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Abstract— We develop a linearized imaging theory that com-
bines the spatial, temporal, and spectral aspects of scattered
waves. We consider the case of fixed sensors and a general
distribution of objects, each undergoing linear motion; thus
the theory deals with imaging distributions in phase space. We
derive a model for the data that is appropriate for narrowband
waveforms in the case when the targets are moving slowly relative
to the speed of light. From this model, we develop a phase-space
imaging formula that can be interpreted in terms of filtered
backprojection or matched filtering. For this imaging approach,
we derive the corresponding phase-space point-spread function.
We show plots of the phase-space point-spread function for
various geometries, and various combinations of waveforms.

I. INTRODUCTION

The use of radar for detection and imaging of moving
targets is a topic of great interest. It is well-known that
radar signals have two important attributes, namely the time
delay, which provides information on the target range, and
the Doppler shift, which can be used to infer target down-
range velocity. Classical “radar ambiguity” theory [1]–[3]
shows that the transmitted waveform determines the accuracy
to which target range and velocity can be obtained from a
backscattered radar signal. The classical theory, however, does
not address the question of what information can be obtained
when transmitters and receivers are positioned at different
locations. Such a theory is needed to address questions such
as

• In a multistatic system, which transmitters should trans-
mit which waveforms?

• How many transmitters are needed, and where should
they be positioned?

• How can data from such a system be used to form an
image of unknown moving targets?

• What is the resolution (in position and in velocity) of
such a system?

Some work has been done to develop such a theory:
• Ambiguity theory for bistatic systems has been developed

in [4]–[7]; such systems allow for estimation of only one
component of the velocity vector.

• For multistatic systems, the work [8]–[14] developed
methods for moving-target detection.

• Theory for use of a multistatic system for imaging of a
stationary scene is well-known; see e.g. [15]–[18].

• Multistatic imaging of moving targets (phase-space imag-
ing) was developed in [19] for the case of fixed transmit-
ters and receivers. This theory combines spatial, temporal,

and spectral attributes of radar data; in particular the
theory exploits the actual Doppler shift from moving
targets.

The work [19] is extended in the present paper, which
sets forth the basic ideas in the special cases that are of
interest to radar-based imaging, and undertakes numerical
exploration of the properties of the imaging system. In this
paper we investigate the case when different waveforms are
transmitted from different locations. We show that under some
circumstances, both the spatial position and (vector) velocities
of multiple targets can be found.

This work does not address the following issues:
• Distinguishing the part of the received signal that is due

to a particular transmitter. This might be accomplished by
using quasi-orthogonal codes or using different frequency
bands for the different transmitters.

• Accounting for the change in reflectivity of a target when
it is viewed at different frequencies or different aspect an-
gles. Here we assume that the target scatters isotropically
and that the scattering is frequency-independent.

II. MODEL FOR DATA

We model wave propagation and scattering by the scalar
wave equation for the wavefield ψ(t,x) due to a source
waveform s(t,x) transmitted at time −Ty from location y:

[∇2 − c−2(t,x)∂2
t ]ψ(t,x,y) = δ(x− y)sy(t + Ty) . (1)

For simplicity, we consider only localized isotropic sources;
the work can easily be extended to more realistic antenna
models [20].

A single scatterer moving at velocity v corresponds to an
index-of-refraction distribution n2(x− vt):

c−2(t,x) = c−2
0 [1 + n2(x− vt)] , (2)

where c0 denotes the speed in the stationary background
medium (here assumed constant). For radar, c0 is the speed of
light in vacuum. We write qv(x − vt) = c−2

0 n2(x − vt). To
model multiple moving scatterers, we let qv(x− vt) d3xd3v
be the corresponding quantity for the scatterers in the volume
d3xd3v centered at (x,v). In other words, q is a distribution
in phase space, and qv is the spatial distribution, at time
t = 0, of scatterers moving with velocity v. Consequently,
the scatterers in the spatial volume d3x (at x) give rise to

c−2(t,x) = c−2
0 +

∫
qv(x− vt) d3v . (3)
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We note that the physical interpretation of qv involves a
choice of a time origin. A choice that is particularly appropri-
ate, in view of our assumption about linear target velocities,
is a time during which the wave is interacting with targets of
interest. This implies that the activation of the antenna at y
takes place at a negative time which we denote by −Ty . The
wave equation corresponding to (3) is then

[
∇2 − c−2

0 ∂2
t −

∫
qv(x− vt) d3v ∂2

t

]
ψ(t,x) =

sy(t + Ty)δ(x− y) . (4)

With the Born (single-scattering) approximation and far-
field approximation, the he scattered field can be written [19]

ψsc
f (t,z,y) =

∫
s̈y [φ(x,v)]
(4π)2|z||y| qv(x) d3xd3v (5)

where

φ(x,v) = αv (t− |z|/c + ẑ · x/c)−|y|/c+ŷ ·x/c+Ty (6)

and where α denotes the Doppler scale factor

αv =
1 + ŷ · v/c

1− ẑ · v/c
(7)

In the case when |v|/c# 1, we have αv ≈ 1+(ŷ + ẑ) ·v/c.
To write (5) as a Fourier Integral Operator, we write sy(t)

in terms of its inverse Fourier transform:

sy(t) =
1
2π

∫
e−iω′tSy(ω) dω′ . (8)

We note that by the Paley-Weiner theorem, S is analytic
since it is the inverse Fourier transform of the finite-duration
waveform s. With (8), we convert (5) into

ψsc
f (t,z,y) =

∫
(−iω)2

(4π)2|z||y| exp
(
− iω [φ(x,v)]

)

Sy(ω) dωqv(x) d3xd3v. (9)

III. IMAGE FORMATION

The corresponding imaging operation is a filtered version
of the formal adjoint of the “forward” operator F . Thus we
form the phase-space image I(p,u) as

I∞(p,u) =
∫

eiω[φ(p,u)]Q∞(ω,p,u, z,y) dω

ψsc(t,z,y) dt dnz dmy. (10)

The specific choice of filter is dictated by various consid-
erations [21], [22]; here we make choices that connect the
resulting formulas with familiar theories. We take the filter to
be

Q∞(ω,p,u, z,y) = − (4π)2

ω2
|z||y|S∗y(ω)J(ω,p,u, z,y)αu ,

(11)
which leads (below) to the matched filter. Here the star denotes
complex conjugation, and J is a geometrical factor [19] that
depends on the configuration of transmitters and receivers.

IV. ANALYSIS OF THE POINT-SPREAD FUNCTION

We obtain the point-spread function of the imaging system
by substituting (9) into (10). We thus obtain an image

I∞(p,u) =
∫

K∞(p,u;x, v)qv(x)d3xd3v (12)

Many radar systems use a narrowband waveform, which is
of the form

sy(t) = s̃y(t) e−iωyt (13)

where s̃(t,y) is slowly varying, as a function of t, in com-
parison with exp(−iωyt), where ωy is the carrier frequency
for the transmitter at position y. For the narrowband case, we
write K(NB)

∞ instead of K∞.
In the narrowband case, the point-spread function reduces

to [19]

K(NB)
∞ (p,u;x, v) = −

∫
ω2

yeiΦy,z J̃(p,u, z,y) (14)

Ay

(
ky(ŷ + ẑ) · (u− v), (ẑ + ŷ) · (x− p)/c

)
dnz dmy ,

where J̃ is a geometrical factor closely related to J above,
where

Ay(ω̃,τ ) = e−iωyτ

∫
s̃∗y(t− τ) s̃y(t) eiω̃t dt . (15)

is the narrowband ambiguity function (which is defined here
to include a phase) and where

eiΦy,z(x,v,p,u) = exp [i(ϕ̃x,v − ϕ̃p,u)]
exp (−iky(βu − βv)(ẑ + ŷ) · x) (16)

with ky = ωy/c, βv = (ŷ + ẑ) · v/c, and

ϕ̃x,v − ϕ̃p,u =
ωy

c
[[(1 + βu)ẑ + ŷ] · p− [(1 + βv)ẑ + ŷ] · x]

= ky [(ẑ + ŷ) · (p− x) + ẑ · (βup− βvx)]
(17)

The narrowband result (14) clearly exhibits the importance of
the bistatic bisector vector ŷ + ẑ.

V. NUMERICAL SIIMULATIONS OF THE POINT-SPREAD
FUNCTION

The point-spread function contains all the information about
the performance of the imaging system. Unfortunately it is
difficult to visualize this PSF because it depends on so many
variables. In the case when the positions and velocities are
restricted to a known plane, the PSF is a function of four
variables.

We would like to know whether we can find both the posi-
tion and velocity of moving targets. Ideally, the point-spread
function is delta-like, and so we can obtain both position and
velocity. If, however, the PSF is ridge-like, then there will
be uncertainty in some directions or in some combination of
positions and velocities.
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In order to look for possible ridge-like behavior, we write
the PSF as

K(NB)
∞ (p,u; x,v) = K(|p|(cos θ, sin θ), |u|(cos φ, sinφ),x, v).

(18)
We plot the PSF for a fixed target position x and target velocity
v. We then sample θ and φ at intervals of π/4, and for each
choice of θ and φ, we plot |p| versus |u|. This process results
in 9 × 9 = 81 plots of |p| versus |u|. Finally, to show the
entire four-dimensional space at a glance, we display all the
81 plots simultaneously on a grid, arranged as shown in Fig.
1.

Fig. 1: This shows how our figures display the four-
dimensional point-spread function (18).

A. Simulation Parameters
Our strategy in the simulations is to use a delta-like ambi-

guity function, and investigate the effect of geometry on the
overall point-spread function. In all cases, we use a transmit
time of Ty = 0.

• Waveforms: Two waveforms of unit amplitude are used.
Waveform 1 is a high-range-resolution chirp of duration
9.2 × 10−6 s and bandwidth 200MHz. It is sampled at
250 MHz (2300 sample points).
Waveform 4 is a single long CW pulse, of duration
.05s, sampled at 5 kHz (250 sample points). It has high
Doppler resolution.

• Target Location and Velocity The target location is (225
m, 45 degrees) and its velocity is (20 m/s, 0 degrees).

B. Examples
a) Two transmitters, one receiver: For the simulation of

two transmitters and one receiver, the two transmitters are
located at (10000m, 0) and (-10000m, 0), respectively and
the receiver is located at (0, 10000m). (See Figure 2.)

The PSFs for a single transmitter and two receivers are
shown in Figures 3 through 5. Figure 3 shows the PSF when
both transmitters transmit Waveform 1; Figure 4 shows the
PSF when both transmitters transmit Waveform 4; and Figure
5 shows the PSF when one transmitter transmits Waveform 1
and the other transmits Waveform 4.

We see that for this geometry, the PSF is ridge-like. Whereas
a high-range-resolution waveform provides only range infor-
mation, it appears that the use of high-Doppler-resolution

Fig. 2: This shows the geometry for the two-transmitter, single-
receiver case, together with the target and region of interest
(not to scale).

waveforms may be able to provide not only velocity informa-
tion but also some range information. The fact that the location
ridges (Figs. 3 and 5) are higher than the velocity ridges (Figs.
4 and 5) may be explained by the fact that the total power
of (the discretized version of) waveform 1 is greater than
that of (the discretized version of) waveform 4. This suggests
that balancing the power of the various transmitters may be
important.

b) Two Transmitters, Two Receivers: For the two-
transmitter, two-receiver case, the two transmitters are located
at (10000m, 0) and (0, 10000m) and the two receivers are
located at (10000m, 0) and (-10000m, 0), respectively. See
figure 6.

Figure 7 shows the combined point-spread function when
the transmitter on the x axis transmits waveform 1 and the
transmitter on the y axis transmits waveform 4.

Comparing Figures 5 and 7, we see that adding a receiver
weakens the ambiguities.

c) Circular geometry: We also considered a circular ar-
rangement of 8 transmitters and 10 receivers. The transmitters
are equally spaced around a circle of radius 10000 m; the
receivers are equally spaced around a circle of radius 9000 m.
(See Figure 8.) The scene of interest has radius 1000 m.

We see from Figure 9 that the velocity information cannot
be obtained from the single high-range-resolution waveform.

We note that both the position and the velocity can be
resolved well if the same high Doppler-resolution waveform
is used for each transmitter.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a linearized imaging theory that com-
bines the spatial, temporal, and spectral aspects of scattered
waves.
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Fig. 3: This shows the combined point-spread function for the
two-transmitter, single-receiver case, when both transmitters
transmit waveform 1.

This imaging theory is based on the general (linearized) ex-
pression we derived for waves scattered from moving objects,
which we model in terms of a distribution in phase space. The
expression for the scattered waves is of the form of a Fourier
integral operator; consequently we form a phase-space image
as a filtered adjoint of this operator or weighted matched filter.

The theory allows for activation of multiple transmitters at
different times, but the theory is simpler when they are all
activated so that the waves arrive at the target at roughly the
same time.

We conclude that a single kind of high range-resolution
waveform should be avoided if both the position and the
velocity are to be reconstructed. Furthermore, we see that a
single kind of high range-Doppler waveform can reconstruct
not only the velocity but also the position. This may be related
to the theory of Doppler SAR imaging [23].

We leave for the future an investigation of the effect of
relative waveform power on the imaging results.
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Fig. 8: This shows the circular geometry (not to scale).

Fig. 9: This shows the combined point-spread function for
the circular geometry when all transmitters are transmitting
waveform 1.

Fig. 10: This shows the combined point-spread function for
the circular geometry when all transmitters are transmitting
waveform 4

Fig. 11: This shows the combined point-spread function for
the circular geometry when every other transmitter transmits
waveform 1, and the others transmit waveform 4.
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