distributed OS module

shall be responsible for processing time-of-day,

real time time-out, and virtual time-out requests.

3.7.2.3.8 Memory Manager

The memory manager shall consist of two parts, one

a distributed kernel function that essentially provides

a buffer management capability, the other an

Operating System process that supports the kernel in

maintaining an adequate supply of buffers.

The buffer manager capability shall enable a user

process to "get" and "release" buffer

space as needed. The kernel shall control the

assignment of buffers by maintaining lists of

assigned buffers by process and a list of free

buffers. When a process is made "ready" by the

kernel, that process will receive a quota of buffer

space that it may request. As buffers are requested

by a process, descriptors are added to the process

access space. As buffers are released, corresponding

descriptors are removed from the access space.

131.

1
3.7.2.3.9 Intraprocoss Task Management

A Task Manager function shall be provided to support

application process operations. The Task Manager,

in conjunction- with the real time clock manager

and buffer manager, shall provide the applications

programmer with a basic executive capability designed

to take advantage of the unique characteristics of

the Level 6 computer.

3.7.2.4 Application Software

Application software for SFEP shall consist of

Multics Communications and Remote Communications

Network interface functions.

The Multics Communications subsystem functions shall

perform the processing required to handle Multics on-line

interactive communications with remote terminals.

The Multics to SFEP interface will be handled by the

kernel. Following functions shall be provided.

Terminal Answering Service

Terminal Handler

Communications Network Interface

3.7.2.4.1 Answering Service

The answering service shall function as a separate

trusted process to provide dialup, login, terminal

handler process creation, and logout functions.

132.

T

3.7.2.4.1 Answering Service (Continued)

The dial-up function of the answering service

module shall perform all processing required to

establish telephone line connection between user

terminals and SFEP.

The login function of the answering service shall

perform all processing required to accept the user

login message and determine its destination. Login

messages for Multics shall be directed to Multics

for validation.

Dialogue with the user terminal shall be maintained

to communicate disposition of the login message.

Successful completion of the login sequence shall

terminate the login function for that terminal and

invoke the terminal handler process creation function.

The terminal handler process creation function of the

answering service module shall

communicate with the kernel to create a terminal

handler process for each successfully logged«in

terminal. After successful completion of this

function, control shall be passed to the logout

function.

133.

3.7.2.4.1 Answering Service (Continued)

The logout function shall monitor

the answering service interprocess message queue

awaiting a logout message to be transmitted by

either the associated terminal handler process

or an operating system process. The logout function

shall communicate with the kernel to delete the

designated terminal handler process.

3.7.2.4.2 Terminal Handler

A reentrant terminal handler module that can be

assigned to handle many different terminal sessions

concurrently as separate processes (by virtue of

isolation guaranteed by the kernel) shall be provided.

3.7.2.4.3 Communications Network Interface

This subsystem shall provide the capability for

SFEP accessing a network (such as ARPANET) with

message traffic either from the Multics host or from

remote user terminals.

3.7.2.5 Support Software

In addition to operating system, kernel» and

communications functions required to provide the

prime on-line SFEP functionality, a subsystem of support

modules are required to provide the following capability:

. Operator console communications

Configuration support

Debug support

Test and diagnostics

134.

3.7.2.5.1 Operator Console Communications

This module shall provide the basic capability for

the operator to interact with both on-line and off-line

modules to send and receive information via the operator

console device. Use of this module

shall be restricted to SFEP software communications not

related to remote terminal communications other than

auditing functions.

3.7.2.5.2 SFEP Initialization Module

This module shall function at system start-up and prior

to any remote terminal operations, to initialize SFEP

operational software parameter tables and system

configuration tables. Multics shall transfer the

desired configuration data to SFEP, whereupon the

initialization module shall proceed to determine the

real attainable configuration. The initialization

module shall then, if necessary, interact with the

operator through the operator console device to resolve

any configuration assignments. The revised configuration

data shall be transmitted back to Multics for approval and/or

further directed initialization action.

As part of the initialization function, all MLCP

communication control programs and line control tables

shall be loaded into the MLCP memories.

135.

1

3.7.2.5.3 Debug Module

The SFEP debug module shall provide for interactive

off-line program check-out operations for troubleshooting

new programs and making trial program corrections.

Debug functions shall enable the programmer to display

and modify the contents of memory locations and the

arithmetic and base registers. Capability shall also be

provided for automatic activation of the debug module

through selectable breakpoints placed in the program

under test via debug operations. Capability to restart the

test program shall be provided. *

The debug module shall be capable of functioning under

kernel control and may co-exist with a test process within

its access space.

3.7.2.5.4 Audit Log

This support module shall provide, during on-line

communications operations, the capability to monitor

system activity. The following events shall be

output to the console printer:

Terminal login

Terminal logout

Out-of-normal conditions

Terminal errors

Line errors

System faults

Access violations

Log of accesses to classified segments

Change in privilege

136.

3.7.2.5.5 SFEP Memory Dump Module

This support module shall enable the SFEP operator

to selectively dump areas of main memory to the console

printer in support of system debug operations. Provision

shall be made for outputting either hexidecimal or ASCII.

3.7.2.5.6 Test and Diagnostics

SFEP test and diagnostic functions shall provide for

off-line SFEP hardware testing as a system confidence test.

Diagnostic functions shall provide for testing a]1 SFEP

computer programmable hardware, outputting printed or

displayed diagnostic results in support of system

initialization and maintenance operations.

137.

4.0 QUALITY ASSURANCE PROVISIONS

4.1 General

The Quality Assurance Program to be applied to the SFEP

shall be conducted in accordance with the criteria described

herein and the SCOMP Product Assurance Program Plan.

The SCOMP P.A. Program Plan shall describe the integrated

quality and reliability assurance activities applicable

to SCOMP prototype and production systems.

4.1.1 Responsibility for Tests

Unless otherwise specified in procurement documentation,

the supplier is responsible for the performance of all tests *

and inspections specified herein.

4.1.2 Special Tests and Examinations

The following requirements of Section 3.0 shall be verified

entirely, or in part, by inspection of the equipment and

its drawings.

A. (3.2.2) Physical Characteristics

B. (3.3.3) Identification and Marking

C. (3.3.4) Workmanship

D. (3.3.5) Interchangeability and Replaceabi.lit.y

4.1.3 Reliability Analysis

See paragraph 3.2.3.

138.

4.2 Quality Conformance Inspections

4.2.1 Engineering Design Evaluation

4.2.1.1 Hardware Verification

A SFEP logic design verification analysis shall be

performed to verify that the hardware portion of the SFEP

security requirements are accomplished by the digital

logic mechanization of the various modules that comprise

an SFEP. The analysis shall consist of two phases.

First, development of correspondence between this speci-

fication and the detailed specifications using hardware

flow charts and a corresponding set of operating

specifications which describe elements of the hardware

in a simple way. The second phase of the analysis shall

consist of detail logic analysis using register and/or

instruction level simulation as well as manual analysis.

4.2.1.2 Design Evaluation Testing

4.2.1.2.1 Prototype Development Tests

A prototype SFEP shall be subjected to design evaluation

test sequences to verify its functionality and operation

under worst case conditions of power,temperature and clock

frequency operation. The tests shall be conducted in a

minicomputer configuration whose standard functional

elements (bus, memory, etc.) have been previously acceptance

tested. Security functionality as well as the 6000/Series

60 Interface Unit functionality shall be verified using

operating software developed as specified in paragraph

4.2.1.2.2.

4.2.1.2.2 Prototype Test Software

The prototype SFF.P shall be development tested using

139.

4.2.1.2.2 Prototype Test Software (Continued)

evaluation software developed with the aid of a simulator.

Software developed on this simulator shall test the

security functions to insure that the security requirements

for the hardware described in paragraph 3.0 are exercised.

The test and evaluation software shall also exercise the

functionality of the 6000/Series 60 Interface Unit.

4.2.1.3 SFEP Qualification Tests

Structural and thermal environmental qualification tests

for the SFEP are not required. Qualification for the SFEP

shall be established by structural similarity to ruggedized

minicomputer circuit elements upon which tests shall be

performed. The similarity units shall include at least one

CPU and one 32K word memory.

4.2.2 Prototype Inspection and Test

SFEP prototype subassemblies shall be visually inspected

for workmanship, damage and assembly configuration prior

to first powered operation.

Prototype SFEP's shall be acceptance tested in accordance

with paragraph 4.2.1.2.1.

4.2.3 Production Acceptance Tests and Inspections

4.2.3.1 Inspection Criteria for Aero Fabricated Assemblies

4.2.3.1.1 Workmanship

Workmanship shall be verified on each production assembly to

Honeywell workmanship standard, OED 23036 to meet the

requirements of MIL-STU-454 Requirement 9.

140.

4.2.3.1.2 Configuration

Each production assembly shall be visually examined

in individual parts kit form prior to issuance to assembly

and again upon completion prior to acceptance testing.

Configuration examination shall include:

• Verification that correct part types have been issued

for manufacture.

• Completed assemblies are complete and visually

identical to a standard reference assembly or

photograph thereof.

4.2.3.1.3 Electrical Parts Inspection

The logic functionality, lack of damage, and marking of

integrated circuits to be assembled into Droduction assemblies

shall be verified by inspection and test prior to assembly.

Appropriate quality control sampling plans based lot

total percent defective (LTPD) acceptance criteria shall

be employed for marking and damage.

4.2.3.2 Production Acceptance Testing

4.2.3.2.1 Acceptance Tests

Production acceptance tests shall be conducted under the

supervision of quality control using approved test procedures,

equipment and software. Each assembly shall be accepted

with the SFEP unit for which it is intended. Spare assemblies

may be acceptance tested in any SFEP if compatible

configuration provided that all functional elements used in

the test have been inspected in accordance with paragraph

4 2 3 1

141.

4.2.3.2. Production Test Software
2

Software used for acceptance testing of production SFEP's shall be

derived from the prototype software (see paragraph 4.2.1.2.2) or

other suitable source which insures that each SFEP function is

exercised.

Production test software shall be formally issued and controlled

by quality assurance in accordance with Honeywell Design Procedure

3.3

4.2.4 Kernel Verification

The security kernel's verifiability property requires that its

correctness be provable in a rigorous manner using a mathematical

model as the basis for the criteria to be met. Verification of the

SFEP security kernel (i.e., kernel software and SPM) is sufficient

in order to verify the security properties of the system since all

protection mechanisms are collected within the kernel. The methodology

to be followed in verification consists of performing correspondence

proofs between levels of hierarchically ordered models of the security

kernel (i.e., the Stanford Research Institute technique based on

levels of abstraction). The steps to be followed in verification

are specified in the following subparagraphs.

4.2.4.1 Mathematical Model

The mathematical model (Secure Computer System: Unified Exposition

and Multics Interpretation) rigorously defines the concepts of

security and security compromise consistent with the national security

classification scheme. The model is a finite state machine model

142.

4.2^4.1 Mathematical Model (Continued)

and defines a set of rules of operation for making state transitions.

If the system is initialized to a secure state, then the rules of

operation guarantee that all subsequent states are secure. In

particular, the basic elements of the model are subjects and objects.

Subjects are active system entities such as users or processes which

can access system resources, and objects are passive system entities

such as program segments and peripheral devices that can be accessed

by subjects. The model defines the types of access that a subject may

have to an object.

4.2.4.2 Formal Specification

The first step In verification involves the transition from the

mathematical model of a secure system to a formal specification of

the kernel. The formal kernel specification shall be hierarchical

In form. The kernel shall be decomposed Into levels of abstract

machines each specified as a Parnas module. A correspondence proof

between the formal kernel specification and the mathematical model

shall be performed.

4.2.4.3 Algorithmic Representation

The second step In verification involves the transition from the

formal specification to an algorithmic representation of the security .

kernel. The algorithmic representation shall specify system

functionality by providing required functions, Inputs and outputs.

A correspondence proof between the algorithmic representation and

the formal specification shall be performed. This step, like the

preceding one, is a further limitation and definition of the security

abstraction.

143.

4.2.4.4 Machine Language Representation

The final major step in verification shall provide proof of

correctness for the machine language version of the security

kernel. A correspondence proof between the machine language re-

presentation and the algorithmic representation shall be performed.

If a compiler is used in this step, it is not necessary to verify

the compiler. The compiler's effect on the kernel can be verified

by comparing the source code model for each kernel module with the

compiler-produced object code implementation.

The final verification step (resulting in a proven machine language

representation of the security kernel) assumes specific hardware

behavior during execution of the code by the SFEP processor. Thus,

a hardware verification phase is also required to satisfy total

system verification requirements. Hardware verification require-

ments are addressed in 4.2.1.1.

5.0 PREPARATION FOR DELIVERY

See 3.2.6.

144.

!

u
CC
O

Si
O Ui
•- w>

 ik.

31
O.
cc
<

oo

i
O UI

CC U_
O OC
pr ui t-
UIZZ
Z *- =3

1 o O o

tn-

oo
>-
OO
CO
ZD
oo

cv
UJ
u_
oo

1° ° °t
w

t- cc
UJ <r UJ
ZU-I
•—••-• _j
JZ o
i— => cc

2 o o
£ CJ o

CC
VO UJ

I—
_J =>
UJ a.
UJ o
—I o

O UI
VO C_> <
«/> u.

^.UJ Of
O •-• UI \— oat-M
o ui z z

a.

a.
s
o
O X
VO UJ

h-
00 OO
UJ >-
l—l to
a:
UJ
oo
o
o
o
U3

CD

OO
oo

t_>
z o ui a:
a a.

e>

_j to
«r oo
oi UJ
(-UI- zo i—i
UJ cc z o a. rD

s: o
UJ cc i- Pi
to z
>- o
V) CJ

_i or
I— UIUJ
UZh
UZQ.
CC <c <c
l-l I Q
O CJ<

a. ui
I- x

a. _i
Si

CJ

1 ->% O I < CC
X-ic?u
£ cc UJ H-
o ui rcz uao.N

UI o

_I(/)U.
I *C >• QC

—• CC 00 UJ
a; UJ co t—
UIIJZ
o_ <x oo —«

 CJ

•-« oi to i

U1IDZ
a. a. oo —«

OO OO
CC CC
UI UJ
o t-
< z
UI •—i
QC CC a. a
cc o ui
<. z z
O < •-•

>-

oo

o

oo

oo

o
o
o

CO

UJ oo
Z UI
ca a.

o oo
CJ

o oo

145.

< on

a. u.
a. o
<c co

t- on

O 3C

Q Lu
=D O

o

»- i.
2?
UJ (O
a. >- o C".

146

o
a: u.
o or

LU -z

O

UJ

>-
CD

CO

oO

CVI

rU

5

Cl-

<• >

uo

UJ <L
GO U-
^ cc o UJI
o h- '
o z ;
<£> •-•

'tfT

V

o _i
X UJ u. z

lAT Z
UJ ef

. J H- 3:
•§. z o
\- »- »*' z: o
111 UJ UJ
UHQ:

oo •—•
O >- Q
h- GO

10

o
L

19

>_)•
O
—i
CD

GO|

(•M

to

UJQ: o

ae
o

—1 00

P o z o
UJ DC
<_> Q-

qe
o

_l 00
< oo
Of UJ
h- o z o
Ul tt
O Q.

147,

' I

V < (X UJ 10
or u-ui-- vi
oaroi/iuj
3UJOU
H(-zoc5
LU Z < h- OC

I >,
<r. Q:

LU «t

~S
o
>—• LU LU CO
auHW
LU i— CO LU
3: > _o CJ
to a: or o z: UJ t— ce
cc oo*— a.

<

•ei

Q-

ac

± ^k

o
i£D

CO
LU
1—' LU
or o
LU «:
CO Lu.
^. Q-
OUIh-
O Y- —
ozr
CO — ZD

TV

i !

<—5

or
LU

a:

or
>• LU
oe en

£2

k-^l Q

O
CO

_V

co
a:
LU
u, u.
=5

7:

,.__J2_
-> 2

«-

CO

O
(X

O »-«o
O-JU

E 7|*~

•V

-a I
it!

2:1
v.
O
_'
CO

-c
o

o
z:

or
<
3T
I-
L-
O

a. i u

u

13

l/)
_J
•X JC vr
i" i" ir. »—< o o > < > ~x or »•-

O LU O IU
t-t- h- z

148.

MEMORY

BUS
*

I TRANSFER

INITIATION

r 1
A A

FIGURE 5. PREMAPPED I/O FLOW

149.

MEMORY

BUS

TRANSFER

I INITIATION

ms.v

FIGURE 6. MAPPED I/O FLOW

150.

^iH4- 20

MEMORY
VIRTUAL
ADDRESS

-+++- -M"*- •*+-*-

-H>l—

i

MEMORY DBR

BASE

DATA PAGE

d

DATA

DATA SEGMENT

i
DATA

LEVEL 2 LEVEL 3 DATA PA

a+b iv/lT c DVk t

BASE DASE DATA

DI1

FIGURE 7. MEMORY DESCRIPTOR STRUCTURE

DATA SEGMENT

151.

I/O
COMMAND
(ADDRESS BUS)

1 ^ in ^. £ J
1 " xw "I" '\

e f
FUNCTION
CODE

H

I/O DBR
VIRTUAL DEVICE ADDRESS

LEVEL 1 LEVEL 2

BASE T
f

i.
DEVICE

LEVEL 2

e+f

DEVICE

DIR

FIGURE 8. I/O DESCRIPTOR STRUCTURE

152.

INTERPRET DRAWING IN
ACCORDANCE WITH
MILD1000. FORM ZONE LTR

n n n n

13.00 ±001

te— \74Stoxn —>|

T
13.00 A ±o.oi

1

REVISIONS

DESCRIPTION DATE APPROVED

3O.SO10.OH

28.88 ±0.0H

2B.S0±O.Of

2o-oa» € 23.66 ± 0&1

•RFT IACK5MELL.

FIGURE 9. SC0MP OUTLINE DIMENSIONS
SHEET INDEX

SHEET

REV

SHEET

REV

TOLERANCES UNLESS
NOTED OTHERWISE

DRAFTSMAN

.X *

.XX ±
XXX ±

CHECK
90' FORMED

ANGLES
+2'

—!•

MATL & FIN

APPL ENGR
OEV ENGR

DEV PFIOJ nr?
'UD T-noo Lt.cn

H • -EE NOTE ?<rUA;ill^i
MATERIAL

HONEYWELL INC. AEROSPACE AND DEFENSE GROUP
a AERO MPLS B AERO ST PETERSBURG DORD SEATTLE DORO HOPKINS
DORDMONTGOMERVVILLE QttN CTR MPLS D RADIATION TTR BOSTON

OUTLINE MfTtNSIONS,!!) CARD "RN.1L
H^SIMSvHATU HOUNTEL

SUE

SCALE

CODE IDENT NO.

09128
 f

DRAWING NO.

NONE
WT SHEET

153.4

OOOOi

.000

CURVE IA EOUiPMENT DESIGNED FOR OPERATION IN AIRCRAFT

CURVMIA EOUPMENT DESIGNED FOR OPERATON ON ISOLATORS
WITH ISOLATORS REMOVE 0

CURVEHA EQUIPMENT DESIGNED FOR OPERATION IN HELICOPTERS
CURVE'S A EQUIPMENT DESIGNED FOR OPERATION IN BOTH AIRCRAFT'

ANO HEUCOPTERS

S 7 10 20 30 50 70 100 200 300 500 700 lOOO 2000

FREQUENCY IN CYCLES PER SECOND

FIGURE 10. VIBRATION REQUIREMENTS

54

}

DAUGHTER BOARDS

NML
BUS

NML BUS
INTERFACE

MLCP LEVEL,
INTERRUPT,
AND DATA
TRANSFER
CONTROL

RAM
(1024x16)

DATA STREAM
< •

MLCP
PROCESSOR

BLOCK
CHECK
LOGIC

 CH.O
J£9_CH.l

-CH.2
CH.3 LN1

CH.4
CH.5

LN3 CH*6

CH.B

TTT5"CH-C

 CH.D
 CH.E
HLCH.F

(8 LINES - 16 CHANNELS)

FIGURE 11. MLCP FUNCTIONAL BLOCK DIAGRAM

155

0 1 8 9 10 17 18 19 26 27 28 34 35

* * # *

o 7 8 15 0 7 8

1
FEP Word #1 FEP Word #2

* Bits to be forced or interpreted as zero.

ASC II FORMAT

0 15 16 31 32 35
DCA

WORD #1

15 0 15 0 3

FEP Word #1 FEP Word #2

FEP Word #3
0 11 12 27 28 35

15 0 15 0

FEP Word #3 FEP Word #4
<*

FEP
ord #5

WORD #2

FEP _FEP Word #6 FEP
Word #5 Word #7

0 3 4 19 20 35

1215 0 15 0 15

FEP
Word #7

FEP Word #8 FEP Word #9

FIGURE 12. BINARY FORMAT

WORD #3

WORD #4

156.

IT:

H
U

i
O u

»
C/)

W
on
a
u
1—1

157.

0
0
0
0
0
0
0
0
0
0
0
0

0
-0^

ADDRESS MAP
OF LOCAL BUS

ADDRESS MAP
OF REMOTE BUS

0

N

ISL
RECOGNIZES
ADDRESSES
IN THIS
AREA

DATA ACTUALLY
STORED/LOADED
HERE ON
REMOTE BUS

M

MEMORY MASK RAM
EACH CELL INDICATES
ONE 8192 WORD BLOCK
OF MEMORY

FIGURE 14. ISL ADDRESS RECOGNITION AND
TRANSLATION SIMPLIFIED

158.

DID;

10 TREE

>• -

>

MEMOir REE {

i ,

MEM KOOI

il) KUw 1
.

SPM
DESCRIPTOR.

IU
DESCRIPTOR

PROC. SEC.
DESCRIPTOR

*—

DATA AREA
DESCRIPTOR

(DISPATCH)

v

MC.URIi 15. BOOTSTRAP

159.

WAKE-UP

CREATE

BLOCK

DISPATCH

LEGEND:

PROCESS

KERNEL GATE

FIGURE 16. PROCESS STATES

160

SECURITY
CATALOGS

SCHEDULER
PROCESS

J * *

DISPATCH
->

A

DISTRIBUTED
KERNEL

READY PROCESS
QUEUES

^

BLOCK'/
WAKE-UP

IPC'S

-I I J I-

IPC'S

IPC'S

RUNNING
PROCESS

READY
PROCESS

WAITING
PROCESS

FIGURE 17. PROCESS SCHEDULING FLOW

161.

APPENDIX

COMMENTS ON SFEP SUBSYSTEM SPECIFICATION

DATED 2 OCTOBER 1976

The "SFEP Subsystem Specification" presents what is basically a com-

plete and sound description of the front-end processor subsystem

of a secure computer system. The comments below note the defi-

ciencies of the specification. In general, the specification lacks

clarity and is inconsistent within itself and with the various

specifications of the elements of the subsystem. Specific techni-

cal comments follow.

Para 3.1.1.1.1 -- The discussion does not incorporate integrity

considerations. Subjects and objects should have integrity at-

tributes. In this and the next section, the document should distin-

guish between formal kernel requirements as specified in the model,

and design choices made to implement those requirements.

Para 3.1.1.1.2 -- is it certain that the domain of the security

kernel will be only ring 0?

Al

1

Para 3.1.1.2 -- Note that the kernel may have to provide

specific functions for the support software. Figure 4 and the

associated discussion do not make it clear that there is only one

answering service, scheduler, and memory manager process, whereas

there arc many terminal handlers and perhaps more than one network

interface manager.

The term "system high" near the bottom of page 13 seems out

of place, especially since it has not been defined. Refer to the

comments on the SFEP kernel (ESD-TR-76-359) regarding the use of

untrusted processes to implement resource allocation policies for

the kernel.

Para 3.1.1.2.1.1 -- The discussion of I/O on page 16 lacks an

associated discussion of the verifiability issue to justify imple-

mentation of mapped I/O.

Para 3.1.1.2.2 -- The second paragraph seems to forget the fact

that, since the kernel is responsible for defining the mapping be-

tween physical and virtual devices, it can easily prevent any pro-

cess from choosing a virtual device address that is the same as the

physical address of the SPM. No special function codes are necessary.

A2

Para 3.1.1.2.2.1 -- Numerous undofinet! terms arc used Cc.g.

R. , call bracket, call limiter, and direct page descriptor).

The reason for preventing outward calls is not to prevent a

security compromise, but rather a software debugging convenience.

How the kernel can invoke untrusted resource allocation

policy, when outward calls are prohibited, is not explained.

The problems with the proposed argument validation mechanism

revealed at the SFEP preliminary design review renders the VALIDATE

instruction useless. No comments hereafter will be made concerning

discussions of that instruction in this document.

Para 3.1.1.2.2.5 -- The description of the SPM's action on a

descriptor invalidation order appears questionable because it differs

from typical FADS. Normally, after a descriptor is invalidated, it

is not retrieved from memory until the descriptor is required for a

memory access. If FADS entries must multiplex descriptor segment

page table entries, it appears that the typical approach is more

reasonable. The FADS resource could be used to maintain a descriptor

for ;i different are:i of the virtual memory.

A3

Para 3.1.2.1 -- The interface to the central host computer is not

normally considered an interface to the "outside world". It is an

interface external to the SFEP, but within the secure computer system.

Para 3.1.2.1.2 -- The first paragraph seems to imply that there

can be only one IU per system, rather than one IU per IOM.

Para 3.1.2.3 -- It should bo mailc clear that the trusted proccss-

to-user process interface, though it may use the same 1PC mechanism,

is not the same as the process-to-process interface.

Para 3.3.1.2 -- The hierarchical design approach appears reasonable.

However, it is not clear that implementation should be programmed

starting at the highest level is the best approach since testing of

the implementation cannot occur until all levels are tested. By

beginning with the lowest level testing/debugging can occur at the

completion of each level.

Para 3.3.1.2.3 -- Combining procedure and data segments that be-

long to the same ring and that have the same access controls is not

acceptable since such a practice precludes reentrant code and re-

quires multiple copies of the segments.

A4

I'ara 3.3.7 -- This paragraph, entitled "Human engineering", is

missing, but is required by MIL-STD-490, 20.3.3.7.

Para 3.7.1.3.2.1 -- Are the 4 encodings of the ring fields really

3 encodings? Why is it necessary to use the type field to distin-

guish direct page descriptors from direct segment descriptors?

Direct segment descriptors can only be at level 2, whereas direct

page descriptors are always at level 3.

In the description of BASE, the phrase "modulo 128 or 13 bits"

makes no sense unless one happens to know that 20-bit addresses are

being used (which should have been stated). The factor of eight

increase in resolution for indirect descriptors results in accuracy

to 16 words or four descriptors. Apparently, this choice was based

on the available field width and not on the most obvious and general

case of single descriptor resolution. If a less-then-ideal choice

has been made, the reasons should be stated.

The LIMIT field discussion leaves much to be desired. For

direct page descriptors, is LIMIT the size of the page? (There is

no use for LIMIT in this case). For direct segment descriptors is

LIMIT the size of the segment? For indirect descriptors, is LIMIT

the size of the segment or the number of descriptors? What is the

meaning of LIMIT for level 1 descriptors?

A5

Para 3.7.1.3.2.2 -- This discussion comes rather late in the

document considering the numerous uses of the terms "page descriptor," *

"descriptor segment," etc., in prior sections that are defined here
J

for the first time. The virtual address size is also given here for

the first time though previous sections assume the reader knows what

it is. The entire document suffers severely from this problem of

terms used before being defined.

The discussion of Figure 7 would be easier to follow if the

words in the text corresponded to those in the figure. For example,

"LEVEL 1" should be used instead of "first level." At the bottom of

page 68, the unpaged descriptor segment discussion should reference

the appropriate portion of Figure 7 before the discussion, not after.

In the figure, the notation "a + b" for offset into the unpaged de-

scriptor segment implies addition of the two fields. The fields are

concatenated—not added. Conceptually, the "SPM Flag" bit should be

a control signal and not a bit on the address bus. The decision to

use the address bus was made for convenience and hardware simplicity--

it makes verification of hardware more difficult. Since the less

than optional choice was made, that should be stated.

A6

Para 3.7.1.3.2.3 -- The first paragraph seems to clarify the use

of the LIMIT field that should have been discussed in 3.7.1.3.2.1.

However, what is the use for a limit field in direct page descriptors?

Note that all that is needed is a 9-bit limit field in the DBR de-

scribing the number of segments, and an 11-bit limit in the LEVEL 2

segment descriptor (direct or indirect) describing the number of words

in the segment.

Para 3.7.1.3.2.4 -- The discussion of Reff is confusing. The

main problem is with the statement "For each descriptor encountered

between instruction fetch and operand fetch, a new Reff shall be

computed..." Reff is to be calculated based on the Rl fields of all

descriptors encountered during effective address calculation, but not

during operand fetch. The value of Reff must not depend on the Rl

field of the descriptor for the operand. This is because Reff < Rl

must signal a fault for execute and call access. As written, Reff

can never be less than Rl of the operand, thereby making it impossible

to test for this fault condition.

Aside from the problems above, the notation is inconsistent:

"REFF," and "Reff" are all used to mean the same thing. Also, in the

description of permissions, no statement is made as to which Rl, R2

and R3 fields are being used.

A7

Para 3.7.1.3.3.3.1 -- In the second paragraph, it is stated that

a new Reff (different from that used to fetch the I/O command?)

must be computed when fetching the memory descriptor. As in 3.7.1.

3.2.4, this is not true, since Reff is not a function of the location

of the data.

There is no discussion of the action taken by the SPM when

IOCT becomes greater than 16.

Para 3.7.1.3.3.3.2 -- On page 85, should it not be mentioned that

the segment number to/from which data is to be transferred must also

be saved by the SPM? If it is not, then the original segment number

is forgotten when it is replaced by the device ID, as discussed on

page 86.

The top of page 86 has a confused discussion oT the U and M

bits, because it doesn't make it clear whether the device descriptor

or the memory descriptor is being referenced. Certainly, the U and M

bits of the memory descriptors must be modified as well as those in

the device descriptor (except the M bit is modified in the opposite

sense).

The restriction to single-segment operations discussed on page

87 seems needless--the reader should be informed of the reasons.

j

A8

Para 3.7.1.3.4.1 -- See comment on Para 3.1.1.2.2.5. An order

to invalidate a descriptor usually does not cause the SPM to retrieve

a new descriptor from memory to replace it. A new descriptor will

be retrieved whenever the processor happens to next require a new

descriptor. The discussions on page 89 and page 88 do not seem to

agree.

Para 3.7.1.3.5 -- It was never made clear whether mapping is

actually performed for normal transfer instructions. As a minimum,

only the new virtual program counter needs to be loaded--the SPM need

make no access to the destination until next instruction fetch. As

an aid to debugging, however, it would be useful if the SPM at least

validated the access to the destination before loading the PC, so that

the location of an illegal transfer instruction will not be lost. The

discussion of CALL should state that a CALL is exactly like a transfer

with additional ring checks and changes of R_ur, rather than stating

what CALL is not like. Are procedure entry points limited to the first

location in the segment or the first location in any page of the

segment?

On page 91, the "call bracket" is then stated as being Rl to R3,

but the check for Reff > Rl is left out. The SPM specification in-

cluded a check for Reff > Rl. Whether or not the check is performed

is not crucial. However, the selected alternative should be consist-

ently presented.

A9

The description of VALIDATE is rather terse and gives little

information.

Para 3.7.1.3.6 -- The Reff < Rl check is omitted for execute

violation. Throughout the document, the terms "trap" and "fault" are

used interchangeably, due to the mixing of Level 6 and Multics termi-

nology. One of these terms should be chosen and used exclusively.

What is the priority for trapping in the event that more than

one trap condition occurs?

Para 3.7.1.4.2.2 -- Either the SPM or the MLCP must also be verified

to insure that the direction of I/0--read or write--does not change.

Para 3.7.1.7 -- The system configurations possible with the ISL

are not clearly enumerated. Is an SPM required on each bus in a multi-

processor system? In a multiprocessor system with an additional ISL

used to extend the bus for more devices, is an SPM required on the

remote bus? Doesn't the ISL for the remote bus respond to virtual

addresses? Does the paragraph on page 103 apply only to multiprocessor

systems?

A10

Para 3.7.2.1.3 -- Besides performance, security requirements may

also dictate that physical allocation policy be in the kernel, i.e.,

there may be no way to implement a given policy securely outside the

kernel (e.g., quota in Multics).

Refer to the SFEP kernel comments for a discussion of issues in

removing policy from the kernel (ESD-TR-76-359).

Para 3.7.2.2 and Para 3.7.2.3 -- Refer to comments on the SFEP

kernel design (liSD-TR-76-359).

Para 3.7.2.4 -- The answering service does not fall into the

category of applications software, since, as described here, it is

part of the kernel. Naturally, demotion of the answering service to

an untrusted process would be welcome.

Para 3.7.2.4.3 -- It should be noted that interfacing specifically

with the ARPANET involves no trusted software, since the ARPANET is

single level (unclassified). Secure networks require trusted software,

at least to demultiplex the different security levels.

FIGURES -- The figures should be integrated with the document

rather than placing them at the end (MIL-STD-490, 3.2.8.1).

All

in iFiin nil mnr'1'm'nnfnm w »t »^T »MTTT« i nnn H ninrmm *nTTHTWTr>ff^n HUMMIMII »Mf^^h*^^r

*******************************#******#**#*#*# *********** fct-

K + :
*
*
*
*

*
+ .
*
+
5
*

*
*

I!
*
*

MISSION

OF THE

DIRECTORATE OF COMPUTER SYSTEMS ENGINEERING

The Directorate of Computer Systems Engineering
provides ESD with technical services on matters
involving computer technology to help ESD system
development and acquisition offices exploit computer
technology through engineering application to enhance
Air Force systems and to develop guidance to minimise
R&D and investment costs in the application of computer
technology.

The Directorate of Computer Systems Engineering
also supports AFSC to insure the transfer of computer
technology and information throughout the Command,
including maintaining an overview of all matters pertain-
ing to the development, acquisition, and use of computer
resources in systems in all Divisions, Centers and
Laboratories and providing AFSC with a corporate
memory for all problems/solutions and developing
recommendations for RDTfcE programs and changes in
management policies to insure such problems do not
reoccur.

:* :*
I i I • I I I H ' I I't'liMI'I'IIIH'l HIIIIIIIIIIIIUfMlllfHllllimMIMHIII'MMMIII I f »TTT»TTT»*M V ft

>> II fcil l*JO^*+«* 1,1 LUthiUt t^' kkf * • .. ********** t*i,i.< nt^t *++•**

