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Abstract

Link discovery (LD) is an important task in data mining
for counter-terrorism and is the focus of DARPA’s Evidence
Extraction and Link Discovery (EELD) research program.
Link discovery concerns the identification of complex rela-
tional patterns that indicate potentially threatening activi-
ties in large amounts of relational data. Most data-mining
methods assume data is in the form of a feature-vector (a
single relational table) and cannot handle multi-relational
data. Inductive logic programming is a form of relational
data mining that discovers rules in first-order logic from
multi-relational data. This paper discusses the application
of ILP to learning patterns for link discovery.

1 Introduction

Since the events of September 11, 2001, the develop-
ment of information technology that could aid intelligence
agencies in their efforts to detect and prevent terrorism has
become an important focus of attention. The Evidence Ex-
traction and Link Discovery (EELD) program of the De-
fense Advanced Research Projects Agency (DARPA) is one
research project that attempts to address this issue. The es-
tablishment of the EELD program for developing advanced
software for aiding the detection of terrorist activity pre-

dates the events of 9/11. The program had its genesis at
a preliminary DARPA planning meeting held at Carnegie
Mellon University after the opening of the Center for Au-
tomated Learning and Discovery in June of 1998. This
meeting discussed the possible formation of a new DARPA
research program focused on novel knowledge-discovery
and data-mining (KDD) methods appropriate for counter-
terrorism.

The scope of the new program was subsequently ex-
panded to focus on three related sub-tasks in detecting po-
tential terrorist activity from numerous large information
sources in multiple formats. Evidence extraction (EE) is
the task of obtaining structured evidence data from unstruc-
tured, natural-language documents. EE builds on informa-
tion extraction technology developed under DARPA’s ear-
lier MUC (Message Understanding Conference) programs
[23, 8] and the current ACE (Automated Content Extrac-
tion) program at the National Institute of Standards and
Technology (NIST)[29]. Link Discovery (LD) is the task of
identifying known, complex, multi-relational patterns that
indicate potentially threatening activities in large amounts
of relational data. Some of the input data for LD comes
from EE, other input data comes from existing relational
databases. Finally, Pattern Learning (PL) concerns the au-
tomated discovery of new relational patterns for potentially
threatening activities. Novel patterns learned by PL can be
used to improve the accuracy of LD. The current EELD pro-
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gram focused on these three sub-topics started in the sum-
mer of 2001. After 9/11, it was incorporated under the new
Information Awareness Office (IAO) at DARPA.

The data and patterns used in EELD include represen-
tations of people, organizations, objects, and actions and
many types of relations between them. The data is perhaps
best represented as a large graph of entities connected by
a variety of relations. The areas of link analysis and social
network analysis in sociology, criminology, and intelligence
[19, 37, 33] study such networks using graph-theoretic rep-
resentations. Data mining and pattern learning for counter
terrorism therefore requires handling such multi-relational,
graph-theoretic data.

Unfortunately, most current data-mining methods as-
sume the data is from a single relational table and consists of
flat tuples of items, as in market-basket analysis. This type
of data is easily handled by machine learning techniques
that assume a “propositional” (a.k.a “feature vector” or “at-
tribute value”) representation of examples [41]. Relational
data mining (RDM) [14], on the other hand, concerns min-
ing data from multiple relational tables that are richly con-
nected. Given the style of data needed for link discovery,
pattern learning for link discovery requires relational data
mining. The most widely studied methods for inducing re-
lational patterns are those in inductive logic programming
(ILP) [27, 22]. ILP concerns the induction of Horn-clause
rules in first-order logic (i.e., logic programs) from data in
first-order logic. This paper discusses our on-going work
on applying ILP to link discovery as a part of the EELD
project.

2 Inductive Logic Programming (ILP)

ILP is the study of learning methods for data and rules
that are represented in first-order predicate logic. Predicate
logic allows for quantified variables and relations and can
represent concepts that are not expressible using examples
described as feature vectors. A relational database can
be easily translated into first-order logic and be used as
a source of data for ILP [44]. As an example, consider
the following rules, written in Prolog syntax (where the
conclusion appears first), that define the uncle relation:

uncle(X,Y) :- brother(X,Z),parent(Z,Y).
uncle(X,Y) :- husband(X,Z),sister(Z,W),

parent(W,Y).

The goal of inductive logic programming (ILP) is to infer
rules of this sort given a database of background facts and
logical definitions of other relations [27, 22]. For example,
an ILP system can learn the above rules for uncle (the target
predicate) given a set of positive and negative examples of
uncle relationships and a set of facts for the relations parent,
brother, sister, and husband (the background predicates) for

the members of a given extended family, such as:

uncle(tom,frank), uncle(bob,john),� uncle(tom,cindy), � uncle(bob,tom)
parent(bob,frank), parent(cindy,frank),
parent(alice,john), parent(tom,john),
brother(tom,cindy), sister(cindy,tom),
husband(tom,alice), husband(bob,cindy).

Alternatively, rules that logically define the brother and
sister relations could be supplied and these relationships
inferred from a more complete set of facts about only the
“basic” predicates: parent, spouse, and gender.

If-then rules in first-order logic are formally referred to
as Horn clauses. A more formal definition of the ILP prob-
lem follows:

� Given:

– Background knowledge, � , a set of Horn clauses.

– Positive examples, � , a set of Horn clauses (typ-
ically ground literals).

– Negative examples, � , a set of Horn clauses
(typically ground literals).

� Find: A hypothesis, � , a set of Horn clauses such
that:

– �
	��
����������� ��	 (completeness)

– �����
������������ ��� (consistency)

A variety of algorithms for the ILP problem have been
developed [13] and applied to a variety of important data-
mining problems [12]. Nevertheless, relational data min-
ing remains an under-appreciated topic in the larger KDD
community. For example, recent textbooks on data mining
[17, 41, 18] hardly mention the topic. Therefore, we believe
it is an important topic for “next generation” data mining
systems. In particular, it is critical for link discovery appli-
cations in counter-terrorism.

3 Initial Work on ILP for Link Discovery

We tested different ILP algorithms on various EELD
datasets. The current EELD datasets pertain to two do-
mains — Nuclear Smuggling and Contract Killing. The
Contract-Killing domain is further divided into natural (real
world) data manually collected and extracted from news
sources and synthetic (artificial) data generated by a simula-
tor. Section 3.1 presents our experimental results on the nat-
ural Smuggling and Contract-Killing data, while section 3.2
presents our initial results on the synthetic Contract-Killing
data.
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3.1 Experiments on Natural Data

3.1.1 The Nuclear-Smuggling Data

The Nuclear-Smuggling dataset consists of reports on Rus-
sian nuclear materials smuggling [24]. The Chronology
of Nuclear and Radioactive Smuggling Incidents is the ba-
sis for the analysis of patterns in the smuggling of Rus-
sian nuclear materials. The information in the Chronol-
ogy is based on open-source reporting, primarily World
News Connection (WNC) and Lexis-Nexis. There are also
some articles obtained from various sources that have been
translated from Italian, German and Russian. The research
from which the Chronology grew began in 1994 and the
chronology itself first appeared as an appendix to a paper
by Williams and Woessner in 1995 [40, 39]. The con-
tinually evolving Chronology then was published twice as
separate papers in the same journal as part of the “Recent
Events” section [42, 43]. As part of the Evidence Extraction
and Link Discovery (EELD) project, the coverage of the
Chronology was extended to March 2000 and the Chronol-
ogy itself grew to 572 incidents. The incident descriptions
in the Chronology are one entry descriptions per incident.
The incidents in the Chronology have also been extensively
cross-referenced.

The data is presented as a chronology of the incidents in
a relational database format. This format contains Objects
(described in rows in tables), each of which has Attributes
of differing types (i.e., columns in the tables), the values of
which are a matter of input from the source information or
from the user. The Objects are of different types, which are
denoted by prefixes (E , EV , LK , and L ), and consist of
the following.

� Entity Objects (E ...): these consist of E LOCATION,
E MATERIAL, E ORGANIZATION, E PERSON,
E SOURCE, and E WEAPON;

� Event Objects (EV ...): these currently consist of the
generic EV EVENT;

� Link Objects (LK ...): used for expressing links be-
tween/among Entities and Events, and currently con-
sisting of those represented by X’s in Table 3.1.1.

The actual database we use in our experiments has over
40 relational tables. The number of tuples in a relational
table vary from 800 to as little as 2 or 3 elements.

The ILP system has to learn which events in an incident
are related in order to construct larger knowledge structures
that can be recognized as threats. Hence the ILP system
needs positive training examples that specify “links” be-
tween events. We assume all other events are unrelated and
therefore compose a set of negative examples. We stipulate
that related is commutative. Therefore we specified to the

ILP system used in our experiments that related(B,A)
is true if related(A,B) is proven, and vice-versa. Our
set of examples consists of 143 positive examples and 517
negative examples.

The linking problem in the Nuclear-Smuggling data is
thus quite challenging in that it is a heavily relational learn-
ing problem over a large number of relations, whereas tra-
ditional ILP applications usually require a small number of
relations.

3.1.2 The Natural Contract-Killing Data

The dataset of contract killings was first compiled by
O’Hayon and Cook [6]. It was a response to research on
Russian organized crime that encountered frequent and of-
ten tantalizing references to contract killings. Each of the
contract-killing reports provided a still photograph of the
criminal scene in Russia, but there was no comparable as-
sessment of how these were linked, what the trends were,
who the victims were, the relationship between victims
themselves or the relationship between victims and perpe-
trators. The dataset on contract killings has been contin-
ually expanded by Cook and O’Hayon with funding from
DARPA’s EELD program through Veridian Systems Divi-
sion (VSD) [38]. The database was captured as a “chronol-
ogy” of the incidents. Each incident in the chronology
received a description of the information drawn from the
sources, typically one news article, but occasionally more
than one. As in the Nuclear-Smuggling dataset, information
in the chronology is based on open-source reporting, espe-
cially Foreign Broadcast Information Service (FBIS) and
Joint Publications Research Service (JPRS) journals, and
subsequently both FBIS on-line and the cut-down on-line
version World News Connection (WNC). These services
and Lexis-Nexis are the main information sources. Addi-
tional materials on the worldwide web were consulted when
this was feasible and helpful. The search was as exhaustive
as possible given the limited time and resources of those
involved.

The data is organized in relational tables in the same for-
mat as the Nuclear-Smuggling data described in the previ-
ous section. The dataset used in our experiments has 48
relational tables. The number of tuples in a relational ta-
ble varies from 1,000 to as little as 1 element. The ILP
learner task was to characterize Rival versus Obstacle plus
Threat events (i. e., the Obstacle and Threat examples were
pooled into one category, thereby producing a two-category
learning task). Rival, Obstacle, and Threat are treated as
“motives” in the dataset. The motivation to this learning
task thus is to recognize patterns of activity that indicate
underlying motives, which in turn contributes to recogniz-
ing threats. The number of positive examples in this dataset
is 38, while the number of negative examples is 34.
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Table 1. Links among Entities and Events in Nuclear-Smuggling Data
Event Person Organization Location Weapon Material

Event X
Person X X
Organization X X X
Location X X X X
Weapon X X X X X
Material X X X X X X

3.1.3 ILP Results

Aleph We use the ILP system Aleph [35] in some of our
experiments, those involving natural, rather than synthetic,
data. By default, Aleph uses a simple greedy set covering
procedure that constructs a complete and consistent hypoth-
esis one clause at a time. In the search for any single clause,
Aleph selects the first uncovered positive example as the
seed example, ”saturates” this example, and performs an ad-
missible search over the space of clauses that subsume this
saturation, subject to a user-specified clause length bound.
Further details about our use of Aleph in these experiments
are available in [11].

Ensembles Ensembles aim at improving accuracy
through combining the predictions of multiple classifiers
in order to obtain a single classifier. Therefore, we also
investigate employing an ensemble of classifiers, where
each classifier is a logical theory generated by Aleph. Many
methods have been presented for ensemble generation [10].
In this paper, we concentrate on a popular method that
is known to frequently create a more accurate ensemble
than individual components, bagging [1]. Bagging works
by training each classifier on a random sample from the
training set. Bagging has the important advantage that it
is effective on “unstable learning algorithms” [2], where
small variations in parameters can cause huge variations in
the learned theories. This is the case with ILP. A second
advantage is that it can be implemented in parallel trivially.
Further details about our bagging approach within ILP,
as well as our experimental methodology, can be found
in [11]. Our experimental results are based on a five-fold
cross-validation, where five times we train on 80% of the
examples and then test what was learned on the remaining
20% (in addition, each example is in one and only one test
set).

For the task of identifying linked events within the
Nuclear-Smuggling dataset, Aleph produces an average
testset accuracy of 83%. This is an improvement over the
baseline case (majority class—always guessing two events
are not linked), which produces an average accuracy of

78%. Bagging (with 25 different sets of rules) increases
the accuracy to 86%.

An example of a rule with good accuracy found by the
system is shown in Figure 1. This rule covers 39 of the 143
positive examples and no negative examples.

According to this rule, two smuggling events A and D
are related if they involve two people C and E and these two
people are connected to a third person through a third event
F that has the same person-person motive description, and
the same dates. The “ ” symbols mean that those arguments
were not relevant for that rule.

The task of identifying motive in the Contract-Killing
data set is much more difficult, with Aleph’s accuracy at
56%, compared with the baseline accuracy of 50%. Again
bagging improves the accuracy, this time to 63%. The rule
in Figure 2 shows one kind of logical clause the ILP system
we use found for this dataset.

The rule covers 19 of the 38 positive examples and a
single negative example. The rule says that event A is a
killing by a rival if we can follow a chain of events that
connects event A to event B, event B to event E, and event
E to an event F that relates two organizations. Events A and
E have the same kind of relation, RelationC, to B. All
events in the chain are subsets of the same incident D.

3.2 Experiments on Synthetic Data

3.2.1 The Synthetic Contract-Killing Data

The synthetic data for Contract Killing was generated by a
Bayesian Network (BN) simulator based on a probabilistic
model developed by Information Extraction and Transport
Incorporated (IET). The BN simulator outputs case files,
which contain complete and unadulterated descriptions of
each murder case. These case files are then filtered for ob-
servability, so that facts that would not be accessible to an
investigator are eliminated. To make the task more realis-
tic this data is also corrupted, e.g., by misidentifying role
players or incorrectly reporting group memberships. This
filtered and corrupted data form the evidence files. In the ev-
idence files, facts about each event are represented as pred-
icates, such as:
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linked(EventA,EventD) :-
lk_event_person(_,EventA,PersonC,_,RelationB,RelationB,_),
lk_person_person(_,PersonC,_,EventF,_,_,_,MotiveG,StartDateH,EndDateI,DateDescriptionJ),
lk_event_person(_,EventD,PersonE,_,RelationB,RelationB,_),
lk_person_person(_,PersonE,_,EventF,_,_,_,MotiveG,StartDateH,EndDateI,DateDescriptionJ).

Figure 1. Nuclear-Smuggling Data: Sample Learned Rule

rivalKilling(EventA) :-
lk_event_event(_,EventB,EventA,RelationC,EventDescriptionD),
lk_event_event(_,EventB,EventE,RelationC,EventDescriptionD),
lk_event_event(_,EventE,EventF,_,EventDescriptionD),
lk_org_org(_,_,_,EventF,_,_,_,_,_).

Figure 2. Natural Contract-Killing Data: Sample Learned Rule

isa(Murder714, MurderForHire)
perpetrator(Murder714, Killer186)
victim(Murder714, MurderVictim996)
deviceTypeUsed(Murder714, PistolCzech)

The synthetic contract killing dataset that we used con-
sists of 200 murder events. Each murder event has been
labeled as a murder for hire, first-degree or second-degree
murder. There are 71 murder for hire events, 75 first-degree
and 54 second-degree murder events. Our task was to learn
a classifier to correctly classify an unlabeled event into one
of these three categories.

3.2.2 ILP Results

For this task, we used a variation of mFoil [22] to learn
a binary classifier to discriminate between events that are
murder for hire and events that are not. Like Aleph, mFoil
learns one clause at a time using greedy covering, but uses
a constrained, general-to-specific search to learn individual
rules. We also used mFoil to learn two more classifiers to
identify first-degree and second-degree murders. The three
binary classifiers are combined to form a three-way classi-
fier for the task. If an event is classified as a positive ex-
ample by only one classifier then the event is labeled with
the category corresponding to that classifier. If more than
one classifier classifies an event as a positive example then
we select the category more commonly represented in the
training data.

We ran 10-fold cross-validation on the dataset of 200
murder events. We measured the precision and recall of
our classifier for each of the three categories. Precision and
recall for a category is defined below:
�! #"%$'&)(*&,+%-/.10 -325476'"* 8+:9;"*<="*-
>?(@$A+% # #"%$'>)BDCE$ABGF=(%(A&)9H&I"%JEFK(�L-
254M6'"N 8+:9O"N<P"N-3>?(@$*BDF=(%(*&I9Q&,"%JRFK(SL TRU*V:VXW
YE"N$AF=BDBD.Z0 -325476'"* E+#9;"N<P"*-
>?(�$A+% # #"%$'>)BDC[$ABGF=(%(A&)9H&I"%JRFK(SL-325476'"* E+#9\L]"N<P"N-3>?( T^U*V:VXW
The results are summarized in Table 2. We observe that
apart from recall for second-degree murders, the precision

and recall results are all above 85%. Our system learns a
very precise classifier for second-degree murders, but as a
consequence it has a lower recall. However, we can adjust
the parameters of our system to compromise precision for
higher recall.

We also computed the accuracy of our classifier, which is
defined as the percentage of events correctly classified into
one of the three categories. We compare this to the majority-
class classifier, which always classifies events as the most
frequently represented category. In our experiments the ac-
curacy of the majority-class classifier is 38%. And the clas-
sification accuracy of our system is 77% which is more than
twice that of the majority-class classifier.

Figure 3 shows some of the sample rules that our sys-
tem learns. According to the first rule a murder event that
involves a member of a criminal organization and that is
associated with another crime that was motivated by eco-
nomic gains is a murder for hire. The second rule says that
if a murder is the result of an event that was performed by
someone in love, then it is a first-degree murder (as these are
mainly premeditated murders). According to the third rule
if a murder is the result of a theft that is motivated by rivalry
and that is performed on public property then it is a second-
degree murder. These sample rules show that not only does
our system do well in classifying the different events, it also
produces rules that are meaningful and interpretable by hu-
mans.

Table 2. Results on the Synthetic Contract-
Killing Data

Murder for 1st degree 2nd degree
hire

Precision 86% 91% 96%
Recall 91% 88% 59%
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murderForHire(A) :-
groupMemberMaleficiary(A, B),
subEvents(A, C),
crimeMotive(C, economic).

firstDegreeMurder(A) :-
subEvents(A, B),
performedBy(B, C),
loves(C, D).

secondDegreeMurder(A) :-
subEvents(A, B),
eventOccursAtLocationType(B, publicProperty),
crimeMotive(B, rival),
occurrentSubeventType(B, stealing_Generic).

Figure 3. Synthetic Contract-Killing Data:
Sample Learned Rules

4 Current and Future Research

An under-studied issue in relational data mining is scal-
ing algorithms to very large databases. Most research on
ILP and RDM has been conducted in the machine learning
and artificial intelligence (AI) communities rather than in
the database and systems communities. Consequently, there
has been insufficient research on systems issues involved
in performing RDM in commercial relational-database sys-
tems and scaling algorithms to extremely large datasets that
will not fit in main memory. Integrating ideas from systems
work in data mining and deductive databases [31] would
seem to be critical in addressing these issues.

Related to scaling, we are currently working on ef-
ficiently learning complex relational concepts from large
amounts of data by using stochastic sampling methods. A
major shortcoming of ILP is the computational demand that
results from the large hypothesis spaces searched. Intel-
ligently sampling these large spaces can provide excellent
performance in much less time [34, 45].

We are also developing algorithms that learn more
robust, probabilistic relational concepts represented as
stochastic logic programs [25] and variants. This will enrich
the expressiveness and robustness of learned concepts. As
an alternative to stochastic logic programs, we are working
on learning clauses in a constraint logic programming lan-
guage where the constraints are Bayesian networks [30, 7].

One approach that we plan to further investigate is the
use of approximate prior knowledge to induce more accu-
rate, comprehensible relational concepts from fewer train-
ing examples [32]. The use of prior knowledge can greatly
reduce the burden on users; they can express the “easy” as-
pects of the task at hand and then collect a small number of
training examples to refine and extend this prior knowledge.

Finally, we plan to use active learning to allow our ILP

systems to select more effective training examples for inter-
actively learning relational concepts [26]. By intelligently
choosing the examples for users to label, better extraction
accuracy can be obtained from fewer examples, thereby
greatly reducing the burden on the users of our ILP systems.

5 Related Work

Although it is the most widely studied, ILP is not the
only approach to relational data mining. In particular, other
participants in the EELD program are taking alternative
RDM approaches to pattern learning for link discovery.
This section briefly reviews these other approaches.

5.1 Graph-based Relational Learning

Some relational data mining methods are based on learn-
ing structural patterns in graphs. In particular, SUBDUE
[4, 5] discovers highly repetitive subgraphs in a labeled
graph using the minimum description length (MDL) prin-
ciple. SUBDUE can be used to discover interesting sub-
structures in graphical data as well as to classify and clus-
ter graphs. Discovered patterns do not have to match the
data exactly since SUBDUE can employ an inexact graph-
matching procedure based on graph edit-distance. SUB-
DUE has been successfully applied to a number of impor-
tant RDM problems in molecular biology, geology, and pro-
gram analysis. It is also currently being applied to discover
patterns for link discovery as a part of the EELD project
(see http://ailab.uta.edu/eeld/). Since rela-
tional data for LD is easily represented as labeled graphs,
graph-based RDM methods like SUBDUE are a natural ap-
proach.

5.2 Probabilistic Relational Models

Probabilistic relational models (PRM’s) [20] are an ex-
tension of Bayesian networks for handling relational data.
Methods for learning Bayesian networks have also been ex-
tended to produce algorithms for inducing PRM’s from data
[16]. PRM’s have the nice property of integrating some of
the advantages of both logical and probabilistic approaches
to knowledge representation and reasoning. They com-
bine some of the representational expressivity of first-order
logic with the uncertain reasoning abilities of Bayesian net-
works. PRM’s have been applied to a number of interest-
ing problems in molecular biology, web-page classification,
and analysis of movie data. They are also currently being
applied to pattern learning for link discovery as a part of the
EELD project.
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5.3 Relational Feature Construction

One approach to learning from relational data is to first
“flatten” or “propositionalize” the data by constructing fea-
tures that capture some of the relational information and
then applying a standard learning algorithm to the resulting
feature vectors [21]. PROXIMITY [28] is a system that con-
structs features for categorizing entities based on the cate-
gories and other properties of other entities to which it is re-
lated. It then uses an interactive classification procedure to
dynamically update inferences about objects based on ear-
lier inferences about related objects. PROXIMITY has been
successfully applied to company and movie data. It is also
currently being applied to pattern learning for link discov-
ery as a part of the EELD project.

6 Conclusions

Link discovery is an important problem in automatically
detecting potential threatening activity from large, hetero-
geneous data sources. The DARPA EELD program is a
U.S. government research project exploring link discovery
as an important problem in the development of new counter-
terrorism technology. Learning new link-discovery patterns
that indicate potentially threatening activity is a difficult
data mining problem. It requires discovering novel rela-
tional patterns in large amounts of complex relational data.
Most existing data-mining methods assume flat data from a
single relational table and are not appropriate for link dis-
covery. Relational data mining techniques, such as induc-
tive logic programming, are needed. Many other problems
in molecular biology [36], natural-language understanding
[46], web page classification [9], information extraction
[3, 15], and other areas also require mining multi-relational
data. However, relational data mining requires exploring a
much larger space of possible patterns and performing com-
plex inference and pattern matching. Consequently, cur-
rent RDM methods are not scalable to very large databases.
Consequently, we believe that relational data mining is one
of the major research topics in the development of the next
generation of data mining systems, particularly those in the
area of counter-terrorism.
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