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ABSTRACT:  Parameter space exploration is a common problem tackled on large-scale computational resources.  

The most common technique, a full combinatorial mesh, is robust but scales poorly to the computational demands of 

complex models with higher dimensional spaces such as those found in the cognitive and behavioral modeling 

community.  To curtail the computational requirements, I have implemented two parallelized intelligent search and 

exploration algorithms, both of which are discussed and compared in this paper. 

 

 

1. Introduction 
 

Research in cognitive science often involves the 

generation and analysis of computational cognitive 

models to explain various aspects of cognition.  Typically 

the behavior of these models various across a continuous 

parameter space composed of a number of theoretically 

motivated parameters, but most commonly we are left to 

our own devices to find the right balance of parsimony 

and fit within that space.  

 

We are certainly not alone. The modeling community 

more generally is already well aware of the challenges 

associated with parameter optimization.  Furthermore, 

there appears to be a growing appreciation of the 

parameter space itself—a qualitative understanding of the 

space can provide valuable insights regarding a model’s 

behavior, optimal parameter ranges, the number of 

optima, and the distance(s) from canonical values. It is 

this deep understanding of the model’s parameter space 

that allows us to find a balance between parsimony, 

optimization and generality (Gluck, Stanley, Moore, 

Reitter & Halbrügge, 2010). However, this is difficult to 

achieve on the computational scale of a workstation, so 

we have turned to high performance computing (HPC) 

clusters and volunteer computing for large-scale 

computational resources.   

 

The majority of applications on the Department of 

Defense HPC clusters focus on solving partial differential 

equations (Post, 2009).  These tend to be lean, fast models 

with little noise.  While we lack specific data regarding 

typical job sizes and durations, HPC maintenance is 

regularly scheduled at two-week intervals, so it seems 

reasonable to assume that most jobs fit within this 

window. 

 

In contrast to HPC applications, volunteer computing 

projects tend to involve singularly specific, highly 

parallelizable tasks crunching vast quantities of data over 

time spans measured in months and years, such as 

SETI@home’s analysis of interstellar radio signals and 

Folding@home’s studies of protein folding.  Both of these 

examples run on a common software framework called 

the Berkeley Open Infrastructure for Network Computing 

(BOINC), which enables volunteers to donate idle time 

from their computational resources to projects of their 

choice.  The volunteer computing application developed 

by my colleagues is called MindModeling@Home, and it 

too runs on the BOINC infrastructure (Harris, Gluck, 

Mielke & Moore, 2009).  Projects that work well with 
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BOINC tend to be long lasting and can tolerate latencies 

measured in days, which happen quite commonly when 

volunteer resources are interrupted or retasked.   

 

Cognitive models fit somewhere between these two 

extremes.  Our models are computationally expensive and 

produce stochastic results, quite unlike the partial 

differential equations typically solved on HPC clusters.  

And unlike most of the BOINC projects, we strive to 

analyze many different models with vastly differing 

performance characteristics within a calendar year.  Our 

unique requirements present new methodological 

challenges for both HPC and volunteer resources.  This 

paper describes some of the methodologies we have 

explored, the trade space among them, and my latest 

research efforts to apply HPC and volunteer resources to 

characterize and search parameter spaces. 

 

2. Meshing 
 

In its simplest form, “meshing” involves the construction 

of an n-dimensional grid by iterating through each 

parameter range by a fixed interval, and capturing the 

combinatorics to be used as the basis of model runs.  The 

resulting simple orthogonal grid seems to suffice for most 

of our cognitive models.  

 

Once the mesh is defined, portions can be distributed 

amongst computational nodes and executed completely 

independently.  Meshing has been widely used for many 

years (Chen & Taylor, 1998) and it lends itself well to 

both HPC and volunteer resources.  The complete 

independence among computational nodes affords the 

ultimate in “embarrassingly parallel”—a term commonly 

used to describe computational tasks that can be 

efficiently executed with little or no serial operations.  

Parallelizability is the key to realizing the full potential of 

large-scale computational resources. 

 

Full combinatorial meshes have other advantages, as well.  

For example, there is little software overhead in 

computing these meshes (at least for our relatively simple 

requirements) and the corresponding job files for the HPC 

schedulers.  For volunteer resources, my colleagues have 

developed a web interface specifically for this purpose 

with plans to make it available as a community resource 

(Harris et al, 2009). 

 

Combinatorial meshes are also flexible.  No assumptions 

are made about the structure or even the continuity of the 

parameter space.  The data can be stored in any format 

convenient for the modeler to analyze.  Analysis is 

straightforward, and the results can be visualized or 

mined indefinitely, within the limits of precision defined 

by the original mesh. 

 

Another point to consider about full combinatorial meshes 

is that counting the results files quickly reveals the 

success of the jobs; one result should be present for every 

parameter combination.  While we might shrug off a 

failure on our desktop as a 1 in a million fluke, when 

running models millions of times this seemingly 

innocuous failure rate becomes noticeable, and quick 

methods to detect and recover are desirable—in this case 

the modeler can simply rerun the specific mesh nodes that 

failed to produce results files. 

 

How do full combinatorial meshes fare with cognitive 

models?  In one research effort, we have developed a 

model that performs a Digit Symbol Substitution Task 

(DSST) (Moore, Gunzelmann & Gluck, 2008).  This is a 

simple task where the model is presented with 9 digit / 

symbol pairs, and when prompted with a symbol the 

model responds with the appropriate digit.  This fairly 

typical cognitive model has 7 relevant quantitative 

parameters and due to stochasticity must be resampled at 

least 10 times to establish a reliable measure of central 

tendency.  With an average run time of 2 minutes, a mesh 

with 10 increments per variable would require 271 days to 

compute if run continuously on 512 cores.  A 

computational challenge of this magnitude would 

overwhelm any computational resource for quite some 

time, and as mentioned previously there is some desire to 

analyze more than one model per calendar year. 

 

There are primarily two issues that drive the 

computational demands of the DSST.  First, the 7 

parameters exhibit the “curse of dimensionality”—a 

phrase used to describe the exponential requirements of 

additional parameters in a space (Bellman, 1961).  After 

examining the parameter space and understanding the 

interrelationships, dimensionality can often be reduced, 

but not until after an initial analysis is completed. 

 

The second primary issue contributing to the 

computational requirements is the 2-minute run time 

required for each node in the parameter space.  The DSST 

is a learning model—its behavior changes across sessions 

as it gains knowledge and experience.  Therefore, to 

properly compare learning characteristics with human 

subjects, the entire learning curve must be constructed at 

each parameter combination across all sessions.  

Considering that, in this case, the model is performing the 

task across 32 sessions (96 simulative minutes), 2 minute 

run times seem quite reasonable. 

 

Recognizing that large-scale computational resources can 

only take us so far, we have turned our attention to 

intelligent exploration and search strategies that run on 

both HPC and volunteer resources.  Our interests are 

specifically focused on approaches that allow searching a 



parameter space for optimal values, as well as 

characterizing the overall space in general. 

 

3. Adaptive Mesh Refinement 
 

Adaptive mesh refinement (AMR) is an intelligent search 

strategy that dynamically divides the overall search space 

into subcubes of varying size, each of which is capable of 

making predictions about measures in its local area of 

space to a predefined degree of accuracy (Berger & 

Oliger, 1984).   

 

My parallelized implementation of AMR is called Quick, 

and it consists of about 11,000 lines of C++ code.  The 

code has been ported to several HPC clusters, as well as 

our BOINC-based MindModeling volunteer computing 

system. 

 

Implementing AMR—or any intelligent algorithm, for 

that matter—on large-scale computational resources 

requires a serious engineering investment.  The software 

needs to be robust enough to recover from faults 

throughout the system—including models under 

evaluation-- and it needs to be reliable enough to run for 

hundreds or thousands of hours without memory leaks, 

crashing, etc.   

 

To initiate an AMR using Quick, the modeler begins by 

defining the independent variables, their ranges, and the 

increment for each.  The increment is identical to the 

increment used when constructing a full combinatorial 

mesh—although hypercubes produced by an AMR may 

span large portions of space, their boundaries are always 

constrained to the implicit grid lines defined by the 

increment.  The hypercubes never overlap, and the sum of 

their volumes equals that of the parameter space overall. 

 

The user also specifies the dependent measures that the 

model will produce, as well as a threshold value for each.  

The threshold is an important consideration, because 

ultimately it will constrain how accurate the results will 

be.  

 

Once configured, the procedure to execute Quick varies 

between HPC and MindModeling.  Running software on 

HPC resources is accomplished through “job” 

submissions.  A job is defined through a simple shell 

script that describes the requested computational 

resources and the software to run.  Jobs are submitted to a 

dedicated scheduler that executes the software when the 

requested resources become available.  Quick begins with 

a single job that requests a single computer.  As the AMR 

progresses, Quick will automatically schedule more jobs 

to run in parallel as aggressively as possible. 

 

On MindModeling things behave quite differently.  In this 

case, Quick is automatically executed on the servers at 

periodic intervals to determine which points in the 

parameter space need to be computed for the AMR.  As 

volunteers request work, they are provided with these 

points to compute, and as they return results and the AMR 

progresses new points will be generated by Quick.  Thus, 

parallelization is achieved at the level of sample 

acquisition. 

 

Regardless of the computational context, the AMR 

methodology is the same.  Quick begins by treating the 

entire parameter space as a single large single hypercube.  

The process begins by executing the model with 

parameter values at each of the corner points.  AMR 

assumes that measurements are accurate, so we typically 

resample the model a fixed number of times and collapse 

across the dependent measures to remove stochasticity.  

In any n dimensional space, there will be 2
n
 corners to 

sample. 

 

In addition to the corner points, the center of the cube is 

measured as well.  (As with all nodes considered in the 

space, the center is constrained to the specified grid, so it 

may not reflect the precise mathematical center.)  In 

addition to measuring the center, Quick will also make a 

mathematical prediction of the center, assuming that the 

model’s behavior changes smoothly across the parameter 

space, yet accounting for twisting that can occur.  If the 

difference between the measured value and the predicted 

value is within the specified threshold for each dependent 

measure, then the hypercube is considered smooth and 

predictable, and the process is complete.  However, if any 

of the dependent measures exceed the threshold, the 

hypercube is divided into 2
n
 subcubes about the center 

point, and each subcube is analyzed using the same 

process just described.   

 

When hypercubes split into subcubes, each subcube can 

be treated as a parameter space in its own right, albeit 

smaller than the true overall space.  This is the key to 

parallelizing AMR on HPC resources, as the analysis of 

each subcube can be scheduled as an independent HPC 

job.   Aside from the shape of the parameter space, these 

new jobs are identical to the original that started the 

analysis. 

  

AMR can result in substantial computational savings, yet 

the quantitative quality of the results typically remains 

high (Best et al, 2009).  The quality of the results is 

consistent across the space, too, so unmeasured points can 

be interpolated and the resulting grid can be mined just as 

a full combinatorial mesh.  Further, because the space is 

mathematically defined, off-grid interpolation can also be 

calculated if desired.  There is also something to be said 



for the reduction in data that needs to be transferred to the 

workstation for analysis.   

 

Nevertheless, AMR does have its drawbacks.  First, the 

computational savings with AMR are unpredictable.  This 

is also consistent with the Best et al (2009) work, which 

showed that AMR efficiency was heavily influence by 

threshold and implementation factors that can be difficult 

to predict a-priori.  Furthermore, the structure of the 

space, (which in turn depends on the parameters and their 

relationships) and the number of dependent measures can 

also heavily influence AMR efficiency.  In my experience 

with our models, it is not uncommon for an AMR to 

compute nearly all the nodes in the space, resulting in 

little savings. 

 

Recall that AMR must evaluate the corners and center of 

each hypercube before it can move forward.  In a 

volunteer environment such as MindModeling, this can be 

problematic because of the large latencies.  At any 

moment, a volunteer might turn off their computer, or use 

it for something else, and processing is stalled until an 

explicit timeout is reached, which is usually at least a day.  

So while volunteer networks provide huge computational 

power, they are a poor match for the methodological 

requirements of AMR. 

 

AMR on HPC suffers for different reasons, but with 

similar effects.  In this case, parallelization is not usually 

the problem, but each parallel analysis requires a new 

HPC job to be scheduled.  HPC schedulers vary in 

reliability and performance—which is in itself 

problematic for AMR—but they all share a first-in-first-

out paradigm, so new jobs must wait for resources to be 

made available from jobs scheduled prior.  A simple 3-

dimensional parameter space with 8 divisions per 

parameter could potentially result in millions of job 

submissions, each with its own wait time in the job queue.  

 

To test how many submissions are actually made, and 

their impact on the overall wall clock time, I ran six 

adaptive meshes on the Jaws high performance computing 

cluster in Maui using a model of the Psychomotor 

Vigilance Task (PVT).  The PVT is a simple model that 

simulates a button press when a visual stimulus is 

presented at random time intervals (Gunzelmann, Gross, 

Gluck & Dinges, 2009).  Two variants of this model were 

tested, and each was run using three different values for 

the threshold that controls the likelihood of searching 

deeper into the parameter space.  All six meshes explored 

the same three-parameter space.   

 

The mean number of HPC jobs submitted was 577.  The 

average run time for each job was 2 minutes, and the 

average wait time in the scheduler queue was 5.9 minutes.  

One must be cautious when interpreting these results due 

to the small sample size and large variation in HPC usage, 

but in this case the mean wait time was nearly 3x longer 

than the mean run time per job. 

 

Although AMR is more computationally efficient than a 

full combinatorial mesh on large-scale resources, it can be 

slower in terms of wall clock time.  If you recall, our 

original motivation for combining intelligent search and 

exploration with large-scale computational resources was 

to improve analytical capacity with cognitive models, yet 

AMR does not consistently deliver. 

 

Despite its shortcomings, AMR has clearly demonstrated 

that combining intelligent search with HPC and volunteer 

resources is indeed possible.  My most recent research re-

imagines optimized search specifically for the context of 

cognitive models on parallel computational resources. 

 

4. Regression Trees 
 

Recognizing that parallelization is the key to fully 

leveraging HPC and volunteer resources, I have 

developed a flexible stochastic search methodology that 

allows massive parallelization with virtually no 

interdependencies. Furthermore, recognizing the necessity 

for qualitatively understanding the parameter space, I 

have also developed accompanying visualization software 

that operates in real time as the space is constructed.  The 

visualization software is called Hurricane, while the 

intelligent search software is called Cell. 

 

Hurricane and Cell are written in Objective C, and at 

5300 lines combined they are about half the size of Quick, 

testifying to their relative simplicity.  They were 

developed on Mac OS X, and Cell specifically has been 

ported to Linux to support HPC and MindModeling 

integration.  At this time Cell has been successfully ported 

and tested on four different HPC clusters, with 

MindModeling integration underway. 

 

As was the case with Quick, Cell and Hurricane begin 

with a user-specified configuration including independent 

variables, their ranges and increment, and the dependent 

measures.  In contrast to the AMR configuration for 

Quick, no threshold is required. 

 

Like all software run on the HPC, Cell is executed 

through a job submission. However, because Cell is 

immediately parallelizable any number of job submissions 

can be made during startup.  Typically I limit myself to 

128 jobs, mostly to avoid complaints from other HPC 

users.   

 

On MindModeling, a single instance of Cell runs on the 

server for the duration of a model run.  This “listener” 

process analyzes incoming data, and upon request, 



generates lists of points that are distributed to volunteer 

resources as they request work.  Like Quick, Cell 

achieves parallelization on MindModeling by distributing 

model runs to volunteer resources. 

 

Cell can analyze the parameter space in either of two 

ways: exploration or searching.  Both approaches divide 

the space into a set of hypercubes that are geometrically 

analogous to AMR. However, rather than sampling just 

corners and the center, Cell samples stochastically within 

the hypercube space and calculates the best fitting 

hyperplane for each dependent measure—an analytical 

approach sometimes referred to as a regression tree 

(Alexander & Grimshaw, 1996). 

 

Regardless of whether Cell is searching or exploring, it 

tries to maintain a consistent sample density among the 

hypercubes, regardless of size.  This means that areas of 

the space with higher sampling will have greater numbers 

of hypercube divisions.  The minimum number of 

samples targeted for each hypercube is based on the work 

of Knofcyznski and Mundfrom (2008), which suggests a 

linear relationship between the number of samples 

required to make a good regression prediction and the 

dimensionality of the space.  It is not until a hypercube 

contains 2x this amount does it split along its longest 

dimension.  Within the confines of a single hypercube 

sampling is uniform, so the split should roughly divide the 

samples equally between both subcubes. 

 

The key distinction between Cell’s two analytical 

approaches lies in the way they construct their sampling 

distribution.  The exploration approach performs a 

characterization of the space—in this case the sampling 

distribution is positively correlated with the residual 

variation in each hypercube.  Unexplained variation is 

presumably the result of noise or a poor regression fit, and 

in either case it is prudent to sample more, and potentially 

to subdivide more, to resolve the ambiguity.  In this 

mode, the exploration process has no definitive end and 

runs as long as the modeler desires. 

 

In truth, I rarely use exploration mode because our work 

typically involves parameter optimization as well as 

characterization, and search mode provides both.  In this 

case, the user supplies additional configuration 

information consisting of dependent measure “target 

goals” to search for.  In terms of cognitive modeling, this 

typically takes the form of human data.  When supplied, 

the sampling distribution is skewed towards hypercubes 

with the lowest deviation from the human data (or 

whatever target goals are supplied), and so the space 

winds up being more intricately constructed in those 

areas.  The search is considered complete when the best 

fitting hypercube cannot divide any more based on the 

constraining grid.  

 

With data in hand (or even while it is being obtained in 

the case of running on local resources), Hurricane can be 

used to visualize the results, as is shown in Figure 1.  

Hurricane conducts the same analysis that Cell does, and 

produces the regression tree in the form of a 3D graph.  

Any two independent measures can be selected for the x 

and z-axis, and any dependent measure can be selected for 

the y-axis (vertical).  The remaining independent 

measures can be manipulated in real time via sliders, 

which provides a convenient mechanism to grasp an 

otherwise esoteric hyperdimensional space.  Hurricane 

can also scan the space for optimal parameter values or 

make predictions, which can then be imported into more 

generalized analytical tools like R or SPSS.  

 

 
 

Figure 1. Hurricane visualization of a PVT parameter 

space. The vertical axis represents RMSD between human 

measures and the model, while the other two axes 

represent independent variables.  A third independent 

variable can be manipulated with the slider. Best fitting 

parameter values are located within the trench area, which 

received more samples and therefore is more finely 

subdivided.   

 

 

Searches conducted with Cell provide large computational 

advantages over AMR and full combinatorial meshes.  

This is primarily because vast sections of the space—

those areas that are distant from target areas of interest—

are only lightly sampled and mostly ignored once deemed 

suboptimal.  As an example, I ran the PVT model through 

a full combinatorial mesh, an AMR with Quick, and a 

regression tree analysis with Cell.  Identical grid slicing 

was used for all three, and they were all run on the same 

Mana HPC cluster in Maui.  

 



Figure 2 shows the number of model runs required to 

complete an analysis of the parameter space for each 

methodology.  In this example, the AMR—although it 

was configured with a liberal 5% threshold—wound up 

sampling most of the space anyway, while the Cell 

required two orders of magnitude fewer model runs. 

 

 
Figure 2. Comparison of computational requirements for 

each of the three methodologies discussed. 

 

The amount of time required to complete the analyses is 

shown in Figure 3.  Note that the AMR took 4.2 times 

longer than the full combinatorial mesh, which is almost 

exactly what would be expected if queue wait times were 

3x the run time as discussed above. Because Cell 

parallelizes immediately upon startup and does not auto-

schedule new jobs like Quick, most of the scheduling 

queue delays are avoided.  For more complex searches 

that fail to complete within the scheduled amount time, I 

can simply reschedule more jobs, and each Cell instance 

will read the samples acquired previously from disk, and 

pick up where the older Cell instances left off.   

 

 
Figure 3. Comparison of wall clock time required to 

analyze the PVT parameter space using the three 

methodologies. 

 

Speed and efficiency are important, but they are only 

useful if the resulting analysis is viable.  Figure 4 

compares the optimized parameter predictions from each 

of the three methodologies.  To produce this table, I reran 

the model at the predicted optimal parameter values and 

computed an RMSD against the human data for each 

methodology.  The model was run 100x to reduce noise—

the same amount used during the AMR and full 

combinatorial runs.  As expected, the full combinatorial 

mesh produced the best results.  It was surprising to see 

that the regression tree methodology edged out AMR, but 

this is likely caused by variation in the model’s 

performance. 

 

 
Figure 4. RMSD between best fitting parameter 

predictions and human data. 

 

Many of the issues challenging parallelized AMR 

disappear in the context of regression tree exploration and 

searching.  This is because Cell does not base decisions 

upon the outcome of specific, accurate, grid-constrained 

samples.  Rather, the decisions are based on statistical 

analysis of a set of distributed, stochastic samples.  As a 

result, any number of Cell instances can be started at once 

and run in parallel, each making its own decision about 

how to divide the space and where to sample.   

 

Although the integration remains a work in progress, I 

expect that Cell will work well with volunteer resources.  

In this case AMR was stalled waiting for specific points 

to complete, but Cell, with its semi-random sampling 

strategy, can always generate work for volunteers. 

However, we will need to be careful to limit the number 

of outstanding points being computed at any given time. 

The end result of too many outstanding samples could be 

hundreds or thousands more samples in a hypercube than 

is really necessary to make a search decision.   The extra 

data would still be useful for visualization purposes, but it 

would reduce the efficiency of searching. 

 

In my ongoing efforts to combine intelligent search and 

exploration with large-scale computational resources,  

Hurricane and Cell represent best results to date.  

Nevertheless, they present their own new challenges.  For 

example, the confidence of predictions based on 

discontinuous regression planes is inconsistent, and 

highly dependent upon the distance from the center of the 

hypercube. Predictions across the boundary of two 



discontinuous hyperplanes can be disturbingly disparate 

compared to neighboring predictions.  This not only 

makes visualization less appealing, but data mining 

outside of specified search goals can be problematic. 

 

From an implementation perspective, Cell is more 

computationally intensive than AMR and full 

combinatorial meshes.  Every incoming sample requires a 

search to determine its encompassing hypercube, and the 

introduction of new data into the hypercube will require 

the calculation of new regressions.  To maintain pace with 

the incoming data stream, results must be stored in RAM 

rather than disk-based storage, which limits scalability.  

The number of samples that can be maintained in a fixed 

amount of RAM depends upon the amount of memory 

required to store a sample, which includes values for the 

independent measures, dependent measures, and search 

targets specified. 

 

Even with in-memory data management, however, the 

number of regressions required can still be 

computationally challenging.  For example, the DSST 

model mentioned earlier captures 9 measures across 32 

sessions, amounting to 218 total independent measures, 

each maintaining its own regression tree.  Hurricane 

requires about 5 hours to read in the data from this model 

and reconstruct the regression trees for visualization, 

which seems excessive, to say the least. 

 

Despite these limitations, the regression trees seem to be 

another step in the right direction.  Using Cell, our 

cognitive models scale well on HPC resources from both 

computational and wall clock time perspectives.   Some of 

our faster cognitive models, in fact, can now be analyzed 

in a few hours on local resources, which avails large- 

scale computational resources for even more complex 

models.  Additionally, Hurricane’s multidimensional 

visualization capability has become an indispensible part 

of my normal workflow. 

 

4. Discussion  
 

In a broad sense, the engineering problem being 

addressed is one of computational performance and 

efficiency.  Large-scale computational resources take us 

part of the way, and the remaining effort is incumbent 

upon us, as the resource users. 

 

In the world of software engineering, there is a basic rule 

to optimization: focus on the innermost loop.  In the 

context of this discussion, we have a parameter 

exploration / search methodology exercising a cognitive 

model, and it is the model itself that constitutes the bulk 

of processing in the innermost loop.   

 

The model and its implementation are the embodiment of 

a theory, however, and this can severely constrain 

optimization options.  This is certainly the case for my 

colleagues and I, where our models are based on a 

publicly available cognitive architecture (ACT-R; 

Anderson, 2007) that is shared among a relatively large 

scientific community.  In our case, we routinely share 

models to combine and test different cognitive 

moderators, and it is important to maintain a consistent 

architecture across the community. 

 

Therefore, we optimize our inner loop not by changing 

code, but by reducing the number of model runs as much 

as possible. AMR does this well and is used successfully 

in some contexts, but it appears, however, that the full 

utility of AMR does not necessarily transfer across 

domains and contexts.  As cognitive and behavioral 

modelers begin to leverage large-scale computational 

resources, we must also develop suitable parallel search 

and exploration algorithms for our models. 

 

This paper described our recent efforts using regression 

tree predictions to drive sampling distributions, and 

ultimately hypercube division.  Like AMR, the technique 

reduces computational demands through a reduction in 

model runs, but the nature of the approach seems to be 

more agreeable to parallelization.   

 

Regression trees, however, are not the only option.  The 

dynamics of Cell are driven by two governing principles: 

1) Sample more in areas of interest and 2) subdivide more 

in areas of higher density.  The regression trees are used 

to determine the areas of interest, but other predictive 

analytical techniques can be substituted without 

compromising the fundamental approach.  Multivariate 

adaptive regression splines (MARS) are one interesting 

possibility (Friedman, 1991). 

 

However, models like the DSST have demonstrated that 

the computational demands of the analytical technique are 

becoming a serious consideration.  While I predict that 

MARS will be more efficient than regression trees in 

terms of reducing the required number of model runs, I 

also expect that the analytical processing requirements 

will be significantly more demanding.  It seems a trade 

space is becoming apparent between the computational 

demands of the model versus the computational demands 

of the search / exploration algorithm.  For us this is not 

necessarily a bad trade space, because it is much less 

problematic to optimize a methodology as opposed to a 

theory, and there remain many opportunities to do so.   
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