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Abstract

Stochastic analysis of random heterogeneous media provides useful information only
if realistic input models of the material property variations are used. These input
models are often constructed from a set of experimental samples of the underlying
random field. To this end, the Karhunen-Loève (K-L) expansion, also known as
principal component analysis (PCA), is the most popular model reduction method
due to its uniform mean-square convergence. However, it only projects the samples
onto an optimal linear subspace, which results in an unreasonable representation of
the original data if they are non-linearly related to each other. In other words, it
only preserves the second-order statistics (covariance) of a random field, which is
insufficient for reproducing complex structures. This paper applies kernel principal
component analysis (KPCA) to construct a reduced-order stochastic input model
for the material property variation in heterogeneous media. KPCA can be consid-
ered as a nonlinear version of PCA. Through use of kernel functions, KPCA further
enables the preservation of high-order statistics of the random field, instead of just
two-point statistics as in the standard Karhunen-Loève (K-L) expansion. Thus, this
method can model non-Gaussian, non-stationary random fields. In addition, poly-
nomial chaos (PC) expansion is used to represent the random coefficients in KPCA
which provides a parametric stochastic input model. Thus, realizations, which are
consistent statistically with the experimental data, can be generated in an efficient
way. We showcase the methodology by constructing a low-dimensional stochastic
input model to represent channelized permeability in porous media.
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1 Introduction

Over the past few decades there has been considerable interest among the
scientific community in studying physical processes with stochastic inputs.
These stochastic input conditions arise from uncertainties in boundary and
initial conditions as well as from inherent random material heterogeneities.
Material heterogeneities are usually difficult to quantify since it is physically
impossible to know the exact property at every point in the domain. In most
cases, only a few statistical descriptors of the property variation or only a set
of samples can be experimentally determined. This limited information neces-
sitates viewing the property variation as a random field that satisfies certain
statistical properties/correlations, which naturally results in describing the
physical phenomena using stochastic partial differential equations (SPDEs).

In the past few years, several numerical methods have been developed to solve
SPDEs, such as Monte Carlo (MC) method, perturbation approach [1,2], gen-
eralized polynomial chaos expansion (gPC) [3–6] and stochastic collocation
method [7–13]. However, implicit in all these developments is the assumption
that the uncertainties in the SPDEs have been accurately characterized as
random variables or random fields through the finite-dimensional noise as-
sumption [11]. The most common choice is the Karhunen-Loève (K-L) expan-
sion [2,3,14,15], which is also known as linear principal component analysis
or PCA [16]. Through K-L expansion, the random field can be represented
as a linear combination of the deterministic basis functions (eigenfunctions)
and the corresponding uncorrelated random variables (random coefficients).
The computation of the K-L expansion requires the analytic expression of the
covariance matrix of the underlying random field. In addition, the probability
distribution of the random variables is always assumed known a priori. These
two assumptions are obviously not feasible in realistic engineering problems.
In most cases, only a few experimentally obtained realizations of the random
field are available. Reconstruction techniques are then applied to generate
samples of the random field after extracting the statistical properties of the
random field through these limited experimental measurements. These pro-
cesses are quite expensive and numerically demanding if thousands of samples
are needed. This leads to the problem of probabilistic model identification or
stochastic input model generation, where the purpose is to find a parametric
representation of the random filed through only limited experimental data.

To this end, a polynomial chaos (PC) representation of the random field
through experimental data was first proposed in [17] and improved in subse-
quent papers [18–23]. This framework consists of three steps: (1) Computing
the covariance matrix of the data numerically using the available experimental
data; (2) Stochastic reduced-order modeling with a K-L expansion to obtain
a set of deterministic basis (eigenfunctions) and the corresponding random
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expansion coefficients (called K-L projected random variables); (3) A poly-
nomial chaos representation of these random coefficients is constructed given
the realizations of these coefficients which are calculated from data. These
realizations are then used for the estimation of the deterministic coefficients
in the PC representation, where several methods have been proposed. In the
pioneering work [17], maximum likelihood estimation was used to find the PC
representation of the K-L random variables. In [18], a Bayesian inference ap-
proach was used instead to construct the PC representation of the random
field. However, these two works did not take into account the dependencies
between various components of the K-L projected random variables. In [19],
the Rosenblatt transformation [24] was used to capture these dependencies
and maximum entropy approach together with Fisher information matrix was
used for the estimation of the PC coefficients. In [20,21,25], a non-intrusive
projection approach with Rosenblatt transformation was developed for the
PC estimation. Apart from PC representation, in [26], the distribution of the
K-L random variables was assumed directly to be uniform within the range
of the realizations of these coefficients from data. Later, in [27], the distribu-
tion of the K-L random variables was still assumed to be uniform. However,
the range of the uniform distribution was found through enforcing the sta-
tistical constraints of the random field and solving the resulting optimization
problems. In [28], the uncertain input parameters are modeled as independent
random variables, whose distributions are estimated using a diffusion-mixed-
based estimator. Except the work in [28], all the previous developments rely
heavily on the K-L expansion for the reduced-order modeling. However, the
K-L expansion has one major drawback. The K-L expansion based stochastic
model reduction scheme constructs the closest linear subspace of the high-
dimensional input space. In other words, it only preserves the covariance of
the random field, and therefore is suitable for multi-Gaussian random fields.
But most of the random samples contain essential non-linear structures, e.g.
higher-order statistics. This directly translates into the fact that the standard
linear K-L expansion tends to over-estimate the actual intrinsic dimensional-
ity of the underlying random field. Hence, one needs to go beyond a linear
representation of the high-dimensional input space to accurately access the
effect of its variability on the output variables.

To resolve this issue, the authors in [29] proposed a nonlinear model reduc-
tion strategy for generating data-driven stochastic input models. This method
is based on the manifold learning method, where the principal of multidi-
mensional scaling (MDS) is utilized to map the space of viable property
variations to a low-dimensional region. Then isometric mapping from this
high-dimensional space to a low-dimensional, compact, connected set is con-
structed via preserving the geodesic distance between data using the IsoMap
algorithm [30]. However, this method has two major issues. First, after dimen-
sionality reduction, it only gives us a set of low-dimensional points. It does
not give us the inherent patterns (similar to the eigenfunctions as in the K-L
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expansion) in the embedded random space. Therefore, it cannot provide us a
mathematical parametric input model as in the K-L expansion, i.e. we want
to find the form y = f(ξ), where vector y is a realization of a discrete ran-
dom field, and vector ξ, of dimension much smaller than the original input
stochastic dimension, is a set of independent random variables with a speci-
fied distribution. In addition, when new experimental data becomes available,
this nonlinear mapping needs to be recomputed. Secondly, the IsoMap algo-
rithm requires the computation of the geodesic distance matrix among data.
In general, this matrix may be not well defined for real data. Even if it is well
defined, the algorithm is computationally expensive.

Both problems of the K-L expansion and the non-linear model reduction algo-
rithm in [29] can be solved with kernel principal component analysis (KPCA),
which is a nonlinear form of PCA [31,32]. KPCA has proven to be a powerful
tool as a nonlinear feature extractor of classification algorithm [31], pattern
recognization [33], image-denosing [34] and statistical shape analysis [35]. The
basic idea is to map the data in the input space to a feature space F through
some nonlinear map Φ, and then apply the linear PCA there. Through the
use of a suitably chosen kernel function, the data becomes more linearly re-
lated in the feature space F . In the context of stochastic modeling, there are
two pioneered works [36,37]. In [36], KPCA was used to construct the prior
model of the unknown permeability field and then gradient-based algorithm is
used to solve the history-matching problem. However, the random expansion
coefficients of the linear PCA in the feature space are assumed i.i.d. standard
normal random variables. This choice clearly does not capture the statical in-
formation from the data. In [37], KPCA is used in the feature space F for the
selection of a subset of representative realizations containing similar properties
to the larger set.

Motivated by all the above mentioned works, in this paper, a stochastic non-
linear model reduction framework based on KPCA is developed. To be specific,
the KPCA is first used to construct the stochastic reduced-order model in the
feature space. The random coefficients of the linear PCA are then represented
via PC expansion. Because the K-L expansion is performed in the feature
space, the resulting realizations lie in the feature space, and therefore, the
mapping from the feature space back to the input space is needed. This is
called the “pre-image problem” [34,38]. The pioneering work in solving the
pre-image problem is Mika’s fixed-point iterative optimization algorithm [34].
However, this method suffers from numerical instabilities. It is sensitive to the
initial guess and is likely to get stuck in local minima. Therefore, it is not
suitable for our stochastic modeling. It is noted that this algorithm was also
used in the work [36,37] to find the pre-image. In [38], the authors determine
a relationship between the distances in the feature space and the distances
in the input space. The MDS is used to find the inverse mapping and thus
the pre-image. This method is expensive since it involves a singular value
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decomposition on a matrix of nearest neighbors. In this work, we propose a
new approach to find the pre-image. It is based on local linear interpolation
among n-nearest neighbors using only the distances in the input space, which
is similar to the method proposed in our earlier work [29].

This paper is organized as follows: In the next section, the mathematical
framework of KPCA is considered. In Section 3, the PC representation of the
random coefficients is developed. In Section 4, the new pre-image algorithm
is introduced. A example with channelized permeability is given in Section 5.
Finally, concluding remarks are provided in Section 6.

2 Kernel principal component analysis of random fields

2.1 Problem definition

Let us define a complete probability space (Ω,F ,P) with sample space Ω
which corresponds to the outcomes of some experiments, F ⊂ 2Ω is the σ-
algebra of subsets in Ω and P : F → [0, 1] is the probability measure. Also,
let us define D as a two-dimensional bounded domain. Denote a(x, ω) the
random (property) field used to describe and provide a mathematical model
of the available experimental data. The random field a(x, ω) in general be-
longs to an infinite-dimensional probability space. However, in most cases,
the random field is associated with a spatial discretization. Thus we can have
a finite-dimensional representation of the random field which can be repre-
sented/described as a random vector y := (y1, . . . , yM)T : Ω → R

M . M can
be regarded as the number of grid blocks in a discretized model. So each
yi, i = 1, . . . , M is a random variable which represents the random property in
each grid block. The dimensionality of the stochastic model is then the length
of this vector M . Let yi, i = 1, . . . , N be N real column vectors in R

M , i.e.
yi ∈ R

M , representing N independent realizations of the random field.

In most cases, M would be a large number. Our problem is to find a reduced-
order polynomial chaos representation of this random field that is consistent
with the data in some statistical sense. To be specific, we want to find a
form y = f(ξ), where vector ξ, of dimension much smaller than the original
input stochastic dimension M , is a set of independent random variables with a
specified distribution. Therefore, by drawing samples ξ in this low-dimensional
space, we obtain different realizations of the underlying random field.
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2.2 Basic idea of KPCA

Fig. 1 demonstrates the basic idea behind nonlinear kernel PCA. Consider
a random field y = (y1, y2)

T ∈ R
2. If y is non-Gaussian, y1 and y2 can be

nonlinearly related to each other in R
2. In this case, linear PCA or K-L ex-

pansion attempt to fit a linear surface such that the reconstruction error is
minimized (Fig. 1, left). This clearly results in a poor representation of the
original data. Now, consider a nonlinear mapping Φ that relates the input
space R

M to another space F

Φ : R
M → F, y 7→ Y. (1)

We will refer F as the feature space. In the right figure of Fig. 1, the realizations
that are nonlinearly related in R

2 become linearly related in the feature space
F . Linear PCA or K-L expansion can now performed in F in order to determine
the principal directions in this space.

2
R

•

•

•

•

•

•

•
•

•

Φ
F

•

•

•

•

•

•

•

•
•

Linear PCA Kernel PCA

Fig. 1. Basic idea of KPCA. Left: In this non-Gaussian case, the linear PCA is not
able to capture the nonlinear relationship among the realizations in the original
space. Right: After the nonlinear mapping Φ, the realizations becomes linearly re-
lated in the feature space F . Linear PCA or K-L expansion can now be performed
in F .

2.3 PCA in feature space

In this section, the theory of KPCA is briefly reviewed. For a detailed intro-
duction, the authors may refer to [31,38].

As shown before, kernel PCA can be considered to be a generalization of linear
PCA in the feature space F . Thus, all results on linear PCA can be readily
generalized for KPCA. Now, assume we are given N number of realizations
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of the random field {y1, . . . ,yN}, where each realization is represented as a
high-dimensional column vector yi ∈ R

M (e.g. M can be considered as the
number of grid blocks in the discretization). The maps of the realizations in
the feature space F are Φ(yi), i = 1, . . . , N . Denote the mean of the Φ-mapped
data by Φ̄ = 1

N

∑N
i=1 Φ(yi) and define the “centered” map Φ̃ as

Φ̃ = Φ(y) − Φ̄. (2)

Analogous to linear PCA, we need to find eigenvectors V and eigenvalues λ
of the covariance matrix C in the feature space, where

C =
1

N

N
∑

i=1

Φ̃(yi)Φ̃(yi)
T . (3)

The dimension of this matrix is NF × NF , where NF is the dimension of the
feature space. As explained in [31], NF could be extremely large. As a result, it
will be impossible to compute the C and solve the eigenvalue problem directly.

Thus, as in [31], a kernel eigenvalue problem is formulated which uses only
dot products of vectors in the feature space. We first substitute the covariance
matrix into the eigenvalue problem CV = λV and obtain [36]

CV =
1

N

N
∑

i=1

(

Φ̃(yi) · V
)

Φ̃(yi), (4)

which implies that all solutions V with λ 6= 0 lie in the span of Φ̃(y1), . . . , Φ̃(yN) [31].
Therefore, we can expand the solution V as [31]

V =
N
∑

j=1

αjΦ̃(yj), (5)

and the eigenvalue problem is equivalent to [31]

λ(Φ̃(yi) · V) = (Φ̃(yi) · CV), ∀ i = 1, . . . , N. (6)

Now, substituting Eq. (5) into Eq. (6), we obtain [31]

λ
N
∑

j=1

αj

(

Φ̃(yi) · Φ̃(yj)
)

=
1

N

N
∑

j=1

αj

(

Φ̃(yi) ·
N
∑

k=1

Φ̃(yk)

)

(

Φ̃(yk) · Φ̃(yj)
)

, (7)

for i = 1, . . . , N . Now define the N × N kernel matrix K which is the dot
product of vectors in the feature space F :

K : Kij = (Φ(yi) · Φ(yj)) . (8)

Define the N × N centering matrix H = I − 1
N
11T , where I is the N × N

identity matrix and 1 = [11 . . . 1]T is a N ×1 vector. Thus, the centered kernel
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matrix K̃ : K̃ij =
(

Φ̃(yi) · Φ̃(yj)
)

can be computed as

K̃ = HKH. (9)

Substituting Eq. (9) into Eq. (7), we arrive at the following kernel eigenvalue
problem [31]:

Nλα = K̃α. (10)

In the following, for simplicity, we will denote λ as the eigenvalues of K̃, i.e.
the solutions Nλ in Eq. (10). We rewrite Eq. (10) in the following matrix form:

ΛU = K̃U, (11)

where, Λ = diag(λ1, . . . , λN) is the diagonal matrix of the corresponding eigen-
values and U = [α1, . . . , αN ] with αi = [αi1, . . . , αiN ]T is the matrix contain-
ing the eigenvectors.

The eigenvectors need to normalized, which is Vk · Vk = 1. Normalizing the
solution Vi in F translates into λi(αi · αi) = 1. From the solution of the
eigenvalue problem, we can write αi · αi = 1, since the eigenvectors from the
eigenvalue problem in Eq. (11) are normalized. Therefore, if we divide αi by√

λi, we obtain αi/
√

λi · αi/
√

λi = 1/λi.

Therefore, through Eq. (5), the ith orthornormal eigenvector of the covariance
matrix C in the feature space can be shown to be [31,38]

Vi =
N
∑

j=1

αij√
λi

Φ̃(yj) =
N
∑

i=1

α̃ijΦ̃(yj), where α̃ij =
αij√
λi

. (12)

Let y be a realization of the random field, with a mapping Φ̃(y) in F . Then
Φ̃(y) can be decomposed in the following way:

Φ̃(y) =
N
∑

i=1

ziVi + Φ̄, (13)

where zi is the projection coefficient onto the ithe eigenvector Vi:

zi = Vi · Φ̃(y) =
N
∑

j=1

α̃ij

(

Φ̃(y) · Φ̃(yj)
)

. (14)

2.4 Computing dot products in feature space

From Eq. (9), it is seen that in order to compute the kernel matrix, only the
dot products of vectors in the feature space F are required, while the explicit
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calculation of the map Φ(y) does not need to be known. As shown in [31], the
dot product can be computed through the use of the kernel function. This is
the so called “kernel trick”. Not all arbitrary functions but the Mercer kernels
can the used as a kernel function [31]. The kernel function k(yi,yj) calculates
the dot product in space F directly from the vectors of the input space R

M :

k(yi,yj) = (Φ(yi) · Φ(yj)) . (15)

The commonly used kernel functions are polynomial kernel and Gaussian ker-
nels.

2.4.1 Kernel for linear PCA

If the kernel function is chosen as polynomial kernel of order one

k(yi,yj) = (yi · yj), (16)

then the linear PCA is actually performed on the sample realizations. It is
noted that the use of the kernel matrix to perform the linear PCA is actually
the same as the “method of snapshots” which is well known in the area of
reduced order modeling [39]. This method is more computationally efficient
than the standard implementation of the K-L expansion as in [17]. Using
the kernel matrix, only a eigenvalue problem of size N ×N is needed, whereas
in [17] the size of the eigenvalue problem is M×M . In most cases, the number
of available experimental data is much smaller than the dimensionality of the
data itself.

2.4.2 Kernel for nonlinear PCA

Choosing a nonlinear kernel function leads to performing nonlinear PCA. The
most common kernel function is the Gaussian kernel:

k(yi,yj) = exp

(

−‖yi − yj‖2)

2σ2

)

, (17)

where ‖yi − yj‖2 is the squared L2-distance between two realizations. The
kernel width parameter σ controls the flexibility of the kernel. A larger value
of σ allows more “mixing” between elements of the realizations, whereas a
smaller value of σ uses only a few significant realizations. As recommended
in [35], a typical choice for σ is the average minimum distance between two
realizations in the input space:

σ2 = c
1

N

N
∑

i=1

minj 6=i‖yi − yj‖2, j = 1, . . . , N, (18)

where c is a user-controlled parameter.
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2.5 Stochastic reduced-order modeling via KPCA

Since only the dot products of vectors in the feature space are available through
use of the kernel function, we first rewrite Eq. (14) in terms of the kernel
function [38]:

zi =
N
∑

j=1

α̃ij

(

Φ̃(y) · Φ̃(yj)
)

=
N
∑

j=1

α̃ij k̃ (y,yj) , (19)

where

k̃(y,yj) = k(y,yj) −
1

N
1Tky − 1

N
1Tkyj

+
1

N2
1TK1, (20)

with
ky = [k(y,y1), . . . , k(y,yN)]T . (21)

We can write Eq. (19) in a matrix form:

Z = ATky + b, (22)

where A = Hα̃ and b = − 1
N

α̃THK1.

Now suppose the eigenvectors are ordered by decreasing eigenvalues and we
can only work in the low-dimensional subspace which is spanned by the first
r largest eigenvectors, where, in general, r ≪ N . Then the decomposition in
Eq. (13) can be truncated after the first r terms:

Φ̃r(y) ≈
r
∑

i=1

ziVi + Φ̄ =
N
∑

i=1

βiΦ(yi) (23)

where βi is the ith component of the vector β = AZ + 1
N
1. It is noted that

since only the first r eigenvectors are used, α̃ used in Eq. (22) only contains
the first r columns of the original matrix.

Then the stochastic reduced-order input model in the feature space can be
defined as: for any realization Y ∈ F , we have

Yr =
N
∑

i=1

βiΦ(yi), with β = Aξ +
1

N
1. (24)

Here, the subscript r is to emphasize that the realization Yr is reconstructed
using only the first r eigenvectors. ξ := [ξi, . . . , ξr]

T is a r-dimensional random
vector.

According to the properties of the K-L expansion [3,15], the random vectors
ξ satisfy the following two conditions:

E[ξi] = 0, E[ξiξj] = δij
λi

N
, i, j = 1, . . . , r. (25)
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Therefore, the random coefficients ξi are uncorrelated but not independent.
The realizations of these random coefficients can be obtained through Eq. (22)

ξ(i) = ATkyi
+ b, i = 1, . . . , N. (26)

Our problem then reduces to identify the random vector ξ := [ξi, . . . , ξr]
T ,

given its N samples ξ(i) = [ξ
(i)
1 , . . . , ξ(i)

r ], i = 1, . . . , N . A polynomial chaos
representation is introduced in the next section.

Finally, similarly to the K-L expansion [3,15], the minimum mean squared
error (MSE) of truncated expansion Eq. (24) in the feature space can be
shown to be

E
(

‖Y −Yr‖2
)

=
1

N

N
∑

i=r+1

λi (27)

Remark 1. For linear PCA, we only need to replace the kernel function in
Eq. (22) with the kernel function for linear PCA Eq. (16) and replace Φ(yi)
in Eq. (24) with the data yi directly.

3 Polynomial chaos representation of the stochastic reduced order

model

The problem is now to identify a random vector ξ : Ω → R
r, given a set of

independent samples {ξ(i)}N
i=1. For this purpose, we use a polynomial chaos

(PC) expansion to represent ξ. Several methods have been proposed to solve
the expansion coefficients in the resulted PC expansion, such as maximum
likelihood [17], Beyesian inference [18], maximum entropy method [19] and
non-intrusive projection method [21,25]. As mentioned before, the components
of random vector ξ are uncorrelated but not independent. Although Rosenbllat
transformation can be used to reduce the problem to a set of independent
random variables [20,25], it is computationally expensive for high-dimensional
problems. In this work, to reduce the computational cost, we further assume
the independence between components of ξ. This is generally not the case for
arbitrary stochastic processes. However, in the works [18] and [21], it has been
numerically verified that this strong hypothesis gives accurate results.

3.1 PC expansion of random variables

The theory and properties of the PC expansion have been well documented
in various references [3–5]. In this approach, any random variable with fi-
nite variance can be expanded in terms of orthogonal polynomials of specific
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standard random variables. Since each ξi is independent, it can be separately
decomposed onto an one-dimensional PC basis of degree p:

ξi =
p
∑

j=0

γijΨj(ηi), i = 1, . . . , r, (28)

where the ηi are i.i.d. random variables. The random basis functions {Ψj}
are chosen according to the type of random variable {ηi} that has been used
to describe the random input. For example, if Gaussian random variables are
chosen then the Askey based orthogonal polynomials {Ψj} are chosen to be
Hermite polynomials, if ηi are chosen to be uniform random variables, then
{Ψj} must be Legendre polynomials [4]. Although the Hermite polynomials
are used in this paper, the method developed can be applied to generalized
polynomial chaos expansions. The Hermite polynomials are given by

Ψ0(ηi)= 1, Ψ1(ηi) = ηi,

Ψj+1(ηi)= ηiΨj(ηi) − jΨj−1(ηi), if j > 1. (29)

The above one-dimensional Hermite polynomials are orthogonal with respect
the corresponding probability density function (PDF) of the standard normal
random variable:

E[ΨiΨj] =
1√
2π

∫ +∞

−∞
Ψi(η)Ψj(η)e−

η2

2 dη = i! δij . (30)

Thus, the PC coefficients can be computed through Galerkin projection:

γij =
E [ξiΨj(η)]

E
[

Ψ2
j(η)

] =
1√
2πj!

∫ +∞

−∞
ξiΨj(η)e−

η2

2 dη, i = 1, . . . , r, j = 0, . . . , p.

(31)
A numerical integration is needed to evaluate this integral. However, it is
noted that the random variable ξ does not belong to the same stochastic
space as η, a non-linear mapping Γ : η → ξ is thus needed which preserves the
probabilities such that Γ(η) and ξ have the same distributions. Here, a non-
intrusive projection method using empirical cumulative distribution functions
(CDFs) of samples, which was developed in [21], is utilized to compute the
PC coefficients.

3.2 A non-intrusive projection method for calculating PC coefficients

The non-linear mapping Γ : η → ξ can be defined by employing the Rosenblatt
transformation [24] as shown below for each ξi:

ξi
d
= Γi(ηi), Γi ≡ F−1

ξi
◦ Fηi

, (32)
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where Fξi
and Fηi

denote the CDFs of ξi and ηi, respectively. Here, the

equalities,“
d
=” should be interpreted in the sense of distribution such that

the PDFs of random variables on both sides are equal. The statistical toolbox
of MATLAB provides functions to evaluate the CDF of many standard PC
random variables.

However, the marginal CDF of the samples ξi is not known and can only
be evaluated numerically from the available data. Here, the kernel density
estimation approach is used to construct the empirical CDF of ξi [40]. Now,

let {ξ(s)
i }N

s=1 be N samples of ξi obtained from Eq. (26). Then the marginal
pdf of ξi is evaluated as:

pξi
(ξ) ≈ 1

N

N
∑

s=1

1√
2πτ

exp



−ξ − ξ
(s)
i

2τ 2



 , (33)

where the bandwidth τ should be chosen to balance smoothness and accuracy.
Then CDF of ξ can be obtained by integrating Eq. (33) and then the inverse
CDF is computed. The MATLAB function, ksdensity, in statistical tool box
is used to find the inverse CDF of ξi, where the τ is automatically computed
from the information of data.

Now the expectation in the Galerkin projection formulate Eq. (31) is well
defined and can be computed in η-space. Then, the coefficients of the PC
expansion can be computed using a Gauss-Hermite quadrature:

γij =
1√
2πj!

∫ +∞

−∞
ξiΨj(η)e−

η2

2 dη ≈ 1√
πj!

Ng
∑

k=1

ωkΓi(
√

2µk)Ψj(
√

2µk), (34)

where the {ωk, µk}Ng

k=1 are integration weights and points of Gauss-Hermite
quadrature. It is noted here that a transformation η =

√
2µ is used since

the weight in the Gauss-Hermite quadrature is e−η2

while the PDF of Gauss
random variable is 1√

2π
e−η2/2.

3.3 PC representation of the random field

Now, putting both KPCA and PC expansion together, one arrives at the
following r-dimensional PC representation of the stochastic random field in
the feature space:

Yr =
N
∑

i=1

βiΦ(yi), with β = Aζ +
1

N
1, (35)
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where the r × 1 column vector ζ is:

ζ =





p
∑

j=0

γ1jΨj(η1), . . . ,
p
∑

j=0

γrjΨj(ηr)





T

. (36)

Therefore, by drawing i.i.d. samples of standard Gaussian random variables
ηi, i = 1, . . . , r, we obtain different realizations of the underlying random field
in the feature space F . Now the dimensionality of the stochastic input space
is successfully reduced from a large number M to a small number r.

4 The pre-image problem in KPCA

The simulated realizations of the random field from Eq. (35) are in the feature
space F . However, we are interested in obtaining realizations in the physical
input space. Therefore, an inverse mapping is required as y = Φ−1(Y). This
is known as the pre-image problem [34,38]. As demonstrated in [34], this pre-
image may not exist or if it exists, it may be not unique. Therefore, we can
only settle for an approximate pre-image ŷ such that Φ(ŷ) ≈ Yr.

4.1 Fixed-point iteration for finding the pre-image

One solution to the pre-image problem is to address this problem as a nonlinear
optimization problem by minimizing the squared distance in the feature space
between Φ(ŷ) and Yr:

ρ(ŷ) = ‖Φ(ŷ) − Yr‖2. (37)

The extremum can be obtained by setting ∇ŷρ = 0. For Gaussian kernel
Eq. (17), this nonlinear optimization problem can be solved by a fixed-point
iteration method [34]:

ŷt+1 =

∑N
i=1 βi exp (−‖ŷt − yi‖2/(2σ2))yi
∑N

i=1 βi exp (−‖ŷt − yi‖2/(2σ2))
. (38)

As can be easily seen, the pre-image in this case will depend on the initial
starting point and is likely to get stuck in local minima. In addition, this
scheme is numerically unstable and one has to try a number of initial guesses.
Therefore, it is not suitable for our stochastic simulation since we need to
have a one to one mapping and to find an efficient way for generating a large
number of samples.

Furthermore, it is noted that the pre-image obtained in this scheme is in the
span of all realizations yi’s, i.e. it is a linear combination of all the available

14



realizations:

ŷ =
N
∑

i=1

θiyi, with
N
∑

i=1

θi = 1, (39)

where the weights

θi =
βi exp (−‖ŷt − yi‖2/(2σ2))

∑N
i=1 βi exp (−‖ŷt − yi‖2/(2σ2))

. (40)

Due to the exponential term in the Gaussian kernel, the contributions of the
realizations typically drop rapidly with increasing distance from the pre-image.
In other words, the influence of training realizations with smaller distance to ŷ

will tend to be bigger. Therefore, it is reasonable to use only nearest neighbors
of the pre-image for local linear interpolation.

4.2 Local linear interpolation for finding the pre-image

As illustrated in the last section, we can find the pre-image using local lin-
ear interpolation within n-nearest neighbors. Motivated by our previous work
in [29], the Euclidean distances are used as the interpolation weights. Actually,
there exists a simple relationship between the feature-space and input-space
distance for Gaussian kernel [38,41]. The basic idea of the method is shown
in Fig. 2. For an arbitrary realization Yr in F , we first calculate its distances
to the nearest neighbors in the feature space. Then the distances in the input
space are recovered. Finally, the input-space distances are used as the local
linear interpolation weights.

•
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Fig. 2. Basic idea of the proposed pre-image method.

Given any realization Yr ∈ F , we can compute the squared feature distance
between Yr to the ith mapped data as:

d̃2
i (Yr, Φ(yi)) = ‖Yr − Φ(yi)‖2 = ‖Φ(yi)‖2 + ‖Yr‖2 − 2YT

r Φ(yi), (41)

for i = 1, . . . , N . Recall that for Gaussian kernel, k(yi,yi) = 1 and Yr =
∑N

i=1 βiΦ(yi). Then for each feature distance d̃2
i (Yr, Φ(yi)) , i = 1, . . . , N , we
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can compute them in the following matrix form:

d̃2 = 1 + βTKβ − 2Kβ, (42)

where the vector d̃2 = [d̃2
1, . . . , d̃

2
N ]T . We thus can sort this vector in ascend-

ing order to identify the n-nearest neighbors with respect to Yr, Φ(ỹi), i =
1, . . . , n.

On the other hand, the squared feature distance between the Φ-map of the
pre-image ŷ and the ith mapped data is:

d̂2
i (Φ(ŷ), Φ(yi)) = ‖Φ(ŷ) − Φ(yi)‖2

= k(ŷ, ŷ) + k(yi,yi) − 2k(ŷ,yj)

= 2 (1 − k(ŷ,yi)) , (43)

for i = 1, . . . , N and where we have used k(ŷ, ŷ) = k(yi,yi) = 1 again since
Gaussian kernel is used. Furthermore, we have the squared input-space dis-
tance:

k(ŷ,yi) = exp

(

−‖ŷ − yi‖2

2σ2

)

,

from which we obtain

d2
i = ‖ŷ − yi‖2 = −2σ2log(k(ŷ,yi)), (44)

for i = 1, . . . , N . Substituting Eq. (43) into Eq. (44), one arrives at

d2
i = ‖ŷ − yi‖2 = −2σ2log(1 − 0.5d̂2

i ), (45)

for i = 1, . . . , N . Because we try to find an approximate pre-image such that
Φ(ŷ) ≈ Yr, it is straightforwardly to identify the relationship d̃2

i ≈ d̂2
i from

Eqs. (41) and (43). Therefore, the squared input-distance between the approx-
imate pre-image ŷ and ith realization can be computed by:

d2
i = ‖ŷ − yi‖2 = −2σ2log(1 − 0.5d̃2

i ), (46)

for i = 1, . . . , N and where d̃2
i is given by Eq. (42).

Finally, the pre-image ŷ for a feature space realization Yr is given by

ŷ =

∑n
i=1

1
di
ỹi

∑n
i=1

1
di

, (47)

where ỹi, i = 1, . . . , n are the n-nearest neighbors. It is noted that here we
use the n-nearest neighbors in the feature space. However, they are the same
as the n-nearest neighbors in the input space since Eq. (46) is monotonically
increasing.
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Therefore, the pre-image ŷ of an arbitrary realization in the feature space is the
weighted sum of the pre-images of the n-nearest neighbors of Yr in the feature
space, where the nearest neighbors are taken from the samples yi, i = 1, . . . , N .
This local linear interpolation procedure is based on the principle that a small
region in a highly curved manifold can be well approximated as a linear patch.
It is easily verified that the interpolation weights satisfies Eq. (39). Thus, a
unique pre-image can now be obtained using simple algebraic calculations in a
single step (no iteration is required) and is suitable for stochastic simulation.

5 Numerical example

In this section, we apply Kernel PCA on modeling random permeability field
of complex geological channelized structures. This structure is characterized
by multipoint statistics (MPS), which expresses the joint variability at many
more than two locations [42]. Therefore, only mean and correlation structure
(two-point statistics) are not enough to capture the underlying uncertainty of
the random field and thus linear PCA or standard K-L expansion is expected
to fail.

5.1 Generation of experimental samples

In [17], the experimental data was obtained through solution of stochastic
inverse problems given several realizations of the system outputs. This method
is computationally expensive if a large number of samples is required. To this
end, we utilize the reconstruction technique from an available training image
to numerically generate samples of the random field [29]. The basic idea is that
the training image contains geological structure or continuity information of
the underlying random field, and the MPS algorithm creates realizations of the
random field honoring this structural relationship [36]. In this example, one of
the MPS algorithms, the single normal equation simulation ‘snesim’ algorithm
is used to generate the channelized permeability [42] from the training image
shown in Fig. 3. It is a binary image where 1 designates channel sand and
0 designates background mud. Since we are only interested in the geological
structure not the value itself, a further assumption is made such that the
image is a logarithmic transformation of the original permeability field and
the values 1 and 0 are the permeability values themselves.

Using the ‘snesim’ algorithm, 1000 realizations of a channelized permeability
field, of dimension 45×45, are created from the training image in Fig. 3. These
serve as the training samples (experimental data) of the random field for the
construction of KPCA. Additional set of realizations, which is not included
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Fig. 3. The large-scale training image for the ‘snesim’ algorithm.

in the training samples, will serve as the test samples to verify the accuracy
of the constructed reduced-order model using KPCA algorithm. Some of the
realizations created are shown in Fig. 4.
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Fig. 4. Some of the realizations created using the ‘snesim’ algorithm.

Each realization of the random field can be considered as a 2025-dimensional
vector. Since each vector consists of only 0 and 1, all the samples occupy
only corners of a 2025-dimensional hypercube. Therefore, they are not linearly
related and linear PCA will fail. This problem is similar to the image-denoising
problem in machine learning community where binary images of digits are
used and the performance of KPCA is proved to be superior to that of linear
PCA [34,38].
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5.2 Comparison between linear PCA and Kernel PCA

The kernels Eqs. (16) and (17) are used now to perform linear PCA and Ker-
nel PCA, respectively, on the 1000 sample realizations. The parameter c in
Eq. (18) is taken to be 10. The kernel matrices are formulated and subsequent
eigenvalue problems are solved. The corresponding first 100 eigenvalues and
reconstruction mean squared error (MSE) are shown in Fig. 5. For non-linear
data set, the failure of linear PCA means overestimating the intrinsic dimen-
sionality of the data. Therefore, in order to compare the performance from
both methods, we need to keep the same number of eigenvectors. A rule of
thumb is to choose r such that

∑r
i=1 λi/

∑N
i=1 λi is sufficiently close to one.

However, this rule is not applied here. Since if the reconstruction MSE is suffi-
ciently small, there is no need to keep so many eigenvectors. To this end, only
the largest 30 eigenvalues are retained for the KPCA, which corresponds to
about 75% energy of the random field. The associated reconstruction MSE is
0.003, which is small enough to ensure an accurate expansion in the feature
space. On the same time, we also keep 30 eigenvalues for linear PCA, where
the reconstruction MSE is 107.242, which is much larger than that of KPCA.
Many more eigenvalues are needed to reduce the MSE. This observation par-
tially indicates the failure of linear PCA.
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Fig. 5. Plots of the eigenspectrum (left column) and MSE (right column) from linear
PCA (top row) and Kernel PCA (bottom row).

We next try to reconstruct one of the test samples using both methods.
The results are shown in Fig. 6 with different number of eigenvectors re-
tained. By reconstruction, we mean we first project the test samples onto the
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low-dimensional space and compute their coordinates. Then using only the
low-dimensional coordinates, the original sample in the input space is recon-
structed from linear PCA and Kernel PCA pre-image algorithm, respectively.
10 nearest neighbors are used in finding the pre-image. It is seen that using
linear PCA, the reconstruction results improve slowly with increasing number
of eigenvectors. A large number of eigenvectors are needed to obtain a good
result. This is consistent with our previous discussion that the linear PCA
will overestimate the actual dimensionality of the data in the nonlinear case.
However, the reconstructed permeability value is still not correct even with
r = 500. On the other hand, only 30 eigenvectors are needed to get a good
reconstruction from KPCA. Increasing the number of eigenvectors will not im-
prove the results since the nearest neighbors have been correctly identified and
the reconstruction MSE in the feature space is quite small. The first 9 identi-
fied nearest neighbors of the test sample are shown in Fig. 7 with r = 30. It is
clearly seen that the first 3 neighbors have the geological structures which are
most similar to our test sample. This verifies that the introduced pre-image
algorithm indeed finds the correct nearest neighbors among the data using
only the distances in the features space and input space.
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Fig. 6. Reconstruction of a test sample (top figure) using linear PCA (middle row)
and Kernel PCA (bottom row) with different number of eigenvectors retained.

To further verify the Kernel PCA algorithm, more test samples are recon-
structed. To compare its performance with that of linear PCA, 30 eigenvectors
are retained in both cases since it was shown before that r = 30 is enough for
Kernel PCA. The results are shown in Fig. 8. Again, Kernel PCA consistently
gives more accurate results and the reconstruction samples are more like the
original binary images.
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Fig. 7. The first 9 nearest neighbors of the test samples identified in the feature
space with r = 30.
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Fig. 8. More reconstruction results of different test samples (top row) using linear
PCA (middle row) and Kernel PCA (bottom row) with r = 30.

In this section, we compared the performance of linear PCA and Kernel PCA
for reconstruction. Although linear PCA is not optimal, it still more or less
provided us the desired geological structure. However, what we are interested
in is the generation of stochastic realizations. In the next section, we will
show that the linear PCA cannot give us arbitrary realizations with expected
geological patterns.
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5.3 PC representation and stochastic sampling in the low-dimensional space

In this section, we construct the PC representation of the random field using
the method introduced in Section 3.2. We keep 30 eigenvectors for both linear
PCA and kernel PCA. First, the samples ξ(i) of ξ are computed by inserting
the 1000 sample realizations yi into Eq. (26). Then these samples are used to
construct the inverse marginal CDF for each dimension through kernel density
estimation. Finally, Eq. (34) is used to calculate the PC coefficients for each
dimension. A PC representation of the random channelized permeability is
constructed next, which is only of 30 dimensions, compared with the original
2025-dimensional space. By drawing 30 i.i.d. standard normal random vari-
ables ηi from this low-dimensional space and substituting them into Eqs. (35)
and (36), any realization of the underlying random permeability field can now
be obtained in an inexpensive way.

Fig. 9 depicts 4 different marginal PDFs of the initial and identified random
variables using the non-intrusive projection method for Hermite chaos with in-
creasing expansion orders using linear PCA. The marginal PDF of initial ran-
dom variable is obtained by plotting the kernel density estimation of the 1000
sample coefficients ξ(i). The marginal PDF of the identified random variable is
obtained by plotting the kernel density estimation of 10000 PC realizations of
ξ. These PC realizations are calculated by generating 10000 standard normal
random vectors and inserting them into Eq. (28). It is seen that a p = 10
order expansion is enough to accurately identify the random coefficients. It is
also interesting to note that the PC expansion converges slowly for the first
two random coefficients ξ1 and ξ2. This is because more variance is contained
in the larger eigenvectors due to the property of PCA.

Some of the realizations generated through sampling the PC representation of
linear PCA are shown in Fig. 10. The failure of linear PCA is more pronounced
in this case. The realizations definitely do not reflect the original channelized
structure of the permeability field. In addition, the permeability value is not
correctly predicted.

Similar results are shown in Figs. 11 and 12 for Kernel PCA. However, using
Kernel PCA, it is seen that the generated realizations clearly show channelized
geological structure with correct permeability values.

We introduce the relative errors for statistics of the experimental samples,
{yi}1000

i=1 , and PC realizations, {y(pc)
i }npc

i=1:

e =

√

∑2025
i=1 (Ti − T

(pc)
i )2

√

∑2025
i=1 T 2

i

, (48)

22



-30 -20 -10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ξ
1

P
D
F
(ξ
1
)

 

 

Samples

PCE: p = 2

PCE: p = 4

PCE: p = 6

PCE: p = 8

PCE: p = 10

-30 -20 -10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ξ
2

P
D
F
(ξ
2
)

 

 

Samples

PCE: p = 2

PCE: p = 4

PCE: p = 6

PCE: p = 8

PCE: p = 10

0.12  

Samples

0.25  

Samples

-15 -10 -5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

ξ
10

P
D
F
(ξ
1
0
)

 

Samples

PCE: p = 2

PCE: p = 4

PCE: p = 6

PCE: p = 8

PCE: p = 10

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

ξ
30

P
D
F
(ξ
3
0
)

 

Samples

PCE: p = 2

PCE: p = 4

PCE: p = 6

PCE: p = 8

PCE: p = 10

Fig. 9. Four different marginal PDFs of the initial and identified random variables
using linear PCA with Hermite chaos.
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Fig. 10. Realizations of the random field by sampling the corresponding PC repre-
sentation using linear PCA.

in which Ti represents the appropriate sample statistics of experimental sam-
ples {yi}1000

i=1 in ith grid block and S
(pc)
i represents the corresponding sample

statistics of PC realizations {y(pc)
i }npc

i=1. 10000 PC realizations of the random
permeability are generated. The results are shown in Table 1. From the table,
as expected, the linear PCA gives accurate mean and covariance, which are
first- and second-order statistics. On the other hand, the Kernel PCA gives
better skewness and kurtosis, which can be considered as third- and four-order
statistics, respectively. It is noted that relative error of skewness is 1.006 for
linear PCA, while it is 0.114 for Kernel PCA. Therefore, the skewness is the
dominant higher-order statistic in the case of channelized permeability field.
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Fig. 11. Four different marginal PDFs of the initial and identified random variables
using Kernel PCA with Hermite chaos.
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Fig. 12. Realizations of the random field by sampling the corresponding PC repre-
sentation using Kernel PCA.

Finally, we want to comment on the overall statistics of generated PC realiza-
tions. From Table 1, it is seen that the errors from Kernel PCA are still big for
covariance and kurtosis. However, it is emphasized that we are most interested
in the main geological structure of the random field. We cannot obtain exactly
the same statistics as in the experimental samples. There are three possible
reasons. First, only an approximate pre-image is calculated. This process con-
tributes significant portion of the total error. Second, a PC expansion is used
to fit the marginal PDF of the random coefficients. From Fig. 11, it is noted
that some experimental samples are from the long tail region of the marginal
PDF. Thus, the experimental samples can be considered as the extreme real-
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izations of the underlying random fields. When we sample the corresponding
marginal PDF from PC expansion, it is clear that most of the samples are
from the high density region. Third, there are only 1000 data samples used to
compute the statistics, which may be not enough to get converged statistics.
Therefore, the statistics of the generated PC realizations are expected to be
slightly smaller than that of experimental sample. But the PC realizations
should capture the main statistical features of the experimental samples. This
point is demonstrated in the next section.

Table 1
Comparison of statistics between experimental samples and PC samples of the ran-
dom permeability field.

Errors Mean vector Covariance matrix Skewness vector Kurtosis vector

Linear PCA 0.039 0.193 1.006 0.676

Kernel PCA 0.102 0.427 0.114 0.496

5.4 Forward uncertainty propagation with the stochastic input model

In this section, the generated stochastic input model is used as an input to
the single-phase flow problem on the domain [0, 1]2. The governing equations
of the single-phase flow are [43]

∇ · u(x, ω)= 0, u(x, ω) = −a(x, ω)∇p(x, ω) ∀x ∈ D, (49)

∂S(x, t, ω)

∂t
+ u(x, t, ω) · ∇S(x, t, ω) = 0, ∀x ∈ D, t ∈ [0, T ]. (50)

Flow is induced from left-to-right with Dirichlet boundary conditions p = 1
on {x1 = 0}, p = 0 on {x1 = 1} and no-flow homogeneous Neumann bound-
ary conditions on the other two edges. We also impose zero initial condition
for saturation S(x, 0) = 0 and boundary condition S(x, t) = 1 on the in-
flow boundary {x1 = 0}. Mixed finite element method developed in [43] is
used to solve the above equations with spatial discretization 45 × 45. So the
permeability is defined as a constant in each grid block.

The stochastic permeability is a = exp(y) if the experimental samples are
used or a = exp(ynpc) if the PC realizations from the stochastic input model
are used in the computation. Monte Carlo (MC) simulation is then conducted
using both 1000 experimental samples directly and generated PC realizations.
50000 PC realizations are generated by sampling the low-dimensional space.
The stochastic input model is the same as the one used to generate the real-
izations in the last section.
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Fig. 13. Contour of saturation at 0.2 PVI: MC mean (a) and variance (b) from
experimental samples; MC mean (c) and variance (d) from PC realizations.

The contour plots of saturation at 0.2 PVI are given in Fig. 13. PVI represents
dimensionless time and is computed as PVI =

∫

Q dt/Vp, where Vp is the total
pore volume of the system, which is equal to the area of the domain D here
and Q =

∫

∂Dout(uh · n) ds is the total flow rate on the out flow boundary
∂Dout. The water cut curves are also given in Fig. 14. The water-cut is de-

fined as F (t) =

∫

∂Dout(uh·n)S ds
∫

∂Dout(uh·n) ds
. From the figures, it is seen that we obtain

nearly the same mean saturation and mean water cut curves from the experi-
mental samples and the PC realizations. However, the variances of saturation
and water curve curves are not exactly the same. In general, the value of the
variance from PC realizations is smaller than that from the experimental sam-
ples. But it should be noted that the results from the PC realizations capture
the same main features as the results from the experimental samples. To be
specific, the regions with the highest variance values of saturation are nearly
the same in both cases. The shapes of the variance of the flow curve are also
the same in both cases. These observations are expected. As explained before,
the experimental samples can be considered as the extreme realizations of the
stochastic model. On the other hand, most of the PC realizations are from
the highest probability density region of the same stochastic space. Together
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with the fact that there are only 1000 experimental samples, it is obvious that
the MC results from experimental data are far from converged results. If more
experimental samples available, the results are expected to converge to the
results using our low-dimensional model. This is possibly expensive in practi-
cal engineering problems. On the other hand, our proposed stochastic input
model provides a fast way to generate many realizations, which are consistent,
in a useful sense, with the experimental data.
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Fig. 14. Comparison of water cut curves: (a) Mean; (b) Variance.

Finally, we want to comment on the computational time. To generate the
1000 experimental data using the ‘snesim’ algorithm, it took approximate 30
minutes on a single processor machine. On the other hand, to generate 50000
PC realizations from our reduced-order model, less than 1 minute is needed
on the same machine. In addition, the process of generating PC realizations
is easily parallelized, which is used in our MC simulations.

6 Conclusion

In this paper, a new parametric stochastic reduced-order modeling method
is proposed, which can efficiently preserve higher-order statistics of the ran-
dom field given limited experimental data. This method relies on the theory
of Kernel PCA to transform the data into a feature space, in which the data
is more linearly related than in the original input space. PC expansion is
then utilized to identify the random coefficients in the Kernel PCA formula-
tion. A simple but accurate pre-image algorithm is also introduced to project
the generated PC realizations back to the original input space. A thorough
comparison between the Linear PCA and Kernel PCA on reduced-order mod-
eling of the channelized permeability field is conducted. As expected, Kernel
PCA gives more accurate realizations which reflects the original channelized
geological structure with much less eigenvectors retained. This results in a
low-dimensional stochastic input space. On the other hand, linear PCA fails
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to capture the channelized structure with the same number of eigenvectors
due to the nonlinearity of the data. Forward uncertainty quantification is also
conducted which shows the introduced stochastic input model indeed captures
the main statistical properties of the underlying random field.

As a first step towards the implementation of this method, the independence
between the random coefficients was assumed. Although this gives us meaning-
ful results in the numerical examples considered, the effect taking the depen-
dence into account as in [19] using Rosenblatt transformation needs further
investigation. In addition, the Euclidean distances between data is directly
used as the distance measure between data. As in [37], it will be more in-
teresting to take distances between flow responses as the distance measure
between permeability data. This is expected to be more accurate since it in-
corporates the information of the underlying stochastic system.

The basic model reduction ideas envisioned in this work are not limited to gen-
eration of viable stochastic input models for property variations. This frame-
work has direct applicability to inverse problems [13], where the generated
model can be considered as the prior model of all available properties. Thus,
finding the unknown property is only limited to the low-dimensional space and
is expected to be more efficient than working in the original high-dimensional
space. Furthermore, the generation of a low-dimensional surrogated space pro-
vides a prerequisite in stochastic low-dimensional modeling of SPDEs [44],
which may have major ramifications in design under uncertainty and stochas-
tic optimization problems. These potentially exciting areas of application of
our proposed framework offer fertile avenues of further research.
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