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Foreword

As online social media applications such as blogs, social bookmarking (folksonomies), and
wikis continue to gain its popularity, concerns about the rapid proliferation of Web spam
has grown in recent years. These applications enable spammers to submit links that divert
unsuspected users to spam Web sites. The goal of this research is to investigate novel
techniques to detect Web spam in social media web sites. Specifically, we have developed
a co-classification framework that simultaneously detects web spam and the spammers who
are responsible for posting them on social media web sites. Using data from two real-
world applications, we empirically showed that the proposed co-classification framework is
more effective that learning to classify the Web spam and spammers independently. We
also investigated an approach to enhance the framework by leveraging out-of-domain data
collected from multiple social media web sites.
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1 Statement of the Problem Studied

The explosive growth of the Internet has transformed the way we communicate and interact
with each other. The Internet, which was once the realm of email, FTP, and Usenet, is barely
recognizable nearly two decades later with the emergence of social media applications such
as weblogs, wikis, twitters, folksonomies, and video or photo file sharing sites. Instead of
passively searching and consuming information, users nowadays are actively engaged in the
creation and distribution of information using tools provided by the social media Web sites.
These tools often allow users to submit links to interesting online articles or add shortcuts
(bookmarks) to their favorite Web sites. The emergence of social media applications has led
to growing concerns about the alarming increase of Web spam as spammers may exploit the
capabilities provided by these applications to submit links that direct users to spam Web
sites. Worse still, some of the directed Web sites may trick unsuspected users into divulging
their personal information or allow malicious code to be injected to the user’s browser. To
alleviate such Web spam attacks, it is therefore critical to develop effective techniques that
can automatically detect Web spam and spammers in social media applications.

This report begins with our investigation into the prevalence and characteristics of Web
spam at two popular social media Web sites, delicious.com and digg.com [10]. We then
present a novel learning paradigm called co-classification to simultaneously detect Web spam
and spammers based on their content and link information [3]. We also investigate the effec-
tiveness of augmenting data from multiple social media applications to improve Web spam
detection using a combination of co-training with the co-classification approach [11]. We
also investigate extensions of the co-classification framework to other network classification
problems [7, 4].
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2 Summary of the Most Important Results

2.1 Web Spam in Social Media Web Sites

In [10], we analyzed the prevalence and characteristics of Web spam at two popular social
media Web sites, delicious.com and digg.com. The former is a social bookmarking Web site
that allows users to add shortcuts (bookmarks) to the URLs of their favorite Web sites,
assign tags to each bookmark, and share them with other users. The latter is a social news
Web site, which allows users to post links to interesting news stories they found on the
Internet or vote on the stories submitted by other users. Using a list of spam Web sites
extracted from a benchmark corpus [12], nearly 7% of them were found posted at digg.com
and 18% of them at delicious.com. These results showed the prevalence of Web spam in
social media and suggested the need for automated tools to detect them in order to improve
quality of online information and to prevent unsuspected users from being diverted to spam
and other malicious Web sites.

Although some social media applications such as digg provide additional counter-measures
to safeguard against the promotion of Web spam (e.g., by allowing users to “vote down” or
“bury” uninteresting posts), these measures are not entirely full proof because spammers
may create several bogus user accounts and collude with each other to promote (“vote up”
or “dig”) their spam Web sites. The problem is even more acute at delicious.com, where
nearly one-third of the spam URLs have been bookmarked by at least 20 users and about
23% of them were bookmarked by at least 30 users. Some of the spam URLs were as popular
as the non-spam URLs listed at http://delicious.com/popular/. An example of a popular
spam URL at delicious.com was the Airset spam, which was initially discovered by Brian
Dear1. He noted several unusual characteristics of the Airset spam, including: (1) all the
bookmarks correspond to the same URL, (2) all the bookmarks were assigned the same
keyword tag EVDB, and (3) the majority of users who submitted the spam URL posted no
other URLs. While such an unusual pattern is a potentially useful signature for Web spam,
it is insufficient to uncover all types of spam as the more experienced spammers may submit
links to other legitimate Web sites to obfuscate their spamming activities.

To illustrate the difficulty in identifying Web spam and spammers, consider the plots
shown in Figure 1. Figure 1(a) compares the user popularity for spammers against non-
spammers at delicious.com. User popularity refers to the number of “fans” who subscribe
to a user’s network. Although their scales are quite different, i.e., the most popular spam-
mers have fewer fans than the most popular non-spammers, both plots appear to exhibit
a power law distribution. In terms of the number of URLs submitted by spammers and
non-spammers, again, the shape and amplitude of the distributions are close to each other,
as shown in Figure 1(b). This observation suggests that user popularity and their number of
posted bookmarks are not sufficient to effectively detect Web spam and spammers. This is
because it would be difficult to set an appropriate minimum popularity or number of posted
bookmarks threshold to filter the spammers and spam URLs without misclassifying the non-

1A discussion of the Airset spam can be found at http://www.brianstorms.com/archives/000575.html.
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Figure 1: Comparing the user popularity and number of posts submitted by spammers
against non-spammers at delicious.com social media Web site.

spammers and non-spam URLs. We need to consider other link-based and content-based
features to improve the detection rate of Web spam and spammers.

2.2 Co-Classification Framework for Web Spam Detection

While there has been extensive research on detecting spam on the World Wide Web [8, 9,
5, 6, 2, 1], spam detection in social media is still in its infancy. Figure 2 illustrates the
conceptual difference between spam detection on the World Wide Web and spam detection
in social media applications. The former is composed of a single, homogeneous network
consisting of nodes of the same type (Web pages) while the latter is a multi-graph network
containing nodes of different types (users and their submitted URLs). Given the nature of
the data, spam detection for social media applications can be decomposed into two sub-
problems, namely, detecting spam URLs and the spammers who are responsible for posting
them.

There are many types of features that can be used for Web spam detection in social
media. For example, content-based features can be derived from the text description and
tags assigned by users to the URLs they have submitted. Link-based features can also be
constructed from the links between users, links between URLs, or links between users and
their submitted URLs. However, integrating such diverse features into a Web spam detection
algorithm is not a trivial task. First, existing classifiers such as support vector machine
(SVM) are not designed to handle both content-based and link-based features. Second, the
links are often noisy due to the fact that some legitimate users may inadvertently link to
spam URLs whereas some spammers may deliberately post links to legitimate Web sites to
evade detection.

In [3], we have developed a robust framework to effectively detect Web spam and spam-
mers in social media Web sites. Our framework extends the least-square support vector

3
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Figure 2: Comparison between spam detection in the World Wide Web (where the network
consists of hyperlinked Web pages) and spam detection in social media (where the network
consists of users and their shared social media content).

machine (LS-SVM) classifier to handle data that contains both link-based and content-based
features. The framework was developed based on the following two assumptions: (1) Spam
URLs are more likely to be posted by spammers than non-spammers and (2) Spammers are
more likely to link to other spammers than to non-spammers. We formalize these assump-
tions as graph regularization constraints and develop a co-classification algorithm to learn
a pair of classifiers that simultaneously detect Web spam and spammers at a social media
Web site. We also showed that our co-classification framework can be extended to nonlinear
models using the kernel trick and adapted to a semi-supervised learning setting.

Figure 3 shows the results of detecting Web spam and spammers at delicious.com and
digg.com Web sites. The results indicate that our supervised and semi-supervised co-
classification algorithms significantly outperform techniques that learn to classify the Web
spam and spammers independently. In addition, the semi-supervised co-classification algo-
rithm was more effective than the supervised version. This is because the semi-supervised
algorithm takes advantage of the link information to propagate the labeled information to
neighboring nodes (users and URLs).

2.3 Web Spam Detection with Out-of-Domain Data

One of the challenges in Web spam detection for social media applications is that training
examples are often scarce and expensive to acquire. The proliferation of social media Web
sites gives an opportunity to leverage data from different sources to improve model per-
formance. For example, one may enhance the performance of a classifier constructed from
delicious.com using out-of-domain data from digg.com. This is a reasonable assumption
since the spam Web sites are often posted on different social media Web sites.

In [11], we have developed a method based on co-training to utilize out-of-domain data
for improving Web spam detection. Co-training (Blum et. al., 1998) is a semi-supervised
learning technique that assumes each data point can be represented by two disjoint sets of

4
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Figure 3: Comparison between the supervised and semi-supervised co-classification algo-
rithms against SVM classifiers trained on the user and URL networks independently.

features. Each feature set provides a complementary view of the data point. Ideally, the two
feature sets should be conditionally independent given the class. Furthermore, each feature
set should contain relevant information to correctly predict the class label of a data point.
If both conditions are satisfied, it can be shown that co-training will improve classification
accuracy on the target domain.

Our proposed co-training with co-classification approach first learns an initial pair of
classifiers for each domain source (digg.com and delicious.com). It then applies the classifiers
to the test examples and selects the test examples with highest confidence in their predictions
to be augmented to the labeled training data. This process is repeated until the algorithm
converges. We evaluated the performance of our hybrid co-training with co-classification
algorithm using the delicious.com and digg.com datasets. After checking the submitted
URLs, we found about 8% of the URLs are common to both Web sites. In order to analyze
the effect of using out-of-domain data, we gradually increase the proportion of common
URLs in the training set from 4% to 8%. The experimental results given in Figure 4 showed
that the performance of co-training with co-classification, denoted as Co-Co-Class, is better
than applying co-classification on data from a single domain, especially when the proportion
of common URLs posted on both Web sites increased.

2.4 Generalization of Co-Classification Framework

The original co-classification framework developed in [3] was designed for discriminating
binary classes only. Since Web spam can be divided into different subclasses, it would be
useful to extend the framework to more than two classes. In [7], we have generalized the
co-classification framework to multi-class problems. Specifically, we formalized the joint clas-
sification tasks as a constrained optimization problem, in which the relationships between
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Figure 4: Performance comparison between co-classification on networks from a single do-
main against co-classification with co-training on network data from multiple domains.

the classes in two different networks are modeled as graph regularization constraints. Un-
like our previous binary class formulation, our new approach also allows us to incorporate
prior knowledge about the potential relationships between classes in different networks to
avoid overfitting. Experimental results showed that the proposed algorithm significantly
outperforms classifiers that learn each classification task independently.

The co-classification framework assumes that labeled examples are available on both user
and URL networks. Thus, it is not applicable when labeled examples are available in only
one of the two networks. In [4], we presented an approach for multi-task learning in mul-
tiple related networks, where in we perform supervised classification on one network and
unsupervised clustering on the other. We showed that the framework can be extended to
incorporate prior information about the correspondences between the clusters and classes
in different networks. Through various set of experiments, we have demonstrated the effec-
tiveness of the proposed framework compared to independent classification or clustering on
individual networks.
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