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Introduction 
 

Prostate cancer is the most frequently diagnosed cancer among men in the United States; 
one in six men will be diagnosed in their lifetime, but many of them will not die from their 
cancer. The observed clinical heterogeneity among prostate cancer patients is likely explained in 
large part by underlying molecular heterogeneity. DNA copy number alteration (CNA) 
represents one form of molecular alteration that has been extensively characterized in prostate 
cancer, and plays a critical role in prostate tumorigenesis via the amplification of oncogenes and 
deletion of tumor suppressor genes. By altering gene dosage, CNAs not only modify the 
expression of genes that reside on the affected chromosomal region, but may also aberrantly 
redirect the transcriptional activity of many other unlinked genes in cases where the region of 
CNA harbors a transcriptional regulator. In this manner, CNAs perturb the transcriptional 
regulatory network of prostate tumor cells. An improved understanding of the topology of this 
network and its most salient nodes might lead to novel diagnostic, prognostic, and therapeutic 
strategies in the future. 

The overall objective of this study is to reconstruct the prostate cancer transcriptional 
regulatory network and to experimentally validate novel, clinically-relevant regulatory 
interactions. The hypothesis of this proposal is that CNAs invoke gene expression changes in 
nearby and distant target genes, and that by using prostate tumor specimens with paired 
measurements of gene copy number and gene expression, we will be able to detect these CNA-
induced gene-expression signatures and infer novel regulatory relationships. The goal of this 
proposal is to develop and apply a computational method to infer these relationships that 
collectively form the transcriptional regulatory network of prostate cancer cells. 
 
Body 
 
Year 1 of this award has been dedicated to the collection and processing of multiple prostate 
cancer genomic datasets, and to the development of computational methods for integrating these 
datasets. Specifically, two separate approaches to infer relationships between CNAs and gene 
expression have been developed. The first approach focuses on local or “cis” effects of CNAs; 
that is, the impact of CNAs on the expression of genes residing in the region of alteration. The 
second approach focuses on global or “trans” effects of CNAs; that is, the impact of CNAs on 
the expression of genes residing outside the region of alteration. 
 
Prostate tumor specimens and profiling data. We have generated two large datasets derived from 
64 and 90 primary human prostate tumors, respectively, on which to perform integrative 
genomic analysis. The first series of prostate tumors were profiled for DNA copy number 
alterations and gene expression changes using Stanford 44K cDNA microarrays [Lapointe et al. 
PNAS 2004; Lapointe et al. Cancer Research 2007]. The second series of prostate tumors were 
profiled for DNA copy number alterations using Agilent 44K CGH arrays and for gene 
expression changes using Stanford Human Exonic Evidence-Based Oligonucleotide (HEEBO) 
arrays.  
 
Data pre-processing. For each copy number data, background-subtracted log2-transformed 
fluorescence ratios have been normalized by median-centering genes on each array. For gene 
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expression data, background-subtracted log2-transformed fluorescence ratios have been 
normalized by median-centering genes for each array and for each gene iteratively. We have 
included for subsequent analysis those genes measured with high quality (Cy5 or Cy3 channel 
fluorescence signal intensity at least 1.5-fold above background). Map positions for each probe 
from the three microarray platforms were mapped to the human genome reference sequence 
(hg18).  
 
Preliminary data analysis. Statistically significant DNA copy number changes have been 
identified by Circular Binary Segmentation (CBS) [Olshen et al. 2004] and Fused Lasso 
[Tibshirani et al. 2008] in each of the two datasets. We also identified regions with recurrent 
DNA copy number changes across all the tumors using the tool Genomic Identification of 
Significant Targets in Cancer (GISTIC) [Beroukhim et al. 2007]. These analyses revealed several 
novel regions of recurrent amplification and deletion in prostate cancer, harboring potential 
oncogenes and tumor suppressor genes, respectively. Two regions of recurrent deletion on 
chromosomes 5q21 and 6q15 were identified disproportionately among tumors with a clinically-
indolent course of disease. This finding is of interest, as there currently are no good biomarkers 
of clinically- indolent prostate cancer. Identifying men who need aggressive treatment versus 
those who could avoid the attendant risks and complications of such treatment is currently a 
challenge in the clinical management of patients with prostate cancer. We are currently 
examining this novel region of deletion and functionally validating candidate tumor suppressor 
genes [Huang et al., in preparation]. This line of investigation ultimately has the potential to 
yield novel insights into prostate cancer pathobiology as well as point to novel therapeutic and/or 
risk stratification strategies. 
 
Computational methods development . We have completed development of a method to detect the 
local or “cis” effects of copy number alterations on gene expression. The method, DNA/RNA-
Integrator (DR-Integrator) automates the identification of chromosomal regions with significant 
amplifications and deletions, and identifies genes with strong correlation in their DNA copy 
number and gene expression levels [Salari et al. 2010]. DR-Integrator also performs supervised 
analysis of DNA copy number and gene expression data; that is, given two sample groups of 
interest (e.g., clinically- indolent vs. clinically-aggressive tumors), DR-Integrator identifies genes 
with the greatest difference in copy number and expression between the two groups. This type of 
analysis helps identify specific alterations that might underlie molecular or clinical phenotypes of 
interest. This method has successfully been applied in a comparative study between copy number 
and gene expression levels of prostate cancer metastases and primary tumors [Holcomb et al. 
2009]. It has also been applied to a study of breast cancer cell lines [Kao et al. PLoS ONE 2009]. 
 Our method to detect global or “trans” effects of copy number alterations on gene 
expression is in continued development. This method examines the correlations between copy 
number alterations in one chromosomal region with the gene expression levels of sets of genes 
on other chromosomes. Because genes that function in the regulation of other genes (e.g., 
transcription factors and chromatin-modifying factors) are often in regions of copy number 
alteration, these genetic lesions have the capacity to affect the expression of hundreds to 
thousands of other genes. The main goal of this method is to identify the most significant of such 
regulatory relationships in prostate cancer cells.  
 
Key research accomplishments 
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• Collection and processing of two high-quality prostate tumor datasets profiled for DNA 

copy number alterations and gene expression levels 
• Development of computational method for identification of local or “cis” effects of DNA 

copy number alteration on gene expression levels  
• Identification of novel regions of deletion in clinically- indolent prostate tumors 
• Continued development of computation method for identification of global or “trans” 

effects of DNA copy number alteration on gene expression levels 
 
Reportable outcomes 
 
1. Huang S, Salari K, Gulzar ZG, Brooks JD, Pollack JR. Genomic profiling identifies a novel 

tumor-suppressor deleted in prostate cancer. In preparation. 
 
2. Malhotra S, Lapointe J, Higgins JP, Ferrari M, Montgomery K, Salari K, van de Rijn M, 

Brooks JD, and Pollack JR. A tri-marker proliferation index provides superior prognostic 
performance in prostate cancer. Submitted. 

 
3. Salari K, Tibshirani R, Pollack JR. DR-Integrator: a new analytic tool for integrating DNA 

copy number and gene expression data. Bioinformatics. 2010 Feb 1;26(3):414-6. 
 
4. Holcomb IN, Young JM, Coleman I, Salari K, Grove DI, Hsu L, True LD, Roudier MP, 

Morrissey CM, Higano CS, Nelson PS, Vessella RL, Trask BJ. Comparative analyses of 
chromosome alterations in soft-tissue metastases within and across patients with castration-
resistant prostate cancer. Cancer Research 2009 Oct 1;69(19):7793-7802. Epub 2009 Sep 22. 

 
5. Kao J*, Salari K*, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-

Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR. Molecular profiling of breast cancer 
cell lines defines relevant tumor models and provides a resource for cancer gene discovery. 
PLoS One. 2009 Jul 3;4(7):e6146. *Co-first authors. 

 
6. Presentation of DR-Integrator at the AACR-Translating the Cancer Genome Conference, 

Boston, MA, February 2009. 
 
Conclusion 
 

The support of this award has yielded the development of computational methods to 
analyze and integrate diverse molecular profiling data. We have successfully applied one 
developed method to a prostate cancer dataset, resulting in the identification of genes that may 
play a causal role in prostate tumor metastasis. Our analysis of prostate tumor DNA copy number 
data has also uncovered a potentially novel tumor suppressor gene associated with clinically-
indolent prostate cancer. This finding may represent a much-needed biomarker capable of 
distinguishing indolent versus aggressive disease, and may lead to novel strategies for patient 
management. We are continuing to work on a second method for integration of DNA copy 
number and gene expression data in the second year of this award, and expect further biological 
insights to be generated by the application of the method to our prostate tumor datasets.  
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ABSTRACT

Summary: DNA copy number alterations (CNA) frequently underlie
gene expression changes by increasing or decreasing gene dosage.
However, only a subset of genes with altered dosage exhibit
concordant changes in gene expression. This subset is likely to be
enriched for oncogenes and tumor suppressor genes, and can be
identified by integrating these two layers of genome-scale data. We
introduce DNA/RNA-Integrator (DR-Integrator), a statistical software
tool to perform integrative analyses on paired DNA copy number and
gene expression data. DR-Integrator identifies genes with significant
correlations between DNA copy number and gene expression,
and implements a supervised analysis that captures genes with
significant alterations in both DNA copy number and gene expression
between two sample classes.
Availability: DR-Integrator is freely available for non-commercial use
from the Pollack Lab at http://pollacklab.stanford.edu/ and can be
downloaded as a plug-in application to Microsoft Excel and as a
package for the R statistical computing environment. The R package
is available under the name ‘DRI’ at http://cran.r-project.org/. An
example analysis using DR-Integrator is included as supplemental
material.
Contact: ksalari@stanford.edu; pollack1@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
DNA microarray technology has been leveraged to make genome-
scale measurements across multiple layers of cellular molecules,
e.g. gene expression (Schena et al., 1995), DNA copy number
(Pinkel et al., 1998; Pollack et al., 1999), protein expression (Haab
et al., 2001) and microRNA expression (Calin et al., 2004), among
others. While each data type alone provides a unique snapshot of a
cell’s state, an integrative analysis of two or more complementary
data types can reveal much more than the sum of its parts. DNA
copy number alterations (CNAs) represent one data layer extensively
measured among many tumor types using array-based comparative
genomic hybridization (array CGH). CNAs lead to the amplification
and deletion of oncogenes and tumor-suppressor genes (TSGs),
respectively, and thereby play a critical role in tumorigenesis. While
delineating CNAs across many samples facilitates the identification

∗To whom correspondence should be addressed.

of oncogenes (in regions of recurrent amplification) and TSGs
(in regions of recurrent deletion), cumulatively such genetic
changes often span a substantial proportion of the genome, thereby
obfuscating the distinction between ‘driver’ cancer genes selected
for by a genetic event and nearby ‘passenger’ genes incidentally
co-amplified or deleted. Similarly, when comparing cancer cells to
normal cells, thousands of genes are often differentially expressed,
rendering discrimination of the most salient, primary changes from
correlated, downstream changes difficult.

One useful approach to aid cancer gene discovery is to integrate
DNA copy number and gene expression profiles (Adler et al., 2006;
Garraway et al., 2005; Hyman et al., 2002; Pollack et al., 2002).
Tumors often harbor CNAs altering the gene dosage of hundreds
or thousands of genes. However, due to tissue-specific expression
or feedback regulation, among other mechanisms, expression
levels of many of these genes may remain unaltered. Because the
effects of CNAs are mediated by changes in gene expression, the
subset of genes exhibiting concordant changes in both DNA copy
number and gene expression (e.g. amplified and over-expressed
genes) are likely to be enriched for candidate oncogenes and TSGs.

While several software tools and statistical methods have been
developed to analyze DNA copy number data (Beroukhim et al.,
2007; Olshen et al., 2004; Tibshirani and Wang, 2008) or gene
expression data (Reich et al., 2006; Subramanian et al., 2005; Tusher
et al., 2001) separately, few methods have been developed for their
integration (Berger et al., 2006; Carrasco et al., 2006; Hautaniemi
et al., 2004). In particular, to our knowledge there is no widely
available software tool that facilitates multiple integrative analyses
with a user-friendly interface. Here, we describe our development of
DR-Integrator, a broadly useful package of tools to integrate array
CGH and gene expression microarray data for the nomination of
candidate cancer genes.

2 FEATURES
The DR-Integrator software package contains two analysis tools:
DR-Correlate and DR-SAM.

2.1 Correlation analysis
DR-Correlate aims to identify genes with expression changes
explained by underlying CNAs. To that end, this tool performs an
analysis to identify all genes with statistically significant correlations
between their DNA copy number and gene expression levels. Three

© The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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options for the statistic to measure correlation are implemented: (i)
Pearson’s correlation; (ii) Spearman’s rank correlation; and (iii) an
‘extremes’ t-test. For Pearson’s and Spearman’s correlations, the
respective correlation coefficient is computed for each gene. For
the extremes t-test, a modified Student’s t-test (Tusher et al., 2001)
is computed for each gene, comparing gene expression levels of
samples comprising the lowest and the highest quantiles with respect
to DNA copy number. In other words, for each gene the samples are
rank-ordered by DNA copy number and samples below the lowest
quantile and above the highest quantile form two groups whose gene
expression is compared with a modified t-test. The percentile cutoff
defining the two quantile groups is user-adjustable.

2.2 Two-class supervised learning analysis
DNA/RNA-Significance Analysis of Microarrays (DR-SAM)
performs a supervised analysis to identify genes with statistically
significant differences in both DNA copy number and gene
expression between different classes (e.g. tumor subtype-A versus
tumor subtype-B). The goal of this analysis is to identify genetic
differences (CNAs) that mediate gene expression differences
between two groups of interest. DR-SAM implements a modified
Student’s t-test to generate for each gene two t-scores assessing
differences in DNA copy number (tDNA) and differences in gene
expression (tRNA). A final score (S) is computed by first summing
the copy number t-score and gene expression t-score, and then
weighting the sum by the ratio of the two t-scores (0≤ w ≤ 1). The
weight is applied to favor genes with strong differences in both DNA
copy number and gene expression between the two classes. That is, a
gene with statistically equal differences in copy number and in gene
expression (i.e. tDNA = tRNA) will have a weight of 1, while genes
with unbalanced contributions from copy number and expression
will have a weight less than 1, resulting in a lower score:

S=w∗(tDNA+tRNA)

w=min

{
tDNA

tRNA
,
tRNA

tDNA

}
(1)

2.3 False discovery rate estimation
To account for multiple hypothesis testing, both DR-Correlate and
DR-SAM calculate a measure of statistical significance called the
q-value, which is based on the false discovery rate (FDR). This
is achieved by randomly permuting the sample labels a large
number of times (user-defined; default: 1000 times) to disrupt
the correlations between the paired DNA copy number and gene
expression measurements. For each random permutation of the data,
a test score is computed for every gene. To calculate a gene-specific
q-value, each observed score is compared to the distribution of
random scores and the FDR is estimated as previously described
(Storey and Tibshirani, 2003).

2.4 Additional features
DR-Integrator performs several preprocessing steps including
smoothing of copy number data, calling significant copy number
alterations with the Fused Lasso method (Tibshirani and Wang,
2008), and merging DNA/RNA datasets from different platforms
to allow for integrative analyses. DR-Integrator also allows the user
to specify the FDR cutoff for an analysis and generate DNA/RNA
‘heatmaps’ for genes achieving statistical significance. Automatic

imputation of missing expression data, using the nearest neighbor
algorithm, is also performed. Finally, we note that DR-Integrator is
not limited to the analysis of DNA copy number and gene expression
data, but can be used to integrate any paired data types where a 1-to-1
mapping between measured elements can be made. An example
analysis is shown on a dataset of DNA copy number and gene
expression profiles of 50 breast cancer cell lines (Supplementary
Figure S1).

3 IMPLEMENTATION
DR-Integrator has been developed in R and Microsoft Visual
Basic v6.5, and runs as a plug-in to Microsoft Excel under
the Windows operating system (2000/XP/Vista). With the use of
Windows emulators, DR-Integrator can also be run on Mac OS X,
Linux and Unix-based operating systems. The statistical methods
can also be applied natively in the R interpreter on any of the above
platforms.
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Abstract

Androgen deprivation is the mainstay of therapy for progres-
sive prostate cancer. Despite initial and dramatic tumor inhibi-
tion, most men eventually fail therapy and die of metastatic
castration-resistant (CR) disease. Here, we characterize the
profound degree of genomic alteration found in CR tumors
using array comparative genomic hybridization (array CGH),
gene expression arrays, and fluorescence in situ hybridization
(FISH). By cluster analysis, we show that the similarity of the
genomic profiles from primary and metastatic tumors is driven
by the patient. Using data adjusted for this similarity, we identify
numerous high-frequency alterations in the CR tumors, such as
8p loss and chromosome 7 and 8q gain. By integrating array CGH
and expression array data, we reveal genes whose correlated
values suggest they are relevant to prostate cancer biology. We
find alterations that are significantly associated with the
metastases of specific organ sites, and others with CR tumors
versus the tumors of patients with localized prostate cancer not
treated with androgen deprivation. Within the high-frequency
sites of loss in CR metastases, we find an overrepresentation of
genes involved in cellular lipid metabolism, including PTEN.
Finally, using FISH, we verify the presence of a gene fusion
between TMPRSS2 and ERG suggested by chromosome 21
deletions detected by array CGH. We find the fusion in 54% of
our CR tumors, and 81% of the fusion-positive tumors contain
cells withmultiple copies of the fusion. Our investigation lays the
foundation for a better understanding of and possible thera-
peutic targets for CR disease, the poorly responsive and final
stage of prostate cancer. [Cancer Res 2009;69(19):7793–802]

Introduction

Genomic analyses of malignant disease are intended to dis-
tinguish the molecular features that underlie carcinogenesis and
identify clinical targets. Moreover, comparing primary and meta-
static tumors is an exceptionally useful way to assess the molecular
alterations associated with stage or progression.
The plethora of molecular events that occur in prostate cancer,

with no single ubiquitous alteration, illustrate the complex biology

of this disease. This complexity is likely to result, in part, from
different genetic backgrounds and environmental exposures of the
patients. One way to reduce this heterogeneity when comparing
primaries to metastases is to assay both tumor types from the same
patient, but these matching sets are difficult to obtain. A decade or
more can elapse between the resection of the primary tumor by
prostatectomy, detection of overt metastases, and death from
castration-resistant (CR) disease. To address this deficiency, we set
out to obtain sets of primary and metastatic tumors from the same
patient. Although technical limitations prevented us from including
bone metastases in this study, we present here analyses of an
extraordinary set of multiple soft-tissue metastases.
To block the effects of androgens on tumor growth, patients with

advanced disease are often deprived of androgen by surgical or
chemical castration. However, aggressive and ultimately lethal CR
disease inevitably develops. Few treatment options with clinical
benefits exist (1–3), and most represent palliative interventions
once this CR state is achieved.
One potential diagnostic marker and treatment target, the fusion

of the TMPRSS2 and ERG genes, has generated considerable
interest (4–10). Deletion of the 3-Mbp region of 21q22.2 between
the promoter of the androgen-regulated serine-protease TMPRSS2
and the 3¶ exons of ERG , a member of the oncogenic ETS family of
transcription factors, is the principal mechanism for this gene
fusion (7, 10). Androgens are presumed to drive the expression of
this oncogenic fusion, which is found in f30% of prostate cancers.
Here, we characterize the genomic changes in CR prostate

cancer using matching sets of primary prostate tumors and
metastases. This work reveals alterations that might have causative
properties, clinical value, or site-specific consequences for this end-
stage prostate cancer.

Materials and Methods

Sample acquisition. Use of human samples was approved by the

Institutional Review Boards of participating institutions. Tumor samples
were collected by radical prostatectomy or from autopsies performed at the

University of Washington Medical Center under the rapid autopsy program

as described previously (11). Available clinical data (stage, Gleason grade,

treatment, etc.) are provided in Supplementary Table S1. Autopsies were done
within 2 to 4 h of death on 14 patients [median (range) age at death, 67 y

(47–83 y)] with clinically diagnosed CR disease. Fifty-four tumors were

obtained from various organ sites (Supplementary Table S2). Radical pros-

tatectomy specimens from 19 individuals with organ-confined (i.e., localized)
prostate cancer not treated by androgen deprivation were also collected.

Specimens (n = 73) were embedded in freezing media (Tissue-Tek OCT

Compound, Sakura Finetek) and stored in liquid nitrogen. Cells from the
54 CR tumors, 9 localized prostate cancers (LocPC), or normal stromal of 10
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LocPC patients were isolated by laser-capture microdissection (LCM) as
described previously (12). A pathologist (L.D.T.) reviewed all LCM images.

DNA isolation and amplification. DNA from LCM-collected samples

was isolated using the QIAamp DNA Micro kit (Qiagen, Inc.). DNA from

42 tumors (Supplementary Table S2) was amplified by ligation-mediated
PCR (LMP) as described previously (13). DNA samples from 12 CR tumors

and 9 LocPC tumors could not successfully be amplified by LMP and in-

stead were amplified using a whole genome amplification (WGA) kit, WGA2

(Sigma-Aldrich). DNAs amplified from these two methods are comparable
(14). Of the 10 normal samples, 5 were amplified by LMP and 5 by WGA.

Reference DNA was obtained from the peripheral blood of a single female

individual isolated using the QIAamp DNA Blood Mini kit (Qiagen, Inc.).

The amplification method for all reference samples was matched with the
test sample.

Array comparative genomic hybridization analysis. The bacterial

artificial chromosome (BAC) clones that make up the array, array compar-
ative genomic hybridization (array CGH) methods, and analyses have been

described previously (14, 15). Clone coordinates given refer to the May 2004

sequence assembly (Build 35).

The log2-ratio array data were normalized with a block-level Loess algo-
rithm (16) and processed by Circular Binary Segmentation (CBS; ref. 17) to

organize the output into segments of approximately equal copy number.

Thresholds for calling loss and gain in arrays of LMP- or WGA-amplified

material were determined using the array results obtained from the normal-cell
samples amplified by LMP or WGA, respectively, as described previously (14).

CBS data were subjected to hierarchical/complete linkage clustering

(similarity metric was correlation centered) using Gene Cluster software
(18). The tree was produced using TreeView.8

Significant associations between alterations and tumor state (i.e., CR pri-

maries or CR metastases) or CR organ site (i.e., prostate, lymph-node

metastasis, or livermetastasis) were identified using the Significance Analysis
of Microarrays (SAM) method (19) using response formats two-class

(unpaired) and multiclass, respectively. SAM is based on a modified t statistic

and uses random permutations of class labels to estimate a false discovery

rate (FDR). For each analysis, 1,000 permutations were done.
The methods for gene ontology analyses and tests of statistical

significance are as described previously (14, 20).

RNA isolation and amplification. Total RNA from LCM samples was
isolated using the Arcturus PicoPure RNA Isolation kit (Molecular Devices)

and DNase-treated using the RNase-Free DNase Set (Qiagen, Inc.) The

reference RNA was a pool of equal amounts of total RNA isolated from the

LNCaP, DU145, PC3, and CWR22 cell lines (American Type Culture
Collection). Experimental and reference total RNA samples were subjected

to two rounds of amplification using the MessageAmp aRNA kit (Applied

Biosystems/Ambion, Inc.).

Expression array analysis. cDNA probe pairs were prepared by amino-
allyl reverse transcription using 2 Ag of amplified RNA and labeling with

Cy3-dCTP (experimental) or Cy5-dCTP (reference; Amersham Bioscience).

Custommicroarrays composedof 6,760 cDNAclones selected from theProstate

Expression Database9 repository of human prostate expressed sequence tag
data were constructed and hybridized as previously described (21).

Combined DNA/RNA analysis. Measurements for genes represented by

multiple clones on the Prostate Expression Database expression array were
averaged. Each gene expression measurement was paired with a copy-

number measurement from the BAC probe nearest to that gene. Correlated

data were identified by performing a Pearson’s correlation for the CBS-

determined BAC clone measurement and gene expression level for each
gene. Statistical significance was determined using a Bonferroni correction

to adjust for multiple hypothesis testing.

To identify genes with significant differences in both copy number and

gene expression between primary and metastatic prostate cancer speci-
mens, the DNA/RNA-SAM (DR-SAM) method of DR-Integrator was

used.10 Briefly, for each gene, a modified Student’s t test was applied to
generate a copy-number score and a gene-expression score for the primary

or metastatic samples. The two scores were summed and weighted to favor

genes with substantial differences between the two tumor types.

Significance was established by recalculating the scores on 1,000 random
permutations of the sample labels (FDR of 5%).

TMPRSS2:ERG fluorescence in situ hybridization. Five-micrometer

tumor sections from frozen tissue blocks were fixed in 3:1 methanol/acetic

acid. Four BAC DNAs were used as probes, RP11-35C4 (probe 1), RP11-95I21
(probe 2), RP11-476D17 (probe 3), and RP11-120C17 (probe 4) (Fig. 4). BAC

DNA was labeled using a nick-translation kit and either Spectrum Red-

dUTP, Spectrum Green-dUTP, or Spectrum Aqua-dUTP (Abbot Molecular).

Hybridization was performed as described previously (22).
Fluorescence in situ hybridization (FISH) signals were scored manually

(�100 oil immersion). Fusion-positive tumors had positive nuclei (i.e., juxta-

position of probe 1 and probe 3 with concurrent loss or dissociation of
probe 2) in at least 20 of 50 cells analyzed. We designated the tumor as

possessing multiple copies of the fusion if at least five of 20 positive nuclei

showed at least two gene-fusion probe conformations. The results were con-

firmed in a second FISH experiment (using the same scoring criteria) testing
for retention of probe 1 concurrent with dissociation or loss of probe 4.

Results

Hierarchical clustering groups tumors from the same
patient together. We performed hierarchical cluster analysis to
evaluate relationships among the 54 CR tumors from 14 patients
based on their genomic alterations. These CR tumors include those
resected from the prostate (and called CR primaries here) and
multiple soft-tissue metastatic sites. Tumors most often group with
other tumors from the same patient, rather than cluster by organ of
origin (Fig. 1A). The tumors for 11 of the 14 (f79%) patients define
patient-specific clusters. The closest neighbor in the hierarchy for
53 of 54 tumors is a tumor from the same patient. Including LocPC
and normal arrays did not alter the relationships observed for the
CR tumors (Fig. 1B). The consistency of alterations for the tumors
of a given patient is illustrated in Fig. 1C and emphasized by the
separation of the distributions of pairwise correlation coefficients
calculated for all intratumor pairs versus for all intertumor pairs
(Supplementary Fig. S1).

Tumor-related loci and candidate genes in the frequent
alterations of CR tumors. Every position in the genome is
represented in the cumulative spectrum of changes observed in
one or more of the 54 CR tumors (Fig. 2). To summarize these
results, we first adjusted for the variation in number of tumors
evaluated for each patient before calculating the frequency of
genomic alterations across the CR patients. BAC clones encom-
passed by a lost or gained segment were assigned a value of�1 or 1,
respectively; no change was assigned a value of 0. For each loss or
gain, we first calculated the average value for each patient and then
averaged the resultant fractions across all 14 patients to represent
the frequency of a given deviation in this patient set. All frequencies
noted in this work are these adjusted frequencies.
To define deviations of interest, we used the one-sample

binomial test to calculate a threshold frequency such that for any
deviation with frequency exceeding this threshold, the 99%
confidence interval of its frequency did not include 0. This
frequency is z2/(n + z2), where z is the critical value (Standard
normal table) and n is the sample size. For n of 14 and P value of

8 http://rana.lbl.gov/EisenSoftware.htm
9 http://www.pedb.org

10 K. Salari and J. Pollack DNA/RNA-Significance Analysis of Microarrays (DR-
SAM). In preparation 2009.
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Figure 1. Similarity of the tumors of a given patient. Trees from hierarchical clustering of segmented data from (A) the CR tumors and (B ) the CR tumors, LocPCs, and
normal prostate stromal tissue. In both trees, the patient number precedes the organ description, and numerical suffixes indicate multiple tumors from the same organ.
Each color in A indicates tumors from a different patient; in B , the three sample types are each shaded with a different color. The third panel (C) shows heat
maps by chromosome of the CBS segment data for each of the seven tumors from patient 10. Red, negative segment values (regions of copy number loss);
blue, positive segment values (regions of copy number gain). Note the expected relative loss of X-chromosome sequences and gain of Y chromosome in this
male/female comparison. For each chromosome, the vertical black line within each box indicates centromere position, and the large gaps without data indicate
unsurveyed repetitive regions. The Y-axis indicates the sample: A, adrenal metastasis; Li, liver metastasis; 1 to 4 , the four lymph-node metastases; and
S, spleen metastasis. The color bar below the figure indicates the range of colors representing the segment values shown.
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<0.01, i.e., z = 2.56, the threshold frequency is f0.3. The dashed
gray lines in Fig. 2 mark this threshold. High-frequency sites of loss
or gain exceeding this threshold are listed in Table 1.
Table 1 also provides the locations of the minimally overlapping

regions (MOR), which are the most frequently deviant subregions
within each set of overlapping deviations. We have identified novel
MORs on the two chromosome arms that are thought to play an
important role in the biology of prostate cancer, 8p and 8q. Of the
four MORs identified for 8p, two have been frequently identified in
prostate cancer (23–27), but the more distal MORs in 8p23 have
not. We identified four previously reported MORs on 8q (between
8q21.3-q24.22; ref. 23) and three MORs (between 8q11.1-8q21.12)
that are heretofore unreported for prostate cancer.
We also examined single BAC clones with extreme log2 ratio

values (i.e., those in the upper and lower 95th percentile) before
smoothing by the CBS method. These singleton deviations, when
high, might represent focal sites of gene amplification or, when low,
homozygous deletions or loss of multiple copies from polyploid
tumor cells. BAC clones whose normalized log2 ratio value was out-
side the 95 percentile in two or more normal control arrays were
excluded from this analysis. Supplementary Table S3 lists the single-
tons identified as deviant in z30% of the CR tumors (adjusted
frequency) and the genes encompassed by them. The BAC clones that
overlap sites of normal copy number variation are noted.11 We ob-
served singleton deviations that encompass known cancer-related
genes (AR, C13, CDH13, MMP16, MYC, PTEN , and PTK2) and
androgen-regulated genes (AR, MMP16, MYC, NDRG1 , and TSC22D1).

Genomic profiles of CR tumors and untreated localized
primaries are significantly different. To distinguish sites that
relate to metastasis or CR disease, we identified those alterations
that occur in significantly greater numbers in the CR tumors (n = 54)
versus the LocPCs (n = 9) and vice versa. We found 26 losses

spanning a total of 306 Mbp and 8 gains spanning a total of 255 Mbp
that were significantly (Fisher’s exact P < 0.05) associated with the
CR tumors (Table 1). One of the gains encompasses the androgen
receptor, an amplification specifically associated with CR di-
sease (28). In the converse analysis, we found only three losses
totaling 20 Mbp (5q22.2-q23.1, 11q14.1, and 20q11.23-q13.12) and six
gains spanning 69 Mbp (1p36.33-p34.3, 3p21.31-p21.1, 10q21.3-q22.1,
12q13.11-q14.1, 15q15.1-q15.3, and 16q22.1-q22.2) in significantly
greater numbers of LocPC than CR tumors.
To verify our findings, we compared our results to a recent

survey summarizing 41 CGH studies examining 872 prostate
tumors (23). All of the MORs encompassed by the seven alterations
that this survey called common (>10%) to primary prostate cancer
(loss at 5q15, 6q15, 8p21.3, 13q21.33, 16q22.1, and 18q21.33-22.1 and
gain at 8q22.2) were observed in our LocPCs and were in high
frequency in our CR tumors (z30%). Of these, our analysis found
that the MORs on 16q and 8q were significantly more associated
with CR tumors than with LocPCs (Table 1).

Stratification by CR tumor location identifies organ-specific
alterations. We stratified the CR tumors to look for differences
that might relate to particular states (i.e., CR primaries or CR meta-
stases) or sites (i.e., CR primaries, lymph-node, or liver metastases).
We found that the CR primaries possessed significantly fewer gains
and losses (average of 14 gains and 18 losses; Student’s P values =
0.008 and 0.004, respectively) than the CR metastases (average of
23 gains and 24 losses).
We used SAM (19) to identify alterations with significantly differ-

ent frequencies between the CR primaries and metastases. Only two
alterations were found, both in significantly more metastases,
deletions of 10p15.2-10p15.1 (FDR, 0%, 20% of primaries, and 56% of
metastases) and 22q12.1-22q12.3 (FDR, 0%, 27% of primaries, and
80% of metastases). These deletions were also found in significantly
fewer LocPCs (11% and 33%, respectively) compared with the entire
set of CR tumors. Among the genes encompassed by these loci are
the tumor suppressors PRKCQ (10p15.1), MYO18B (20q12.1), and
SEZ6L (20q12.1).

Figure 2. Deviations in CR disease. The Y -axis indicates the adjusted frequency with which each BAC clone on the array was included in a deviant segment across
the 54 CR tumors from 14 individuals. The hatched gray lines are drawn at a frequency of 0.3 (i.e., the minimum frequency for significance P < 0.01). The X-axis
is the genomic position of each BAC clone. Note that loss in X- and gain in Y-chromosome sequences are expected in these male/female comparisons.

11 http://hgsv.washington.edu/
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We next asked what differences might exist between the genomic
profiles of the CR tumors from the three organ sites that make up
80% of our CR tumors, i.e., prostate (n = 15 from 12 patients),
lymph node (n = 19 from 11 patients), and liver (n = 9 from
8 patients). Figure 3A shows the frequencies of alterations for each
set. We found that the prostate tumors had significantly fewer
gains (average 14; Student’s P = 0.03 and 0.005, respectively) and
losses (average 18; Student’s P = 0.02 and 0.04, respectively) than
lymph-node (averages 21 and 22, respectively) or liver (averages 30
and 24, respectively) metastases. Lymph-node metastases had
significantly fewer gains (Student’s P = 0.04) but not losses
compared with liver metastases.
Using SAM, we identified five alterations in significantly more

liver metastases, three in more lymph-node metastases, and none
in the primary tumors (Fig. 3B). The sites for liver metastases were
gains at 5q31.2-5q31.3, 5q35.2-5q35.3, 8p11.21, 11q13.2, and 16p13.3.
The gain at 8p encompasses a single gene ANK1 . The sites for
lymph-node metastases were gains at 6p21.32-6p21.2 and 6p21.1
and loss at 22q12.1. Among the genes encompassed by the gains
were the oncogene ETV7 (6p21.31) and the tumor-related genes
PTK7 (6p21.1; ref. 29) and VEGF (6p21.1; ref. 30).

Merged copy-number and expression results reveal candi-
date genes. Genomic alterations in cancer can encompass many
genes. To identify those that might relate to tumor phenotypes, we
integrated our array CGH data with microarray analyses of
expression levels. We were able to obtain copy-number and
expression data for 51 of our CR tumors.
We identified 131 genes that showed correlated array CGH

segment and microarray expression values at a significance level of
0.05 (Supplementary Table S4; tumor-related and androgen-
regulated genes are highlighted). Supplementary Fig. S2 illustrates
the correlation between copy number and expression for the
following eight genes. The gene with the third highest correlation
value was TMPRSS2 . A significant subset of tumors exhibited
negative CBS segment values and lower expression (n = 15) or
positive CBS segment values and higher expression (n = 19) of
TMPRSS2 . Other genes identified were the tumor suppressor
retinoblastoma 1 (RB1 , deleted in 79% of the CR tumors),
MYC binding protein 2 (MYCBP2 , deleted in 60%), mucin 1
(MUC1 , gained in 57%), PBX1 (gained in 49%), PARP1 (gained in
33%), LSM1 (gained in 31%), and TP53 binding protein 2 (TP53BP2 ,
gained in 30%).
To identify genes with significant differences in both copy

number and gene expression between primary and metastatic
prostate cancer specimens, we used the DNA/RNA-SAMs (DR-
SAM) method of DR-Integrator.10 At an FDR of 5%, we found 19
genes with higher copy number and expression in CR metastases
versus CR primaries and 6 with higher copy number and
expression in CR primaries versus CR metastases (Supplementary
Table S5). Supplementary Fig. S3 illustrates the correlation
between selected genes.

Overrepresentation of ontologically related genes in
regions frequently altered in CR tumors. To further prioritize
possible genes of interest, we looked for overrepresentation of genes
of particular gene-ontology categories in regions frequently (z30%,
adjusted frequencies) altered in the CR tumors. Lost and gained
segments were evaluated separately. Gene ontology categories and
genes are given in Supplementary Table S6. The P value
‘‘SimPValue’’ is a statistic that corrects for gene ontology categories
that might be overrepresented due to gene clustering. Categories
with a SimPValue of >0.05 should be considered with caution.

Cellular lipid metabolism and catabolic process were two of the
four categories with genes overrepresented in CR tumor losses.
The former category included the tumor suppressors PTEN and
WWOX , and the latter category included RBX1 , which functions in
a complex with the von Hippel-Lindau tumor-suppressor gene.
Seven of the genes belonging to gene-ontology categories
enriched in regions of loss (BNIP3, ECHS1, HDLBP, RNF6, UBB,
UBE2L3 , and USP10) and two (AGT and PCDHGC3) belonging
to categories enriched in gains were also identified in our analysis
of correlated copy-number alterations and expression levels
(Supplementary Table S4).

The TMPRSS2:ERG gene fusion is prevalent in CR tumors.
One MOR, a deletion in 21q22.2-q22.3 was detected in f40%
(22 of 54) of the CR tumors and 50% (7 of 14) of the patients
with CR disease and suggested the presence of a fusion of the
5¶ portion of the TMPRSS2 gene and the 3¶ exons of the ERG
gene (7, 10).
We used FISH to confirm the presence and assess the copy number

of the fusion in the cells of our CR tumors. Figure 4 illustrates our
FISH strategies. Of the 52 CR tumors for which we could obtain
reliable FISH results, 27 (54%) were positive for the TMPRSS2:ERG
fusion. All tumors from five patients were positive, and eight patients
had at least one fusion-positive tumor. All fusions observed were a
result of loss of the 5¶ ERG probe (i.e., deletion). All tumors that
showed the deletion in 21q22.2-q22.3 by array CGH had consistent
FISH results.
We had FISH, array CGH, and microarray expression analysis for

49 CR tumors, of which 25 were fusion-positive. Tumors with
correlated negative array CGH and expression values for TMPRSS2
(n = 15) showed a significant association with possession of the
fusion (14 of 15) relative to the tumors with any other trend in
array CGH and expression values (Fisher’s exact P = 0.00006). Of
the other 11 fusion-positive tumors, 9 showed negative array CGH
and positive expression values, and 2 showed positive array CGH
and expression values.
Two or more copies of the TMPRSS2:ERG fusions were detected

by FISH for 22 (42%) of the CR tumors tested. Thus, multiple
copies of the fusion were seen in 22 of the 27 fusion-positive
tumors (81%), at least one CR tumor from 8 of the 14 patients
(57%), the majority of tumors from 3 of the patients (21%), and all
of the tumors from 3 of the patients (21%).

Discussion

Genomic alterations within CR tumors might reveal important
biological insights into this ultimately lethal stage of prostate
cancer. Our cluster analysis shows that CR tumors from a given
patient are more similar to each other than they are to tumors
from matching organ sites of other patients. These results argue
for a monoclonal origin of metastases, consistent with a recent
publication by Liu and colleagues (31) who conclude that most,
if not all, metastatic prostate cancers have monoclonal origins.
As in our study, Liu and colleagues (31) found that metastatic
tumors possess genomic profiles that reflect that of the originating
tumor cell.
Androgen deprivation also undoubtedly played a part in gener-

ating the similarity of tumors of a given patient. Abrogation of
androgen, a hormone with profound effects on tumor biology,
places a strong selective pressure on the malignant cell population
likely increasing the homogeneity of the tumor population. How-
ever, this homogenizing force seems insufficient to generate a

Genomic Analyses of Castration-Resistant Metastases
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Table 1. High-frequency deviations and MORs in CR tumors

A. Losses

Deviation MOR CR-associated

Band Start (Mbp) Size (Mbp) (%) Start (Mbp) Size (Mbp) Start (Mbp) Size (Mbp)

1p36.23-p35.1 7.2 25.2 36 16.3 3.5 7.2 25.2
43 26.7 2.5

1p33-p32.3 48.4 6.8

2q37.3 238.6 3.7 238.6 3.7

3p21.31 46.3 1.8 31 46.3 0.6 46.3 1.8
4p16.3-p16.1 0.1 10.6 38 2.7 0.3 0.1 4.4

5.1 5.6

4q33-q34.3 171.7 9.9 35 175.5 3.5 171.7 9.9
4q34.3-q35.2 182.2 8.2 37 184.3 0.9 182.2 5.2

38 188.0 2.4

5q11.2-q13.2 55.1 15.9 42 55.3 7.5

40 67.8 2.4

5q14.2-q22.2 81.7 31.0 39 96.0 13.7
5q23.1-q23.2 115.4 11.8 35 117.6 7.3

5q34-q35.2 160.7 15.6 37 165.0 6.1 171.3 5.0
6p25.3-p22.3 0.2 21.5 39 12.3 1.2 5.8 9.1
6q13-q22.31 75.2 43.7 43 88.7 5.2

36 103.9 9.8
8p23.3-p11.21 0.3 40.3 67 1.5 1.7

66 4.6 1.6
74 19.8 3.5
71 25.5 1.8

10p15.3-q26.3 0.2 135.1 39 0.2 0.1 0.2 42.6
47 9.0 3.3 50.4 25.7

44 32.4 2.8 79.1 15.7

42 43.0 1.0 95.9 39.4
52 72.0 2.4
86 89.4 1.2
68 98.2 3.7
68 103.4 0.4
79 105.9 5.0
68 121.7 6.9

11p15.4 4.2 0.3

13q11-q34 18.4 95.0 50 18.4 4.4 18.4 9.7
45 27.0 1.1 97.2 16.2
80 40.6 0.8
85 44.6 3.1
64 52.1 0.1
63 72.4 2.6
59 101.3 2.8

15q24.3-q25.1 75.1 1.9 71.4 13.9

15q25.1-q26.3 78.7 21.3 40 85.4 7.4 86.5 4.1
96.6 3.4

16q11.2-q24.3 45.3 43.3 57 49.4 5.3 55.0 4.3
47 63.6 0.2 65.0 2.2

82 80.7 1.6 82.4 6.2

17p13.3-p11.2 0.1 19.5 51 0.1 0.5 0.1 15.2
61 7.6 0.3 15.4 4.2

17q24.2-q25.3 64.6 8.9 41 66.1 2.6 64.6 8.9
17q25.3 74.4 1.6 73.8 2.1

18q12.1-q23 28.2 47.9 75.4 0.7

19p12-q13.11 19.9 20.3 40 34.3 2.2
19q13.2-q13.31 46.1 2.5 36 47.4 0.6 46.1 2.5
21q22.2-q22.3 38.7 4.5 38 38.7 3.0

22q11.1-q13.33 16.2 33.2 65 24.6 1.6 16.2 8.2

46 43.4 6.0 26.7 23.2

(Continued on the following page)
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single CR genomic signature, as the tumor sets are sufficiently dis-
tinct to cluster in patient-specific groups. These differences must
reflect the uniqueness of each of our CR patients in terms of his
genetic risk factors, environmental exposures, history of therapeutic
modalities, and chance events.
Across patients, we find a multitude of high-frequency alter-

ations, some encompassing candidate genes that might relate to

prostate cancer, metastases, and CR disease. Within these alter-
ations were several cancer-related genes with correlated DNA and
mRNA values, including RB1 , the earliest recognized tumor
suppressor, and MUC1 , a marker of prostate cancer progression
and a novel therapeutic target (32). PARP1 was also identified; it is
involved in DNA repair and inhibitors of it have received consid-
erable attention as novel therapy of breast cancer (33).

Table 1. High-frequency deviations and MORs in CR tumors (Cont’d)

B. Gains

Deviation MOR CR-associated

Band Start (Mbp) Size (Mbp) (%) Start (Mbp) Size (Mbp) Start (Mbp) Size (Mbp)

1p12-q43 120.0 117.7 65 147.9 2.8 153.6 84.3
52 155.2 0.7
49 157.6 6.9

55 200.3 1.9
45 209.4 3.0

1q41-43 215.6 22.1 33 220.4 7.6

2p25.1 9.6 1.8 33 9.5 1.2

5q31.3 140.1 0.8
7p22.3-q36.3 0.1 158.5 47 5.5 0.5 6.4 16.4

45 26.8 2.5 27.7 44.2

47 62.0 4.0 75.3 23.6

55 72.6 2.6 105.6 42.1
55 78.9 1.3
53 99.1 3.1
44 121.3 5.4

46 128.7 0.8
48 136.2 0.4

50 148.2 5.2
8p12-q24.3 36.5 109.6 64 43.3 6.0 42.9 103.2

69 57.2 8.2
81 79.3 0.5
82 93.3 6.0
79 102.3 2.5
78 115.1 6.5
73 131.1 2.4

9q33.2 122.4 1.1

9q33.2-q33.3 124.3 3.8 33 124.6 1.1
9q34.11 129.5 0.8

11q12.1-q24.1 59.4 63.0 42 65.8 1.2 77.5 39.5

41 73.5 1.3
39 83.8 18.4

40 105.3 4.2

33 117.8 0.4

11q23.3-q24.1 119.0 3.4
11q24.1-q24.2 123.1 2.7 32 123.1 2.3 123.1 2.3

12q24.31-q24.32 119.8 4.8 33 119.8 2.8

16p13.3 0.9 2.4

16p12.1-p11.1 27.6 6.9 35 29.7 4.8
18p11.32 0.2 2.0

Xp22.31-p22.12 7.5 11.8

Xp11.22-q13.1 51.5 16.5 50 65.1 2.8 65.1 2.8

NOTE: Losses (A) and gains (B) are listed separately. High frequency is defined as observed with an adjusted frequency of z30%. The start position, size,
and any constituent MORs observed at higher frequency than the larger deviation are given for each deviation. Mbp positions are rounded to nearest

0.1 Mbp. MORs observed at z50% are in bold. The start site and size of CR-associated alterations are given.

Abbreviation: MOR (%), the peak frequency that defines the MOR.
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We found that majority of our CR tumors possessed a fusion
between TMPRSS2 and ERG as a result of the deletion. The high
frequency of CR tumors with multiple copies of the for
TMPRSS2:ERG fusion is further evidence of the association of
amplification of the fusion gene and poor clinical outcome (5).
These findings support the idea that it is a promising target for
therapeutic interventions (34, 35). Given that the deletion that
generates the TMPRSS2:ERG fusion was found to encompass the
majority of the TMPRSS2 gene, it was not surprising that we
found a significant association between the fusion and negative

array CGH and expression values for TMPRSS2 . However, a
subset of fusion-positive tumors showed higher expression of
TMPRSS2. This finding may indicate that expression from an
intact copy of this androgen-regulated gene might be biologically
relevant for some prostate tumors.
Our analysis of high-frequency alterations in CR tumors helps

refine prostate cancer-related loci and narrow in on additional can-
didate genes. No consensus has yet been reached about the critical
locus (loci) affected by the two most common alterations seen in
prostate cancer, loss at 8p and gain at 8q (28). Our study identifies

Figure 3. Deviations in CR tumors
stratified by organ of origin. A, the adjusted
frequencies of deviation (Y -axis) for gain
(blue ) or loss (red ) for prostate tumors
(n = 15), lymph-node (n = 19), and liver
(n = 9) metastasis, respectively. Hatched
gray lines are drawn at a frequency of 0.5 to
aid in graph interpretation. B, zoom in
for gains on chromosomes 5, 6, 8, 11,
and 16 and losses on chromosome 22.
Arrows, alterations significantly associated
with lymph-node (brown ) and liver
(green ) metastases.
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four distinct MORs within 8p and seven MORs within 8q. Of the less
well-characterized MORs on 8p, one of them encompasses a single
gene, CSMD1 , a candidate suppressor of multiple cancer types (36).
AEG1 (a.k.a. Lyric and MTDH) is among the genes encompassed by
an MOR at 8q21.3-q22.2. AEG1 is overexpressed in breast, brain, and
prostate cancers (37–39) and is thought to promote tumor
progression (38–40). The novel MOR at 8q21.12 contains a single
gene, PKIA , an extremely potent competitive inhibitor of cyclic
AMP–dependent protein kinase activity (41). The role of PKIA in
prostate tumorigenesis merits exploration.
The MORs in our CR data set might help identify other genes

relevant to tumorigenesis. The most frequent MOR in our CR
tumors was loss at 10q23.31 (86%), which encompasses only PTEN ,
the well-characterized tumor suppressor. Twelve known genes are
encompassed by the MOR at 13q14.13-q14.2 (85%), including the
ITM2B gene, a tumor suppressor (42). Loss at 16q23.3 (82%)
encompasses only CDH13 whose reduced expression in primary
prostate tumors is associated with an increased risk of biochemical
failure (43). Methylation of CDH13 , assessed in primary prostate
cancer, is generally considered the primary mechanism of gene
silencing (44, 45). Our results suggest that methylation in
premetastatic states might precede deletion in later stages or that
deletion is an alternate mechanism of silencing.
Our gene ontology analysis of the high-frequency alterations

in CR tumors also provides insight into candidate genes. The
genes that overlapped between our gene ontology analysis and
the integration of copy number and expression warrant particular
attention. One of these genes encompassed by CR deletion encodes
BNIP3, a Bcl-2 family member that can promote apoptosis
(46). RNF6 and USP10 , which modulate androgen receptor function
(47, 48), showed correlated genomic loss and lower expression in
a subset of tumors and gain and higher expression in others.

This finding underscores the complexity of the relationship between
CR disease and tumor processes controlled by the androgen
receptor.
Our analysis of CR tumors provides evidence of accumulation

of genomic change with disease progression and outgrowth toward
CR disease. We found significantly fewer alterations in CR primaries
than in CR metastases and no alterations significantly more
associated with CR primaries relative to the matched set of lymph-
node and liver metastases. However, we did find eight alterations
significantly more associated with those metastatic sites (three and
five, respectively). Moreover, we identified several alterations
significantly more associated with CR tumors versus LocPCs.
To expand on the significance of our analysis, future work will

need to include bone metastasis, a clinically important entity in
prostate cancer, and validation of candidate genes. For example,
it would be interesting to see the effect of PARP1 inhibitors on
models of prostate cancer. The androgen-dependent LNCaP cells
and the androgen-independent derivative line (49) would be
particularly useful in assessing the role of genes encompassed by
CR-associated alterations identified in our study. Direct injection
methods for studying prostate cancer cell–bone interactions and
the effects that drugs have on these interactions could be used to
validate candidate genes and their therapeutic potential (50).
We have shown that CR tumors possess a profound degree of

genomic change encompassing many regions that could contain
therapeutic targets for metastatic prostate cancer, or at least
illuminate the biology of this lethal disease. By combining the
results of array CGH and expression microarrays, we have
identified numerous candidate regions and genes. Moreover, we
have verified that the TMPRSS2:ERG fusion, a promising target of
cancer therapeutics, is highly prevalent in CR tumors. This
extensive and in-depth investigation of the alterations found in

Figure 4. Experimental designs to detect the presence of the TMPRSS2:ERG fusion by FISH. In experiment 1, three probes were used to detect the fusion: a probe 5¶
of TMPRSS2 (blue, probe 1 ), one encompassing the 5¶ exons of ERG (red, probe 2), and one encompassing the 3¶ exons of ERG (green, probe 3 ). In the normal
configuration, the signals of all three probes overlap. The fusion is indicated by overlapping signals of probes 1 and 3 with loss or dissociation of probe 2. A CR tumor
nucleus with two fusions and one normal probe configuration is shown to the right. In experiment 2, we confirmed the presence of fusion with probe 1 and a
second probe encompassing the 3¶ exons of TMPRSS2 (red, probe 4) in adjacent tissue sections. Lone probe 1 signals indicate a deletion consistent
with a TMPRSS2:ERG fusion. Right, a positive nucleus from a section adjacent to the section used to capture the nucleus shown for experiment 1. Gray,
4¶,6-diamidino-2-phenylindole staining; the hybridization signals are pseudocolored to correspond to the experimental schematics.
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CR disease lays the foundation for a better understanding of this
final stage of prostate cancer.
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Abstract

Background: Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies.
Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best
model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-
associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number
alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their
relation to breast cancer subtypes.

Methods: Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used
breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering
was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of
those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate
cancer genes with coordinately altered gene copy number and expression.

Findings: Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes.
Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were
associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed
mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but
an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial
conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the
resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes.

Conclusions: Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns
with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for
investigations of subtype-specific pathobiology, cancer stem cell biology, biomarkers and therapies, and provides a
resource for discovery of new breast cancer genes.
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Introduction

Breast cancer, a leading cause of cancer death in women, is

recognized to be a molecularly heterogeneous disease. Markers

such as estrogen receptor (ER), progesterone receptor (PR) and

ERBB2/HER2 are used for prognostication, and to stratify

patients for appropriately targeted therapies [1].

More recently, DNA microarray studies have suggested a

refined classification of breast cancer, distinguishing five major

subtypes based on different patterns of gene expression, underlying

DNA copy number alterations (CNAs), and associated clinical

outcomes [2–5]. Luminal subtypes A and B are ER positive and

share expression markers with the luminal epithelial layer of cells

lining normal breast ducts. Luminal-A tumors are genetically
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simple (1q/16p gain) and are associated with favorable outcome,

while luminal-B tumors exhibit high proliferation rates, frequent

DNA amplification (e.g. 8q24/MYC), and less favorable prognosis.

Basal-like tumors share expression markers with the underlying

basal (myoepithelial) layer of normal breast ducts, are ER negative,

exhibit frequent chromosome segmental gains/losses, and are

associated with poor outcome in most studies. The ERBB2

subtype is associated with expression of genes co-amplified with

ERBB2 (encoding HER2) on chromosome cytoband 17q12, and

the normal-like subtype shares expression patterns with normal

breast tissue.

Breast cancer cell lines have been used widely to investigate

breast cancer pathobiology, and to screen and characterize new

therapeutics [6,7]. Advantages of cell lines include the relative ease

of pharmacologic and genetic manipulation, the variety of

available functional assays, and, for some studies, the purity of

the cancerous epithelial population (and absence of stromal cell

contamination). However, while some investigators choose

particular cell lines based on the known ER or HER2 status,

many others rely on standard ‘‘workhorses’’ like MCF7 without

regard to the particular tumor subtypes being modeled. The recent

recognition of microarray molecular subtypes points to the need

for additional consideration in cell line selection.

The goal of our study was to profile gene expression and CNAs

genome-wide in a collection of 52 publicly-available and

commonly-used breast cancer cell lines, in order to assess the

relation of these cell lines to the recognized molecular subtypes of

breast cancer, and to discover new candidate breast cancer genes

and pathways.

Materials and Methods

Breast Cancer Cell Lines
184A1, BT20, BT474, BT483, BT549, Hs578T, hTERT-

HME1, MCF7, MCF10A, MDA-MB134, MDA-MB157, MDA-

MB175, MDA-MB231, MDA-MB361, MDA-MB436, MDA-

MB453, MDA-MB468, SKBR3, T47D, UACC812, UACC893,

ZR75-1 and ZR75-30 were obtained from ATCC (Manassas, VA,

USA). EFM19 and EFM192A were obtained from DSMZ

(Braunschweig, Germany). HCC38, HCC70, HCC202,

HCC712, HCC1007, HCC1143, HCC1395, HCC1419,

HCC1428, HCC1500, HCC1569, HCC1599, HCC1806,

HCC1937, HCC1954, HCC2157, HCC2185, HCC2218,

HCC2688 and HCC3153 were obtained from the cell repository

of the Hamon Center for Therapeutic Oncology Research, UT

Southwestern Medical Center (many are now available from

ATCC). CAL51 was a kind gift from J. Gioanni from the Centre

Antoine-Lacassagne, Nice, France. SUM44PE, SUM52PE,

SUM102PT, SUM149PT and SUM190PT were kind gifts from

Dr. Stephen P. Ethier (now available from Asterand, Detroit, MI).

MCF10A was grown in MEGM media (Cambrex, East Ruther-

ford, NJ). SUM52PE and SUM149PT were grown in Ham’s F12

media with 5% FBS, supplemented with 5 mg/ml insulin and

1 mg/ml hydrocortisone. SUM44PE, SUM102PT and

SUM190PT were grown in Ham’s F12 with 0.1% BSA,

supplemented with 5 mg/ml insulin, 1 mg/ml of hydrocortisone,

5 mM ethanolamine, 10 mM HEPES, 5 mg/ml transferrin,

10 nM of Triiodo Thyronin (T3) and 50 nM sodium selenite

(10 ng/ml EGF was also included for SUM102PT). All other cell

lines were grown in RPMI-1640 with 10% FBS and 1% Pen/

Strep. Clinicopathological characteristics of cell lines are summa-

rized in Table 1. A subset of cell lines (focused on the HCC series)

was subjected to a more detailed molecular pathological

characterization of ESR1, PGR, ERBB2, EGFR and BRCA1, as

summarized in Table 2.

RNA and DNA isolation
Cells were grown to 70–80% confluence, then harvested for

total RNA and genomic DNA. For HCC lines, RNA was prepared

using the Qiagen RNeasy Midi Kit (Qiagen, Valencia, CA) and

DNA by phenol/chloroform extraction. For all other lines, RNA

was isolated using Trizol (Invitrogen, Carlsbad, CA) according to

the manufacturer’s protocol, and DNA using the Blood Cell Maxi

Kit (Qiagen).

ERBB2 copy number assessment by quantitative PCR
ERBB2 copy number was quantified by real-time quantitative

PCR (Q-OCR), using the Chromo4 PCR System (Bio-Rad

Laboratories, Hercules, CA). GAST, located at 17q21 (on the

same chromosomal arm as ERBB2) was used as a reference

control. PCR primer sequences for ERBB2 and GAST are as

follows (forward and reverse, respectively): ERBB2( 59-

TTGGGAGCCTGGCATTTCT-39 and 59-AGGTCATCG-

TGCCCACTCTT-39); GAST (59-GTAGGCATCCTTCCCC-

CATT-39 and 59-AGCCATGGTCCCTGCTTCTT-39), with

PCR product lengths of 59 and 70 base pairs, respectively.

Primers were chosen by TaqMan Primer ExpressTM 1.5 (Applied

Biosystem, Foster City, CA) and purchased from Invitrogen. PCR

reactions were carried out in a final volume of 20 ml containing

20 ng genomic DNA, 300 nM each primer (for both ERBB2 and

GAST, in independent reactions) and 16 Power SYBR Green

PCR Master Mix (Applied Biosystems, Foster City, CA). PCR

conditions were as follows: one cycle at 95uC for 10 minutes,

followed by 40 cycles each at 95uC for 15 seconds and 60uC for 1

minute. Samples were analyzed in triplicate. Each amplification

reaction was checked for the absence of nonspecific PCR products

by melting curve analysis. ERBB2 copy number calculation was

carried out using the comparative Ct method [8] after validating

that the efficiencies of PCR reactions of both ERBB2 and GAST

were equal. Human Genomic DNA (DNA20) (EMD Biosciences,

Darmstadt, Germany), a mixture of pooled human whole blood

from 6–8 individual male and female donors, was run in every

assay as a calibrator sample. ERBB2 gene copy number in normal

human genomic DNA was set as 2 and copy number more than 4

in cell lines was considered to be increased.

mRNA levels of ESR1, PGR, ERBB2 and EGFR
Transcript levels of ESR1, PGR, ERBB2 and EGFR were

analyzed as a part of RT2 Profiler Custom PCR Array (Super-

Array Bioscience, Frederick, MD). After making cDNA from

1.0 mg total RNA using RT2 PCR Array First Strand Kit

(SuperArray Bioscience), quantitative PCR was performed with

the Chromo4 PCR System (Bio-Rad Laboratories) using RT2

Real-Time SYBR Green PCR Master Mix (SuperArray Biosci-

ence) according to the manufacturer’s protocol. We chose two

different housekeeping genes, b-actin (ACTB) and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) as internal controls, using

the average of their Ct values. Primers were chosen by Taqman

Primer ExpressTM 1.5 and purchased from Invitrogen, as follows:

(forward and reverse, respectively): ESR1 (59-ATCTCG-

GTTCCGCATGATGAATCTGC-39 and 59-TGCTGGACA-

GAAATGTGTACACTCCAGA-39); PGR (59-CCTGTGGG-

AGCTGTAAGGTCTT-39 and 59-GCAGTCATTTCTTCCA-

GCACATA-39), ERBB2 (59-TGACCTGCTGGAAAAGGGG-

GAGCG-39 and 59-TCCCTGGCCATGCGGGAGAATTCA-

G-39); EGFR (59-ATAGTCGCCCAAAGTTCCGTGAGT-39
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and 59-ACCACGTCGTCCATGTCTTCTTCA-39); ACTB (59

GGCTGTGCTGTGGAAGCTAAG-39 and 59-ATGATG-

GAGTTGAAGGTAGTTTCGT-39) [9]. We also analyzed the

values of NC11 (normal lymphocyte) cell line for ESR1, PGR,

ERBB2 and EGFR mRNA expression, and the tumor cell values

were reported relative to NC11. For data analysis, the comparative

Ct method [8] was used.

Western blot analysis and immunohistochemistry (IHC)
Preparation of total cell lysates and Western blotting were done

as described previously [10]. Primary antibodies used were mouse

monoclonal anti-ER-a (Cell Signaling, Beverly, MA), mouse

monoclonal PR (6A1) (Cell Signaling), mouse monoclonal anti-

HER2 (Cell Signaling), rabbit monoclonal anti-EGFR (Cell

Signaling) and mouse monoclonal anti-actin (Sigma-Aldrich).

Actin levels were used as a control for protein loading.

Peroxidase-labeled anti-mouse or anti-rabbit antibodies (Amer-

sham Pharmacia, Piscataway, NJ) were used as secondary

antibody. IHC on breast cancer cell lines was described previously

[11].

BRCA1 mutation analysis
DNA sequence analysis was performed on the entire BRCA1

gene in available lymphocyte DNA matched to breast cancer cell

lines. In the lymphocyte DNA matching HCC3153, a heterozy-

gous duplication of 10 base pairs was detected at position 943 in

exon 11 of BRCA1 (943ins10). The region of BRCA1 exon 11

containing the 943ins10 mutation was amplified from genomic

DNA in the tumor cell line (HCC3153) using standard PCR

conditions. Sequence analysis revealed only the mutant sequence.

Absence of the normal allele was also confirmed by single strand

conformation analysis as well as gel electrophoresis of the

amplified fragment on 5% acrylamide denaturing gels.

Gene expression profiling
Gene expression profiling was performed on Human Exonic

Evidence Based oligonucleotide (HEEBO) arrays obtained from

the Stanford Functional Genomics Facility and containing 36,192

Table 1. Clinicopathological features of breast cancer cell
lines.

Cell line Subtype# ER* PR*
ERBB2/
HER2* SourceJ

Tumor
typeJ

184A1 B 2 NA 2 RM NA

BT20 A 2 2 2 PT AC

BT474 L + + + PT IDC

BT483 L + + 2 PT IDC

BT549 B 2 2 2 PT IDC

CAL51 B 2 NA 2 PE AC

EFM19 L + + 2 PE IDC

EFM192A L + + + PE AC

HCC38 B 2 2 2 PT DC

HCC70 A 2 2 2 PT DC

HCC202 L 2 2 + PT DC

HCC712 L + 2 2 PT DC

HCC1007 L + 2 + PT DC

HCC1143 A 2 2 2 PT DC

HCC1187 A 2 2 2 PT DC

HCC1395 B 2 2 2 PT DC

HCC1419 L 2 2 + PT DC

HCC1428 L + + 2 PE Met AC

HCC1500 L + + 2 PT DC

HCC1569 A 2 2 + PT Met C

HCC1599 A 2 2 2 PT DC

HCC1806 NA 2 2 2 PT Sq C

HCC1937 A 2 2 2 PT DC

HCC1954 A 2 2 + PT DC

HCC2157 A 2 2 2 PT NA

HCC2185 L 2 2 2 PE Met LC

HCC2218 L 2 2 + PT DC

HCC2688 L 2 NA 2 PT DC

HCC3153 A 2 2 2 PT DC

HS578T B 2 2 2 PT C Sar

hTERT-HME1 B 2 NA 2 RM NA

MCF7 L + + 2 PE Met AC

MCF10A B 2 2 2 RM F

MDA134 L + 2 2 PE IDC

MDA157 B 2 2 2 PE Med C

MDA175 L + 2 2 PE IDC

MDA231 B 2 2 2 PE Met AC

MDA361 L + + + BR Met AC

MDA436 B 2 2 2 PE AC

MDA453 L 2 2 +" PE Met C

MDA468 A 2 2 2 PE Met AC

SKBR3 L 2 2 + PE AC

SUM44 NA + + + PE ILC

SUM52 L + 2 + PE Met C

SUM102 B 2 2 2 PE IDC,
apocrine

SUM149 B 2 2 2 PE Inf

SUM190 L 2 2 + PT Inf

Cell line Subtype# ER* PR*
ERBB2/
HER2* SourceJ

Tumor
typeJ

T47D L + + 2 PE IDC

UACC812 L + 2 + PT IDC

UACC893 L 2 2 + PT IDC

ZR75-1 L + 2 2 AF IDC

ZR75-30 L + 2 + AF IDC

Abbreviations: A = Basal A subtype; AC = adenocarcinoma; AF = ascites fluid;
B = Basal B subtype; BR = brain; C Sar = carcinoma sarcoma; DC = ductal
carcinoma; F = fibrocystic disease; IDC = invasive ductal carcinoma;
Inf = inflammatory carcinoma; ILC = invasive lobular carcinoma; L = Luminal
subtype; Med C = medullary carcinoma, Met AC = metastatic adenocarcinoma;
Met C = metastatic carcinoma, Met LC = metastatic lobular carcinoma; NA = not
available; PE = pleural effusion; PT = primary tumor; RM = reduction
mammoplasty; Sq C = Squamous Carcinoma.
#Determined from this study.
*Determined from the ATCC (http://www.atcc.org) and DSMZ (http://www.
dsmz.de) websites, and references therein, or from this study.
JDetermined from the ATCC and DSMZ websites, and references therein.
"ERBB2 amplified but not highly expressed.
doi:10.1371/journal.pone.0006146.t001
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oligonucleotides representing 18,141 mapped human genes. 40 mg

of sample RNA and 40 mg of ‘‘universal’’ reference RNA (derived

from 11 different established human cell lines) were differentially

labeled with Cy5 and Cy3, respectively, using an amino-allyl

coupling protocol, then cohybridized onto the microarray in a

high volume mixing hybridization at 65uC for 40 hrs. Details of

the array processing and sample labeling/hybridization methods

have been described [12]. Following hybridization, arrays were

washed and scanned using a GenePix 4000B Axon scanner (Axon

Instruments, Union City, CA). Fluorescence ratios were extracted

using Spot Reader software (Niles Scientific, Portola Valley, CA)

and uploaded to the Stanford Microarray Database [13] for

storage, retrieval, and analysis. For two lines, HCC1806 and

SUM44PE, expression profiling array hybridizations did not meet

quality-control inspection and were excluded from analysis. The

complete microarray expression data are available at the Stanford

Microarray Database (SMD) (http://smd.stanford.edu) and at the

Gene Expression Omnibus (GEO) (accession GSE15376); all

microarray data reported in the manuscript are described in

accordance with MIAME guidelines.

Gene expression profiling analysis
Background-subtracted fluorescence log2 ratios were globally

normalized for each array, and then mean-centered for each gene

(i.e. reporting relative to the average log ratio across all samples).

Unless otherwise specified, we included for subsequent analysis

only well-measured genes defined as those with fluorescence

intensities in the Cy5 or Cy3 channel at least 1.5-fold above

background in at least 60% of samples. For unsupervised

hierarchical clustering, we included only the 8,750 well-measured

genes whose expression varied at least 3-fold from the mean in at

least 5 samples (Table S1). Hierarchical clustering was performed

and displayed using Cluster and TreeView software (http://rana.

lbl.gov/EisenSoftware.htm). Enrichment for functionally related

genes was tested across a collection of 1,687 curated gene sets (C2)

using Gene Set Enrichment analysis (GSEA; Release 2.0) [14].

Cell lines were classified according to breast tumor subtype

(luminal-A, luminal-B, ERBB2, basal-like and normal-like) using

the nearest centroid method applied to the set of ‘‘intrinsic genes’’

(i.e. genes with small within-specimen compared to between-

specimen expression variance), as done previously [15], here using

Table 2. Molecular pathological analysis of breast cancer cell line subset.

Cell line Phenotype BRCA1
Q-PCR#

ERBB2 Q-RT-PCR* IHC Western

ESR1 PGR ERBB2 EGFR ESR1 PGR ERBB2 ESR1 PGR ERBB2 EGFR

HCC38 Triple neg 1.18 2 2 2 2 2 2 2 2 2 2 2

HCC70 Triple neg 0.37 2 2 2 + 2 2 2 2 2 2 +

HCC202 ERBB2 amp 28.88 2 2 + + 2 2 + 2 2 + +

HCC712 Hormone+ 0.95 + 2 2 2 + + + 2 2 2

HCC1143 Triple neg 1.08 2 2 2 + 2 2 2 2 2 2 +

HCC1187 Triple neg 0.42 2 2 2 2 2 2 2 2 2 +

HCC1395 Triple neg 0.36 2 2 2 2 2 2 2 2 2 2 2

HCC1419 ERBB2 amp 8.39 2 2 + 2 2 + 2 2 + 2

HCC1428 Hormone+ 0.20 + + 2 2 + + 2 + + 2 2

HCC1500 Hormone+ 0.38 + + 2 2 + + 2 + 2 2 2

HCC1569 ERBB2 amp 33.75 2 2 + + 2 2 + 2 2 + +

HCC1806 Triple neg 0.08 2 2 2 + 2 2 2 2 2 2 +

HCC1937 Triple neg INS C 5382 0.33 2 2 2 + 2 2 2 2 2 2 +

HCC1954 ERBB2 amp 45.01 2 2 + + 2 2 + 2 2 + +

HCC2185 Triple neg 0.63 2 2 2 + 2 2 2 2 2 +

HCC3153 Triple neg 943 ins 10 0.64 2 2 2 + 2 2 2 2 2 2 +

MCF7 Hormone+ 0.56 + 2 2 2 + 2 2 2

BT483 Hormone+ 0.19 + + 2 2 + + 2 2

BT549 Triple neg 0.63 2 2 2 + 2 2 2 +

MDA157 Triple neg 0.76 2 2 2 + 2 2 2 2

MDA231 Triple neg 0.90 2 2 2 + 2 2 2 +

MDA453 Triple neg 3.88 2 2 + 2 2 2 2 2

MDA134 Hormone+ 0.76 + 2 2 2 + 2 2 2

MDA175 Triple neg 0.57 2 2 2 2 2 2 2 2

HMEC1585 Control 0.54 2 2 2 + 2 2 2 +

CALU3 Control 12.59 2 2 + + 2 2 + +

NC11 Control 1.75 2 2 2 2 2 2 2 2

DNA20 Control 2.00

#Gene copy number determined using DNA20 (from normal lymphocytes) as a diploid control; bold values indicate amplification.
*mRNA expression quantified in comparison to the immortalized breast line HMEC1585; Calu3 was used a positive control for ERBB2, and MCF7 for ESR1.
doi:10.1371/journal.pone.0006146.t002
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Euclidean distance. To classify breast tumors (from the Sorlie et al.

dataset [3]) according to cell line subtype (luminal, basal A, or

basal B), we first built a classifier by combining the top 100 genes

positively and negatively correlating with each of the three ‘‘one vs.

others’’ cell line subtype distinctions, using Significance Analysis of

Microarrays (SAM) [16]. The cell line subtype classifier,

comprising 484 genes, was then applied to classify primary tumors

using the nearest centroid method (with Euclidean distance). We

also classified each cell line as being associated with a good or bad

prognosis signature (70-gene prognostic signature [17]), the

presence or absence of a wound healing signature (512-gene

wound signature [18]), and the presence or absence of an hypoxia

signature (123-gene hypoxia signature [19]). For each signature,

we calculated the gene expression centroid of the two groups of

breast tumors (as determined in the original publications), and

then correlated each centroid with cell line expression of the

respective signature genes. Membership was assigned to the group

with the highest correlation (Pearson correlation).

Array-based comparative genomic hybridization (aCGH)
Arrays for CGH were obtained from the Stanford Functional

Genomics Facility. aCGH was performed using cDNA arrays

containing 39,632 cDNAs, representing 22,279 mapped human

genes (18,049 UniGene clusters [20], together with 4,230

additional mapped ESTs not assigned to UniGene IDs), according

to previously published protocols [21,22]. Briefly, 4 mg of genomic

DNA from cell lines was random-primer labeled with Cy5 and co-

hybridized onto a microarray along with 4 mg of Cy3 labeled

normal leukocyte female reference DNA. Following overnight

hybridization, the arrays were washed and scanned as above. The

complete aCGH data are available at SMD and at GEO

(accession GSE15376).

aCGH analysis
Background-subtracted log2 fluorescence ratios were normal-

ized for each array by mean centering. Well-measured genes

used for subsequent analysis were those with fluorescence

intensities in the Cy3 reference channel at least 1.4 fold above

background. Map positions for arrayed cDNA clones were

assigned using the NCBI genome assembly, accessed through the

UCSC genome browser database (NCBI Build 36.1). For genes

represented by multiple arrayed cDNAs, the average log2 ratio

was used. The complete processed aCGH dataset is available as

Table S2. DNA gains and losses were identified using the

cghFLasso (R package for Fused Lasso) method [23], which

controls the false discovery rate (FDR) by using normal-normal

hybridization arrays to approximate the null distribution of the

test statistics (see [23] for more details). A FDR,1% was used

to call gains and losses. The fraction of the genome altered was

determined by calculating the fraction of genes with fluorescence

ratios $3 (for amplifications) or with significant non-zero fused

lasso calls (for gains and losses). Some analyses (where indicated)

were carried out on cytobands (boundaries defined by NCBI

Build 36.1) rather than individual genes. For each cell line,

cytobands exhibiting CNA were defined as those with at least

two genes called by cghFLasso, and the magnitude of the CNA

defined as the average log2 ratio of genes within the cytoband.

We defined high-level DNA amplifications and multi-copy

deletions as continuous regions identified by cghFLasso with at

least 50% of genes having fluorescence ratios $3 or #0.25

respectively. These sites were also checked against known copy

number variants (CNVs) reported in the Database of Genomic

Variants (http://projects.tcag.ca/variation). Significant associa-

tions between cytobands and gene-expression subtypes were

identified using SAM with a FDR,5%.

Integrating genomic and transcriptional profiles
To integrate DNA copy number data (generated using cDNA

microarrays) and gene-expression data (HEEBO oligonucleotide

arrays), each gene expression measurement was first assigned a

DNA copy number from either a probe interrogating the same

named gene, or the average copy number of the nearest 59 and 39

probes (NCBI Build 36.1). Identification of genes with correlated

copy number and expression was carried out using the DR-

Correlate application of DR-Integrator (K. Salari, manuscript in

preparation). Briefly, for each gene a modified Student’s t-test was

performed comparing gene expression levels in cell lines from the

lowest and the highest deciles of all cell lines’ copy number for the

same gene; random permutations of sample labels were used to

estimate a FDR.

Results

Transcriptional profiling identifies three breast cancer cell
line subtypes

To catalog molecular variation in a collection of 52 widely-used

breast cancer cell lines, we first profiled gene expression using

whole genome oligonucleotide microarrays. Unsupervised hierar-

chical clustering of the 8,750 most variably expressed genes

stratified cell lines into two main groups (see dendrogram, Fig. 1B).

One group, designated ‘‘luminal’’ (blue dendrogram branches),

contained all the ER-positive cell lines (Fig. 2A), and was

characterized by the expression of ERa-regulated genes (e.g.

MYB, RET, EGR3, TFF1; Fig. 1H, and not shown) [24–27], as well

as genes associated with luminal epithelial differentiation (e.g.

GATA3 and FOXA1, Fig. 1I) [28].

The other group, designated ‘‘basal’’, contained only ER-

negative cell lines (Fig. 2A) and was characterized by the

expression of basal epithelial gene markers including MSN,

ETS1, CAV1 and EGFR (Fig. 1E, and not shown) [29–32]. Basal

cell lines were further stratified into two subgroups, designated A

and B (in line with Neve et al. [33], discussed further below). The

basal-A subtype (red dendrogram branches) contained many of the

‘‘HCC’’ lines established at UT Southwestern, including two

known BRCA1 mutant lines (HCC1937, HCC3153) ([34], and this

study). Basal-A lines were characterized by expression of PROM1

(aka CD133), a marker of various cancer stem cells [35], as well as

other genes like GABRP and VTCN1 (Fig. 1F and 2C). Some of the

basal-A lines also shared expression of luminal epithelial markers

like KRT8 and KRT18 (Fig. 1G).

The basal-B subtype (orange dendrogram branches) included

non-tumorigenic lines (MCF10A, hTERT-HME1, 184A1) as well

as several highly invasive lines exhibiting features of epithelial-

mesenchymal transition (EMT) (MDA-MB231, MDA-MB436,

MDA-MB157, Hs578t) [36]. Basal-B lines were characterized by

markers associated with aggressive tumor features, including

PLAT (plasminogen activator) [37] and TGFB1 [38] (Fig. 1C),

as well as marker phenotypes associated with normal breast and

breast cancer progenitor/stem cells (MUC2/CALLA+; CD44+/

CD242/low; and ITGB3(CD61)+) (Fig. 2C) [39–41]. In contrast to

other basal lines, the subset of mesenchymal-like basal-B lines

lacked expression of basal cytokeratin markers KRT5 and KRT17

(Fig. 1D, and not shown).

Subtype-specific differences in gene expression could also be

identified by pathway analysis, using Gene Set Enrichment

Analysis (GSEA) [14]. Included among the top signature

associations (Table 3), the luminal cell line subtype was
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Figure 1. Clustering of expression profiles defines breast cancer cell line subtypes. (A) Thumbnail ‘‘heatmap’’ of two-way hierarchical
clustering of 50 breast cancer cell lines (columns) and 8,750 variably expressed genes (rows) (data available as Table S1). Gene expression ratios are
depicted by log2 pseudocolor scale shown; gray represents poorly measured data. (B) Enlarged view of the sample dendrogram. Clustering stratifies
cell lines into two main groups, luminal (blue dendrogram branches) and basal, the latter further subdivided into two subgroups, basal A (red) and
basal B (orange). (C–I) Selected gene expression patterns extracted from the cluster; corresponding locations in the thumbnail are indicated by the
vertical colored bars. (C) Basal-B; (D) Basal cytokeratins; (E) Basal; (F) Basal-A; (G) Luminal cytokeratins; (H) ER-associated; (I) Luminal differentiation.
doi:10.1371/journal.pone.0006146.g001
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characterized by enriched expression of ER and good prognosis

signatures, basal-A by ETS pathway and BRCA1 signatures, and

basal-B by EMT and epidermal growth factor (EGF) signatures.

In regard to molecular markers and gene mutations (Fig. 2A),

the luminal subtype included all the ER-positive cancer lines

(P,0.001, 2-tailed Fisher’s exact test), and all but two of the

ERBB2-positive lines (P = 0.002), half of which were also ER-

positive. PTEN inactivating mutations and PIK3CA activating

mutations, functioning on the same pathway, were mutually

exclusive in all but one sample. Interestingly, PTEN mutations

were more common in the combined basal-like cell lines

(P = 0.020), while PIK3CA mutations were more frequent in

luminal lines (P = 0.022). TP53 mutations occurred more often

in basal-like lines (P = 0.038).

Relationship of breast cancer cell line and tumor
subtypes

To determine the relation between breast cancer cell line
subtypes (luminal, basal-A, basal-B) and breast tumor subtypes

(luminal-A, luminal-B, ERBB2, basal-like, and normal-like), we
first classified cell lines according to tumor subtype using a nearest

centroid approach applied to the set of ‘‘intrinsic genes’’ used
originally to define the tumor subtypes [2,3] (see Methods)

(Fig. 2B). By expression patterns, most of the luminal lines most

Figure 2. Subtype-specific expression and molecular characteristics. (A) Clinical, pathological and molecular characteristics of cell line
expression subtypes. Black boxes indicate metastasis derivation, ER-positivity, TP53 mutation, ERBB2/HER2 positivity, PTEN mutation, PIK3CA mutation.
Mutation data compiled from the Sanger (http://www.sanger.ac.uk) and IARC (http://www-p53.iarc.fr) websites, and from refs. [94,95]. White cross-
hatched boxes indicate missing data. (B) Classification of cell lines by nearest resemblance to tumor gene-expression subtype: luminal A (dark blue),
luminal B (light blue), ERBB2-associated (purple), basal-like (red) or normal-like (green); and by positivity (black boxes) for 70-gene, wound and
hypoxia signature. (C) Expression levels of selected stem/progenitor cell relevant markers; log2 ratios are depicted by pseudocolor scale shown (gray
represents poorly measured data). (D) Relation of tumor subtypes to cell line subtypes. Subtype of 86 tumors [3] is shown color-coded as above.
Resemblance to each cell line subtype is depicted by Euclidian distance, indicated by blue intensity (representing shorter distances); best match is
bracketed in black.
doi:10.1371/journal.pone.0006146.g002
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closely resembled either luminal-A or luminal-B tumors. Most

basal-A lines resembled basal-like tumors, and most basal-B lines

resembled either basal-like or ERBB2 tumors (despite that none

were ERBB2-positive).

We also carried out the reverse analysis, building a cell line

subtype classifier to classify 86 breast tumors (from the original

Stanford/Norway study defining the five tumor subtypes [3])

according to cell line subtype (see Methods) (Fig. 2D). Notably, all

basal-like tumors most resembled basal-A cell lines. Luminal-A

and -B tumors most resembled luminal cell lines, while ERBB2

subgroup tumors most resembled either luminal or basal-A cell

lines. A similar analysis of breast tumors arising in carriers of

BRCA1 mutation, analyzed from a different dataset (The Nether-

lands Cancer Institute) [17], revealed highest resemblance in 17 of

18 cases to basal-A lines (not shown), while two BRCA2 mutation

associated cases most resembled luminal cell lines.

In addition to the above cluster-derived luminal/basal tumor

subtypes, alternative breast tumor subtype classifiers have been

proposed, including a 70-gene prognostic signature supervised on

the metastatic/non-metastatic distinction [17], a ‘‘wound’’ signa-

ture trained on the serum response of cultured fibroblasts [18], and

a hypoxia signature derived from the hypoxic response of cultured

mammary and renal tubular epithelial cells [19]. Each of the three

signatures predicts unfavorable clinical outcome. Interestingly, the

basal-like lines (considered together) were those predominantly

expressing the 70-gene (P = 0.001, Fisher’s exact test) wound

(P = 0.004), and hypoxia (P,0.001) signatures (Fig. 2B).

Genomic profiles of breast cancer cell lines
To survey DNA copy number alterations in the panel of 52

breast cancer cell lines, we carried out CGH on cDNA

microarrays with validated performance characteristics [21] and

covering 22,000 genes with an average mapping resolution (inter-

probe distance) of ,70 Kb. Across the sample set, the most

frequent CNAs (called by cghFLasso–see Methods) were gains on

1q, 3q, 5p, 7p, 8q, 11q, 17q, and 20q, and losses on 3p, 4, 8p, 9p,

11q, 13q, 18p, and Xq.

Overall, the spectrum of cytoband gains and losses was similar

in the cell lines compared to primary tumors (Fig. 3A), though the

frequency of those CNAs was generally higher with the cell lines.

Cell line subtype-specific CNAs could be identified by SAM

analysis (Fig. 3B). Luminal cell lines were characterized by more

frequent gains on 1q, 8q, 11q, 12q, 14q, 17q and 20q, and losses

on 8p, 9p, 11q, 13q, and 18p. Of these, gains on 1q, 8q, and 20q,

and losses on 1p, 8p and 13q (asterisked in Fig. 3B) also

characterize luminal-B breast tumors, while 17q gain characterizes

ERBB2-associated tumors [4,5]. Notably, simple patterns charac-

teristic of luminal-A tumors (1q+, 16p+, 16q2) were not well-

represented among the luminal cell lines. Basal-A and basal-B cell

lines also exhibited characteristic gains/losses (Fig. 2B), but none

also selectively characteristic of basal-like tumors.

Luminal cell lines displayed overall higher frequencies of high-

level DNA amplification (i.e. fluorescence ratios $3, corresponding

to at least 5-fold amplification [21]) (Fig. 4A), a characteristic shared

with luminal-B tumors [4]. Luminal and basal-A lines both

exhibited overall higher frequencies of gain/loss (a characteristic

feature of basal-like tumors [4]), compared to basal-B lines (Fig. 4B).

Integrated analysis for cancer gene discovery
The molecular profiles generated provide opportunities to

identify breast cancer cell lines with an altered copy number and

expression of known cancer genes, useful to model pathogenesis and

therapy, and to discovery new breast cancer genes. For the latter,

high-amplitude CNAs, i.e. high-level DNA amplifications and

homozygous deletions, are particularly informative in pinpointing

new cancer genes. Within the aCGH dataset we identified 80 loci of

high-level amplification in 35 different cell lines, each spanning 49–

49,014 Kb (median 1,115 Kb). We also identified 13 multi-copy

(possibly homozygous) deletions (fluorescence ratios #0.25) in 8 cell

lines spanning 132–7,825 Kb (median 1,477 Kb). The boundaries

of amplicons/deletions did not correspond to known germline

CNVs (reported in the Database of Genomic Variants), and, for the

subset of recurrent alterations, finding distinct boundaries in

different cell lines was more consistent with somatic alteration.

Several regions of high-level amplification contained known

oncogenes, like 8q24 (MYC), 11q13 (CCND1) and 17q12 (ERBB2).

Other amplicons did not correspond to known oncogenes and

presumably harbor novel breast cancer genes.

Gains and losses contribute to breast cancer by the increased

and decreased expression of oncogenes and tumor suppressors,

respectively. Using DR-Correlate (see Methods), we identified

3,511 genes (,18% of all well-measured genes) whose altered

Table 3. GSEA of breast cancer cell line subtypes.

Subtype Gene Set Description Source FDR*

Luminal BRCA_ER_POS Correlated with ER+ in breast cancer [17] 0.017

BRCA_PROGNOSIS_POS Correlated with good prognosis in breast cancer 0.094

Basal-A ETSPATHWAY ETS transcription factor pathway BioCarta 0.063

BRCA_BRCA1_POS Correlated with BRCA1 (germline) in breast cancer [17] 0.063

IFN_ALL_UP Upregulated with interferon-a,b,c treatment [96] 0.071

IFNALPHA_HCC_UP Upregulated with interferon-a treatment [97] 0.076

GLYCOGEN Glycogen processing Broad Institute 0.078

Basal-B JECHLINGER_EMT_UP Upregulated in EMT [98] 0.040

EGF_HDMEC_UP Upregulated with EGF treatment [99] 0.042

DORSEY_DOXYCYCLINE_UP Upregulated with GAB2 expression [100] 0.047

HTERT_DN Downregulated with hTERT-immortalization [101] 0.048

HINATA_NFKB_UP Upregulated by NF-kB [102] 0.049

*Only top five significant gene sets shown.
doi:10.1371/journal.pone.0006146.t003
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Figure 3. Genomic profiles define spectra of CNAs in cell line subtypes. (A) Spectra of gains (red) and losses (green) across the genome,
plotted as average log2 ratio, for 89 breast tumors [4], above, compared to the set of 50 cell lines (profiled for both expression and CNAs), below. (B)
Spectra of gains and losses for the cell line subtypes: luminal (above), basal A (middle) and basal B (below). Statistically significant subtype-specific
CNAs, called by SAM (FDR,5%), are marked by a black bar. The subset of those loci that also characterize the corresponding primary breast tumor
subtype is marked by an asterisk.
doi:10.1371/journal.pone.0006146.g003
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expression correlated significantly (FDR,0.05) with altered gene

copy number (Table S3). Of these, 487 resided within loci of high-

amplitude CNA (Table 4). This subset included known breast

cancer genes, like EGFR (7p11), FGFR1 (8p12), ERBB2 (17q12),

PPM1D (17q23) and ZNF217 (20q13). This subset is likely also

enriched for novel breast cancer genes, and as such represents a

rich source for cancer gene discovery. Notably, among the larger

group of amplified/overexpressed genes are several with known

functions relevant to oncogenesis, like cell proliferation (e.g.

EIF3H, HEY1, MELK, GAB2, CDC6, GRB2) [42–47], survival (e.g.

HIPK1, MCL1, MAPKAPK2, VCP, VDAC2, APIP, MAP3K3) [48–

54], migration/invasion (e.g. MUC1, ADAM9, SH3PXD2A, CD44,

PAK1, GIT1, PTPN1 ) [55–61], ER-signaling (e.g. BCAS2, MUC1,

NCOA3, TFAP2C ) [62–65], and maintenance of genome integrity

(e.g. NBN, RAD21, FANCG, BUB3, RAD9A, TAOK1, RAD51C,

RAE1) [66–73]. Also represented are several ‘‘druggable’’ classes

[74], like kinases (e.g. HIPK1, MAPKAPK2, MELK, RPS6KB2,

PAK1, TAOK1, PIP4K2B, RPS6KB1, TLK2, MAP3K3), phospha-

tases (e.g. PTPN1), proteases (e.g. ADAM9), G protein-coupled

receptors (e.g. GPRC5C) and ion channels (e.g. VDAC2).

Discussion

Using whole-genome DNA microarrays, we collected transcrip-

tional and genomic profiles across a set of 52 widely used breast

cancer cell lines, with the primary goals to establish their suitability

in modeling known breast tumor heterogeneity, and to create a

resource for cancer gene discovery. Cluster analysis of transcrip-

tional profiles defined three cell line subtypes, one luminal and two

basal (A and B), consistent with other recent studies of breast

cancer cell lines [31,33,75]. The luminal subtype included all ER-

positive cell lines, and associated gene expression patterns reflected

both ER and luminal differentiation pathways, the latter including

GATA3 and FOXA1, key transcriptional mediators of luminal

differentiation [28,76]. The basal-like cell lines were ER-negative

and exhibited more frequent mutations of TP53 and PTEN,

consistent with findings in basal-like tumors [3,77]. The basal-A

subtype exhibited enriched expression of ETS pathway genes, a

pathway linked to diverse tumor phenotypes including invasion

and metastasis [78]. The basal-B subtype, which included the

three non-tumorigenic lines (consistent with prior studies [75]), as

well as five highly invasive/metastatic lines with features of EMT,

exhibited enriched expression of EMT and EGF regulated genes,

the latter pathway also previously linked to basal-like tumors [79].

Recently, Neve et al. [33] profiled 51 breast cancer cell lines

(though using a lower-resolution (,1 Mb) CGH platform), 38 of

which (,3/4th) overlapped with the 52 we profiled. All the

overlapping lines except for one clustered into the same

corresponding gene-expression subtype in both their and our

study. The exception was HCC1500, which we classified as

luminal while Neve et al. labeled it as basal B. The discrepancy

may reflect a cell line identification error. We note that ATCC

describes the line as ER-positive, more consistent with a luminal

classification.

Our comparisons of expression profiles between breast cancer

cell line subtypes and breast tumor subtypes provided valuable

information relevant to the suitability of cell lines in modeling

known breast tumor heterogeneity. Luminal-A/B tumors best

matched luminal cell lines. Notably, basal-like tumors most

corresponded to basal-A cell lines. Consistent with this finding,

two breast cancer cell lines from BRCA1 mutation carriers also

clustered in basal-A (and basal-A lines exhibited enrichment of a

BRCA1 signature), where it has been established that BRCA1-

associated tumors share many features with sporadic basal-like

tumors [80]. Interestingly, ERBB2-associated tumors matched

both luminal and basal-A lines. While ERBB2 represents a distinct

expression tumor subtype in multiple independent cohorts

[3,15,81], it is noteworthy that most ERBB2 (HER2+) cell lines

clustered in the luminal subtype. The basis for the discrepant

ERBB2 grouping in cell lines and tumors is unclear but warrants

further investigation.

It has been suggested that the origin of the luminal vs. basal

breast cancer distinction reflects the transformation of different

breast epithelial progenitor cell compartments [82,83]. Breast

epithelial stem/progenitor cells support mammary gland develop-

ment during puberty and subsequent growth and remodeling

during pregnancy [84]. A prevailing view is that breast epithelial

stem cells give rise to bipotent basal/luminal progenitors, which

then give rise to basal and luminal restricted progenitors, and from

there to differentiated basal/myoepithelial and luminal epithelial

Figure 4. Cell line subtypes exhibit distinct genomic instabil-
ities. Fraction of genome comprising (A) high-level DNA amplification;
or (B) low-level gain/loss, stratified by cell line subtype (luminal, basal-
A, basal-B). Box plots show 25th, 50th and 75th percentiles; P-values
(Students t-test) for pairwise comparisons are shown.
doi:10.1371/journal.pone.0006146.g004
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Table 4. High-amplitude amplifications and deletions.

Cytoband P-Border (nt) Q-Border (nt) Size (kB) Cell LinesJ Significant DNA-RNA Correlations#
Other notable
genes?

AMPLIFICATION

1p32.2 56946690 57156366 210 EFM192A

1p22.1-1p21.3 93549298 97052934 3504 SUM44* DR1, FNBP1L, ARHGAP29, ALG14

1p13.3 107738670 109306637 1568 HCC2688 C1orf59, PRPF38B, STXBP3, GPSM2, CLCC1 VAV3

1p13.2 114220960 115183599 963 MCF7, UACC812 AP4B1, DCLRE1B, HIPK1, TRIM33, BCAS2, CSDE1,
NRAS

1q21.2 148738080 148885763 148 HCC1143 TARS2, MCL1, ENSA, GOLPH3L

1q21.2-q21.3 149460307 150130540 670 HCC712, UACC812 PIP5K1A, PSMD4, ZNF687, PI4KB, PSMB4, POGZ,
SNX27, MRPL9

1q21.3 151000411 151885402 885 HCC712

1q22 153424958 153999982 575 UACC812 MUC1, C1orf2, CLK2, HCN3, PKLR, C1orf104,
RUSC1, ASH1L, YY1AP1

1q23.3 159283361 159357995 75 SUM190 KLHDC9

1q32.1 204736293 205144756 408 UACC812 MAPKAPK2 IKBKE

3p14.2-p14.1 61765808 64574645 2809 MCF7

3q26.32 178223920 180535525 2312 HCC2185 TBL1XR1, ZNF639 PIK3CA

3q29 194971434 195513283 542 HCC1937

3q29 196883266 196931777 49 HCC1937

4q12 53304442 54084198 780 HCC1007 SCFD2, FIP1L1

5p15.33 712977 2811691 2099 HCC1954 ZDHHC11, PDCD6, MRPL36, NDUFS6 TERT

6p12.1 55358212 57236103 1878 HCC1007 KIAA11586, ZNF451, BAG2

6q16.3-q21 104858272 109112665 4254 HCC2185 HACE1, ATG5, C6orf203, PDSS2, SEC63, OSTM1,
SNX3, FOXO3A

6q21-q22.31 111961945 123089199 11127 HCC2185 C6orf225, HDAC2, DSE, GOPC, NUS1, ASF1A,
HSF2, SERINC1

7p15.2 26557965 27107611 550 HCC1007

7p11.2 54595526 55931398 1336 BT20, MDA468 EGFR

7q21.13-q21.2 90779687 91868629 1089 SUM52 MTERF, AKAP9, CYP51A1, KRIT1, ANKIB1

7q21.3 95239813 96489919 1250 SUM52 SLC25A13, SHFM1

7q22.1 100294293 100421513 127 SUM52 SLC12A9

8p21.3 21593811 21966432 373 MDA134 XPO7

8p12-p11.21 32328805 41907423 9579 BT483, HCC1500,
HCC1599, MDA134,
SUM44*, SUM52

FUT10, C8orf41, MAK16, ZNF703, ERLIN2,
PROSC, BRF2, RAB11FIP1, EIF4EBP1, ASH2L,
LSM1, BAG4, DDHD2, WHSC1L1, LETM2,
FGFR1, TACC1, PLEKHA2, TM2D2, ADAM9,
GOLGA7, AGPAT6

IKBKB

8q12.2-q12.3 61817956 62960675 1143 SUM190 CHD7

8q13.3 71707355 72999610 1292 SKBR3

8q21.11-q21.13 79781799 85260376 5479 EFM192A, HCC1419,
HCC1599, SKBR3

HEY1, TPD52, ZBTB10

8q21.3-q22.1 89113344 95233478 6120 EFM192A, HCC1419,
SKBR3

OSGIN2, NBN, DECR1, OTUD6B, RBM12B,
TMEM67

8q22.2-q22.3 100879473 101995283 1116 HCC1419, HCC2185 COX6C, POLR2K

8q22.3 104311423 104550566 239 HCC1419 FZD6

8q23.1-q24.21 108267427 131134620 22867 EFM192A, HCC1419,
HCC1599, HCC2185,
SKBR3, ZR75-30

EIF3E, TRPS1, EIF3H, C8orf53, RAD21, TAF2,
DSCC1, MRPL13, MTBP, DERL1, WDR67,
C8orf76, ZHX1, ATAD2, C8orf32, FAM91A1,
TMEM65, TRMT12, RNF139, TATDN1, NDUFB9,
SQLE, KIAA0196, NSMCE2, FAM84B

MYC

8q24.22 133917771 134337653 420 ZR75-30 PHF20L1

8q24.3 141658961 143348731 1690 HCC1419, MDA436,
ZR75-30

GPR20, FLJ43860

8q24.3 144310706 144753628 443 MDA436, ZR75-30 ZFP41, GLI4, ZNF696, C8orf51, RHPN1, MAFA
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Cytoband P-Border (nt) Q-Border (nt) Size (kB) Cell LinesJ Significant DNA-RNA Correlations#
Other notable
genes?

8q24.3 145137850 146252219 1114 BT483, HCC1419,
MDA436, ZR75-30

GRINA, OPLAH, SHARPIN, KIAA1833, FBXL6,
CPSF1, VPS28, KIFC2, ZNF252

9p13.3-p13.2 33876876 38058023 4181 HCC2185 UBE2R2, UBAP2, WDR40A, KIF24, KIAA1161,
DCTN3, GALT, IL11RA, VCP, FANCG, PIGO,
STOML2, RUSC2, TESK1, CD72, C9orf100, TLN1,
CREB3, RGP1, HINT2, CLTA, RNF38, MELK,
ZCCHC7, GRHPR, ZBTB5, POLR1E, FBXO10,
RG9MTD3, WDR32, MCART1

9q33.3 128307884 129195638 888 SUM44* RALGPS1

10q21.1-q21.2 72507196 73797267 1290 HCC2157 DNAJB12

10q22.2-q22.3 76461776 82106491 5645 EFM19, HCC2157 SAMD8, VDAC2, DLG5, POLR3A, RPS24,
LOC283050, ZMIZ1, PPIF, SFTPA1, FAM22E,
C10orf57, ANXA11

10q24.33-q25.1 105307581 106054698 747 EFM19 SH3PXD2A

10q26.13 124598599 124962466 364 SUM52 IKZF5, BUB3

11p13 33062705 35600197 2537 HCC1806* HIPK3, FBXO3, CAPRIN1, NAT10, ABTB2, CAT,
APIP, PDHX, CD44

11q13.2 66874536 67198753 324 MDA134, ZR75-1 RAD9A, RPS6KB2, CORO1B, TMEM134

11q13.3-q13.4 68427956 70812048 2384 HCC1143, HCC1500,
HCC1954, MDA134,
MDA175, MDA361,
SUM44*, SUM190,

IGHMBP2, FADD, PPFIA1, CTTN, SHANK2 CCND1

11q13.4 73316198 73649077 333 BT474, MDA134,
SUM190

UCP2, C2CD3, PPME1

11q13.4-q14.1 74648813 77963474 3315 MDA134, SUM44*,
SUM52, SUM190

ARRB1, PRKRIR, EMSY, PHCA, PAK1, AQP11,
CLNS1A, C11orf67, INTS4, NDUFC2, ALG8,
GAB2, NARS2

12p12.3 18727378 19246201 519 HCC1500

12q21.31-q21.33 88265969 88443930 178 SUM52 WDR51B, GALNT4

13q22.2-q31.1 74756931 78096263 3339 UACC812 UCHL3

13q31.3-q32.1 90798074 93942902 3145 UACC812

16q12.2 51800892 53524601 1724 EFM19, SUM44* CHD9, FTO

17p12 12611513 13636592 1025 EFM192A ELAC2

17q11.2 23686912 24013273 326 ZR75-30 POLDIP2, TREM199, SLC46A1, PIGS, SPAG5,
FLJ25006, KIAA0100, SDF2

17q11.2 24894649 25818484 924 HCC202 TAOK1, LOC116236, GIT1, ANKRD13B, CPD

17q11.2 27727543 28293356 566 SUM190 ZNF207

17q12 31206068 31649844 444 MDA361 FLJ12120

17q12-q21.2 32627885 36209712 3582 BT474, EFM192A,
HCC202, HCC1419,
HCC1569, HCC1954,
HCC2218, MDA361,
SKBR3, SUM190,
UACC812, UACC893,
ZR75-30

ACACA, TADA2L, DDX52, SOCS7, MLLT6,
CISD3, PCGF2, PSMB3, PIP4K2B, CCDC49,
RPL23, LASP1, CACNB1, FAM153C, RPL19,
LOC90110, FBXL20, MED1, PPP1R1B, STARD3,
TCAP, PERLD1, ERBB2, C17orf37, GRB7, IKZF3,
GSDML, ORMDL3, PSMD3, MED24, MSL-1,
CASC3, CDC6, RARA, SMARCE1

17q21.31 38419019 38738864 320 SUM190 RND2

17q21.32-q25.1 43329972 50826668 7497 BT474, EFM192A,
HCC202, HCC712,
HCC1419, HCC2218,
ZR75-30

SP2, PNPO, CDK5RAP3, SNX11, HOXB13,
CALCOCO2, ATP5G1, UBE2Z, SNF8, ZNF652,
PHB, SPOP, SLC35B1, FAM117A, MYST2, PDK2,
XYLT2, MRPL27, LRRC59, EME1, ACSF2, RSAD1,
EPN3, SPATA20, ABCC3, ANKRD40, CROP,
TOB1, NME1, TOM1L1, COX11, STXBP4

17q23.2-q24.2 53282667 63106134 9823 BT474, HCC712,
HCC2218, MCF7,
MDA361, ZR75-30

SFRS1, DYNLL2, MKS1, SUPT4H1, MTMR4,
RAD51C, TRIM37, FAM33A, C17orf71, YPEL2,
DHX40, CLTC, PTRH2, TMEM49, TUBD1,
RPS6KB1, RNFT1, HEATR6, USP32, APPBP2,
PPM1D, BRIP1, INTS2, MED13, METTL2A, TLK2,
TANC2, CYB561, WDR68, CCDC44, MAP3K3,
LYK5, CCDC47, DDX42, PSMC5, SMARCD2,
DDX5, CCDC45, SMURF2, GNA13, HELZ
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cells [84,85]. Bipotent human breast epithelial stem/progenitors

have been characterized with the cell surface phenotype

MUC2/low/CALLAlow/+ [39]. Separately, breast cancer stem

cells, identified prospectively as tumor initiating cells when

transplanted into immunodeficient mice, have been characterized

by the surface expression phenotype CD44+/CD242/low [40], also

a presumed phenotype of normal breast epithelial stem or early

progenitor cells [84].

Our transcriptional profiles of breast cancer cell lines are

consistent with an origin in (or at least a likeness of the bulk cell

population to) the various stem/progenitor cell compartments.

Basal-B lines predominantly express CD44+/CD242/low and

Cytoband P-Border (nt) Q-Border (nt) Size (kB) Cell LinesJ Significant DNA-RNA Correlations#
Other notable
genes?

17q25.1 69755691 71418122 1662 HCC2218, MDA361,
MDA453, UACC893

GPRC5C, SLC9A3R1, NAT9, TMEM104, FDXR,
C17orf28, CDR2L, ICT1, KCTD2, SUMO2, NUP85,
GGA3, MRPS7, MIF4GD, SLC25A19, GRB2,
CASKIN2, TSEN54, MYO15B, SAP30BP, H3F3B,
UNK, WBP2

18q21.32-q21.33 55178911 57628085 2449 HCC1500

19p13.2 14932742 15602448 670 HCC1143 ILVBL, BRD4, AKAP8L

19q12-q13.11 33966349 38052482 4086 HCC1569, HCC1599 UQCRFS1, POP4, PLEKHF1, C19orf2, DPY19L3,
ANKRD27

19q13.11 39866832 40146793 280 HCC1599

19q13.42 60551045 60898029 347 EFM19 FIZ1, ZNF784, CCDC106

19q13.43 63208125 63774724 567 HCC1806* ZNF329, ZNF274, ZNF8, ZSCAN22, ZNF324,
TRIM28, CHMP2A, UBE2M

20p12.2 10224083 10433564 209 HCC2185 MKKS

20q11.22 32363269 33563203 1200 BT474 DYNLRB1, NCOA6, UQCC

20q13.12 42493067 43286511 793 BT474, SUM52 SERINC3

20q13.12-q13.13 45234836 48636574 3402 BT474, HCC1419,
MCF7

NCOA3, PREX1, ARFGEF2, STAU1, DDX27, ZNFX1,
SLC9A8, SPATA2, PTPN1

20q13.13-q13.32 49139330 57334442 8195 BT474, HCC1419,
MCF7, SKBR3

ZFP64, ZNF217, BCAS1, PFDN4, C20orf108,
CSTF1, C20orf43, TFAP2C, BMP7, RAE1, RBM38,
RAB22A, VAPB, STX16, NPEPL1, GNAS, TH1L,
ATP5E, SLMO2

AURKA

20q13.33 61801252 62370522 569 HCC1419 PRR17, OPRL1

22q11.21 18256420 19686015 1430 SUM190 COMT, HTF9C, PI4KA

22q12.1 24895479 25885840 990 HCC202 HPS4

Xp11.23-p11.22 48635684 51225253 2590 HCC712

Xp11.22 52255712 54236019 1980 HCC202 TMEM29, PHF8

Xq28 148368959 149592006 1223 HCC202

DELETION

6q16.3-q21 102493055 105832848 3340 HCC1395 HACE1

7q11.23-q21.11 77246720 77484743 238 HCC1806* TMEM60, PHTF2

8p23.3 604200 2080787 1477 HCC2688 ERICH1

9p24.3-p24.2 958704 3213008 2254 HCC2185 VLDLR, KIAA0020

9p21.2-p21.1 26894518 29207861 2313 BT474, EFM19 PLAA, IFT74 CDKN2A

13q14.3-13q21.2 52175620 60001053 7825 HCC1395

15q24.3 74984799 75116728 132 HCC1806* RCN2

17p12 11405197 11987872 583 EFM19 MAP2K4

17q21.31 38252285 38419019 167 HCC1806* BRCA1

18q11.2-q12.1 22256956 23913060 1656 HCC2185

21q21.1 18342236 21590772 3249 ZR75-30

Xp11.3 46208136 46345060 137 HCC2157

Xq25 122657657 123338533 681 HCC1806*

JFor aberrations spanning multiple lines, inclusive interval indicated.
*DNA but not RNA profiled.
#Only named genes listed, ordered by genome position; bold text indicates select known cancer genes.
?Within or immediately flanking interval.
doi:10.1371/journal.pone.0006146.t004
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MUC2/CALLA+ phenotypes characteristic of stem or bipotent

progenitor cells, as well as ITGB3 (CD61), also recently

characterized as a cancer stem cell marker in MMTV-wnt-1

induced murine breast cancer [41]. In contrast, basal-A lines

appear mainly CD44+/CD24+, but express PROM1 (aka CD133),

a marker of luminal progenitors in mice [86] also more recently

characterized as a stem cell marker in BRCA1-associated breast

cancer [87], while luminal lines express markers of luminal lineage

restriction like GATA3 and FOXA1 [28]. Conspicuously absent

from our analysis is a breast tumor subtype corresponding to the

stem-cell like (and sometimes mesenchymal-like) basal-B lines.

Whether basal-B lines reflect an uncommon tumor subtype not yet

characterized, or else a stem/progenitor subpopulation of tumor

cells enriched in culture, or even an artifact of cell culture, remains

to be determined. Regardless, breast cancer cell lines are likely to

prove useful for discovering new stem cell markers, and for

studying stem/progenitor cell biology.

Our genomic profiles of breast cancer cell lines indicate that

overall the spectra of CNAs is reflective of breast tumors,

consistent with prior findings from loss of heterozygosity (LOH)

analysis [11]. Overall, however, cell lines exhibited higher

frequencies and greater complexities of CNAs, and seemingly

more than might be explained by a higher sensitivity of detecting

CNAs in stromal-free tumor cell populations. Notably absent

among the luminal subtype were the ‘‘simple’’ karyotypes

characteristic of luminal-A tumors (i.e. 1q+, 16p+/16q2). By

genomic profiles, luminal cell lines shared features characteristic of

luminal-B tumors, including certain subtype-specific CNAs and

overall higher levels of DNA amplification. Likewise, basal-A cell

lines and basal-like tumors shared the feature of high levels of

chromosome segment gain/loss. However, overall only a subset of

subtype-specific CNAs was preserved. Therefore, at the genomic

level it is uncertain how well cell line subtypes faithfully represent

tumor subtype counterparts.

Taken together, the transcriptional and genomic profiles

support the conclusion that luminal and basal-A cell lines are

the most appropriate cell line models of luminal-B and basal-like

tumors, respectively. Further, the basal lines are likely useful

models for biological studies of the 70-gene, wound and hypoxia

signatures. Despite incongruent expression results, luminal lines

with amplification/overexpression of ERBB2 are likely appropri-

ate models of ERBB2-associated tumors. Our findings indicate

that new cell lines are needed to more faithfully model luminal-A

tumors. Currently available cell lines likely reflect certain biases in

the specimen source of cell line, and/or in the culturing methods,

as suggested by the predominance of HCC lines (from UT

Southwestern) among the basal-A group. Different culturing

methods (e.g. ref. [88]) might support the establishment of cell

lines from luminal-A tumors.

Our genomic profiles also identified numerous high-level DNA

amplifications and multi-copy deletions, pinpointing known and

novel cancer genes. Further, by integrating the genomic and

transcriptional datasets, we could define a set of candidate cancer

genes residing at these loci and exhibiting both altered copy

number and expression. The larger set of amplified/overexpressed

genes included several known breast cancer oncogenes, as well as

many plausible candidates including genes with known functions

relevant to carcinogenesis, like cell proliferation, survival and

motility/invasion, and genome integrity (e.g. DNA damage

response). Though genes maintaining genome integrity are more

typically considered candidate tumor suppressors, the overexpres-

sion of such genes has been linked to genome instability [67,89].

The set of amplified/overexpressed genes also included many

druggable targets [74], most notably several kinases. Importantly,

the same cell lines used for discovery can also be used to

functionally examine cancer gene candidates, for example using

RNA interference to knockdown the expression of amplified

oncogene candidates, and then assaying loss of tumorigenic

phenotypes in cultured cells or in vivo (e.g. refs.[90,91]). Indeed,

high-throughput RNA interference approaches [92,93] might be

used to evaluate many or all of the candidate cancer genes

simultaneously.

In summary, transcriptional and genomic profiling of 52

commonly used breast cancer cell lines identifies cell line subtypes,

and defines the cell line subtypes that most faithfully capture the

known heterogeneity of breast tumors. Specifically, luminal and

basal-A lines appear to best model the features of luminal-B and

basal-like tumors, while basal-B lines might inform stem cell

biology. In addition, our integrated analysis of genomic and

transcriptional profiles pinpoints loci and genes with altered copy

number and expression, providing a rich source for discovery and

future characterization of new breast cancer genes.
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