
AFRL-RH-AZ-TP-2010-0016

Cognitive Model Exploration and Optimization:

A New Challenge for Computational Science

January 2010

Distribution A. Approved for public release, distribution unlimited. (Approval given

by 88 ABW/PA, 88ABW-2010-0321, 26 Jan 2010.)

AIR FORCE RESEARCH LABORATORY

711
TH

 HUMAN PERFORMANCE WING

HUMAN EFFECTIVENESS DIRECTORATE

WARFIGHTER READINESS RESEARCH DIVISION

MESA, AZ 85212

AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
26 JAN 2010 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
Cognitive Model Exploration and Optimization A New Challenge for
Computational Science

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
L. Richard Moore

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
2313AS02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin Systems Management,6030 S Ken,Mesa,AZ,85212

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Parameter space exploration is a common problem tackled on large-scale computational resources. The
most common technique, a full combinatorial mesh, is robust but scales poorly to the computational
demands of complex models with higher dimensional spaces such as those found in the cognitive and
behavioral modeling community. To curtail the computational requirements, I have implemented two
parallelized intelligent search and exploration algorithms, both of which are discussed and compared in
this paper.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings, specifications,
or other data does not license the holder or any other person or corporation; or convey any
rights or permission to manufacture, use, or sell any patented invention that may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information

Center (DTIC) at http://www.dtic.mil.

AFRL-RH-AZ-TP-2010-0016 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//signed// //signed//
KEVIN GLUCK HERBERT H. BELL
Lab Contract Monitor Technical Advisor

//signed//
JOEL BOSWELL, LtCol, USAF
Chief, Warfighter Readiness Research Division
Air Force Research Laboratory

http://www.dtic.mil/

Cognitive Model Exploration and Optimization:

A New Challenge for Computational Science

L. Richard Moore Jr.

Lockheed Martin Systems Management

Air Force Research Laboratory

Warfighter Readiness Research Division

6030 South Kent Street

Mesa, Arizona 85212-6061

Larry.Moore@mesa.afmc.af.mil

Keywords:

adaptive mesh, exploration, searching, parameter space, predictive analytics,

volunteer computing, high performance computing

ABSTRACT: Parameter space exploration is a common problem tackled on large-scale computational resources.

The most common technique, a full combinatorial mesh, is robust but scales poorly to the computational demands of

complex models with higher dimensional spaces such as those found in the cognitive and behavioral modeling

community. To curtail the computational requirements, I have implemented two parallelized intelligent search and

exploration algorithms, both of which are discussed and compared in this paper.

1. Introduction

Research in cognitive science often involves the

generation and analysis of computational cognitive

models to explain various aspects of cognition. Typically

the behavior of these models various across a continuous

parameter space composed of a number of theoretically

motivated parameters, but most commonly we are left to

our own devices to find the right balance of parsimony

and fit within that space.

We are certainly not alone. The modeling community

more generally is already well aware of the challenges

associated with parameter optimization. Furthermore,

there appears to be a growing appreciation of the

parameter space itself—a qualitative understanding of the

space can provide valuable insights regarding a model’s

behavior, optimal parameter ranges, the number of

optima, and the distance(s) from canonical values. It is

this deep understanding of the model’s parameter space

that allows us to find a balance between parsimony,

optimization and generality (Gluck, Stanley, Moore,

Reitter & Halbrügge, 2010). However, this is difficult to

achieve on the computational scale of a workstation, so

we have turned to high performance computing (HPC)

clusters and volunteer computing for large-scale

computational resources.

The majority of applications on the Department of

Defense HPC clusters focus on solving partial differential

equations (Post, 2009). These tend to be lean, fast models

with little noise. While we lack specific data regarding

typical job sizes and durations, HPC maintenance is

regularly scheduled at two-week intervals, so it seems

reasonable to assume that most jobs fit within this

window.

In contrast to HPC applications, volunteer computing

projects tend to involve singularly specific, highly

parallelizable tasks crunching vast quantities of data over

time spans measured in months and years, such as

SETI@home’s analysis of interstellar radio signals and

Folding@home’s studies of protein folding. Both of these

examples run on a common software framework called

the Berkeley Open Infrastructure for Network Computing

(BOINC), which enables volunteers to donate idle time

from their computational resources to projects of their

choice. The volunteer computing application developed

by my colleagues is called MindModeling@Home, and it

too runs on the BOINC infrastructure (Harris, Gluck,

Mielke & Moore, 2009). Projects that work well with

mailto:Larry.Moore@mesa.afmc.af.mil

BOINC tend to be long lasting and can tolerate latencies

measured in days, which happen quite commonly when

volunteer resources are interrupted or retasked.

Cognitive models fit somewhere between these two

extremes. Our models are computationally expensive and

produce stochastic results, quite unlike the partial

differential equations typically solved on HPC clusters.

And unlike most of the BOINC projects, we strive to

analyze many different models with vastly differing

performance characteristics within a calendar year. Our

unique requirements present new methodological

challenges for both HPC and volunteer resources. This

paper describes some of the methodologies we have

explored, the trade space among them, and my latest

research efforts to apply HPC and volunteer resources to

characterize and search parameter spaces.

2. Meshing

In its simplest form, “meshing” involves the construction

of an n-dimensional grid by iterating through each

parameter range by a fixed interval, and capturing the

combinatorics to be used as the basis of model runs. The

resulting simple orthogonal grid seems to suffice for most

of our cognitive models.

Once the mesh is defined, portions can be distributed

amongst computational nodes and executed completely

independently. Meshing has been widely used for many

years (Chen & Taylor, 1998) and it lends itself well to

both HPC and volunteer resources. The complete

independence among computational nodes affords the

ultimate in “embarrassingly parallel”—a term commonly

used to describe computational tasks that can be

efficiently executed with little or no serial operations.

Parallelizability is the key to realizing the full potential of

large-scale computational resources.

Full combinatorial meshes have other advantages, as well.

For example, there is little software overhead in

computing these meshes (at least for our relatively simple

requirements) and the corresponding job files for the HPC

schedulers. For volunteer resources, my colleagues have

developed a web interface specifically for this purpose

with plans to make it available as a community resource

(Harris et al, 2009).

Combinatorial meshes are also flexible. No assumptions

are made about the structure or even the continuity of the

parameter space. The data can be stored in any format

convenient for the modeler to analyze. Analysis is

straightforward, and the results can be visualized or

mined indefinitely, within the limits of precision defined

by the original mesh.

Another point to consider about full combinatorial meshes

is that counting the results files quickly reveals the

success of the jobs; one result should be present for every

parameter combination. While we might shrug off a

failure on our desktop as a 1 in a million fluke, when

running models millions of times this seemingly

innocuous failure rate becomes noticeable, and quick

methods to detect and recover are desirable—in this case

the modeler can simply rerun the specific mesh nodes that

failed to produce results files.

How do full combinatorial meshes fare with cognitive

models? In one research effort, we have developed a

model that performs a Digit Symbol Substitution Task

(DSST) (Moore, Gunzelmann & Gluck, 2008). This is a

simple task where the model is presented with 9 digit /

symbol pairs, and when prompted with a symbol the

model responds with the appropriate digit. This fairly

typical cognitive model has 7 relevant quantitative

parameters and due to stochasticity must be resampled at

least 10 times to establish a reliable measure of central

tendency. With an average run time of 2 minutes, a mesh

with 10 increments per variable would require 271 days to

compute if run continuously on 512 cores. A

computational challenge of this magnitude would

overwhelm any computational resource for quite some

time, and as mentioned previously there is some desire to

analyze more than one model per calendar year.

There are primarily two issues that drive the

computational demands of the DSST. First, the 7

parameters exhibit the “curse of dimensionality”—a

phrase used to describe the exponential requirements of

additional parameters in a space (Bellman, 1961). After

examining the parameter space and understanding the

interrelationships, dimensionality can often be reduced,

but not until after an initial analysis is completed.

The second primary issue contributing to the

computational requirements is the 2-minute run time

required for each node in the parameter space. The DSST

is a learning model—its behavior changes across sessions

as it gains knowledge and experience. Therefore, to

properly compare learning characteristics with human

subjects, the entire learning curve must be constructed at

each parameter combination across all sessions.

Considering that, in this case, the model is performing the

task across 32 sessions (96 simulative minutes), 2 minute

run times seem quite reasonable.

Recognizing that large-scale computational resources can

only take us so far, we have turned our attention to

intelligent exploration and search strategies that run on

both HPC and volunteer resources. Our interests are

specifically focused on approaches that allow searching a

parameter space for optimal values, as well as

characterizing the overall space in general.

3. Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is an intelligent search

strategy that dynamically divides the overall search space

into subcubes of varying size, each of which is capable of

making predictions about measures in its local area of

space to a predefined degree of accuracy (Berger &

Oliger, 1984).

My parallelized implementation of AMR is called Quick,

and it consists of about 11,000 lines of C++ code. The

code has been ported to several HPC clusters, as well as

our BOINC-based MindModeling volunteer computing

system.

Implementing AMR—or any intelligent algorithm, for

that matter—on large-scale computational resources

requires a serious engineering investment. The software

needs to be robust enough to recover from faults

throughout the system—including models under

evaluation-- and it needs to be reliable enough to run for

hundreds or thousands of hours without memory leaks,

crashing, etc.

To initiate an AMR using Quick, the modeler begins by

defining the independent variables, their ranges, and the

increment for each. The increment is identical to the

increment used when constructing a full combinatorial

mesh—although hypercubes produced by an AMR may

span large portions of space, their boundaries are always

constrained to the implicit grid lines defined by the

increment. The hypercubes never overlap, and the sum of

their volumes equals that of the parameter space overall.

The user also specifies the dependent measures that the

model will produce, as well as a threshold value for each.

The threshold is an important consideration, because

ultimately it will constrain how accurate the results will

be.

Once configured, the procedure to execute Quick varies

between HPC and MindModeling. Running software on

HPC resources is accomplished through “job”

submissions. A job is defined through a simple shell

script that describes the requested computational

resources and the software to run. Jobs are submitted to a

dedicated scheduler that executes the software when the

requested resources become available. Quick begins with

a single job that requests a single computer. As the AMR

progresses, Quick will automatically schedule more jobs

to run in parallel as aggressively as possible.

On MindModeling things behave quite differently. In this

case, Quick is automatically executed on the servers at

periodic intervals to determine which points in the

parameter space need to be computed for the AMR. As

volunteers request work, they are provided with these

points to compute, and as they return results and the AMR

progresses new points will be generated by Quick. Thus,

parallelization is achieved at the level of sample

acquisition.

Regardless of the computational context, the AMR

methodology is the same. Quick begins by treating the

entire parameter space as a single large single hypercube.

The process begins by executing the model with

parameter values at each of the corner points. AMR

assumes that measurements are accurate, so we typically

resample the model a fixed number of times and collapse

across the dependent measures to remove stochasticity.

In any n dimensional space, there will be 2
n
 corners to

sample.

In addition to the corner points, the center of the cube is

measured as well. (As with all nodes considered in the

space, the center is constrained to the specified grid, so it

may not reflect the precise mathematical center.) In

addition to measuring the center, Quick will also make a

mathematical prediction of the center, assuming that the

model’s behavior changes smoothly across the parameter

space, yet accounting for twisting that can occur. If the

difference between the measured value and the predicted

value is within the specified threshold for each dependent

measure, then the hypercube is considered smooth and

predictable, and the process is complete. However, if any

of the dependent measures exceed the threshold, the

hypercube is divided into 2
n
 subcubes about the center

point, and each subcube is analyzed using the same

process just described.

When hypercubes split into subcubes, each subcube can

be treated as a parameter space in its own right, albeit

smaller than the true overall space. This is the key to

parallelizing AMR on HPC resources, as the analysis of

each subcube can be scheduled as an independent HPC

job. Aside from the shape of the parameter space, these

new jobs are identical to the original that started the

analysis.

AMR can result in substantial computational savings, yet

the quantitative quality of the results typically remains

high (Best et al, 2009). The quality of the results is

consistent across the space, too, so unmeasured points can

be interpolated and the resulting grid can be mined just as

a full combinatorial mesh. Further, because the space is

mathematically defined, off-grid interpolation can also be

calculated if desired. There is also something to be said

for the reduction in data that needs to be transferred to the

workstation for analysis.

Nevertheless, AMR does have its drawbacks. First, the

computational savings with AMR are unpredictable. This

is also consistent with the Best et al (2009) work, which

showed that AMR efficiency was heavily influence by

threshold and implementation factors that can be difficult

to predict a-priori. Furthermore, the structure of the

space, (which in turn depends on the parameters and their

relationships) and the number of dependent measures can

also heavily influence AMR efficiency. In my experience

with our models, it is not uncommon for an AMR to

compute nearly all the nodes in the space, resulting in

little savings.

Recall that AMR must evaluate the corners and center of

each hypercube before it can move forward. In a

volunteer environment such as MindModeling, this can be

problematic because of the large latencies. At any

moment, a volunteer might turn off their computer, or use

it for something else, and processing is stalled until an

explicit timeout is reached, which is usually at least a day.

So while volunteer networks provide huge computational

power, they are a poor match for the methodological

requirements of AMR.

AMR on HPC suffers for different reasons, but with

similar effects. In this case, parallelization is not usually

the problem, but each parallel analysis requires a new

HPC job to be scheduled. HPC schedulers vary in

reliability and performance—which is in itself

problematic for AMR—but they all share a first-in-first-

out paradigm, so new jobs must wait for resources to be

made available from jobs scheduled prior. A simple 3-

dimensional parameter space with 8 divisions per

parameter could potentially result in millions of job

submissions, each with its own wait time in the job queue.

To test how many submissions are actually made, and

their impact on the overall wall clock time, I ran six

adaptive meshes on the Jaws high performance computing

cluster in Maui using a model of the Psychomotor

Vigilance Task (PVT). The PVT is a simple model that

simulates a button press when a visual stimulus is

presented at random time intervals (Gunzelmann, Gross,

Gluck & Dinges, 2009). Two variants of this model were

tested, and each was run using three different values for

the threshold that controls the likelihood of searching

deeper into the parameter space. All six meshes explored

the same three-parameter space.

The mean number of HPC jobs submitted was 577. The

average run time for each job was 2 minutes, and the

average wait time in the scheduler queue was 5.9 minutes.

One must be cautious when interpreting these results due

to the small sample size and large variation in HPC usage,

but in this case the mean wait time was nearly 3x longer

than the mean run time per job.

Although AMR is more computationally efficient than a

full combinatorial mesh on large-scale resources, it can be

slower in terms of wall clock time. If you recall, our

original motivation for combining intelligent search and

exploration with large-scale computational resources was

to improve analytical capacity with cognitive models, yet

AMR does not consistently deliver.

Despite its shortcomings, AMR has clearly demonstrated

that combining intelligent search with HPC and volunteer

resources is indeed possible. My most recent research re-

imagines optimized search specifically for the context of

cognitive models on parallel computational resources.

4. Regression Trees

Recognizing that parallelization is the key to fully

leveraging HPC and volunteer resources, I have

developed a flexible stochastic search methodology that

allows massive parallelization with virtually no

interdependencies. Furthermore, recognizing the necessity

for qualitatively understanding the parameter space, I

have also developed accompanying visualization software

that operates in real time as the space is constructed. The

visualization software is called Hurricane, while the

intelligent search software is called Cell.

Hurricane and Cell are written in Objective C, and at

5300 lines combined they are about half the size of Quick,

testifying to their relative simplicity. They were

developed on Mac OS X, and Cell specifically has been

ported to Linux to support HPC and MindModeling

integration. At this time Cell has been successfully ported

and tested on four different HPC clusters, with

MindModeling integration underway.

As was the case with Quick, Cell and Hurricane begin

with a user-specified configuration including independent

variables, their ranges and increment, and the dependent

measures. In contrast to the AMR configuration for

Quick, no threshold is required.

Like all software run on the HPC, Cell is executed

through a job submission. However, because Cell is

immediately parallelizable any number of job submissions

can be made during startup. Typically I limit myself to

128 jobs, mostly to avoid complaints from other HPC

users.

On MindModeling, a single instance of Cell runs on the

server for the duration of a model run. This “listener”

process analyzes incoming data, and upon request,

generates lists of points that are distributed to volunteer

resources as they request work. Like Quick, Cell

achieves parallelization on MindModeling by distributing

model runs to volunteer resources.

Cell can analyze the parameter space in either of two

ways: exploration or searching. Both approaches divide

the space into a set of hypercubes that are geometrically

analogous to AMR. However, rather than sampling just

corners and the center, Cell samples stochastically within

the hypercube space and calculates the best fitting

hyperplane for each dependent measure—an analytical

approach sometimes referred to as a regression tree

(Alexander & Grimshaw, 1996).

Regardless of whether Cell is searching or exploring, it

tries to maintain a consistent sample density among the

hypercubes, regardless of size. This means that areas of

the space with higher sampling will have greater numbers

of hypercube divisions. The minimum number of

samples targeted for each hypercube is based on the work

of Knofcyznski and Mundfrom (2008), which suggests a

linear relationship between the number of samples

required to make a good regression prediction and the

dimensionality of the space. It is not until a hypercube

contains 2x this amount does it split along its longest

dimension. Within the confines of a single hypercube

sampling is uniform, so the split should roughly divide the

samples equally between both subcubes.

The key distinction between Cell’s two analytical

approaches lies in the way they construct their sampling

distribution. The exploration approach performs a

characterization of the space—in this case the sampling

distribution is positively correlated with the residual

variation in each hypercube. Unexplained variation is

presumably the result of noise or a poor regression fit, and

in either case it is prudent to sample more, and potentially

to subdivide more, to resolve the ambiguity. In this

mode, the exploration process has no definitive end and

runs as long as the modeler desires.

In truth, I rarely use exploration mode because our work

typically involves parameter optimization as well as

characterization, and search mode provides both. In this

case, the user supplies additional configuration

information consisting of dependent measure “target

goals” to search for. In terms of cognitive modeling, this

typically takes the form of human data. When supplied,

the sampling distribution is skewed towards hypercubes

with the lowest deviation from the human data (or

whatever target goals are supplied), and so the space

winds up being more intricately constructed in those

areas. The search is considered complete when the best

fitting hypercube cannot divide any more based on the

constraining grid.

With data in hand (or even while it is being obtained in

the case of running on local resources), Hurricane can be

used to visualize the results, as is shown in Figure 1.

Hurricane conducts the same analysis that Cell does, and

produces the regression tree in the form of a 3D graph.

Any two independent measures can be selected for the x

and z-axis, and any dependent measure can be selected for

the y-axis (vertical). The remaining independent

measures can be manipulated in real time via sliders,

which provides a convenient mechanism to grasp an

otherwise esoteric hyperdimensional space. Hurricane

can also scan the space for optimal parameter values or

make predictions, which can then be imported into more

generalized analytical tools like R or SPSS.

Figure 1. Hurricane visualization of a PVT parameter

space. The vertical axis represents RMSD between human

measures and the model, while the other two axes

represent independent variables. A third independent

variable can be manipulated with the slider. Best fitting

parameter values are located within the trench area, which

received more samples and therefore is more finely

subdivided.

Searches conducted with Cell provide large computational

advantages over AMR and full combinatorial meshes.

This is primarily because vast sections of the space—

those areas that are distant from target areas of interest—

are only lightly sampled and mostly ignored once deemed

suboptimal. As an example, I ran the PVT model through

a full combinatorial mesh, an AMR with Quick, and a

regression tree analysis with Cell. Identical grid slicing

was used for all three, and they were all run on the same

Mana HPC cluster in Maui.

Figure 2 shows the number of model runs required to

complete an analysis of the parameter space for each

methodology. In this example, the AMR—although it

was configured with a liberal 5% threshold—wound up

sampling most of the space anyway, while the Cell

required two orders of magnitude fewer model runs.

Figure 2. Comparison of computational requirements for

each of the three methodologies discussed.

The amount of time required to complete the analyses is

shown in Figure 3. Note that the AMR took 4.2 times

longer than the full combinatorial mesh, which is almost

exactly what would be expected if queue wait times were

3x the run time as discussed above. Because Cell

parallelizes immediately upon startup and does not auto-

schedule new jobs like Quick, most of the scheduling

queue delays are avoided. For more complex searches

that fail to complete within the scheduled amount time, I

can simply reschedule more jobs, and each Cell instance

will read the samples acquired previously from disk, and

pick up where the older Cell instances left off.

Figure 3. Comparison of wall clock time required to

analyze the PVT parameter space using the three

methodologies.

Speed and efficiency are important, but they are only

useful if the resulting analysis is viable. Figure 4

compares the optimized parameter predictions from each

of the three methodologies. To produce this table, I reran

the model at the predicted optimal parameter values and

computed an RMSD against the human data for each

methodology. The model was run 100x to reduce noise—

the same amount used during the AMR and full

combinatorial runs. As expected, the full combinatorial

mesh produced the best results. It was surprising to see

that the regression tree methodology edged out AMR, but

this is likely caused by variation in the model’s

performance.

Figure 4. RMSD between best fitting parameter

predictions and human data.

Many of the issues challenging parallelized AMR

disappear in the context of regression tree exploration and

searching. This is because Cell does not base decisions

upon the outcome of specific, accurate, grid-constrained

samples. Rather, the decisions are based on statistical

analysis of a set of distributed, stochastic samples. As a

result, any number of Cell instances can be started at once

and run in parallel, each making its own decision about

how to divide the space and where to sample.

Although the integration remains a work in progress, I

expect that Cell will work well with volunteer resources.

In this case AMR was stalled waiting for specific points

to complete, but Cell, with its semi-random sampling

strategy, can always generate work for volunteers.

However, we will need to be careful to limit the number

of outstanding points being computed at any given time.

The end result of too many outstanding samples could be

hundreds or thousands more samples in a hypercube than

is really necessary to make a search decision. The extra

data would still be useful for visualization purposes, but it

would reduce the efficiency of searching.

In my ongoing efforts to combine intelligent search and

exploration with large-scale computational resources,

Hurricane and Cell represent best results to date.

Nevertheless, they present their own new challenges. For

example, the confidence of predictions based on

discontinuous regression planes is inconsistent, and

highly dependent upon the distance from the center of the

hypercube. Predictions across the boundary of two

discontinuous hyperplanes can be disturbingly disparate

compared to neighboring predictions. This not only

makes visualization less appealing, but data mining

outside of specified search goals can be problematic.

From an implementation perspective, Cell is more

computationally intensive than AMR and full

combinatorial meshes. Every incoming sample requires a

search to determine its encompassing hypercube, and the

introduction of new data into the hypercube will require

the calculation of new regressions. To maintain pace with

the incoming data stream, results must be stored in RAM

rather than disk-based storage, which limits scalability.

The number of samples that can be maintained in a fixed

amount of RAM depends upon the amount of memory

required to store a sample, which includes values for the

independent measures, dependent measures, and search

targets specified.

Even with in-memory data management, however, the

number of regressions required can still be

computationally challenging. For example, the DSST

model mentioned earlier captures 9 measures across 32

sessions, amounting to 218 total independent measures,

each maintaining its own regression tree. Hurricane

requires about 5 hours to read in the data from this model

and reconstruct the regression trees for visualization,

which seems excessive, to say the least.

Despite these limitations, the regression trees seem to be

another step in the right direction. Using Cell, our

cognitive models scale well on HPC resources from both

computational and wall clock time perspectives. Some of

our faster cognitive models, in fact, can now be analyzed

in a few hours on local resources, which avails large-

scale computational resources for even more complex

models. Additionally, Hurricane’s multidimensional

visualization capability has become an indispensible part

of my normal workflow.

4. Discussion

In a broad sense, the engineering problem being

addressed is one of computational performance and

efficiency. Large-scale computational resources take us

part of the way, and the remaining effort is incumbent

upon us, as the resource users.

In the world of software engineering, there is a basic rule

to optimization: focus on the innermost loop. In the

context of this discussion, we have a parameter

exploration / search methodology exercising a cognitive

model, and it is the model itself that constitutes the bulk

of processing in the innermost loop.

The model and its implementation are the embodiment of

a theory, however, and this can severely constrain

optimization options. This is certainly the case for my

colleagues and I, where our models are based on a

publicly available cognitive architecture (ACT-R;

Anderson, 2007) that is shared among a relatively large

scientific community. In our case, we routinely share

models to combine and test different cognitive

moderators, and it is important to maintain a consistent

architecture across the community.

Therefore, we optimize our inner loop not by changing

code, but by reducing the number of model runs as much

as possible. AMR does this well and is used successfully

in some contexts, but it appears, however, that the full

utility of AMR does not necessarily transfer across

domains and contexts. As cognitive and behavioral

modelers begin to leverage large-scale computational

resources, we must also develop suitable parallel search

and exploration algorithms for our models.

This paper described our recent efforts using regression

tree predictions to drive sampling distributions, and

ultimately hypercube division. Like AMR, the technique

reduces computational demands through a reduction in

model runs, but the nature of the approach seems to be

more agreeable to parallelization.

Regression trees, however, are not the only option. The

dynamics of Cell are driven by two governing principles:

1) Sample more in areas of interest and 2) subdivide more

in areas of higher density. The regression trees are used

to determine the areas of interest, but other predictive

analytical techniques can be substituted without

compromising the fundamental approach. Multivariate

adaptive regression splines (MARS) are one interesting

possibility (Friedman, 1991).

However, models like the DSST have demonstrated that

the computational demands of the analytical technique are

becoming a serious consideration. While I predict that

MARS will be more efficient than regression trees in

terms of reducing the required number of model runs, I

also expect that the analytical processing requirements

will be significantly more demanding. It seems a trade

space is becoming apparent between the computational

demands of the model versus the computational demands

of the search / exploration algorithm. For us this is not

necessarily a bad trade space, because it is much less

problematic to optimize a methodology as opposed to a

theory, and there remain many opportunities to do so.

5. Acknowledgements

The views expressed in this paper are those of the authors

and do not reflect the official policy or position of the

Department of Defense, the U.S. Government, or

Lockheed Martin Corporation. This research was

sponsored by grants 07HE01COR and 10RH04COR from

the Air Force Office of Scientific Research.

I would like to thank Kevin Gluck and Glenn

Gunzelmann for reviews of earlier drafts of this paper, as

well as the Performance and Learning Models team and

Adaptive Cognitive Systems for their influences and

indulgence in supporting this work.

6. References

Alexander, W. P., & Grimshaw, S. D. (1996). Treed

Regression. Journal of Computational and

Graphical Statistics. 5, 156-175.

Anderson, J. R. (2007). How can the human mind

occur in the physical universe? Oxford

University Press, Oxford, UK.

Bellman, R. E. (1961). Adaptive Control Processes.

Princeton: Princeton University Press.

Berger, M., & Oliger, J. (1984). Adaptive mesh

refinement for hyperbolic partial differential

equations. Journal of Computational Physics,

53, 484-512.

Best, B. J., Gerhart, N., Furjanic, C., Fincham, J.,

Gluck, K. A., Gunzelmann, G., & Krusmark,

M. (2009). Adaptive mesh refinement for

efficient exploration of cognitive architectures

and cognitive models. In Proceedings of the

Ninth International Conference on Cognitive

Modeling, Manchester, UK.

Chen J., Taylor V. (1998). Mesh Partitioning for

Distributed Systems. In Seventh IEEE

International Symposium on High Performance

Distributed Computing, 292-300.

Friedman, J. (1991). Multivariate adaptive

regression splines. The Annals of Statistics, 19,

1-141.

Gluck, K. A., Stanley, C. T., Moore, L. R., Reitter,

D., Halbrügge, M. (2010). Exploration for

Understanding in Model Comparisons. Under

review, Journal of Artificial General

Intelligence.

Gunzelmann, G., Gross, J. B., Gluck, K. A., &

Dinges, D. F. (2009). Sleep deprivation and

sustained attention performance: Integrating

mathematical and cognitive modeling.

Cognitive Science, 33(5), 880-910.

 Harris, J., Gluck, K. A., Mielke, T., & Moore, L. R.

(2009). MindModeling@Home … and

Anywhere Else You Have Idle Processors

[Abstract]. In A. Howes, D. Peebles, & R.

Cooper (Eds.) Proceedings of the Ninth

International Conference on Cognitive

Modeling. Manchester, United Kingdom:

University of Manchester.

Knofcyznski, G. T., & Mundfrom, D. (2008).

Sample sizes when using multiple linear

regression for prediction. Educational and

Psychological Measurement. 68, 431-442.

Moore, L. R., Gunzelmann, G., & Gluck, K. A.

(2008). Evaluating mechanisms of fatigue using

a digit symbol substitution task [Abstract]. In

N. Taatgen, H. van Rijn, L. Schomaker, & J.

Nerbonne (Eds.), Proceedings of the Thirty-

First Annual Meeting of the Cognitive Science

Society, Austin, TX: Cognitive Science Society.

Post, D. (2009). The Promise and Challenges for

Next Generation of Computers [PowerPoint

slides]. Retrieved from

http://www.cc.gatech.edu/~bader/AFRL-GT-

Workshop2009/AFRL-GT-Post.pdf

Author Biography

L RICHARD MOORE JR is a Research Engineer with

Lockheed Martin Systems Management at the Air Force

Research Laboratory, Warfighter Readiness Research

Division in Mesa AZ. He completed his B.S.E. in

Electrical Engineering in 1992, with an M.S. in Applied

Psychology in 2008, both from Arizona State University.

