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Introduction:

 An image is often corrupted by noise in 
its acquisition and transmission stage. 

 Noises are normally created when 
scanning images to produce digital 
images, recording a voice to an audio 
file,  and even transmitting digital image 
often produce Noise.

 This noise can be random or white 
noise with no coherence or coherent 
noise introduced by device mechanism



Introduction
 Wavelet shrinkage is a signal denoising technique 

based on the idea of thresholding the wavelet 
coefficients.

 Denoising is the process of removing noise from a 
signal.

 Wavelet coefficients having small absolute values 
are considered to encode very fine details of the 
signal.

 Wavelet shrinkage denoising should not be 
confused with smoothing , Whereas smoothing 
removes high frequencies and retains low ones, 
denoising attempts to remove whatever noise is 
present and retain whatever signal is present 
regardless of the signal’s frequency content .



Noisy Image Denoised Image



Threshold rules
There are two types of rules that we are ging to use in 

this talk. 

Hard thresholding  rule – Let A = {x : |x| > λ}
Hλ(x) = x · χA(x) 

where  χA is the characteristic set function.

Soft thresholding  rule –
Tλ(x) = sgn(x) · max(|x|- λ, 0)



Procedure for wavelet Shrinkage.

The wavelet shrinkage method involves the following 
steps:

1. Apply wavelet transform to the signal.
2. Obtain a threshold Value that minimizes the Mean 

Square Error. Then using the Soft threshold function 
we remove (zero out) the coefficients that are 
smaller than the   threshold.

3. Reconstruct the signal (apply the inverse of the 
Wavelet transform).



Suppose we take one iteration of wavelet transformation to a noisy 
signal to get: w = WX (t) = WS (t)  + WN (t).

WX(t) is the signal that contains the lowpass portion of  
transformation in the first half and the highpass portion  
transformation in the second half.

The highpass portion of the signal is sparse since most of the energy 
is stored in the lowpass portion of the transformation. 

However, WN (t) is the Gaussian white noise, when we apply an 
Orthogonal Matrix W to a Gaussian white noise signal; it returns a 
Gaussian white noise signal with the same variance. 

So, the noise level for WN (t) is the same as the noise level for N (t). 
This tells us that the highpass portion of WX (t) is comprised 
primarily of noise!

Why does Wavelet Shrinkage work?



The observed noisy data will have the form
X(t) = S(t) + N(t)

Where S(t) is the true signal and N(t) is the noise as functions
of time t (for sampled values).   

We calculate the k iterations of the wavelet transformation of 
X(t) to obtain Y = [l | h], where l is the lowpass
(approximation) portion and h is the highpass (details) 
Portion of Y. 

Apply the soft threshold rule to h to either shrink or zero the 
coefficients in h.  Let this new highpass portion be h’.

Form a modified transform Y’ = [l | h’] by rejoining l with h’.
Finally, compute k iterations of the inverse wavelet 
transformation of Y’ to obtain a denoised estimate S’ of S.



Measuring the Effectiveness of Denoising
method.

We can use the mean squared error to determine if the 
shrinkage method does a good job of denoising the 
given signal.

The mean squared error or MSE is defined as

We will construct the thresholds (tolerance) values that 
minimizes the MSE value.           
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Two methods of wavelet shrinkage:

 Goal: To determine a threshold (or tolerence) 
value  λ that minimizes MSE (mean squared 
Error)

 There are two methods that we will discuss for 
choosing λ that is the visushrink and sureshrink. 

 If the image is sparse we use visushrink method 
to select otherwise we use sureshrink



Sure-shrinkage
[Stein’s Unbiased Risk Estimator]
Theorem: Suppose the N-vector w is formed by w = z + e, where 
e = (e1,…,en) and each ek is normally distributed with mean theta and 
variance 1. Let     be the estimator formed by     = w + g(w) where the 
coordinate functions gk: RN arrow R of the vector-valued function 
g: RN RN are differentiable except at a finite number of points. We 
obtain 
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To get the threshold function we simplify right hand  side 
of equation, then take the minimum value to obtain the 
threshold

2

1
( ) ( ) 2 ( )

N

k
k k

f N g w g wλ
ω=

∂
= + +

∂∑



To get the threshold function we simplify right hand side of 
equation, then take the minimum value to obtain the 
threshold              . Put
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Putting        in place of      and simplifying we obtainlω λ
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Finally, we obtain the threshold values using 
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Visu-shrinkage

Donoho and Johnston proved the following result:

let               and given X = S + N, where N is the 
white Gaussian noise, with noise level  σ . Let        
be a soft threshold function with                         . 
If      is a vector formed by applying              to S, then
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We call the tolerance value                            to be 
universal threshold and donate it by           . 

For            and any S the soft threshold rule produces 
a mean square error that is bounded above by a 
constant times the noise level square plus the ideal 
mean square error.

2ln( )Nλ σ=
univλ

univλ



Notice that the threshold value depends on signal size and 
the noise level σ. In practice, we do not know the value of σ. 

To estimate the noise level σ, we will make use of a result 
by Frank R Hampel that showed the Median Absolute 
Deviation  MAD(X) = |X – Median(X)| converges to 0.6745σ
as the sample size goes to infinity.  

To estimate noise level σ we use: 

Where h is the highpass portion of the transformation 1st

iteration.

ˆ ( ) 0.6745MAD hσ =
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